xref: /linux/drivers/of/base.c (revision 6ede2b7df92f4f8da1abfa831a038688fcf409ea)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 
21 #define pr_fmt(fmt)	"OF: " fmt
22 
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34 
35 #include "of_private.h"
36 
37 LIST_HEAD(aliases_lookup);
38 
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45 
46 struct kset *of_kset;
47 
48 /*
49  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50  * This mutex must be held whenever modifications are being made to the
51  * device tree. The of_{attach,detach}_node() and
52  * of_{add,remove,update}_property() helpers make sure this happens.
53  */
54 DEFINE_MUTEX(of_mutex);
55 
56 /* use when traversing tree through the child, sibling,
57  * or parent members of struct device_node.
58  */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60 
61 int of_n_addr_cells(struct device_node *np)
62 {
63 	const __be32 *ip;
64 
65 	do {
66 		if (np->parent)
67 			np = np->parent;
68 		ip = of_get_property(np, "#address-cells", NULL);
69 		if (ip)
70 			return be32_to_cpup(ip);
71 	} while (np->parent);
72 	/* No #address-cells property for the root node */
73 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_addr_cells);
76 
77 int of_n_size_cells(struct device_node *np)
78 {
79 	const __be32 *ip;
80 
81 	do {
82 		if (np->parent)
83 			np = np->parent;
84 		ip = of_get_property(np, "#size-cells", NULL);
85 		if (ip)
86 			return be32_to_cpup(ip);
87 	} while (np->parent);
88 	/* No #size-cells property for the root node */
89 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
90 }
91 EXPORT_SYMBOL(of_n_size_cells);
92 
93 #ifdef CONFIG_NUMA
94 int __weak of_node_to_nid(struct device_node *np)
95 {
96 	return NUMA_NO_NODE;
97 }
98 #endif
99 
100 #ifndef CONFIG_OF_DYNAMIC
101 static void of_node_release(struct kobject *kobj)
102 {
103 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
104 }
105 #endif /* CONFIG_OF_DYNAMIC */
106 
107 struct kobj_type of_node_ktype = {
108 	.release = of_node_release,
109 };
110 
111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
112 				struct bin_attribute *bin_attr, char *buf,
113 				loff_t offset, size_t count)
114 {
115 	struct property *pp = container_of(bin_attr, struct property, attr);
116 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
117 }
118 
119 /* always return newly allocated name, caller must free after use */
120 static const char *safe_name(struct kobject *kobj, const char *orig_name)
121 {
122 	const char *name = orig_name;
123 	struct kernfs_node *kn;
124 	int i = 0;
125 
126 	/* don't be a hero. After 16 tries give up */
127 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
128 		sysfs_put(kn);
129 		if (name != orig_name)
130 			kfree(name);
131 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
132 	}
133 
134 	if (name == orig_name) {
135 		name = kstrdup(orig_name, GFP_KERNEL);
136 	} else {
137 		pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138 			kobject_name(kobj), name);
139 	}
140 	return name;
141 }
142 
143 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 {
145 	int rc;
146 
147 	/* Important: Don't leak passwords */
148 	bool secure = strncmp(pp->name, "security-", 9) == 0;
149 
150 	if (!IS_ENABLED(CONFIG_SYSFS))
151 		return 0;
152 
153 	if (!of_kset || !of_node_is_attached(np))
154 		return 0;
155 
156 	sysfs_bin_attr_init(&pp->attr);
157 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
158 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
159 	pp->attr.size = secure ? 0 : pp->length;
160 	pp->attr.read = of_node_property_read;
161 
162 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
163 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
164 	return rc;
165 }
166 
167 int __of_attach_node_sysfs(struct device_node *np)
168 {
169 	const char *name;
170 	struct kobject *parent;
171 	struct property *pp;
172 	int rc;
173 
174 	if (!IS_ENABLED(CONFIG_SYSFS))
175 		return 0;
176 
177 	if (!of_kset)
178 		return 0;
179 
180 	np->kobj.kset = of_kset;
181 	if (!np->parent) {
182 		/* Nodes without parents are new top level trees */
183 		name = safe_name(&of_kset->kobj, "base");
184 		parent = NULL;
185 	} else {
186 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187 		parent = &np->parent->kobj;
188 	}
189 	if (!name)
190 		return -ENOMEM;
191 	rc = kobject_add(&np->kobj, parent, "%s", name);
192 	kfree(name);
193 	if (rc)
194 		return rc;
195 
196 	for_each_property_of_node(np, pp)
197 		__of_add_property_sysfs(np, pp);
198 
199 	return 0;
200 }
201 
202 void __init of_core_init(void)
203 {
204 	struct device_node *np;
205 
206 	/* Create the kset, and register existing nodes */
207 	mutex_lock(&of_mutex);
208 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
209 	if (!of_kset) {
210 		mutex_unlock(&of_mutex);
211 		pr_err("failed to register existing nodes\n");
212 		return;
213 	}
214 	for_each_of_allnodes(np)
215 		__of_attach_node_sysfs(np);
216 	mutex_unlock(&of_mutex);
217 
218 	/* Symlink in /proc as required by userspace ABI */
219 	if (of_root)
220 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
221 }
222 
223 static struct property *__of_find_property(const struct device_node *np,
224 					   const char *name, int *lenp)
225 {
226 	struct property *pp;
227 
228 	if (!np)
229 		return NULL;
230 
231 	for (pp = np->properties; pp; pp = pp->next) {
232 		if (of_prop_cmp(pp->name, name) == 0) {
233 			if (lenp)
234 				*lenp = pp->length;
235 			break;
236 		}
237 	}
238 
239 	return pp;
240 }
241 
242 struct property *of_find_property(const struct device_node *np,
243 				  const char *name,
244 				  int *lenp)
245 {
246 	struct property *pp;
247 	unsigned long flags;
248 
249 	raw_spin_lock_irqsave(&devtree_lock, flags);
250 	pp = __of_find_property(np, name, lenp);
251 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
252 
253 	return pp;
254 }
255 EXPORT_SYMBOL(of_find_property);
256 
257 struct device_node *__of_find_all_nodes(struct device_node *prev)
258 {
259 	struct device_node *np;
260 	if (!prev) {
261 		np = of_root;
262 	} else if (prev->child) {
263 		np = prev->child;
264 	} else {
265 		/* Walk back up looking for a sibling, or the end of the structure */
266 		np = prev;
267 		while (np->parent && !np->sibling)
268 			np = np->parent;
269 		np = np->sibling; /* Might be null at the end of the tree */
270 	}
271 	return np;
272 }
273 
274 /**
275  * of_find_all_nodes - Get next node in global list
276  * @prev:	Previous node or NULL to start iteration
277  *		of_node_put() will be called on it
278  *
279  * Returns a node pointer with refcount incremented, use
280  * of_node_put() on it when done.
281  */
282 struct device_node *of_find_all_nodes(struct device_node *prev)
283 {
284 	struct device_node *np;
285 	unsigned long flags;
286 
287 	raw_spin_lock_irqsave(&devtree_lock, flags);
288 	np = __of_find_all_nodes(prev);
289 	of_node_get(np);
290 	of_node_put(prev);
291 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
292 	return np;
293 }
294 EXPORT_SYMBOL(of_find_all_nodes);
295 
296 /*
297  * Find a property with a given name for a given node
298  * and return the value.
299  */
300 const void *__of_get_property(const struct device_node *np,
301 			      const char *name, int *lenp)
302 {
303 	struct property *pp = __of_find_property(np, name, lenp);
304 
305 	return pp ? pp->value : NULL;
306 }
307 
308 /*
309  * Find a property with a given name for a given node
310  * and return the value.
311  */
312 const void *of_get_property(const struct device_node *np, const char *name,
313 			    int *lenp)
314 {
315 	struct property *pp = of_find_property(np, name, lenp);
316 
317 	return pp ? pp->value : NULL;
318 }
319 EXPORT_SYMBOL(of_get_property);
320 
321 /*
322  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
323  *
324  * @cpu: logical cpu index of a core/thread
325  * @phys_id: physical identifier of a core/thread
326  *
327  * CPU logical to physical index mapping is architecture specific.
328  * However this __weak function provides a default match of physical
329  * id to logical cpu index. phys_id provided here is usually values read
330  * from the device tree which must match the hardware internal registers.
331  *
332  * Returns true if the physical identifier and the logical cpu index
333  * correspond to the same core/thread, false otherwise.
334  */
335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
336 {
337 	return (u32)phys_id == cpu;
338 }
339 
340 /**
341  * Checks if the given "prop_name" property holds the physical id of the
342  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
343  * NULL, local thread number within the core is returned in it.
344  */
345 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
346 			const char *prop_name, int cpu, unsigned int *thread)
347 {
348 	const __be32 *cell;
349 	int ac, prop_len, tid;
350 	u64 hwid;
351 
352 	ac = of_n_addr_cells(cpun);
353 	cell = of_get_property(cpun, prop_name, &prop_len);
354 	if (!cell || !ac)
355 		return false;
356 	prop_len /= sizeof(*cell) * ac;
357 	for (tid = 0; tid < prop_len; tid++) {
358 		hwid = of_read_number(cell, ac);
359 		if (arch_match_cpu_phys_id(cpu, hwid)) {
360 			if (thread)
361 				*thread = tid;
362 			return true;
363 		}
364 		cell += ac;
365 	}
366 	return false;
367 }
368 
369 /*
370  * arch_find_n_match_cpu_physical_id - See if the given device node is
371  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
372  * else false.  If 'thread' is non-NULL, the local thread number within the
373  * core is returned in it.
374  */
375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
376 					      int cpu, unsigned int *thread)
377 {
378 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
379 	 * for thread ids on PowerPC. If it doesn't exist fallback to
380 	 * standard "reg" property.
381 	 */
382 	if (IS_ENABLED(CONFIG_PPC) &&
383 	    __of_find_n_match_cpu_property(cpun,
384 					   "ibm,ppc-interrupt-server#s",
385 					   cpu, thread))
386 		return true;
387 
388 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
389 }
390 
391 /**
392  * of_get_cpu_node - Get device node associated with the given logical CPU
393  *
394  * @cpu: CPU number(logical index) for which device node is required
395  * @thread: if not NULL, local thread number within the physical core is
396  *          returned
397  *
398  * The main purpose of this function is to retrieve the device node for the
399  * given logical CPU index. It should be used to initialize the of_node in
400  * cpu device. Once of_node in cpu device is populated, all the further
401  * references can use that instead.
402  *
403  * CPU logical to physical index mapping is architecture specific and is built
404  * before booting secondary cores. This function uses arch_match_cpu_phys_id
405  * which can be overridden by architecture specific implementation.
406  *
407  * Returns a node pointer for the logical cpu with refcount incremented, use
408  * of_node_put() on it when done. Returns NULL if not found.
409  */
410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
411 {
412 	struct device_node *cpun;
413 
414 	for_each_node_by_type(cpun, "cpu") {
415 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
416 			return cpun;
417 	}
418 	return NULL;
419 }
420 EXPORT_SYMBOL(of_get_cpu_node);
421 
422 /**
423  * __of_device_is_compatible() - Check if the node matches given constraints
424  * @device: pointer to node
425  * @compat: required compatible string, NULL or "" for any match
426  * @type: required device_type value, NULL or "" for any match
427  * @name: required node name, NULL or "" for any match
428  *
429  * Checks if the given @compat, @type and @name strings match the
430  * properties of the given @device. A constraints can be skipped by
431  * passing NULL or an empty string as the constraint.
432  *
433  * Returns 0 for no match, and a positive integer on match. The return
434  * value is a relative score with larger values indicating better
435  * matches. The score is weighted for the most specific compatible value
436  * to get the highest score. Matching type is next, followed by matching
437  * name. Practically speaking, this results in the following priority
438  * order for matches:
439  *
440  * 1. specific compatible && type && name
441  * 2. specific compatible && type
442  * 3. specific compatible && name
443  * 4. specific compatible
444  * 5. general compatible && type && name
445  * 6. general compatible && type
446  * 7. general compatible && name
447  * 8. general compatible
448  * 9. type && name
449  * 10. type
450  * 11. name
451  */
452 static int __of_device_is_compatible(const struct device_node *device,
453 				     const char *compat, const char *type, const char *name)
454 {
455 	struct property *prop;
456 	const char *cp;
457 	int index = 0, score = 0;
458 
459 	/* Compatible match has highest priority */
460 	if (compat && compat[0]) {
461 		prop = __of_find_property(device, "compatible", NULL);
462 		for (cp = of_prop_next_string(prop, NULL); cp;
463 		     cp = of_prop_next_string(prop, cp), index++) {
464 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
465 				score = INT_MAX/2 - (index << 2);
466 				break;
467 			}
468 		}
469 		if (!score)
470 			return 0;
471 	}
472 
473 	/* Matching type is better than matching name */
474 	if (type && type[0]) {
475 		if (!device->type || of_node_cmp(type, device->type))
476 			return 0;
477 		score += 2;
478 	}
479 
480 	/* Matching name is a bit better than not */
481 	if (name && name[0]) {
482 		if (!device->name || of_node_cmp(name, device->name))
483 			return 0;
484 		score++;
485 	}
486 
487 	return score;
488 }
489 
490 /** Checks if the given "compat" string matches one of the strings in
491  * the device's "compatible" property
492  */
493 int of_device_is_compatible(const struct device_node *device,
494 		const char *compat)
495 {
496 	unsigned long flags;
497 	int res;
498 
499 	raw_spin_lock_irqsave(&devtree_lock, flags);
500 	res = __of_device_is_compatible(device, compat, NULL, NULL);
501 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
502 	return res;
503 }
504 EXPORT_SYMBOL(of_device_is_compatible);
505 
506 /** Checks if the device is compatible with any of the entries in
507  *  a NULL terminated array of strings. Returns the best match
508  *  score or 0.
509  */
510 int of_device_compatible_match(struct device_node *device,
511 			       const char *const *compat)
512 {
513 	unsigned int tmp, score = 0;
514 
515 	if (!compat)
516 		return 0;
517 
518 	while (*compat) {
519 		tmp = of_device_is_compatible(device, *compat);
520 		if (tmp > score)
521 			score = tmp;
522 		compat++;
523 	}
524 
525 	return score;
526 }
527 
528 /**
529  * of_machine_is_compatible - Test root of device tree for a given compatible value
530  * @compat: compatible string to look for in root node's compatible property.
531  *
532  * Returns a positive integer if the root node has the given value in its
533  * compatible property.
534  */
535 int of_machine_is_compatible(const char *compat)
536 {
537 	struct device_node *root;
538 	int rc = 0;
539 
540 	root = of_find_node_by_path("/");
541 	if (root) {
542 		rc = of_device_is_compatible(root, compat);
543 		of_node_put(root);
544 	}
545 	return rc;
546 }
547 EXPORT_SYMBOL(of_machine_is_compatible);
548 
549 /**
550  *  __of_device_is_available - check if a device is available for use
551  *
552  *  @device: Node to check for availability, with locks already held
553  *
554  *  Returns true if the status property is absent or set to "okay" or "ok",
555  *  false otherwise
556  */
557 static bool __of_device_is_available(const struct device_node *device)
558 {
559 	const char *status;
560 	int statlen;
561 
562 	if (!device)
563 		return false;
564 
565 	status = __of_get_property(device, "status", &statlen);
566 	if (status == NULL)
567 		return true;
568 
569 	if (statlen > 0) {
570 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
571 			return true;
572 	}
573 
574 	return false;
575 }
576 
577 /**
578  *  of_device_is_available - check if a device is available for use
579  *
580  *  @device: Node to check for availability
581  *
582  *  Returns true if the status property is absent or set to "okay" or "ok",
583  *  false otherwise
584  */
585 bool of_device_is_available(const struct device_node *device)
586 {
587 	unsigned long flags;
588 	bool res;
589 
590 	raw_spin_lock_irqsave(&devtree_lock, flags);
591 	res = __of_device_is_available(device);
592 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 	return res;
594 
595 }
596 EXPORT_SYMBOL(of_device_is_available);
597 
598 /**
599  *  of_device_is_big_endian - check if a device has BE registers
600  *
601  *  @device: Node to check for endianness
602  *
603  *  Returns true if the device has a "big-endian" property, or if the kernel
604  *  was compiled for BE *and* the device has a "native-endian" property.
605  *  Returns false otherwise.
606  *
607  *  Callers would nominally use ioread32be/iowrite32be if
608  *  of_device_is_big_endian() == true, or readl/writel otherwise.
609  */
610 bool of_device_is_big_endian(const struct device_node *device)
611 {
612 	if (of_property_read_bool(device, "big-endian"))
613 		return true;
614 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
615 	    of_property_read_bool(device, "native-endian"))
616 		return true;
617 	return false;
618 }
619 EXPORT_SYMBOL(of_device_is_big_endian);
620 
621 /**
622  *	of_get_parent - Get a node's parent if any
623  *	@node:	Node to get parent
624  *
625  *	Returns a node pointer with refcount incremented, use
626  *	of_node_put() on it when done.
627  */
628 struct device_node *of_get_parent(const struct device_node *node)
629 {
630 	struct device_node *np;
631 	unsigned long flags;
632 
633 	if (!node)
634 		return NULL;
635 
636 	raw_spin_lock_irqsave(&devtree_lock, flags);
637 	np = of_node_get(node->parent);
638 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 	return np;
640 }
641 EXPORT_SYMBOL(of_get_parent);
642 
643 /**
644  *	of_get_next_parent - Iterate to a node's parent
645  *	@node:	Node to get parent of
646  *
647  *	This is like of_get_parent() except that it drops the
648  *	refcount on the passed node, making it suitable for iterating
649  *	through a node's parents.
650  *
651  *	Returns a node pointer with refcount incremented, use
652  *	of_node_put() on it when done.
653  */
654 struct device_node *of_get_next_parent(struct device_node *node)
655 {
656 	struct device_node *parent;
657 	unsigned long flags;
658 
659 	if (!node)
660 		return NULL;
661 
662 	raw_spin_lock_irqsave(&devtree_lock, flags);
663 	parent = of_node_get(node->parent);
664 	of_node_put(node);
665 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
666 	return parent;
667 }
668 EXPORT_SYMBOL(of_get_next_parent);
669 
670 static struct device_node *__of_get_next_child(const struct device_node *node,
671 						struct device_node *prev)
672 {
673 	struct device_node *next;
674 
675 	if (!node)
676 		return NULL;
677 
678 	next = prev ? prev->sibling : node->child;
679 	for (; next; next = next->sibling)
680 		if (of_node_get(next))
681 			break;
682 	of_node_put(prev);
683 	return next;
684 }
685 #define __for_each_child_of_node(parent, child) \
686 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
687 	     child = __of_get_next_child(parent, child))
688 
689 /**
690  *	of_get_next_child - Iterate a node childs
691  *	@node:	parent node
692  *	@prev:	previous child of the parent node, or NULL to get first
693  *
694  *	Returns a node pointer with refcount incremented, use of_node_put() on
695  *	it when done. Returns NULL when prev is the last child. Decrements the
696  *	refcount of prev.
697  */
698 struct device_node *of_get_next_child(const struct device_node *node,
699 	struct device_node *prev)
700 {
701 	struct device_node *next;
702 	unsigned long flags;
703 
704 	raw_spin_lock_irqsave(&devtree_lock, flags);
705 	next = __of_get_next_child(node, prev);
706 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
707 	return next;
708 }
709 EXPORT_SYMBOL(of_get_next_child);
710 
711 /**
712  *	of_get_next_available_child - Find the next available child node
713  *	@node:	parent node
714  *	@prev:	previous child of the parent node, or NULL to get first
715  *
716  *      This function is like of_get_next_child(), except that it
717  *      automatically skips any disabled nodes (i.e. status = "disabled").
718  */
719 struct device_node *of_get_next_available_child(const struct device_node *node,
720 	struct device_node *prev)
721 {
722 	struct device_node *next;
723 	unsigned long flags;
724 
725 	if (!node)
726 		return NULL;
727 
728 	raw_spin_lock_irqsave(&devtree_lock, flags);
729 	next = prev ? prev->sibling : node->child;
730 	for (; next; next = next->sibling) {
731 		if (!__of_device_is_available(next))
732 			continue;
733 		if (of_node_get(next))
734 			break;
735 	}
736 	of_node_put(prev);
737 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 	return next;
739 }
740 EXPORT_SYMBOL(of_get_next_available_child);
741 
742 /**
743  *	of_get_child_by_name - Find the child node by name for a given parent
744  *	@node:	parent node
745  *	@name:	child name to look for.
746  *
747  *      This function looks for child node for given matching name
748  *
749  *	Returns a node pointer if found, with refcount incremented, use
750  *	of_node_put() on it when done.
751  *	Returns NULL if node is not found.
752  */
753 struct device_node *of_get_child_by_name(const struct device_node *node,
754 				const char *name)
755 {
756 	struct device_node *child;
757 
758 	for_each_child_of_node(node, child)
759 		if (child->name && (of_node_cmp(child->name, name) == 0))
760 			break;
761 	return child;
762 }
763 EXPORT_SYMBOL(of_get_child_by_name);
764 
765 static struct device_node *__of_find_node_by_path(struct device_node *parent,
766 						const char *path)
767 {
768 	struct device_node *child;
769 	int len;
770 
771 	len = strcspn(path, "/:");
772 	if (!len)
773 		return NULL;
774 
775 	__for_each_child_of_node(parent, child) {
776 		const char *name = strrchr(child->full_name, '/');
777 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
778 			continue;
779 		name++;
780 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
781 			return child;
782 	}
783 	return NULL;
784 }
785 
786 /**
787  *	of_find_node_opts_by_path - Find a node matching a full OF path
788  *	@path: Either the full path to match, or if the path does not
789  *	       start with '/', the name of a property of the /aliases
790  *	       node (an alias).  In the case of an alias, the node
791  *	       matching the alias' value will be returned.
792  *	@opts: Address of a pointer into which to store the start of
793  *	       an options string appended to the end of the path with
794  *	       a ':' separator.
795  *
796  *	Valid paths:
797  *		/foo/bar	Full path
798  *		foo		Valid alias
799  *		foo/bar		Valid alias + relative path
800  *
801  *	Returns a node pointer with refcount incremented, use
802  *	of_node_put() on it when done.
803  */
804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
805 {
806 	struct device_node *np = NULL;
807 	struct property *pp;
808 	unsigned long flags;
809 	const char *separator = strchr(path, ':');
810 
811 	if (opts)
812 		*opts = separator ? separator + 1 : NULL;
813 
814 	if (strcmp(path, "/") == 0)
815 		return of_node_get(of_root);
816 
817 	/* The path could begin with an alias */
818 	if (*path != '/') {
819 		int len;
820 		const char *p = separator;
821 
822 		if (!p)
823 			p = strchrnul(path, '/');
824 		len = p - path;
825 
826 		/* of_aliases must not be NULL */
827 		if (!of_aliases)
828 			return NULL;
829 
830 		for_each_property_of_node(of_aliases, pp) {
831 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
832 				np = of_find_node_by_path(pp->value);
833 				break;
834 			}
835 		}
836 		if (!np)
837 			return NULL;
838 		path = p;
839 	}
840 
841 	/* Step down the tree matching path components */
842 	raw_spin_lock_irqsave(&devtree_lock, flags);
843 	if (!np)
844 		np = of_node_get(of_root);
845 	while (np && *path == '/') {
846 		struct device_node *tmp = np;
847 
848 		path++; /* Increment past '/' delimiter */
849 		np = __of_find_node_by_path(np, path);
850 		of_node_put(tmp);
851 		path = strchrnul(path, '/');
852 		if (separator && separator < path)
853 			break;
854 	}
855 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
856 	return np;
857 }
858 EXPORT_SYMBOL(of_find_node_opts_by_path);
859 
860 /**
861  *	of_find_node_by_name - Find a node by its "name" property
862  *	@from:	The node to start searching from or NULL, the node
863  *		you pass will not be searched, only the next one
864  *		will; typically, you pass what the previous call
865  *		returned. of_node_put() will be called on it
866  *	@name:	The name string to match against
867  *
868  *	Returns a node pointer with refcount incremented, use
869  *	of_node_put() on it when done.
870  */
871 struct device_node *of_find_node_by_name(struct device_node *from,
872 	const char *name)
873 {
874 	struct device_node *np;
875 	unsigned long flags;
876 
877 	raw_spin_lock_irqsave(&devtree_lock, flags);
878 	for_each_of_allnodes_from(from, np)
879 		if (np->name && (of_node_cmp(np->name, name) == 0)
880 		    && of_node_get(np))
881 			break;
882 	of_node_put(from);
883 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
884 	return np;
885 }
886 EXPORT_SYMBOL(of_find_node_by_name);
887 
888 /**
889  *	of_find_node_by_type - Find a node by its "device_type" property
890  *	@from:	The node to start searching from, or NULL to start searching
891  *		the entire device tree. The node you pass will not be
892  *		searched, only the next one will; typically, you pass
893  *		what the previous call returned. of_node_put() will be
894  *		called on from for you.
895  *	@type:	The type string to match against
896  *
897  *	Returns a node pointer with refcount incremented, use
898  *	of_node_put() on it when done.
899  */
900 struct device_node *of_find_node_by_type(struct device_node *from,
901 	const char *type)
902 {
903 	struct device_node *np;
904 	unsigned long flags;
905 
906 	raw_spin_lock_irqsave(&devtree_lock, flags);
907 	for_each_of_allnodes_from(from, np)
908 		if (np->type && (of_node_cmp(np->type, type) == 0)
909 		    && of_node_get(np))
910 			break;
911 	of_node_put(from);
912 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
913 	return np;
914 }
915 EXPORT_SYMBOL(of_find_node_by_type);
916 
917 /**
918  *	of_find_compatible_node - Find a node based on type and one of the
919  *                                tokens in its "compatible" property
920  *	@from:		The node to start searching from or NULL, the node
921  *			you pass will not be searched, only the next one
922  *			will; typically, you pass what the previous call
923  *			returned. of_node_put() will be called on it
924  *	@type:		The type string to match "device_type" or NULL to ignore
925  *	@compatible:	The string to match to one of the tokens in the device
926  *			"compatible" list.
927  *
928  *	Returns a node pointer with refcount incremented, use
929  *	of_node_put() on it when done.
930  */
931 struct device_node *of_find_compatible_node(struct device_node *from,
932 	const char *type, const char *compatible)
933 {
934 	struct device_node *np;
935 	unsigned long flags;
936 
937 	raw_spin_lock_irqsave(&devtree_lock, flags);
938 	for_each_of_allnodes_from(from, np)
939 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
940 		    of_node_get(np))
941 			break;
942 	of_node_put(from);
943 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
944 	return np;
945 }
946 EXPORT_SYMBOL(of_find_compatible_node);
947 
948 /**
949  *	of_find_node_with_property - Find a node which has a property with
950  *                                   the given name.
951  *	@from:		The node to start searching from or NULL, the node
952  *			you pass will not be searched, only the next one
953  *			will; typically, you pass what the previous call
954  *			returned. of_node_put() will be called on it
955  *	@prop_name:	The name of the property to look for.
956  *
957  *	Returns a node pointer with refcount incremented, use
958  *	of_node_put() on it when done.
959  */
960 struct device_node *of_find_node_with_property(struct device_node *from,
961 	const char *prop_name)
962 {
963 	struct device_node *np;
964 	struct property *pp;
965 	unsigned long flags;
966 
967 	raw_spin_lock_irqsave(&devtree_lock, flags);
968 	for_each_of_allnodes_from(from, np) {
969 		for (pp = np->properties; pp; pp = pp->next) {
970 			if (of_prop_cmp(pp->name, prop_name) == 0) {
971 				of_node_get(np);
972 				goto out;
973 			}
974 		}
975 	}
976 out:
977 	of_node_put(from);
978 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
979 	return np;
980 }
981 EXPORT_SYMBOL(of_find_node_with_property);
982 
983 static
984 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
985 					   const struct device_node *node)
986 {
987 	const struct of_device_id *best_match = NULL;
988 	int score, best_score = 0;
989 
990 	if (!matches)
991 		return NULL;
992 
993 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
994 		score = __of_device_is_compatible(node, matches->compatible,
995 						  matches->type, matches->name);
996 		if (score > best_score) {
997 			best_match = matches;
998 			best_score = score;
999 		}
1000 	}
1001 
1002 	return best_match;
1003 }
1004 
1005 /**
1006  * of_match_node - Tell if a device_node has a matching of_match structure
1007  *	@matches:	array of of device match structures to search in
1008  *	@node:		the of device structure to match against
1009  *
1010  *	Low level utility function used by device matching.
1011  */
1012 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1013 					 const struct device_node *node)
1014 {
1015 	const struct of_device_id *match;
1016 	unsigned long flags;
1017 
1018 	raw_spin_lock_irqsave(&devtree_lock, flags);
1019 	match = __of_match_node(matches, node);
1020 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 	return match;
1022 }
1023 EXPORT_SYMBOL(of_match_node);
1024 
1025 /**
1026  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1027  *					  match table.
1028  *	@from:		The node to start searching from or NULL, the node
1029  *			you pass will not be searched, only the next one
1030  *			will; typically, you pass what the previous call
1031  *			returned. of_node_put() will be called on it
1032  *	@matches:	array of of device match structures to search in
1033  *	@match		Updated to point at the matches entry which matched
1034  *
1035  *	Returns a node pointer with refcount incremented, use
1036  *	of_node_put() on it when done.
1037  */
1038 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1039 					const struct of_device_id *matches,
1040 					const struct of_device_id **match)
1041 {
1042 	struct device_node *np;
1043 	const struct of_device_id *m;
1044 	unsigned long flags;
1045 
1046 	if (match)
1047 		*match = NULL;
1048 
1049 	raw_spin_lock_irqsave(&devtree_lock, flags);
1050 	for_each_of_allnodes_from(from, np) {
1051 		m = __of_match_node(matches, np);
1052 		if (m && of_node_get(np)) {
1053 			if (match)
1054 				*match = m;
1055 			break;
1056 		}
1057 	}
1058 	of_node_put(from);
1059 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1060 	return np;
1061 }
1062 EXPORT_SYMBOL(of_find_matching_node_and_match);
1063 
1064 /**
1065  * of_modalias_node - Lookup appropriate modalias for a device node
1066  * @node:	pointer to a device tree node
1067  * @modalias:	Pointer to buffer that modalias value will be copied into
1068  * @len:	Length of modalias value
1069  *
1070  * Based on the value of the compatible property, this routine will attempt
1071  * to choose an appropriate modalias value for a particular device tree node.
1072  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1073  * from the first entry in the compatible list property.
1074  *
1075  * This routine returns 0 on success, <0 on failure.
1076  */
1077 int of_modalias_node(struct device_node *node, char *modalias, int len)
1078 {
1079 	const char *compatible, *p;
1080 	int cplen;
1081 
1082 	compatible = of_get_property(node, "compatible", &cplen);
1083 	if (!compatible || strlen(compatible) > cplen)
1084 		return -ENODEV;
1085 	p = strchr(compatible, ',');
1086 	strlcpy(modalias, p ? p + 1 : compatible, len);
1087 	return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(of_modalias_node);
1090 
1091 /**
1092  * of_find_node_by_phandle - Find a node given a phandle
1093  * @handle:	phandle of the node to find
1094  *
1095  * Returns a node pointer with refcount incremented, use
1096  * of_node_put() on it when done.
1097  */
1098 struct device_node *of_find_node_by_phandle(phandle handle)
1099 {
1100 	struct device_node *np;
1101 	unsigned long flags;
1102 
1103 	if (!handle)
1104 		return NULL;
1105 
1106 	raw_spin_lock_irqsave(&devtree_lock, flags);
1107 	for_each_of_allnodes(np)
1108 		if (np->phandle == handle)
1109 			break;
1110 	of_node_get(np);
1111 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1112 	return np;
1113 }
1114 EXPORT_SYMBOL(of_find_node_by_phandle);
1115 
1116 /**
1117  * of_property_count_elems_of_size - Count the number of elements in a property
1118  *
1119  * @np:		device node from which the property value is to be read.
1120  * @propname:	name of the property to be searched.
1121  * @elem_size:	size of the individual element
1122  *
1123  * Search for a property in a device node and count the number of elements of
1124  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1125  * property does not exist or its length does not match a multiple of elem_size
1126  * and -ENODATA if the property does not have a value.
1127  */
1128 int of_property_count_elems_of_size(const struct device_node *np,
1129 				const char *propname, int elem_size)
1130 {
1131 	struct property *prop = of_find_property(np, propname, NULL);
1132 
1133 	if (!prop)
1134 		return -EINVAL;
1135 	if (!prop->value)
1136 		return -ENODATA;
1137 
1138 	if (prop->length % elem_size != 0) {
1139 		pr_err("size of %s in node %s is not a multiple of %d\n",
1140 		       propname, np->full_name, elem_size);
1141 		return -EINVAL;
1142 	}
1143 
1144 	return prop->length / elem_size;
1145 }
1146 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1147 
1148 /**
1149  * of_find_property_value_of_size
1150  *
1151  * @np:		device node from which the property value is to be read.
1152  * @propname:	name of the property to be searched.
1153  * @min:	minimum allowed length of property value
1154  * @max:	maximum allowed length of property value (0 means unlimited)
1155  * @len:	if !=NULL, actual length is written to here
1156  *
1157  * Search for a property in a device node and valid the requested size.
1158  * Returns the property value on success, -EINVAL if the property does not
1159  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1160  * property data is too small or too large.
1161  *
1162  */
1163 static void *of_find_property_value_of_size(const struct device_node *np,
1164 			const char *propname, u32 min, u32 max, size_t *len)
1165 {
1166 	struct property *prop = of_find_property(np, propname, NULL);
1167 
1168 	if (!prop)
1169 		return ERR_PTR(-EINVAL);
1170 	if (!prop->value)
1171 		return ERR_PTR(-ENODATA);
1172 	if (prop->length < min)
1173 		return ERR_PTR(-EOVERFLOW);
1174 	if (max && prop->length > max)
1175 		return ERR_PTR(-EOVERFLOW);
1176 
1177 	if (len)
1178 		*len = prop->length;
1179 
1180 	return prop->value;
1181 }
1182 
1183 /**
1184  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1185  *
1186  * @np:		device node from which the property value is to be read.
1187  * @propname:	name of the property to be searched.
1188  * @index:	index of the u32 in the list of values
1189  * @out_value:	pointer to return value, modified only if no error.
1190  *
1191  * Search for a property in a device node and read nth 32-bit value from
1192  * it. Returns 0 on success, -EINVAL if the property does not exist,
1193  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1194  * property data isn't large enough.
1195  *
1196  * The out_value is modified only if a valid u32 value can be decoded.
1197  */
1198 int of_property_read_u32_index(const struct device_node *np,
1199 				       const char *propname,
1200 				       u32 index, u32 *out_value)
1201 {
1202 	const u32 *val = of_find_property_value_of_size(np, propname,
1203 					((index + 1) * sizeof(*out_value)),
1204 					0,
1205 					NULL);
1206 
1207 	if (IS_ERR(val))
1208 		return PTR_ERR(val);
1209 
1210 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1214 
1215 /**
1216  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
1217  *
1218  * @np:		device node from which the property value is to be read.
1219  * @propname:	name of the property to be searched.
1220  * @index:	index of the u64 in the list of values
1221  * @out_value:	pointer to return value, modified only if no error.
1222  *
1223  * Search for a property in a device node and read nth 64-bit value from
1224  * it. Returns 0 on success, -EINVAL if the property does not exist,
1225  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1226  * property data isn't large enough.
1227  *
1228  * The out_value is modified only if a valid u64 value can be decoded.
1229  */
1230 int of_property_read_u64_index(const struct device_node *np,
1231 				       const char *propname,
1232 				       u32 index, u64 *out_value)
1233 {
1234 	const u64 *val = of_find_property_value_of_size(np, propname,
1235 					((index + 1) * sizeof(*out_value)),
1236 					0, NULL);
1237 
1238 	if (IS_ERR(val))
1239 		return PTR_ERR(val);
1240 
1241 	*out_value = be64_to_cpup(((__be64 *)val) + index);
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
1245 
1246 /**
1247  * of_property_read_variable_u8_array - Find and read an array of u8 from a
1248  * property, with bounds on the minimum and maximum array size.
1249  *
1250  * @np:		device node from which the property value is to be read.
1251  * @propname:	name of the property to be searched.
1252  * @out_values:	pointer to return value, modified only if return value is 0.
1253  * @sz_min:	minimum number of array elements to read
1254  * @sz_max:	maximum number of array elements to read, if zero there is no
1255  *		upper limit on the number of elements in the dts entry but only
1256  *		sz_min will be read.
1257  *
1258  * Search for a property in a device node and read 8-bit value(s) from
1259  * it. Returns number of elements read on success, -EINVAL if the property
1260  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1261  * if the property data is smaller than sz_min or longer than sz_max.
1262  *
1263  * dts entry of array should be like:
1264  *	property = /bits/ 8 <0x50 0x60 0x70>;
1265  *
1266  * The out_values is modified only if a valid u8 value can be decoded.
1267  */
1268 int of_property_read_variable_u8_array(const struct device_node *np,
1269 					const char *propname, u8 *out_values,
1270 					size_t sz_min, size_t sz_max)
1271 {
1272 	size_t sz, count;
1273 	const u8 *val = of_find_property_value_of_size(np, propname,
1274 						(sz_min * sizeof(*out_values)),
1275 						(sz_max * sizeof(*out_values)),
1276 						&sz);
1277 
1278 	if (IS_ERR(val))
1279 		return PTR_ERR(val);
1280 
1281 	if (!sz_max)
1282 		sz = sz_min;
1283 	else
1284 		sz /= sizeof(*out_values);
1285 
1286 	count = sz;
1287 	while (count--)
1288 		*out_values++ = *val++;
1289 
1290 	return sz;
1291 }
1292 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1293 
1294 /**
1295  * of_property_read_variable_u16_array - Find and read an array of u16 from a
1296  * property, with bounds on the minimum and maximum array size.
1297  *
1298  * @np:		device node from which the property value is to be read.
1299  * @propname:	name of the property to be searched.
1300  * @out_values:	pointer to return value, modified only if return value is 0.
1301  * @sz_min:	minimum number of array elements to read
1302  * @sz_max:	maximum number of array elements to read, if zero there is no
1303  *		upper limit on the number of elements in the dts entry but only
1304  *		sz_min will be read.
1305  *
1306  * Search for a property in a device node and read 16-bit value(s) from
1307  * it. Returns number of elements read on success, -EINVAL if the property
1308  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1309  * if the property data is smaller than sz_min or longer than sz_max.
1310  *
1311  * dts entry of array should be like:
1312  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1313  *
1314  * The out_values is modified only if a valid u16 value can be decoded.
1315  */
1316 int of_property_read_variable_u16_array(const struct device_node *np,
1317 					const char *propname, u16 *out_values,
1318 					size_t sz_min, size_t sz_max)
1319 {
1320 	size_t sz, count;
1321 	const __be16 *val = of_find_property_value_of_size(np, propname,
1322 						(sz_min * sizeof(*out_values)),
1323 						(sz_max * sizeof(*out_values)),
1324 						&sz);
1325 
1326 	if (IS_ERR(val))
1327 		return PTR_ERR(val);
1328 
1329 	if (!sz_max)
1330 		sz = sz_min;
1331 	else
1332 		sz /= sizeof(*out_values);
1333 
1334 	count = sz;
1335 	while (count--)
1336 		*out_values++ = be16_to_cpup(val++);
1337 
1338 	return sz;
1339 }
1340 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1341 
1342 /**
1343  * of_property_read_variable_u32_array - Find and read an array of 32 bit
1344  * integers from a property, with bounds on the minimum and maximum array size.
1345  *
1346  * @np:		device node from which the property value is to be read.
1347  * @propname:	name of the property to be searched.
1348  * @out_values:	pointer to return value, modified only if return value is 0.
1349  * @sz_min:	minimum number of array elements to read
1350  * @sz_max:	maximum number of array elements to read, if zero there is no
1351  *		upper limit on the number of elements in the dts entry but only
1352  *		sz_min will be read.
1353  *
1354  * Search for a property in a device node and read 32-bit value(s) from
1355  * it. Returns number of elements read on success, -EINVAL if the property
1356  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1357  * if the property data is smaller than sz_min or longer than sz_max.
1358  *
1359  * The out_values is modified only if a valid u32 value can be decoded.
1360  */
1361 int of_property_read_variable_u32_array(const struct device_node *np,
1362 			       const char *propname, u32 *out_values,
1363 			       size_t sz_min, size_t sz_max)
1364 {
1365 	size_t sz, count;
1366 	const __be32 *val = of_find_property_value_of_size(np, propname,
1367 						(sz_min * sizeof(*out_values)),
1368 						(sz_max * sizeof(*out_values)),
1369 						&sz);
1370 
1371 	if (IS_ERR(val))
1372 		return PTR_ERR(val);
1373 
1374 	if (!sz_max)
1375 		sz = sz_min;
1376 	else
1377 		sz /= sizeof(*out_values);
1378 
1379 	count = sz;
1380 	while (count--)
1381 		*out_values++ = be32_to_cpup(val++);
1382 
1383 	return sz;
1384 }
1385 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1386 
1387 /**
1388  * of_property_read_u64 - Find and read a 64 bit integer from a property
1389  * @np:		device node from which the property value is to be read.
1390  * @propname:	name of the property to be searched.
1391  * @out_value:	pointer to return value, modified only if return value is 0.
1392  *
1393  * Search for a property in a device node and read a 64-bit value from
1394  * it. Returns 0 on success, -EINVAL if the property does not exist,
1395  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1396  * property data isn't large enough.
1397  *
1398  * The out_value is modified only if a valid u64 value can be decoded.
1399  */
1400 int of_property_read_u64(const struct device_node *np, const char *propname,
1401 			 u64 *out_value)
1402 {
1403 	const __be32 *val = of_find_property_value_of_size(np, propname,
1404 						sizeof(*out_value),
1405 						0,
1406 						NULL);
1407 
1408 	if (IS_ERR(val))
1409 		return PTR_ERR(val);
1410 
1411 	*out_value = of_read_number(val, 2);
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(of_property_read_u64);
1415 
1416 /**
1417  * of_property_read_variable_u64_array - Find and read an array of 64 bit
1418  * integers from a property, with bounds on the minimum and maximum array size.
1419  *
1420  * @np:		device node from which the property value is to be read.
1421  * @propname:	name of the property to be searched.
1422  * @out_values:	pointer to return value, modified only if return value is 0.
1423  * @sz_min:	minimum number of array elements to read
1424  * @sz_max:	maximum number of array elements to read, if zero there is no
1425  *		upper limit on the number of elements in the dts entry but only
1426  *		sz_min will be read.
1427  *
1428  * Search for a property in a device node and read 64-bit value(s) from
1429  * it. Returns number of elements read on success, -EINVAL if the property
1430  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1431  * if the property data is smaller than sz_min or longer than sz_max.
1432  *
1433  * The out_values is modified only if a valid u64 value can be decoded.
1434  */
1435 int of_property_read_variable_u64_array(const struct device_node *np,
1436 			       const char *propname, u64 *out_values,
1437 			       size_t sz_min, size_t sz_max)
1438 {
1439 	size_t sz, count;
1440 	const __be32 *val = of_find_property_value_of_size(np, propname,
1441 						(sz_min * sizeof(*out_values)),
1442 						(sz_max * sizeof(*out_values)),
1443 						&sz);
1444 
1445 	if (IS_ERR(val))
1446 		return PTR_ERR(val);
1447 
1448 	if (!sz_max)
1449 		sz = sz_min;
1450 	else
1451 		sz /= sizeof(*out_values);
1452 
1453 	count = sz;
1454 	while (count--) {
1455 		*out_values++ = of_read_number(val, 2);
1456 		val += 2;
1457 	}
1458 
1459 	return sz;
1460 }
1461 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1462 
1463 /**
1464  * of_property_read_string - Find and read a string from a property
1465  * @np:		device node from which the property value is to be read.
1466  * @propname:	name of the property to be searched.
1467  * @out_string:	pointer to null terminated return string, modified only if
1468  *		return value is 0.
1469  *
1470  * Search for a property in a device tree node and retrieve a null
1471  * terminated string value (pointer to data, not a copy). Returns 0 on
1472  * success, -EINVAL if the property does not exist, -ENODATA if property
1473  * does not have a value, and -EILSEQ if the string is not null-terminated
1474  * within the length of the property data.
1475  *
1476  * The out_string pointer is modified only if a valid string can be decoded.
1477  */
1478 int of_property_read_string(const struct device_node *np, const char *propname,
1479 				const char **out_string)
1480 {
1481 	const struct property *prop = of_find_property(np, propname, NULL);
1482 	if (!prop)
1483 		return -EINVAL;
1484 	if (!prop->value)
1485 		return -ENODATA;
1486 	if (strnlen(prop->value, prop->length) >= prop->length)
1487 		return -EILSEQ;
1488 	*out_string = prop->value;
1489 	return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(of_property_read_string);
1492 
1493 /**
1494  * of_property_match_string() - Find string in a list and return index
1495  * @np: pointer to node containing string list property
1496  * @propname: string list property name
1497  * @string: pointer to string to search for in string list
1498  *
1499  * This function searches a string list property and returns the index
1500  * of a specific string value.
1501  */
1502 int of_property_match_string(const struct device_node *np, const char *propname,
1503 			     const char *string)
1504 {
1505 	const struct property *prop = of_find_property(np, propname, NULL);
1506 	size_t l;
1507 	int i;
1508 	const char *p, *end;
1509 
1510 	if (!prop)
1511 		return -EINVAL;
1512 	if (!prop->value)
1513 		return -ENODATA;
1514 
1515 	p = prop->value;
1516 	end = p + prop->length;
1517 
1518 	for (i = 0; p < end; i++, p += l) {
1519 		l = strnlen(p, end - p) + 1;
1520 		if (p + l > end)
1521 			return -EILSEQ;
1522 		pr_debug("comparing %s with %s\n", string, p);
1523 		if (strcmp(string, p) == 0)
1524 			return i; /* Found it; return index */
1525 	}
1526 	return -ENODATA;
1527 }
1528 EXPORT_SYMBOL_GPL(of_property_match_string);
1529 
1530 /**
1531  * of_property_read_string_helper() - Utility helper for parsing string properties
1532  * @np:		device node from which the property value is to be read.
1533  * @propname:	name of the property to be searched.
1534  * @out_strs:	output array of string pointers.
1535  * @sz:		number of array elements to read.
1536  * @skip:	Number of strings to skip over at beginning of list.
1537  *
1538  * Don't call this function directly. It is a utility helper for the
1539  * of_property_read_string*() family of functions.
1540  */
1541 int of_property_read_string_helper(const struct device_node *np,
1542 				   const char *propname, const char **out_strs,
1543 				   size_t sz, int skip)
1544 {
1545 	const struct property *prop = of_find_property(np, propname, NULL);
1546 	int l = 0, i = 0;
1547 	const char *p, *end;
1548 
1549 	if (!prop)
1550 		return -EINVAL;
1551 	if (!prop->value)
1552 		return -ENODATA;
1553 	p = prop->value;
1554 	end = p + prop->length;
1555 
1556 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1557 		l = strnlen(p, end - p) + 1;
1558 		if (p + l > end)
1559 			return -EILSEQ;
1560 		if (out_strs && i >= skip)
1561 			*out_strs++ = p;
1562 	}
1563 	i -= skip;
1564 	return i <= 0 ? -ENODATA : i;
1565 }
1566 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1567 
1568 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1569 {
1570 	int i;
1571 	printk("%s %s", msg, of_node_full_name(args->np));
1572 	for (i = 0; i < args->args_count; i++) {
1573 		const char delim = i ? ',' : ':';
1574 
1575 		pr_cont("%c%08x", delim, args->args[i]);
1576 	}
1577 	pr_cont("\n");
1578 }
1579 
1580 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1581 		const struct device_node *np,
1582 		const char *list_name,
1583 		const char *cells_name,
1584 		int cell_count)
1585 {
1586 	const __be32 *list;
1587 	int size;
1588 
1589 	memset(it, 0, sizeof(*it));
1590 
1591 	list = of_get_property(np, list_name, &size);
1592 	if (!list)
1593 		return -ENOENT;
1594 
1595 	it->cells_name = cells_name;
1596 	it->cell_count = cell_count;
1597 	it->parent = np;
1598 	it->list_end = list + size / sizeof(*list);
1599 	it->phandle_end = list;
1600 	it->cur = list;
1601 
1602 	return 0;
1603 }
1604 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1605 
1606 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1607 {
1608 	uint32_t count = 0;
1609 
1610 	if (it->node) {
1611 		of_node_put(it->node);
1612 		it->node = NULL;
1613 	}
1614 
1615 	if (!it->cur || it->phandle_end >= it->list_end)
1616 		return -ENOENT;
1617 
1618 	it->cur = it->phandle_end;
1619 
1620 	/* If phandle is 0, then it is an empty entry with no arguments. */
1621 	it->phandle = be32_to_cpup(it->cur++);
1622 
1623 	if (it->phandle) {
1624 
1625 		/*
1626 		 * Find the provider node and parse the #*-cells property to
1627 		 * determine the argument length.
1628 		 */
1629 		it->node = of_find_node_by_phandle(it->phandle);
1630 
1631 		if (it->cells_name) {
1632 			if (!it->node) {
1633 				pr_err("%s: could not find phandle\n",
1634 				       it->parent->full_name);
1635 				goto err;
1636 			}
1637 
1638 			if (of_property_read_u32(it->node, it->cells_name,
1639 						 &count)) {
1640 				pr_err("%s: could not get %s for %s\n",
1641 				       it->parent->full_name,
1642 				       it->cells_name,
1643 				       it->node->full_name);
1644 				goto err;
1645 			}
1646 		} else {
1647 			count = it->cell_count;
1648 		}
1649 
1650 		/*
1651 		 * Make sure that the arguments actually fit in the remaining
1652 		 * property data length
1653 		 */
1654 		if (it->cur + count > it->list_end) {
1655 			pr_err("%s: arguments longer than property\n",
1656 			       it->parent->full_name);
1657 			goto err;
1658 		}
1659 	}
1660 
1661 	it->phandle_end = it->cur + count;
1662 	it->cur_count = count;
1663 
1664 	return 0;
1665 
1666 err:
1667 	if (it->node) {
1668 		of_node_put(it->node);
1669 		it->node = NULL;
1670 	}
1671 
1672 	return -EINVAL;
1673 }
1674 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1675 
1676 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1677 			     uint32_t *args,
1678 			     int size)
1679 {
1680 	int i, count;
1681 
1682 	count = it->cur_count;
1683 
1684 	if (WARN_ON(size < count))
1685 		count = size;
1686 
1687 	for (i = 0; i < count; i++)
1688 		args[i] = be32_to_cpup(it->cur++);
1689 
1690 	return count;
1691 }
1692 
1693 static int __of_parse_phandle_with_args(const struct device_node *np,
1694 					const char *list_name,
1695 					const char *cells_name,
1696 					int cell_count, int index,
1697 					struct of_phandle_args *out_args)
1698 {
1699 	struct of_phandle_iterator it;
1700 	int rc, cur_index = 0;
1701 
1702 	/* Loop over the phandles until all the requested entry is found */
1703 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1704 		/*
1705 		 * All of the error cases bail out of the loop, so at
1706 		 * this point, the parsing is successful. If the requested
1707 		 * index matches, then fill the out_args structure and return,
1708 		 * or return -ENOENT for an empty entry.
1709 		 */
1710 		rc = -ENOENT;
1711 		if (cur_index == index) {
1712 			if (!it.phandle)
1713 				goto err;
1714 
1715 			if (out_args) {
1716 				int c;
1717 
1718 				c = of_phandle_iterator_args(&it,
1719 							     out_args->args,
1720 							     MAX_PHANDLE_ARGS);
1721 				out_args->np = it.node;
1722 				out_args->args_count = c;
1723 			} else {
1724 				of_node_put(it.node);
1725 			}
1726 
1727 			/* Found it! return success */
1728 			return 0;
1729 		}
1730 
1731 		cur_index++;
1732 	}
1733 
1734 	/*
1735 	 * Unlock node before returning result; will be one of:
1736 	 * -ENOENT : index is for empty phandle
1737 	 * -EINVAL : parsing error on data
1738 	 */
1739 
1740  err:
1741 	of_node_put(it.node);
1742 	return rc;
1743 }
1744 
1745 /**
1746  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1747  * @np: Pointer to device node holding phandle property
1748  * @phandle_name: Name of property holding a phandle value
1749  * @index: For properties holding a table of phandles, this is the index into
1750  *         the table
1751  *
1752  * Returns the device_node pointer with refcount incremented.  Use
1753  * of_node_put() on it when done.
1754  */
1755 struct device_node *of_parse_phandle(const struct device_node *np,
1756 				     const char *phandle_name, int index)
1757 {
1758 	struct of_phandle_args args;
1759 
1760 	if (index < 0)
1761 		return NULL;
1762 
1763 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1764 					 index, &args))
1765 		return NULL;
1766 
1767 	return args.np;
1768 }
1769 EXPORT_SYMBOL(of_parse_phandle);
1770 
1771 /**
1772  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1773  * @np:		pointer to a device tree node containing a list
1774  * @list_name:	property name that contains a list
1775  * @cells_name:	property name that specifies phandles' arguments count
1776  * @index:	index of a phandle to parse out
1777  * @out_args:	optional pointer to output arguments structure (will be filled)
1778  *
1779  * This function is useful to parse lists of phandles and their arguments.
1780  * Returns 0 on success and fills out_args, on error returns appropriate
1781  * errno value.
1782  *
1783  * Caller is responsible to call of_node_put() on the returned out_args->np
1784  * pointer.
1785  *
1786  * Example:
1787  *
1788  * phandle1: node1 {
1789  *	#list-cells = <2>;
1790  * }
1791  *
1792  * phandle2: node2 {
1793  *	#list-cells = <1>;
1794  * }
1795  *
1796  * node3 {
1797  *	list = <&phandle1 1 2 &phandle2 3>;
1798  * }
1799  *
1800  * To get a device_node of the `node2' node you may call this:
1801  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1802  */
1803 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1804 				const char *cells_name, int index,
1805 				struct of_phandle_args *out_args)
1806 {
1807 	if (index < 0)
1808 		return -EINVAL;
1809 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1810 					    index, out_args);
1811 }
1812 EXPORT_SYMBOL(of_parse_phandle_with_args);
1813 
1814 /**
1815  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1816  * @np:		pointer to a device tree node containing a list
1817  * @list_name:	property name that contains a list
1818  * @cell_count: number of argument cells following the phandle
1819  * @index:	index of a phandle to parse out
1820  * @out_args:	optional pointer to output arguments structure (will be filled)
1821  *
1822  * This function is useful to parse lists of phandles and their arguments.
1823  * Returns 0 on success and fills out_args, on error returns appropriate
1824  * errno value.
1825  *
1826  * Caller is responsible to call of_node_put() on the returned out_args->np
1827  * pointer.
1828  *
1829  * Example:
1830  *
1831  * phandle1: node1 {
1832  * }
1833  *
1834  * phandle2: node2 {
1835  * }
1836  *
1837  * node3 {
1838  *	list = <&phandle1 0 2 &phandle2 2 3>;
1839  * }
1840  *
1841  * To get a device_node of the `node2' node you may call this:
1842  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1843  */
1844 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1845 				const char *list_name, int cell_count,
1846 				int index, struct of_phandle_args *out_args)
1847 {
1848 	if (index < 0)
1849 		return -EINVAL;
1850 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1851 					   index, out_args);
1852 }
1853 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1854 
1855 /**
1856  * of_count_phandle_with_args() - Find the number of phandles references in a property
1857  * @np:		pointer to a device tree node containing a list
1858  * @list_name:	property name that contains a list
1859  * @cells_name:	property name that specifies phandles' arguments count
1860  *
1861  * Returns the number of phandle + argument tuples within a property. It
1862  * is a typical pattern to encode a list of phandle and variable
1863  * arguments into a single property. The number of arguments is encoded
1864  * by a property in the phandle-target node. For example, a gpios
1865  * property would contain a list of GPIO specifies consisting of a
1866  * phandle and 1 or more arguments. The number of arguments are
1867  * determined by the #gpio-cells property in the node pointed to by the
1868  * phandle.
1869  */
1870 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1871 				const char *cells_name)
1872 {
1873 	struct of_phandle_iterator it;
1874 	int rc, cur_index = 0;
1875 
1876 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1877 	if (rc)
1878 		return rc;
1879 
1880 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1881 		cur_index += 1;
1882 
1883 	if (rc != -ENOENT)
1884 		return rc;
1885 
1886 	return cur_index;
1887 }
1888 EXPORT_SYMBOL(of_count_phandle_with_args);
1889 
1890 /**
1891  * __of_add_property - Add a property to a node without lock operations
1892  */
1893 int __of_add_property(struct device_node *np, struct property *prop)
1894 {
1895 	struct property **next;
1896 
1897 	prop->next = NULL;
1898 	next = &np->properties;
1899 	while (*next) {
1900 		if (strcmp(prop->name, (*next)->name) == 0)
1901 			/* duplicate ! don't insert it */
1902 			return -EEXIST;
1903 
1904 		next = &(*next)->next;
1905 	}
1906 	*next = prop;
1907 
1908 	return 0;
1909 }
1910 
1911 /**
1912  * of_add_property - Add a property to a node
1913  */
1914 int of_add_property(struct device_node *np, struct property *prop)
1915 {
1916 	unsigned long flags;
1917 	int rc;
1918 
1919 	mutex_lock(&of_mutex);
1920 
1921 	raw_spin_lock_irqsave(&devtree_lock, flags);
1922 	rc = __of_add_property(np, prop);
1923 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1924 
1925 	if (!rc)
1926 		__of_add_property_sysfs(np, prop);
1927 
1928 	mutex_unlock(&of_mutex);
1929 
1930 	if (!rc)
1931 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1932 
1933 	return rc;
1934 }
1935 
1936 int __of_remove_property(struct device_node *np, struct property *prop)
1937 {
1938 	struct property **next;
1939 
1940 	for (next = &np->properties; *next; next = &(*next)->next) {
1941 		if (*next == prop)
1942 			break;
1943 	}
1944 	if (*next == NULL)
1945 		return -ENODEV;
1946 
1947 	/* found the node */
1948 	*next = prop->next;
1949 	prop->next = np->deadprops;
1950 	np->deadprops = prop;
1951 
1952 	return 0;
1953 }
1954 
1955 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1956 {
1957 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1958 	kfree(prop->attr.attr.name);
1959 }
1960 
1961 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1962 {
1963 	if (!IS_ENABLED(CONFIG_SYSFS))
1964 		return;
1965 
1966 	/* at early boot, bail here and defer setup to of_init() */
1967 	if (of_kset && of_node_is_attached(np))
1968 		__of_sysfs_remove_bin_file(np, prop);
1969 }
1970 
1971 /**
1972  * of_remove_property - Remove a property from a node.
1973  *
1974  * Note that we don't actually remove it, since we have given out
1975  * who-knows-how-many pointers to the data using get-property.
1976  * Instead we just move the property to the "dead properties"
1977  * list, so it won't be found any more.
1978  */
1979 int of_remove_property(struct device_node *np, struct property *prop)
1980 {
1981 	unsigned long flags;
1982 	int rc;
1983 
1984 	if (!prop)
1985 		return -ENODEV;
1986 
1987 	mutex_lock(&of_mutex);
1988 
1989 	raw_spin_lock_irqsave(&devtree_lock, flags);
1990 	rc = __of_remove_property(np, prop);
1991 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1992 
1993 	if (!rc)
1994 		__of_remove_property_sysfs(np, prop);
1995 
1996 	mutex_unlock(&of_mutex);
1997 
1998 	if (!rc)
1999 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
2000 
2001 	return rc;
2002 }
2003 
2004 int __of_update_property(struct device_node *np, struct property *newprop,
2005 		struct property **oldpropp)
2006 {
2007 	struct property **next, *oldprop;
2008 
2009 	for (next = &np->properties; *next; next = &(*next)->next) {
2010 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
2011 			break;
2012 	}
2013 	*oldpropp = oldprop = *next;
2014 
2015 	if (oldprop) {
2016 		/* replace the node */
2017 		newprop->next = oldprop->next;
2018 		*next = newprop;
2019 		oldprop->next = np->deadprops;
2020 		np->deadprops = oldprop;
2021 	} else {
2022 		/* new node */
2023 		newprop->next = NULL;
2024 		*next = newprop;
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
2031 		struct property *oldprop)
2032 {
2033 	if (!IS_ENABLED(CONFIG_SYSFS))
2034 		return;
2035 
2036 	/* At early boot, bail out and defer setup to of_init() */
2037 	if (!of_kset)
2038 		return;
2039 
2040 	if (oldprop)
2041 		__of_sysfs_remove_bin_file(np, oldprop);
2042 	__of_add_property_sysfs(np, newprop);
2043 }
2044 
2045 /*
2046  * of_update_property - Update a property in a node, if the property does
2047  * not exist, add it.
2048  *
2049  * Note that we don't actually remove it, since we have given out
2050  * who-knows-how-many pointers to the data using get-property.
2051  * Instead we just move the property to the "dead properties" list,
2052  * and add the new property to the property list
2053  */
2054 int of_update_property(struct device_node *np, struct property *newprop)
2055 {
2056 	struct property *oldprop;
2057 	unsigned long flags;
2058 	int rc;
2059 
2060 	if (!newprop->name)
2061 		return -EINVAL;
2062 
2063 	mutex_lock(&of_mutex);
2064 
2065 	raw_spin_lock_irqsave(&devtree_lock, flags);
2066 	rc = __of_update_property(np, newprop, &oldprop);
2067 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
2068 
2069 	if (!rc)
2070 		__of_update_property_sysfs(np, newprop, oldprop);
2071 
2072 	mutex_unlock(&of_mutex);
2073 
2074 	if (!rc)
2075 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2076 
2077 	return rc;
2078 }
2079 
2080 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2081 			 int id, const char *stem, int stem_len)
2082 {
2083 	ap->np = np;
2084 	ap->id = id;
2085 	strncpy(ap->stem, stem, stem_len);
2086 	ap->stem[stem_len] = 0;
2087 	list_add_tail(&ap->link, &aliases_lookup);
2088 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2089 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2090 }
2091 
2092 /**
2093  * of_alias_scan - Scan all properties of the 'aliases' node
2094  *
2095  * The function scans all the properties of the 'aliases' node and populates
2096  * the global lookup table with the properties.  It returns the
2097  * number of alias properties found, or an error code in case of failure.
2098  *
2099  * @dt_alloc:	An allocator that provides a virtual address to memory
2100  *		for storing the resulting tree
2101  */
2102 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2103 {
2104 	struct property *pp;
2105 
2106 	of_aliases = of_find_node_by_path("/aliases");
2107 	of_chosen = of_find_node_by_path("/chosen");
2108 	if (of_chosen == NULL)
2109 		of_chosen = of_find_node_by_path("/chosen@0");
2110 
2111 	if (of_chosen) {
2112 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2113 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2114 		if (!name)
2115 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2116 		if (IS_ENABLED(CONFIG_PPC) && !name)
2117 			name = of_get_property(of_aliases, "stdout", NULL);
2118 		if (name)
2119 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2120 	}
2121 
2122 	if (!of_aliases)
2123 		return;
2124 
2125 	for_each_property_of_node(of_aliases, pp) {
2126 		const char *start = pp->name;
2127 		const char *end = start + strlen(start);
2128 		struct device_node *np;
2129 		struct alias_prop *ap;
2130 		int id, len;
2131 
2132 		/* Skip those we do not want to proceed */
2133 		if (!strcmp(pp->name, "name") ||
2134 		    !strcmp(pp->name, "phandle") ||
2135 		    !strcmp(pp->name, "linux,phandle"))
2136 			continue;
2137 
2138 		np = of_find_node_by_path(pp->value);
2139 		if (!np)
2140 			continue;
2141 
2142 		/* walk the alias backwards to extract the id and work out
2143 		 * the 'stem' string */
2144 		while (isdigit(*(end-1)) && end > start)
2145 			end--;
2146 		len = end - start;
2147 
2148 		if (kstrtoint(end, 10, &id) < 0)
2149 			continue;
2150 
2151 		/* Allocate an alias_prop with enough space for the stem */
2152 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2153 		if (!ap)
2154 			continue;
2155 		memset(ap, 0, sizeof(*ap) + len + 1);
2156 		ap->alias = start;
2157 		of_alias_add(ap, np, id, start, len);
2158 	}
2159 }
2160 
2161 /**
2162  * of_alias_get_id - Get alias id for the given device_node
2163  * @np:		Pointer to the given device_node
2164  * @stem:	Alias stem of the given device_node
2165  *
2166  * The function travels the lookup table to get the alias id for the given
2167  * device_node and alias stem.  It returns the alias id if found.
2168  */
2169 int of_alias_get_id(struct device_node *np, const char *stem)
2170 {
2171 	struct alias_prop *app;
2172 	int id = -ENODEV;
2173 
2174 	mutex_lock(&of_mutex);
2175 	list_for_each_entry(app, &aliases_lookup, link) {
2176 		if (strcmp(app->stem, stem) != 0)
2177 			continue;
2178 
2179 		if (np == app->np) {
2180 			id = app->id;
2181 			break;
2182 		}
2183 	}
2184 	mutex_unlock(&of_mutex);
2185 
2186 	return id;
2187 }
2188 EXPORT_SYMBOL_GPL(of_alias_get_id);
2189 
2190 /**
2191  * of_alias_get_highest_id - Get highest alias id for the given stem
2192  * @stem:	Alias stem to be examined
2193  *
2194  * The function travels the lookup table to get the highest alias id for the
2195  * given alias stem.  It returns the alias id if found.
2196  */
2197 int of_alias_get_highest_id(const char *stem)
2198 {
2199 	struct alias_prop *app;
2200 	int id = -ENODEV;
2201 
2202 	mutex_lock(&of_mutex);
2203 	list_for_each_entry(app, &aliases_lookup, link) {
2204 		if (strcmp(app->stem, stem) != 0)
2205 			continue;
2206 
2207 		if (app->id > id)
2208 			id = app->id;
2209 	}
2210 	mutex_unlock(&of_mutex);
2211 
2212 	return id;
2213 }
2214 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2215 
2216 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2217 			       u32 *pu)
2218 {
2219 	const void *curv = cur;
2220 
2221 	if (!prop)
2222 		return NULL;
2223 
2224 	if (!cur) {
2225 		curv = prop->value;
2226 		goto out_val;
2227 	}
2228 
2229 	curv += sizeof(*cur);
2230 	if (curv >= prop->value + prop->length)
2231 		return NULL;
2232 
2233 out_val:
2234 	*pu = be32_to_cpup(curv);
2235 	return curv;
2236 }
2237 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2238 
2239 const char *of_prop_next_string(struct property *prop, const char *cur)
2240 {
2241 	const void *curv = cur;
2242 
2243 	if (!prop)
2244 		return NULL;
2245 
2246 	if (!cur)
2247 		return prop->value;
2248 
2249 	curv += strlen(cur) + 1;
2250 	if (curv >= prop->value + prop->length)
2251 		return NULL;
2252 
2253 	return curv;
2254 }
2255 EXPORT_SYMBOL_GPL(of_prop_next_string);
2256 
2257 /**
2258  * of_console_check() - Test and setup console for DT setup
2259  * @dn - Pointer to device node
2260  * @name - Name to use for preferred console without index. ex. "ttyS"
2261  * @index - Index to use for preferred console.
2262  *
2263  * Check if the given device node matches the stdout-path property in the
2264  * /chosen node. If it does then register it as the preferred console and return
2265  * TRUE. Otherwise return FALSE.
2266  */
2267 bool of_console_check(struct device_node *dn, char *name, int index)
2268 {
2269 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2270 		return false;
2271 	return !add_preferred_console(name, index,
2272 				      kstrdup(of_stdout_options, GFP_KERNEL));
2273 }
2274 EXPORT_SYMBOL_GPL(of_console_check);
2275 
2276 /**
2277  *	of_find_next_cache_node - Find a node's subsidiary cache
2278  *	@np:	node of type "cpu" or "cache"
2279  *
2280  *	Returns a node pointer with refcount incremented, use
2281  *	of_node_put() on it when done.  Caller should hold a reference
2282  *	to np.
2283  */
2284 struct device_node *of_find_next_cache_node(const struct device_node *np)
2285 {
2286 	struct device_node *child, *cache_node;
2287 
2288 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2289 	if (!cache_node)
2290 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2291 
2292 	if (cache_node)
2293 		return cache_node;
2294 
2295 	/* OF on pmac has nodes instead of properties named "l2-cache"
2296 	 * beneath CPU nodes.
2297 	 */
2298 	if (!strcmp(np->type, "cpu"))
2299 		for_each_child_of_node(np, child)
2300 			if (!strcmp(child->type, "cache"))
2301 				return child;
2302 
2303 	return NULL;
2304 }
2305 
2306 /**
2307  * of_find_last_cache_level - Find the level at which the last cache is
2308  * 		present for the given logical cpu
2309  *
2310  * @cpu: cpu number(logical index) for which the last cache level is needed
2311  *
2312  * Returns the the level at which the last cache is present. It is exactly
2313  * same as  the total number of cache levels for the given logical cpu.
2314  */
2315 int of_find_last_cache_level(unsigned int cpu)
2316 {
2317 	u32 cache_level = 0;
2318 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2319 
2320 	while (np) {
2321 		prev = np;
2322 		of_node_put(np);
2323 		np = of_find_next_cache_node(np);
2324 	}
2325 
2326 	of_property_read_u32(prev, "cache-level", &cache_level);
2327 
2328 	return cache_level;
2329 }
2330 
2331 /**
2332  * of_graph_parse_endpoint() - parse common endpoint node properties
2333  * @node: pointer to endpoint device_node
2334  * @endpoint: pointer to the OF endpoint data structure
2335  *
2336  * The caller should hold a reference to @node.
2337  */
2338 int of_graph_parse_endpoint(const struct device_node *node,
2339 			    struct of_endpoint *endpoint)
2340 {
2341 	struct device_node *port_node = of_get_parent(node);
2342 
2343 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2344 		  __func__, node->full_name);
2345 
2346 	memset(endpoint, 0, sizeof(*endpoint));
2347 
2348 	endpoint->local_node = node;
2349 	/*
2350 	 * It doesn't matter whether the two calls below succeed.
2351 	 * If they don't then the default value 0 is used.
2352 	 */
2353 	of_property_read_u32(port_node, "reg", &endpoint->port);
2354 	of_property_read_u32(node, "reg", &endpoint->id);
2355 
2356 	of_node_put(port_node);
2357 
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL(of_graph_parse_endpoint);
2361 
2362 /**
2363  * of_graph_get_port_by_id() - get the port matching a given id
2364  * @parent: pointer to the parent device node
2365  * @id: id of the port
2366  *
2367  * Return: A 'port' node pointer with refcount incremented. The caller
2368  * has to use of_node_put() on it when done.
2369  */
2370 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2371 {
2372 	struct device_node *node, *port;
2373 
2374 	node = of_get_child_by_name(parent, "ports");
2375 	if (node)
2376 		parent = node;
2377 
2378 	for_each_child_of_node(parent, port) {
2379 		u32 port_id = 0;
2380 
2381 		if (of_node_cmp(port->name, "port") != 0)
2382 			continue;
2383 		of_property_read_u32(port, "reg", &port_id);
2384 		if (id == port_id)
2385 			break;
2386 	}
2387 
2388 	of_node_put(node);
2389 
2390 	return port;
2391 }
2392 EXPORT_SYMBOL(of_graph_get_port_by_id);
2393 
2394 /**
2395  * of_graph_get_next_endpoint() - get next endpoint node
2396  * @parent: pointer to the parent device node
2397  * @prev: previous endpoint node, or NULL to get first
2398  *
2399  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2400  * of the passed @prev node is decremented.
2401  */
2402 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2403 					struct device_node *prev)
2404 {
2405 	struct device_node *endpoint;
2406 	struct device_node *port;
2407 
2408 	if (!parent)
2409 		return NULL;
2410 
2411 	/*
2412 	 * Start by locating the port node. If no previous endpoint is specified
2413 	 * search for the first port node, otherwise get the previous endpoint
2414 	 * parent port node.
2415 	 */
2416 	if (!prev) {
2417 		struct device_node *node;
2418 
2419 		node = of_get_child_by_name(parent, "ports");
2420 		if (node)
2421 			parent = node;
2422 
2423 		port = of_get_child_by_name(parent, "port");
2424 		of_node_put(node);
2425 
2426 		if (!port) {
2427 			pr_err("graph: no port node found in %s\n",
2428 			       parent->full_name);
2429 			return NULL;
2430 		}
2431 	} else {
2432 		port = of_get_parent(prev);
2433 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2434 			      __func__, prev->full_name))
2435 			return NULL;
2436 	}
2437 
2438 	while (1) {
2439 		/*
2440 		 * Now that we have a port node, get the next endpoint by
2441 		 * getting the next child. If the previous endpoint is NULL this
2442 		 * will return the first child.
2443 		 */
2444 		endpoint = of_get_next_child(port, prev);
2445 		if (endpoint) {
2446 			of_node_put(port);
2447 			return endpoint;
2448 		}
2449 
2450 		/* No more endpoints under this port, try the next one. */
2451 		prev = NULL;
2452 
2453 		do {
2454 			port = of_get_next_child(parent, port);
2455 			if (!port)
2456 				return NULL;
2457 		} while (of_node_cmp(port->name, "port"));
2458 	}
2459 }
2460 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2461 
2462 /**
2463  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2464  * @parent: pointer to the parent device node
2465  * @port_reg: identifier (value of reg property) of the parent port node
2466  * @reg: identifier (value of reg property) of the endpoint node
2467  *
2468  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2469  * is the child of a port node identified by port_reg. reg and port_reg are
2470  * ignored when they are -1.
2471  */
2472 struct device_node *of_graph_get_endpoint_by_regs(
2473 	const struct device_node *parent, int port_reg, int reg)
2474 {
2475 	struct of_endpoint endpoint;
2476 	struct device_node *node = NULL;
2477 
2478 	for_each_endpoint_of_node(parent, node) {
2479 		of_graph_parse_endpoint(node, &endpoint);
2480 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2481 			((reg == -1) || (endpoint.id == reg)))
2482 			return node;
2483 	}
2484 
2485 	return NULL;
2486 }
2487 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2488 
2489 /**
2490  * of_graph_get_remote_endpoint() - get remote endpoint node
2491  * @node: pointer to a local endpoint device_node
2492  *
2493  * Return: Remote endpoint node associated with remote endpoint node linked
2494  *	   to @node. Use of_node_put() on it when done.
2495  */
2496 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
2497 {
2498 	/* Get remote endpoint node. */
2499 	return of_parse_phandle(node, "remote-endpoint", 0);
2500 }
2501 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
2502 
2503 /**
2504  * of_graph_get_port_parent() - get port's parent node
2505  * @node: pointer to a local endpoint device_node
2506  *
2507  * Return: device node associated with endpoint node linked
2508  *	   to @node. Use of_node_put() on it when done.
2509  */
2510 struct device_node *of_graph_get_port_parent(struct device_node *node)
2511 {
2512 	unsigned int depth;
2513 
2514 	/* Walk 3 levels up only if there is 'ports' node. */
2515 	for (depth = 3; depth && node; depth--) {
2516 		node = of_get_next_parent(node);
2517 		if (depth == 2 && of_node_cmp(node->name, "ports"))
2518 			break;
2519 	}
2520 	return node;
2521 }
2522 EXPORT_SYMBOL(of_graph_get_port_parent);
2523 
2524 /**
2525  * of_graph_get_remote_port_parent() - get remote port's parent node
2526  * @node: pointer to a local endpoint device_node
2527  *
2528  * Return: Remote device node associated with remote endpoint node linked
2529  *	   to @node. Use of_node_put() on it when done.
2530  */
2531 struct device_node *of_graph_get_remote_port_parent(
2532 			       const struct device_node *node)
2533 {
2534 	struct device_node *np;
2535 
2536 	/* Get remote endpoint node. */
2537 	np = of_graph_get_remote_endpoint(node);
2538 
2539 	return of_graph_get_port_parent(np);
2540 }
2541 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2542 
2543 /**
2544  * of_graph_get_remote_port() - get remote port node
2545  * @node: pointer to a local endpoint device_node
2546  *
2547  * Return: Remote port node associated with remote endpoint node linked
2548  *	   to @node. Use of_node_put() on it when done.
2549  */
2550 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2551 {
2552 	struct device_node *np;
2553 
2554 	/* Get remote endpoint node. */
2555 	np = of_graph_get_remote_endpoint(node);
2556 	if (!np)
2557 		return NULL;
2558 	return of_get_next_parent(np);
2559 }
2560 EXPORT_SYMBOL(of_graph_get_remote_port);
2561 
2562 int of_graph_get_endpoint_count(const struct device_node *np)
2563 {
2564 	struct device_node *endpoint;
2565 	int num = 0;
2566 
2567 	for_each_endpoint_of_node(np, endpoint)
2568 		num++;
2569 
2570 	return num;
2571 }
2572 EXPORT_SYMBOL(of_graph_get_endpoint_count);
2573 
2574 /**
2575  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
2576  * @node: pointer to parent device_node containing graph port/endpoint
2577  * @port: identifier (value of reg property) of the parent port node
2578  * @endpoint: identifier (value of reg property) of the endpoint node
2579  *
2580  * Return: Remote device node associated with remote endpoint node linked
2581  *	   to @node. Use of_node_put() on it when done.
2582  */
2583 struct device_node *of_graph_get_remote_node(const struct device_node *node,
2584 					     u32 port, u32 endpoint)
2585 {
2586 	struct device_node *endpoint_node, *remote;
2587 
2588 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
2589 	if (!endpoint_node) {
2590 		pr_debug("no valid endpoint (%d, %d) for node %s\n",
2591 			 port, endpoint, node->full_name);
2592 		return NULL;
2593 	}
2594 
2595 	remote = of_graph_get_remote_port_parent(endpoint_node);
2596 	of_node_put(endpoint_node);
2597 	if (!remote) {
2598 		pr_debug("no valid remote node\n");
2599 		return NULL;
2600 	}
2601 
2602 	if (!of_device_is_available(remote)) {
2603 		pr_debug("not available for remote node\n");
2604 		return NULL;
2605 	}
2606 
2607 	return remote;
2608 }
2609 EXPORT_SYMBOL(of_graph_get_remote_node);
2610