1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/cleanup.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 EXPORT_SYMBOL(of_chosen); 40 struct device_node *of_aliases; 41 struct device_node *of_stdout; 42 static const char *of_stdout_options; 43 44 struct kset *of_kset; 45 46 /* 47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 48 * This mutex must be held whenever modifications are being made to the 49 * device tree. The of_{attach,detach}_node() and 50 * of_{add,remove,update}_property() helpers make sure this happens. 51 */ 52 DEFINE_MUTEX(of_mutex); 53 54 /* use when traversing tree through the child, sibling, 55 * or parent members of struct device_node. 56 */ 57 DEFINE_RAW_SPINLOCK(devtree_lock); 58 59 bool of_node_name_eq(const struct device_node *np, const char *name) 60 { 61 const char *node_name; 62 size_t len; 63 64 if (!np) 65 return false; 66 67 node_name = kbasename(np->full_name); 68 len = strchrnul(node_name, '@') - node_name; 69 70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 71 } 72 EXPORT_SYMBOL(of_node_name_eq); 73 74 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 75 { 76 if (!np) 77 return false; 78 79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 80 } 81 EXPORT_SYMBOL(of_node_name_prefix); 82 83 static bool __of_node_is_type(const struct device_node *np, const char *type) 84 { 85 const char *match = __of_get_property(np, "device_type", NULL); 86 87 return np && match && type && !strcmp(match, type); 88 } 89 90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \ 91 IS_ENABLED(CONFIG_SPARC) || \ 92 of_find_compatible_node(NULL, NULL, "coreboot") \ 93 ) 94 95 int of_bus_n_addr_cells(struct device_node *np) 96 { 97 u32 cells; 98 99 for (; np; np = np->parent) { 100 if (!of_property_read_u32(np, "#address-cells", &cells)) 101 return cells; 102 /* 103 * Default root value and walking parent nodes for "#address-cells" 104 * is deprecated. Any platforms which hit this warning should 105 * be added to the excluded list. 106 */ 107 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 108 "Missing '#address-cells' in %pOF\n", np); 109 } 110 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 111 } 112 113 int of_n_addr_cells(struct device_node *np) 114 { 115 if (np->parent) 116 np = np->parent; 117 118 return of_bus_n_addr_cells(np); 119 } 120 EXPORT_SYMBOL(of_n_addr_cells); 121 122 int of_bus_n_size_cells(struct device_node *np) 123 { 124 u32 cells; 125 126 for (; np; np = np->parent) { 127 if (!of_property_read_u32(np, "#size-cells", &cells)) 128 return cells; 129 /* 130 * Default root value and walking parent nodes for "#size-cells" 131 * is deprecated. Any platforms which hit this warning should 132 * be added to the excluded list. 133 */ 134 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 135 "Missing '#size-cells' in %pOF\n", np); 136 } 137 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 138 } 139 140 int of_n_size_cells(struct device_node *np) 141 { 142 if (np->parent) 143 np = np->parent; 144 145 return of_bus_n_size_cells(np); 146 } 147 EXPORT_SYMBOL(of_n_size_cells); 148 149 #ifdef CONFIG_NUMA 150 int __weak of_node_to_nid(struct device_node *np) 151 { 152 return NUMA_NO_NODE; 153 } 154 #endif 155 156 #define OF_PHANDLE_CACHE_BITS 7 157 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 158 159 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 160 161 static u32 of_phandle_cache_hash(phandle handle) 162 { 163 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 164 } 165 166 /* 167 * Caller must hold devtree_lock. 168 */ 169 void __of_phandle_cache_inv_entry(phandle handle) 170 { 171 u32 handle_hash; 172 struct device_node *np; 173 174 if (!handle) 175 return; 176 177 handle_hash = of_phandle_cache_hash(handle); 178 179 np = phandle_cache[handle_hash]; 180 if (np && handle == np->phandle) 181 phandle_cache[handle_hash] = NULL; 182 } 183 184 void __init of_core_init(void) 185 { 186 struct device_node *np; 187 188 of_platform_register_reconfig_notifier(); 189 190 /* Create the kset, and register existing nodes */ 191 mutex_lock(&of_mutex); 192 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 193 if (!of_kset) { 194 mutex_unlock(&of_mutex); 195 pr_err("failed to register existing nodes\n"); 196 return; 197 } 198 for_each_of_allnodes(np) { 199 __of_attach_node_sysfs(np); 200 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 201 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 202 } 203 mutex_unlock(&of_mutex); 204 205 /* Symlink in /proc as required by userspace ABI */ 206 if (of_root) 207 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 208 } 209 210 static struct property *__of_find_property(const struct device_node *np, 211 const char *name, int *lenp) 212 { 213 struct property *pp; 214 215 if (!np) 216 return NULL; 217 218 for (pp = np->properties; pp; pp = pp->next) { 219 if (of_prop_cmp(pp->name, name) == 0) { 220 if (lenp) 221 *lenp = pp->length; 222 break; 223 } 224 } 225 226 return pp; 227 } 228 229 struct property *of_find_property(const struct device_node *np, 230 const char *name, 231 int *lenp) 232 { 233 struct property *pp; 234 unsigned long flags; 235 236 raw_spin_lock_irqsave(&devtree_lock, flags); 237 pp = __of_find_property(np, name, lenp); 238 raw_spin_unlock_irqrestore(&devtree_lock, flags); 239 240 return pp; 241 } 242 EXPORT_SYMBOL(of_find_property); 243 244 struct device_node *__of_find_all_nodes(struct device_node *prev) 245 { 246 struct device_node *np; 247 if (!prev) { 248 np = of_root; 249 } else if (prev->child) { 250 np = prev->child; 251 } else { 252 /* Walk back up looking for a sibling, or the end of the structure */ 253 np = prev; 254 while (np->parent && !np->sibling) 255 np = np->parent; 256 np = np->sibling; /* Might be null at the end of the tree */ 257 } 258 return np; 259 } 260 261 /** 262 * of_find_all_nodes - Get next node in global list 263 * @prev: Previous node or NULL to start iteration 264 * of_node_put() will be called on it 265 * 266 * Return: A node pointer with refcount incremented, use 267 * of_node_put() on it when done. 268 */ 269 struct device_node *of_find_all_nodes(struct device_node *prev) 270 { 271 struct device_node *np; 272 unsigned long flags; 273 274 raw_spin_lock_irqsave(&devtree_lock, flags); 275 np = __of_find_all_nodes(prev); 276 of_node_get(np); 277 of_node_put(prev); 278 raw_spin_unlock_irqrestore(&devtree_lock, flags); 279 return np; 280 } 281 EXPORT_SYMBOL(of_find_all_nodes); 282 283 /* 284 * Find a property with a given name for a given node 285 * and return the value. 286 */ 287 const void *__of_get_property(const struct device_node *np, 288 const char *name, int *lenp) 289 { 290 const struct property *pp = __of_find_property(np, name, lenp); 291 292 return pp ? pp->value : NULL; 293 } 294 295 /* 296 * Find a property with a given name for a given node 297 * and return the value. 298 */ 299 const void *of_get_property(const struct device_node *np, const char *name, 300 int *lenp) 301 { 302 const struct property *pp = of_find_property(np, name, lenp); 303 304 return pp ? pp->value : NULL; 305 } 306 EXPORT_SYMBOL(of_get_property); 307 308 /** 309 * __of_device_is_compatible() - Check if the node matches given constraints 310 * @device: pointer to node 311 * @compat: required compatible string, NULL or "" for any match 312 * @type: required device_type value, NULL or "" for any match 313 * @name: required node name, NULL or "" for any match 314 * 315 * Checks if the given @compat, @type and @name strings match the 316 * properties of the given @device. A constraints can be skipped by 317 * passing NULL or an empty string as the constraint. 318 * 319 * Returns 0 for no match, and a positive integer on match. The return 320 * value is a relative score with larger values indicating better 321 * matches. The score is weighted for the most specific compatible value 322 * to get the highest score. Matching type is next, followed by matching 323 * name. Practically speaking, this results in the following priority 324 * order for matches: 325 * 326 * 1. specific compatible && type && name 327 * 2. specific compatible && type 328 * 3. specific compatible && name 329 * 4. specific compatible 330 * 5. general compatible && type && name 331 * 6. general compatible && type 332 * 7. general compatible && name 333 * 8. general compatible 334 * 9. type && name 335 * 10. type 336 * 11. name 337 */ 338 static int __of_device_is_compatible(const struct device_node *device, 339 const char *compat, const char *type, const char *name) 340 { 341 const struct property *prop; 342 const char *cp; 343 int index = 0, score = 0; 344 345 /* Compatible match has highest priority */ 346 if (compat && compat[0]) { 347 prop = __of_find_property(device, "compatible", NULL); 348 for (cp = of_prop_next_string(prop, NULL); cp; 349 cp = of_prop_next_string(prop, cp), index++) { 350 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 351 score = INT_MAX/2 - (index << 2); 352 break; 353 } 354 } 355 if (!score) 356 return 0; 357 } 358 359 /* Matching type is better than matching name */ 360 if (type && type[0]) { 361 if (!__of_node_is_type(device, type)) 362 return 0; 363 score += 2; 364 } 365 366 /* Matching name is a bit better than not */ 367 if (name && name[0]) { 368 if (!of_node_name_eq(device, name)) 369 return 0; 370 score++; 371 } 372 373 return score; 374 } 375 376 /** Checks if the given "compat" string matches one of the strings in 377 * the device's "compatible" property 378 */ 379 int of_device_is_compatible(const struct device_node *device, 380 const char *compat) 381 { 382 unsigned long flags; 383 int res; 384 385 raw_spin_lock_irqsave(&devtree_lock, flags); 386 res = __of_device_is_compatible(device, compat, NULL, NULL); 387 raw_spin_unlock_irqrestore(&devtree_lock, flags); 388 return res; 389 } 390 EXPORT_SYMBOL(of_device_is_compatible); 391 392 /** Checks if the device is compatible with any of the entries in 393 * a NULL terminated array of strings. Returns the best match 394 * score or 0. 395 */ 396 int of_device_compatible_match(const struct device_node *device, 397 const char *const *compat) 398 { 399 unsigned int tmp, score = 0; 400 401 if (!compat) 402 return 0; 403 404 while (*compat) { 405 tmp = of_device_is_compatible(device, *compat); 406 if (tmp > score) 407 score = tmp; 408 compat++; 409 } 410 411 return score; 412 } 413 EXPORT_SYMBOL_GPL(of_device_compatible_match); 414 415 /** 416 * of_machine_compatible_match - Test root of device tree against a compatible array 417 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property. 418 * 419 * Returns true if the root node has any of the given compatible values in its 420 * compatible property. 421 */ 422 bool of_machine_compatible_match(const char *const *compats) 423 { 424 struct device_node *root; 425 int rc = 0; 426 427 root = of_find_node_by_path("/"); 428 if (root) { 429 rc = of_device_compatible_match(root, compats); 430 of_node_put(root); 431 } 432 433 return rc != 0; 434 } 435 EXPORT_SYMBOL(of_machine_compatible_match); 436 437 static bool __of_device_is_status(const struct device_node *device, 438 const char * const*strings) 439 { 440 const char *status; 441 int statlen; 442 443 if (!device) 444 return false; 445 446 status = __of_get_property(device, "status", &statlen); 447 if (status == NULL) 448 return false; 449 450 if (statlen > 0) { 451 while (*strings) { 452 unsigned int len = strlen(*strings); 453 454 if ((*strings)[len - 1] == '-') { 455 if (!strncmp(status, *strings, len)) 456 return true; 457 } else { 458 if (!strcmp(status, *strings)) 459 return true; 460 } 461 strings++; 462 } 463 } 464 465 return false; 466 } 467 468 /** 469 * __of_device_is_available - check if a device is available for use 470 * 471 * @device: Node to check for availability, with locks already held 472 * 473 * Return: True if the status property is absent or set to "okay" or "ok", 474 * false otherwise 475 */ 476 static bool __of_device_is_available(const struct device_node *device) 477 { 478 static const char * const ok[] = {"okay", "ok", NULL}; 479 480 if (!device) 481 return false; 482 483 return !__of_get_property(device, "status", NULL) || 484 __of_device_is_status(device, ok); 485 } 486 487 /** 488 * __of_device_is_reserved - check if a device is reserved 489 * 490 * @device: Node to check for availability, with locks already held 491 * 492 * Return: True if the status property is set to "reserved", false otherwise 493 */ 494 static bool __of_device_is_reserved(const struct device_node *device) 495 { 496 static const char * const reserved[] = {"reserved", NULL}; 497 498 return __of_device_is_status(device, reserved); 499 } 500 501 /** 502 * of_device_is_available - check if a device is available for use 503 * 504 * @device: Node to check for availability 505 * 506 * Return: True if the status property is absent or set to "okay" or "ok", 507 * false otherwise 508 */ 509 bool of_device_is_available(const struct device_node *device) 510 { 511 unsigned long flags; 512 bool res; 513 514 raw_spin_lock_irqsave(&devtree_lock, flags); 515 res = __of_device_is_available(device); 516 raw_spin_unlock_irqrestore(&devtree_lock, flags); 517 return res; 518 519 } 520 EXPORT_SYMBOL(of_device_is_available); 521 522 /** 523 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 524 * 525 * @device: Node to check status for, with locks already held 526 * 527 * Return: True if the status property is set to "fail" or "fail-..." (for any 528 * error code suffix), false otherwise 529 */ 530 static bool __of_device_is_fail(const struct device_node *device) 531 { 532 static const char * const fail[] = {"fail", "fail-", NULL}; 533 534 return __of_device_is_status(device, fail); 535 } 536 537 /** 538 * of_device_is_big_endian - check if a device has BE registers 539 * 540 * @device: Node to check for endianness 541 * 542 * Return: True if the device has a "big-endian" property, or if the kernel 543 * was compiled for BE *and* the device has a "native-endian" property. 544 * Returns false otherwise. 545 * 546 * Callers would nominally use ioread32be/iowrite32be if 547 * of_device_is_big_endian() == true, or readl/writel otherwise. 548 */ 549 bool of_device_is_big_endian(const struct device_node *device) 550 { 551 if (of_property_read_bool(device, "big-endian")) 552 return true; 553 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 554 of_property_read_bool(device, "native-endian")) 555 return true; 556 return false; 557 } 558 EXPORT_SYMBOL(of_device_is_big_endian); 559 560 /** 561 * of_get_parent - Get a node's parent if any 562 * @node: Node to get parent 563 * 564 * Return: A node pointer with refcount incremented, use 565 * of_node_put() on it when done. 566 */ 567 struct device_node *of_get_parent(const struct device_node *node) 568 { 569 struct device_node *np; 570 unsigned long flags; 571 572 if (!node) 573 return NULL; 574 575 raw_spin_lock_irqsave(&devtree_lock, flags); 576 np = of_node_get(node->parent); 577 raw_spin_unlock_irqrestore(&devtree_lock, flags); 578 return np; 579 } 580 EXPORT_SYMBOL(of_get_parent); 581 582 /** 583 * of_get_next_parent - Iterate to a node's parent 584 * @node: Node to get parent of 585 * 586 * This is like of_get_parent() except that it drops the 587 * refcount on the passed node, making it suitable for iterating 588 * through a node's parents. 589 * 590 * Return: A node pointer with refcount incremented, use 591 * of_node_put() on it when done. 592 */ 593 struct device_node *of_get_next_parent(struct device_node *node) 594 { 595 struct device_node *parent; 596 unsigned long flags; 597 598 if (!node) 599 return NULL; 600 601 raw_spin_lock_irqsave(&devtree_lock, flags); 602 parent = of_node_get(node->parent); 603 of_node_put(node); 604 raw_spin_unlock_irqrestore(&devtree_lock, flags); 605 return parent; 606 } 607 EXPORT_SYMBOL(of_get_next_parent); 608 609 static struct device_node *__of_get_next_child(const struct device_node *node, 610 struct device_node *prev) 611 { 612 struct device_node *next; 613 614 if (!node) 615 return NULL; 616 617 next = prev ? prev->sibling : node->child; 618 of_node_get(next); 619 of_node_put(prev); 620 return next; 621 } 622 #define __for_each_child_of_node(parent, child) \ 623 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 624 child = __of_get_next_child(parent, child)) 625 626 /** 627 * of_get_next_child - Iterate a node childs 628 * @node: parent node 629 * @prev: previous child of the parent node, or NULL to get first 630 * 631 * Return: A node pointer with refcount incremented, use of_node_put() on 632 * it when done. Returns NULL when prev is the last child. Decrements the 633 * refcount of prev. 634 */ 635 struct device_node *of_get_next_child(const struct device_node *node, 636 struct device_node *prev) 637 { 638 struct device_node *next; 639 unsigned long flags; 640 641 raw_spin_lock_irqsave(&devtree_lock, flags); 642 next = __of_get_next_child(node, prev); 643 raw_spin_unlock_irqrestore(&devtree_lock, flags); 644 return next; 645 } 646 EXPORT_SYMBOL(of_get_next_child); 647 648 /** 649 * of_get_next_child_with_prefix - Find the next child node with prefix 650 * @node: parent node 651 * @prev: previous child of the parent node, or NULL to get first 652 * @prefix: prefix that the node name should have 653 * 654 * This function is like of_get_next_child(), except that it automatically 655 * skips any nodes whose name doesn't have the given prefix. 656 * 657 * Return: A node pointer with refcount incremented, use 658 * of_node_put() on it when done. 659 */ 660 struct device_node *of_get_next_child_with_prefix(const struct device_node *node, 661 struct device_node *prev, 662 const char *prefix) 663 { 664 struct device_node *next; 665 unsigned long flags; 666 667 if (!node) 668 return NULL; 669 670 raw_spin_lock_irqsave(&devtree_lock, flags); 671 next = prev ? prev->sibling : node->child; 672 for (; next; next = next->sibling) { 673 if (!of_node_name_prefix(next, prefix)) 674 continue; 675 if (of_node_get(next)) 676 break; 677 } 678 of_node_put(prev); 679 raw_spin_unlock_irqrestore(&devtree_lock, flags); 680 return next; 681 } 682 EXPORT_SYMBOL(of_get_next_child_with_prefix); 683 684 static struct device_node *of_get_next_status_child(const struct device_node *node, 685 struct device_node *prev, 686 bool (*checker)(const struct device_node *)) 687 { 688 struct device_node *next; 689 unsigned long flags; 690 691 if (!node) 692 return NULL; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 next = prev ? prev->sibling : node->child; 696 for (; next; next = next->sibling) { 697 if (!checker(next)) 698 continue; 699 if (of_node_get(next)) 700 break; 701 } 702 of_node_put(prev); 703 raw_spin_unlock_irqrestore(&devtree_lock, flags); 704 return next; 705 } 706 707 /** 708 * of_get_next_available_child - Find the next available child node 709 * @node: parent node 710 * @prev: previous child of the parent node, or NULL to get first 711 * 712 * This function is like of_get_next_child(), except that it 713 * automatically skips any disabled nodes (i.e. status = "disabled"). 714 */ 715 struct device_node *of_get_next_available_child(const struct device_node *node, 716 struct device_node *prev) 717 { 718 return of_get_next_status_child(node, prev, __of_device_is_available); 719 } 720 EXPORT_SYMBOL(of_get_next_available_child); 721 722 /** 723 * of_get_next_reserved_child - Find the next reserved child node 724 * @node: parent node 725 * @prev: previous child of the parent node, or NULL to get first 726 * 727 * This function is like of_get_next_child(), except that it 728 * automatically skips any disabled nodes (i.e. status = "disabled"). 729 */ 730 struct device_node *of_get_next_reserved_child(const struct device_node *node, 731 struct device_node *prev) 732 { 733 return of_get_next_status_child(node, prev, __of_device_is_reserved); 734 } 735 EXPORT_SYMBOL(of_get_next_reserved_child); 736 737 /** 738 * of_get_next_cpu_node - Iterate on cpu nodes 739 * @prev: previous child of the /cpus node, or NULL to get first 740 * 741 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 742 * will be skipped. 743 * 744 * Return: A cpu node pointer with refcount incremented, use of_node_put() 745 * on it when done. Returns NULL when prev is the last child. Decrements 746 * the refcount of prev. 747 */ 748 struct device_node *of_get_next_cpu_node(struct device_node *prev) 749 { 750 struct device_node *next = NULL; 751 unsigned long flags; 752 struct device_node *node; 753 754 if (!prev) 755 node = of_find_node_by_path("/cpus"); 756 757 raw_spin_lock_irqsave(&devtree_lock, flags); 758 if (prev) 759 next = prev->sibling; 760 else if (node) { 761 next = node->child; 762 of_node_put(node); 763 } 764 for (; next; next = next->sibling) { 765 if (__of_device_is_fail(next)) 766 continue; 767 if (!(of_node_name_eq(next, "cpu") || 768 __of_node_is_type(next, "cpu"))) 769 continue; 770 if (of_node_get(next)) 771 break; 772 } 773 of_node_put(prev); 774 raw_spin_unlock_irqrestore(&devtree_lock, flags); 775 return next; 776 } 777 EXPORT_SYMBOL(of_get_next_cpu_node); 778 779 /** 780 * of_get_compatible_child - Find compatible child node 781 * @parent: parent node 782 * @compatible: compatible string 783 * 784 * Lookup child node whose compatible property contains the given compatible 785 * string. 786 * 787 * Return: a node pointer with refcount incremented, use of_node_put() on it 788 * when done; or NULL if not found. 789 */ 790 struct device_node *of_get_compatible_child(const struct device_node *parent, 791 const char *compatible) 792 { 793 struct device_node *child; 794 795 for_each_child_of_node(parent, child) { 796 if (of_device_is_compatible(child, compatible)) 797 break; 798 } 799 800 return child; 801 } 802 EXPORT_SYMBOL(of_get_compatible_child); 803 804 /** 805 * of_get_child_by_name - Find the child node by name for a given parent 806 * @node: parent node 807 * @name: child name to look for. 808 * 809 * This function looks for child node for given matching name 810 * 811 * Return: A node pointer if found, with refcount incremented, use 812 * of_node_put() on it when done. 813 * Returns NULL if node is not found. 814 */ 815 struct device_node *of_get_child_by_name(const struct device_node *node, 816 const char *name) 817 { 818 struct device_node *child; 819 820 for_each_child_of_node(node, child) 821 if (of_node_name_eq(child, name)) 822 break; 823 return child; 824 } 825 EXPORT_SYMBOL(of_get_child_by_name); 826 827 struct device_node *__of_find_node_by_path(const struct device_node *parent, 828 const char *path) 829 { 830 struct device_node *child; 831 int len; 832 833 len = strcspn(path, "/:"); 834 if (!len) 835 return NULL; 836 837 __for_each_child_of_node(parent, child) { 838 const char *name = kbasename(child->full_name); 839 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 840 return child; 841 } 842 return NULL; 843 } 844 845 struct device_node *__of_find_node_by_full_path(struct device_node *node, 846 const char *path) 847 { 848 const char *separator = strchr(path, ':'); 849 850 while (node && *path == '/') { 851 struct device_node *tmp = node; 852 853 path++; /* Increment past '/' delimiter */ 854 node = __of_find_node_by_path(node, path); 855 of_node_put(tmp); 856 path = strchrnul(path, '/'); 857 if (separator && separator < path) 858 break; 859 } 860 return node; 861 } 862 863 /** 864 * of_find_node_opts_by_path - Find a node matching a full OF path 865 * @path: Either the full path to match, or if the path does not 866 * start with '/', the name of a property of the /aliases 867 * node (an alias). In the case of an alias, the node 868 * matching the alias' value will be returned. 869 * @opts: Address of a pointer into which to store the start of 870 * an options string appended to the end of the path with 871 * a ':' separator. 872 * 873 * Valid paths: 874 * * /foo/bar Full path 875 * * foo Valid alias 876 * * foo/bar Valid alias + relative path 877 * 878 * Return: A node pointer with refcount incremented, use 879 * of_node_put() on it when done. 880 */ 881 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 882 { 883 struct device_node *np = NULL; 884 const struct property *pp; 885 unsigned long flags; 886 const char *separator = strchr(path, ':'); 887 888 if (opts) 889 *opts = separator ? separator + 1 : NULL; 890 891 if (strcmp(path, "/") == 0) 892 return of_node_get(of_root); 893 894 /* The path could begin with an alias */ 895 if (*path != '/') { 896 int len; 897 const char *p = separator; 898 899 if (!p) 900 p = strchrnul(path, '/'); 901 len = p - path; 902 903 /* of_aliases must not be NULL */ 904 if (!of_aliases) 905 return NULL; 906 907 for_each_property_of_node(of_aliases, pp) { 908 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 909 np = of_find_node_by_path(pp->value); 910 break; 911 } 912 } 913 if (!np) 914 return NULL; 915 path = p; 916 } 917 918 /* Step down the tree matching path components */ 919 raw_spin_lock_irqsave(&devtree_lock, flags); 920 if (!np) 921 np = of_node_get(of_root); 922 np = __of_find_node_by_full_path(np, path); 923 raw_spin_unlock_irqrestore(&devtree_lock, flags); 924 return np; 925 } 926 EXPORT_SYMBOL(of_find_node_opts_by_path); 927 928 /** 929 * of_find_node_by_name - Find a node by its "name" property 930 * @from: The node to start searching from or NULL; the node 931 * you pass will not be searched, only the next one 932 * will. Typically, you pass what the previous call 933 * returned. of_node_put() will be called on @from. 934 * @name: The name string to match against 935 * 936 * Return: A node pointer with refcount incremented, use 937 * of_node_put() on it when done. 938 */ 939 struct device_node *of_find_node_by_name(struct device_node *from, 940 const char *name) 941 { 942 struct device_node *np; 943 unsigned long flags; 944 945 raw_spin_lock_irqsave(&devtree_lock, flags); 946 for_each_of_allnodes_from(from, np) 947 if (of_node_name_eq(np, name) && of_node_get(np)) 948 break; 949 of_node_put(from); 950 raw_spin_unlock_irqrestore(&devtree_lock, flags); 951 return np; 952 } 953 EXPORT_SYMBOL(of_find_node_by_name); 954 955 /** 956 * of_find_node_by_type - Find a node by its "device_type" property 957 * @from: The node to start searching from, or NULL to start searching 958 * the entire device tree. The node you pass will not be 959 * searched, only the next one will; typically, you pass 960 * what the previous call returned. of_node_put() will be 961 * called on from for you. 962 * @type: The type string to match against 963 * 964 * Return: A node pointer with refcount incremented, use 965 * of_node_put() on it when done. 966 */ 967 struct device_node *of_find_node_by_type(struct device_node *from, 968 const char *type) 969 { 970 struct device_node *np; 971 unsigned long flags; 972 973 raw_spin_lock_irqsave(&devtree_lock, flags); 974 for_each_of_allnodes_from(from, np) 975 if (__of_node_is_type(np, type) && of_node_get(np)) 976 break; 977 of_node_put(from); 978 raw_spin_unlock_irqrestore(&devtree_lock, flags); 979 return np; 980 } 981 EXPORT_SYMBOL(of_find_node_by_type); 982 983 /** 984 * of_find_compatible_node - Find a node based on type and one of the 985 * tokens in its "compatible" property 986 * @from: The node to start searching from or NULL, the node 987 * you pass will not be searched, only the next one 988 * will; typically, you pass what the previous call 989 * returned. of_node_put() will be called on it 990 * @type: The type string to match "device_type" or NULL to ignore 991 * @compatible: The string to match to one of the tokens in the device 992 * "compatible" list. 993 * 994 * Return: A node pointer with refcount incremented, use 995 * of_node_put() on it when done. 996 */ 997 struct device_node *of_find_compatible_node(struct device_node *from, 998 const char *type, const char *compatible) 999 { 1000 struct device_node *np; 1001 unsigned long flags; 1002 1003 raw_spin_lock_irqsave(&devtree_lock, flags); 1004 for_each_of_allnodes_from(from, np) 1005 if (__of_device_is_compatible(np, compatible, type, NULL) && 1006 of_node_get(np)) 1007 break; 1008 of_node_put(from); 1009 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1010 return np; 1011 } 1012 EXPORT_SYMBOL(of_find_compatible_node); 1013 1014 /** 1015 * of_find_node_with_property - Find a node which has a property with 1016 * the given name. 1017 * @from: The node to start searching from or NULL, the node 1018 * you pass will not be searched, only the next one 1019 * will; typically, you pass what the previous call 1020 * returned. of_node_put() will be called on it 1021 * @prop_name: The name of the property to look for. 1022 * 1023 * Return: A node pointer with refcount incremented, use 1024 * of_node_put() on it when done. 1025 */ 1026 struct device_node *of_find_node_with_property(struct device_node *from, 1027 const char *prop_name) 1028 { 1029 struct device_node *np; 1030 const struct property *pp; 1031 unsigned long flags; 1032 1033 raw_spin_lock_irqsave(&devtree_lock, flags); 1034 for_each_of_allnodes_from(from, np) { 1035 for (pp = np->properties; pp; pp = pp->next) { 1036 if (of_prop_cmp(pp->name, prop_name) == 0) { 1037 of_node_get(np); 1038 goto out; 1039 } 1040 } 1041 } 1042 out: 1043 of_node_put(from); 1044 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1045 return np; 1046 } 1047 EXPORT_SYMBOL(of_find_node_with_property); 1048 1049 static 1050 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1051 const struct device_node *node) 1052 { 1053 const struct of_device_id *best_match = NULL; 1054 int score, best_score = 0; 1055 1056 if (!matches) 1057 return NULL; 1058 1059 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1060 score = __of_device_is_compatible(node, matches->compatible, 1061 matches->type, matches->name); 1062 if (score > best_score) { 1063 best_match = matches; 1064 best_score = score; 1065 } 1066 } 1067 1068 return best_match; 1069 } 1070 1071 /** 1072 * of_match_node - Tell if a device_node has a matching of_match structure 1073 * @matches: array of of device match structures to search in 1074 * @node: the of device structure to match against 1075 * 1076 * Low level utility function used by device matching. 1077 */ 1078 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1079 const struct device_node *node) 1080 { 1081 const struct of_device_id *match; 1082 unsigned long flags; 1083 1084 raw_spin_lock_irqsave(&devtree_lock, flags); 1085 match = __of_match_node(matches, node); 1086 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1087 return match; 1088 } 1089 EXPORT_SYMBOL(of_match_node); 1090 1091 /** 1092 * of_find_matching_node_and_match - Find a node based on an of_device_id 1093 * match table. 1094 * @from: The node to start searching from or NULL, the node 1095 * you pass will not be searched, only the next one 1096 * will; typically, you pass what the previous call 1097 * returned. of_node_put() will be called on it 1098 * @matches: array of of device match structures to search in 1099 * @match: Updated to point at the matches entry which matched 1100 * 1101 * Return: A node pointer with refcount incremented, use 1102 * of_node_put() on it when done. 1103 */ 1104 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1105 const struct of_device_id *matches, 1106 const struct of_device_id **match) 1107 { 1108 struct device_node *np; 1109 const struct of_device_id *m; 1110 unsigned long flags; 1111 1112 if (match) 1113 *match = NULL; 1114 1115 raw_spin_lock_irqsave(&devtree_lock, flags); 1116 for_each_of_allnodes_from(from, np) { 1117 m = __of_match_node(matches, np); 1118 if (m && of_node_get(np)) { 1119 if (match) 1120 *match = m; 1121 break; 1122 } 1123 } 1124 of_node_put(from); 1125 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1126 return np; 1127 } 1128 EXPORT_SYMBOL(of_find_matching_node_and_match); 1129 1130 /** 1131 * of_alias_from_compatible - Lookup appropriate alias for a device node 1132 * depending on compatible 1133 * @node: pointer to a device tree node 1134 * @alias: Pointer to buffer that alias value will be copied into 1135 * @len: Length of alias value 1136 * 1137 * Based on the value of the compatible property, this routine will attempt 1138 * to choose an appropriate alias value for a particular device tree node. 1139 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1140 * from the first entry in the compatible list property. 1141 * 1142 * Note: The matching on just the "product" side of the compatible is a relic 1143 * from I2C and SPI. Please do not add any new user. 1144 * 1145 * Return: This routine returns 0 on success, <0 on failure. 1146 */ 1147 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1148 { 1149 const char *compatible, *p; 1150 int cplen; 1151 1152 compatible = of_get_property(node, "compatible", &cplen); 1153 if (!compatible || strlen(compatible) > cplen) 1154 return -ENODEV; 1155 p = strchr(compatible, ','); 1156 strscpy(alias, p ? p + 1 : compatible, len); 1157 return 0; 1158 } 1159 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1160 1161 /** 1162 * of_find_node_by_phandle - Find a node given a phandle 1163 * @handle: phandle of the node to find 1164 * 1165 * Return: A node pointer with refcount incremented, use 1166 * of_node_put() on it when done. 1167 */ 1168 struct device_node *of_find_node_by_phandle(phandle handle) 1169 { 1170 struct device_node *np = NULL; 1171 unsigned long flags; 1172 u32 handle_hash; 1173 1174 if (!handle) 1175 return NULL; 1176 1177 handle_hash = of_phandle_cache_hash(handle); 1178 1179 raw_spin_lock_irqsave(&devtree_lock, flags); 1180 1181 if (phandle_cache[handle_hash] && 1182 handle == phandle_cache[handle_hash]->phandle) 1183 np = phandle_cache[handle_hash]; 1184 1185 if (!np) { 1186 for_each_of_allnodes(np) 1187 if (np->phandle == handle && 1188 !of_node_check_flag(np, OF_DETACHED)) { 1189 phandle_cache[handle_hash] = np; 1190 break; 1191 } 1192 } 1193 1194 of_node_get(np); 1195 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1196 return np; 1197 } 1198 EXPORT_SYMBOL(of_find_node_by_phandle); 1199 1200 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1201 { 1202 int i; 1203 printk("%s %pOF", msg, args->np); 1204 for (i = 0; i < args->args_count; i++) { 1205 const char delim = i ? ',' : ':'; 1206 1207 pr_cont("%c%08x", delim, args->args[i]); 1208 } 1209 pr_cont("\n"); 1210 } 1211 1212 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1213 const struct device_node *np, 1214 const char *list_name, 1215 const char *cells_name, 1216 int cell_count) 1217 { 1218 const __be32 *list; 1219 int size; 1220 1221 memset(it, 0, sizeof(*it)); 1222 1223 /* 1224 * one of cell_count or cells_name must be provided to determine the 1225 * argument length. 1226 */ 1227 if (cell_count < 0 && !cells_name) 1228 return -EINVAL; 1229 1230 list = of_get_property(np, list_name, &size); 1231 if (!list) 1232 return -ENOENT; 1233 1234 it->cells_name = cells_name; 1235 it->cell_count = cell_count; 1236 it->parent = np; 1237 it->list_end = list + size / sizeof(*list); 1238 it->phandle_end = list; 1239 it->cur = list; 1240 1241 return 0; 1242 } 1243 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1244 1245 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1246 { 1247 uint32_t count = 0; 1248 1249 if (it->node) { 1250 of_node_put(it->node); 1251 it->node = NULL; 1252 } 1253 1254 if (!it->cur || it->phandle_end >= it->list_end) 1255 return -ENOENT; 1256 1257 it->cur = it->phandle_end; 1258 1259 /* If phandle is 0, then it is an empty entry with no arguments. */ 1260 it->phandle = be32_to_cpup(it->cur++); 1261 1262 if (it->phandle) { 1263 1264 /* 1265 * Find the provider node and parse the #*-cells property to 1266 * determine the argument length. 1267 */ 1268 it->node = of_find_node_by_phandle(it->phandle); 1269 1270 if (it->cells_name) { 1271 if (!it->node) { 1272 pr_err("%pOF: could not find phandle %d\n", 1273 it->parent, it->phandle); 1274 goto err; 1275 } 1276 1277 if (of_property_read_u32(it->node, it->cells_name, 1278 &count)) { 1279 /* 1280 * If both cell_count and cells_name is given, 1281 * fall back to cell_count in absence 1282 * of the cells_name property 1283 */ 1284 if (it->cell_count >= 0) { 1285 count = it->cell_count; 1286 } else { 1287 pr_err("%pOF: could not get %s for %pOF\n", 1288 it->parent, 1289 it->cells_name, 1290 it->node); 1291 goto err; 1292 } 1293 } 1294 } else { 1295 count = it->cell_count; 1296 } 1297 1298 /* 1299 * Make sure that the arguments actually fit in the remaining 1300 * property data length 1301 */ 1302 if (it->cur + count > it->list_end) { 1303 if (it->cells_name) 1304 pr_err("%pOF: %s = %d found %td\n", 1305 it->parent, it->cells_name, 1306 count, it->list_end - it->cur); 1307 else 1308 pr_err("%pOF: phandle %s needs %d, found %td\n", 1309 it->parent, of_node_full_name(it->node), 1310 count, it->list_end - it->cur); 1311 goto err; 1312 } 1313 } 1314 1315 it->phandle_end = it->cur + count; 1316 it->cur_count = count; 1317 1318 return 0; 1319 1320 err: 1321 if (it->node) { 1322 of_node_put(it->node); 1323 it->node = NULL; 1324 } 1325 1326 return -EINVAL; 1327 } 1328 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1329 1330 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1331 uint32_t *args, 1332 int size) 1333 { 1334 int i, count; 1335 1336 count = it->cur_count; 1337 1338 if (WARN_ON(size < count)) 1339 count = size; 1340 1341 for (i = 0; i < count; i++) 1342 args[i] = be32_to_cpup(it->cur++); 1343 1344 return count; 1345 } 1346 1347 int __of_parse_phandle_with_args(const struct device_node *np, 1348 const char *list_name, 1349 const char *cells_name, 1350 int cell_count, int index, 1351 struct of_phandle_args *out_args) 1352 { 1353 struct of_phandle_iterator it; 1354 int rc, cur_index = 0; 1355 1356 if (index < 0) 1357 return -EINVAL; 1358 1359 /* Loop over the phandles until all the requested entry is found */ 1360 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1361 /* 1362 * All of the error cases bail out of the loop, so at 1363 * this point, the parsing is successful. If the requested 1364 * index matches, then fill the out_args structure and return, 1365 * or return -ENOENT for an empty entry. 1366 */ 1367 rc = -ENOENT; 1368 if (cur_index == index) { 1369 if (!it.phandle) 1370 goto err; 1371 1372 if (out_args) { 1373 int c; 1374 1375 c = of_phandle_iterator_args(&it, 1376 out_args->args, 1377 MAX_PHANDLE_ARGS); 1378 out_args->np = it.node; 1379 out_args->args_count = c; 1380 } else { 1381 of_node_put(it.node); 1382 } 1383 1384 /* Found it! return success */ 1385 return 0; 1386 } 1387 1388 cur_index++; 1389 } 1390 1391 /* 1392 * Unlock node before returning result; will be one of: 1393 * -ENOENT : index is for empty phandle 1394 * -EINVAL : parsing error on data 1395 */ 1396 1397 err: 1398 of_node_put(it.node); 1399 return rc; 1400 } 1401 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1402 1403 /** 1404 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1405 * @np: pointer to a device tree node containing a list 1406 * @list_name: property name that contains a list 1407 * @stem_name: stem of property names that specify phandles' arguments count 1408 * @index: index of a phandle to parse out 1409 * @out_args: optional pointer to output arguments structure (will be filled) 1410 * 1411 * This function is useful to parse lists of phandles and their arguments. 1412 * Returns 0 on success and fills out_args, on error returns appropriate errno 1413 * value. The difference between this function and of_parse_phandle_with_args() 1414 * is that this API remaps a phandle if the node the phandle points to has 1415 * a <@stem_name>-map property. 1416 * 1417 * Caller is responsible to call of_node_put() on the returned out_args->np 1418 * pointer. 1419 * 1420 * Example:: 1421 * 1422 * phandle1: node1 { 1423 * #list-cells = <2>; 1424 * }; 1425 * 1426 * phandle2: node2 { 1427 * #list-cells = <1>; 1428 * }; 1429 * 1430 * phandle3: node3 { 1431 * #list-cells = <1>; 1432 * list-map = <0 &phandle2 3>, 1433 * <1 &phandle2 2>, 1434 * <2 &phandle1 5 1>; 1435 * list-map-mask = <0x3>; 1436 * }; 1437 * 1438 * node4 { 1439 * list = <&phandle1 1 2 &phandle3 0>; 1440 * }; 1441 * 1442 * To get a device_node of the ``node2`` node you may call this: 1443 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1444 */ 1445 int of_parse_phandle_with_args_map(const struct device_node *np, 1446 const char *list_name, 1447 const char *stem_name, 1448 int index, struct of_phandle_args *out_args) 1449 { 1450 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1451 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1452 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1453 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1454 struct device_node *cur, *new = NULL; 1455 const __be32 *map, *mask, *pass; 1456 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) }; 1457 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) }; 1458 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1459 const __be32 *match_array = initial_match_array; 1460 int i, ret, map_len, match; 1461 u32 list_size, new_size; 1462 1463 if (index < 0) 1464 return -EINVAL; 1465 1466 if (!cells_name || !map_name || !mask_name || !pass_name) 1467 return -ENOMEM; 1468 1469 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1470 out_args); 1471 if (ret) 1472 return ret; 1473 1474 /* Get the #<list>-cells property */ 1475 cur = out_args->np; 1476 ret = of_property_read_u32(cur, cells_name, &list_size); 1477 if (ret < 0) 1478 goto put; 1479 1480 /* Precalculate the match array - this simplifies match loop */ 1481 for (i = 0; i < list_size; i++) 1482 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1483 1484 ret = -EINVAL; 1485 while (cur) { 1486 /* Get the <list>-map property */ 1487 map = of_get_property(cur, map_name, &map_len); 1488 if (!map) { 1489 return 0; 1490 } 1491 map_len /= sizeof(u32); 1492 1493 /* Get the <list>-map-mask property (optional) */ 1494 mask = of_get_property(cur, mask_name, NULL); 1495 if (!mask) 1496 mask = dummy_mask; 1497 /* Iterate through <list>-map property */ 1498 match = 0; 1499 while (map_len > (list_size + 1) && !match) { 1500 /* Compare specifiers */ 1501 match = 1; 1502 for (i = 0; i < list_size; i++, map_len--) 1503 match &= !((match_array[i] ^ *map++) & mask[i]); 1504 1505 of_node_put(new); 1506 new = of_find_node_by_phandle(be32_to_cpup(map)); 1507 map++; 1508 map_len--; 1509 1510 /* Check if not found */ 1511 if (!new) { 1512 ret = -EINVAL; 1513 goto put; 1514 } 1515 1516 if (!of_device_is_available(new)) 1517 match = 0; 1518 1519 ret = of_property_read_u32(new, cells_name, &new_size); 1520 if (ret) 1521 goto put; 1522 1523 /* Check for malformed properties */ 1524 if (WARN_ON(new_size > MAX_PHANDLE_ARGS) || 1525 map_len < new_size) { 1526 ret = -EINVAL; 1527 goto put; 1528 } 1529 1530 /* Move forward by new node's #<list>-cells amount */ 1531 map += new_size; 1532 map_len -= new_size; 1533 } 1534 if (!match) { 1535 ret = -ENOENT; 1536 goto put; 1537 } 1538 1539 /* Get the <list>-map-pass-thru property (optional) */ 1540 pass = of_get_property(cur, pass_name, NULL); 1541 if (!pass) 1542 pass = dummy_pass; 1543 1544 /* 1545 * Successfully parsed a <list>-map translation; copy new 1546 * specifier into the out_args structure, keeping the 1547 * bits specified in <list>-map-pass-thru. 1548 */ 1549 match_array = map - new_size; 1550 for (i = 0; i < new_size; i++) { 1551 __be32 val = *(map - new_size + i); 1552 1553 if (i < list_size) { 1554 val &= ~pass[i]; 1555 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1556 } 1557 1558 out_args->args[i] = be32_to_cpu(val); 1559 } 1560 out_args->args_count = list_size = new_size; 1561 /* Iterate again with new provider */ 1562 out_args->np = new; 1563 of_node_put(cur); 1564 cur = new; 1565 new = NULL; 1566 } 1567 put: 1568 of_node_put(cur); 1569 of_node_put(new); 1570 return ret; 1571 } 1572 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1573 1574 /** 1575 * of_count_phandle_with_args() - Find the number of phandles references in a property 1576 * @np: pointer to a device tree node containing a list 1577 * @list_name: property name that contains a list 1578 * @cells_name: property name that specifies phandles' arguments count 1579 * 1580 * Return: The number of phandle + argument tuples within a property. It 1581 * is a typical pattern to encode a list of phandle and variable 1582 * arguments into a single property. The number of arguments is encoded 1583 * by a property in the phandle-target node. For example, a gpios 1584 * property would contain a list of GPIO specifies consisting of a 1585 * phandle and 1 or more arguments. The number of arguments are 1586 * determined by the #gpio-cells property in the node pointed to by the 1587 * phandle. 1588 */ 1589 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1590 const char *cells_name) 1591 { 1592 struct of_phandle_iterator it; 1593 int rc, cur_index = 0; 1594 1595 /* 1596 * If cells_name is NULL we assume a cell count of 0. This makes 1597 * counting the phandles trivial as each 32bit word in the list is a 1598 * phandle and no arguments are to consider. So we don't iterate through 1599 * the list but just use the length to determine the phandle count. 1600 */ 1601 if (!cells_name) { 1602 const __be32 *list; 1603 int size; 1604 1605 list = of_get_property(np, list_name, &size); 1606 if (!list) 1607 return -ENOENT; 1608 1609 return size / sizeof(*list); 1610 } 1611 1612 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1613 if (rc) 1614 return rc; 1615 1616 while ((rc = of_phandle_iterator_next(&it)) == 0) 1617 cur_index += 1; 1618 1619 if (rc != -ENOENT) 1620 return rc; 1621 1622 return cur_index; 1623 } 1624 EXPORT_SYMBOL(of_count_phandle_with_args); 1625 1626 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1627 { 1628 struct property **next; 1629 1630 for (next = list; *next; next = &(*next)->next) { 1631 if (*next == prop) { 1632 *next = prop->next; 1633 prop->next = NULL; 1634 return prop; 1635 } 1636 } 1637 return NULL; 1638 } 1639 1640 /** 1641 * __of_add_property - Add a property to a node without lock operations 1642 * @np: Caller's Device Node 1643 * @prop: Property to add 1644 */ 1645 int __of_add_property(struct device_node *np, struct property *prop) 1646 { 1647 int rc = 0; 1648 unsigned long flags; 1649 struct property **next; 1650 1651 raw_spin_lock_irqsave(&devtree_lock, flags); 1652 1653 __of_remove_property_from_list(&np->deadprops, prop); 1654 1655 prop->next = NULL; 1656 next = &np->properties; 1657 while (*next) { 1658 if (strcmp(prop->name, (*next)->name) == 0) { 1659 /* duplicate ! don't insert it */ 1660 rc = -EEXIST; 1661 goto out_unlock; 1662 } 1663 next = &(*next)->next; 1664 } 1665 *next = prop; 1666 1667 out_unlock: 1668 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1669 if (rc) 1670 return rc; 1671 1672 __of_add_property_sysfs(np, prop); 1673 return 0; 1674 } 1675 1676 /** 1677 * of_add_property - Add a property to a node 1678 * @np: Caller's Device Node 1679 * @prop: Property to add 1680 */ 1681 int of_add_property(struct device_node *np, struct property *prop) 1682 { 1683 int rc; 1684 1685 mutex_lock(&of_mutex); 1686 rc = __of_add_property(np, prop); 1687 mutex_unlock(&of_mutex); 1688 1689 if (!rc) 1690 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1691 1692 return rc; 1693 } 1694 EXPORT_SYMBOL_GPL(of_add_property); 1695 1696 int __of_remove_property(struct device_node *np, struct property *prop) 1697 { 1698 unsigned long flags; 1699 int rc = -ENODEV; 1700 1701 raw_spin_lock_irqsave(&devtree_lock, flags); 1702 1703 if (__of_remove_property_from_list(&np->properties, prop)) { 1704 /* Found the property, add it to deadprops list */ 1705 prop->next = np->deadprops; 1706 np->deadprops = prop; 1707 rc = 0; 1708 } 1709 1710 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1711 if (rc) 1712 return rc; 1713 1714 __of_remove_property_sysfs(np, prop); 1715 return 0; 1716 } 1717 1718 /** 1719 * of_remove_property - Remove a property from a node. 1720 * @np: Caller's Device Node 1721 * @prop: Property to remove 1722 * 1723 * Note that we don't actually remove it, since we have given out 1724 * who-knows-how-many pointers to the data using get-property. 1725 * Instead we just move the property to the "dead properties" 1726 * list, so it won't be found any more. 1727 */ 1728 int of_remove_property(struct device_node *np, struct property *prop) 1729 { 1730 int rc; 1731 1732 if (!prop) 1733 return -ENODEV; 1734 1735 mutex_lock(&of_mutex); 1736 rc = __of_remove_property(np, prop); 1737 mutex_unlock(&of_mutex); 1738 1739 if (!rc) 1740 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1741 1742 return rc; 1743 } 1744 EXPORT_SYMBOL_GPL(of_remove_property); 1745 1746 int __of_update_property(struct device_node *np, struct property *newprop, 1747 struct property **oldpropp) 1748 { 1749 struct property **next, *oldprop; 1750 unsigned long flags; 1751 1752 raw_spin_lock_irqsave(&devtree_lock, flags); 1753 1754 __of_remove_property_from_list(&np->deadprops, newprop); 1755 1756 for (next = &np->properties; *next; next = &(*next)->next) { 1757 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1758 break; 1759 } 1760 *oldpropp = oldprop = *next; 1761 1762 if (oldprop) { 1763 /* replace the node */ 1764 newprop->next = oldprop->next; 1765 *next = newprop; 1766 oldprop->next = np->deadprops; 1767 np->deadprops = oldprop; 1768 } else { 1769 /* new node */ 1770 newprop->next = NULL; 1771 *next = newprop; 1772 } 1773 1774 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1775 1776 __of_update_property_sysfs(np, newprop, oldprop); 1777 1778 return 0; 1779 } 1780 1781 /* 1782 * of_update_property - Update a property in a node, if the property does 1783 * not exist, add it. 1784 * 1785 * Note that we don't actually remove it, since we have given out 1786 * who-knows-how-many pointers to the data using get-property. 1787 * Instead we just move the property to the "dead properties" list, 1788 * and add the new property to the property list 1789 */ 1790 int of_update_property(struct device_node *np, struct property *newprop) 1791 { 1792 struct property *oldprop; 1793 int rc; 1794 1795 if (!newprop->name) 1796 return -EINVAL; 1797 1798 mutex_lock(&of_mutex); 1799 rc = __of_update_property(np, newprop, &oldprop); 1800 mutex_unlock(&of_mutex); 1801 1802 if (!rc) 1803 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1804 1805 return rc; 1806 } 1807 1808 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1809 int id, const char *stem, int stem_len) 1810 { 1811 ap->np = np; 1812 ap->id = id; 1813 strscpy(ap->stem, stem, stem_len + 1); 1814 list_add_tail(&ap->link, &aliases_lookup); 1815 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1816 ap->alias, ap->stem, ap->id, np); 1817 } 1818 1819 /** 1820 * of_alias_scan - Scan all properties of the 'aliases' node 1821 * @dt_alloc: An allocator that provides a virtual address to memory 1822 * for storing the resulting tree 1823 * 1824 * The function scans all the properties of the 'aliases' node and populates 1825 * the global lookup table with the properties. It returns the 1826 * number of alias properties found, or an error code in case of failure. 1827 */ 1828 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1829 { 1830 const struct property *pp; 1831 1832 of_aliases = of_find_node_by_path("/aliases"); 1833 of_chosen = of_find_node_by_path("/chosen"); 1834 if (of_chosen == NULL) 1835 of_chosen = of_find_node_by_path("/chosen@0"); 1836 1837 if (of_chosen) { 1838 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1839 const char *name = NULL; 1840 1841 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1842 of_property_read_string(of_chosen, "linux,stdout-path", 1843 &name); 1844 if (IS_ENABLED(CONFIG_PPC) && !name) 1845 of_property_read_string(of_aliases, "stdout", &name); 1846 if (name) 1847 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1848 if (of_stdout) 1849 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1850 } 1851 1852 if (!of_aliases) 1853 return; 1854 1855 for_each_property_of_node(of_aliases, pp) { 1856 const char *start = pp->name; 1857 const char *end = start + strlen(start); 1858 struct device_node *np; 1859 struct alias_prop *ap; 1860 int id, len; 1861 1862 /* Skip those we do not want to proceed */ 1863 if (!strcmp(pp->name, "name") || 1864 !strcmp(pp->name, "phandle") || 1865 !strcmp(pp->name, "linux,phandle")) 1866 continue; 1867 1868 np = of_find_node_by_path(pp->value); 1869 if (!np) 1870 continue; 1871 1872 /* walk the alias backwards to extract the id and work out 1873 * the 'stem' string */ 1874 while (isdigit(*(end-1)) && end > start) 1875 end--; 1876 len = end - start; 1877 1878 if (kstrtoint(end, 10, &id) < 0) 1879 continue; 1880 1881 /* Allocate an alias_prop with enough space for the stem */ 1882 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1883 if (!ap) 1884 continue; 1885 memset(ap, 0, sizeof(*ap) + len + 1); 1886 ap->alias = start; 1887 of_alias_add(ap, np, id, start, len); 1888 } 1889 } 1890 1891 /** 1892 * of_alias_get_id - Get alias id for the given device_node 1893 * @np: Pointer to the given device_node 1894 * @stem: Alias stem of the given device_node 1895 * 1896 * The function travels the lookup table to get the alias id for the given 1897 * device_node and alias stem. 1898 * 1899 * Return: The alias id if found. 1900 */ 1901 int of_alias_get_id(const struct device_node *np, const char *stem) 1902 { 1903 struct alias_prop *app; 1904 int id = -ENODEV; 1905 1906 mutex_lock(&of_mutex); 1907 list_for_each_entry(app, &aliases_lookup, link) { 1908 if (strcmp(app->stem, stem) != 0) 1909 continue; 1910 1911 if (np == app->np) { 1912 id = app->id; 1913 break; 1914 } 1915 } 1916 mutex_unlock(&of_mutex); 1917 1918 return id; 1919 } 1920 EXPORT_SYMBOL_GPL(of_alias_get_id); 1921 1922 /** 1923 * of_alias_get_highest_id - Get highest alias id for the given stem 1924 * @stem: Alias stem to be examined 1925 * 1926 * The function travels the lookup table to get the highest alias id for the 1927 * given alias stem. It returns the alias id if found. 1928 */ 1929 int of_alias_get_highest_id(const char *stem) 1930 { 1931 struct alias_prop *app; 1932 int id = -ENODEV; 1933 1934 mutex_lock(&of_mutex); 1935 list_for_each_entry(app, &aliases_lookup, link) { 1936 if (strcmp(app->stem, stem) != 0) 1937 continue; 1938 1939 if (app->id > id) 1940 id = app->id; 1941 } 1942 mutex_unlock(&of_mutex); 1943 1944 return id; 1945 } 1946 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1947 1948 /** 1949 * of_console_check() - Test and setup console for DT setup 1950 * @dn: Pointer to device node 1951 * @name: Name to use for preferred console without index. ex. "ttyS" 1952 * @index: Index to use for preferred console. 1953 * 1954 * Check if the given device node matches the stdout-path property in the 1955 * /chosen node. If it does then register it as the preferred console. 1956 * 1957 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1958 */ 1959 bool of_console_check(const struct device_node *dn, char *name, int index) 1960 { 1961 if (!dn || dn != of_stdout || console_set_on_cmdline) 1962 return false; 1963 1964 /* 1965 * XXX: cast `options' to char pointer to suppress complication 1966 * warnings: printk, UART and console drivers expect char pointer. 1967 */ 1968 return !add_preferred_console(name, index, (char *)of_stdout_options); 1969 } 1970 EXPORT_SYMBOL_GPL(of_console_check); 1971 1972 /** 1973 * of_find_next_cache_node - Find a node's subsidiary cache 1974 * @np: node of type "cpu" or "cache" 1975 * 1976 * Return: A node pointer with refcount incremented, use 1977 * of_node_put() on it when done. Caller should hold a reference 1978 * to np. 1979 */ 1980 struct device_node *of_find_next_cache_node(const struct device_node *np) 1981 { 1982 struct device_node *child, *cache_node; 1983 1984 cache_node = of_parse_phandle(np, "l2-cache", 0); 1985 if (!cache_node) 1986 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1987 1988 if (cache_node) 1989 return cache_node; 1990 1991 /* OF on pmac has nodes instead of properties named "l2-cache" 1992 * beneath CPU nodes. 1993 */ 1994 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1995 for_each_child_of_node(np, child) 1996 if (of_node_is_type(child, "cache")) 1997 return child; 1998 1999 return NULL; 2000 } 2001 2002 /** 2003 * of_find_last_cache_level - Find the level at which the last cache is 2004 * present for the given logical cpu 2005 * 2006 * @cpu: cpu number(logical index) for which the last cache level is needed 2007 * 2008 * Return: The level at which the last cache is present. It is exactly 2009 * same as the total number of cache levels for the given logical cpu. 2010 */ 2011 int of_find_last_cache_level(unsigned int cpu) 2012 { 2013 u32 cache_level = 0; 2014 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2015 2016 while (np) { 2017 of_node_put(prev); 2018 prev = np; 2019 np = of_find_next_cache_node(np); 2020 } 2021 2022 of_property_read_u32(prev, "cache-level", &cache_level); 2023 of_node_put(prev); 2024 2025 return cache_level; 2026 } 2027 2028 /** 2029 * of_map_id - Translate an ID through a downstream mapping. 2030 * @np: root complex device node. 2031 * @id: device ID to map. 2032 * @map_name: property name of the map to use. 2033 * @map_mask_name: optional property name of the mask to use. 2034 * @target: optional pointer to a target device node. 2035 * @id_out: optional pointer to receive the translated ID. 2036 * 2037 * Given a device ID, look up the appropriate implementation-defined 2038 * platform ID and/or the target device which receives transactions on that 2039 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2040 * @id_out may be NULL if only the other is required. If @target points to 2041 * a non-NULL device node pointer, only entries targeting that node will be 2042 * matched; if it points to a NULL value, it will receive the device node of 2043 * the first matching target phandle, with a reference held. 2044 * 2045 * Return: 0 on success or a standard error code on failure. 2046 */ 2047 int of_map_id(const struct device_node *np, u32 id, 2048 const char *map_name, const char *map_mask_name, 2049 struct device_node **target, u32 *id_out) 2050 { 2051 u32 map_mask, masked_id; 2052 int map_len; 2053 const __be32 *map = NULL; 2054 2055 if (!np || !map_name || (!target && !id_out)) 2056 return -EINVAL; 2057 2058 map = of_get_property(np, map_name, &map_len); 2059 if (!map) { 2060 if (target) 2061 return -ENODEV; 2062 /* Otherwise, no map implies no translation */ 2063 *id_out = id; 2064 return 0; 2065 } 2066 2067 if (!map_len || map_len % (4 * sizeof(*map))) { 2068 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2069 map_name, map_len); 2070 return -EINVAL; 2071 } 2072 2073 /* The default is to select all bits. */ 2074 map_mask = 0xffffffff; 2075 2076 /* 2077 * Can be overridden by "{iommu,msi}-map-mask" property. 2078 * If of_property_read_u32() fails, the default is used. 2079 */ 2080 if (map_mask_name) 2081 of_property_read_u32(np, map_mask_name, &map_mask); 2082 2083 masked_id = map_mask & id; 2084 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2085 struct device_node *phandle_node; 2086 u32 id_base = be32_to_cpup(map + 0); 2087 u32 phandle = be32_to_cpup(map + 1); 2088 u32 out_base = be32_to_cpup(map + 2); 2089 u32 id_len = be32_to_cpup(map + 3); 2090 2091 if (id_base & ~map_mask) { 2092 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2093 np, map_name, map_name, 2094 map_mask, id_base); 2095 return -EFAULT; 2096 } 2097 2098 if (masked_id < id_base || masked_id >= id_base + id_len) 2099 continue; 2100 2101 phandle_node = of_find_node_by_phandle(phandle); 2102 if (!phandle_node) 2103 return -ENODEV; 2104 2105 if (target) { 2106 if (*target) 2107 of_node_put(phandle_node); 2108 else 2109 *target = phandle_node; 2110 2111 if (*target != phandle_node) 2112 continue; 2113 } 2114 2115 if (id_out) 2116 *id_out = masked_id - id_base + out_base; 2117 2118 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2119 np, map_name, map_mask, id_base, out_base, 2120 id_len, id, masked_id - id_base + out_base); 2121 return 0; 2122 } 2123 2124 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2125 id, target && *target ? *target : NULL); 2126 2127 /* Bypasses translation */ 2128 if (id_out) 2129 *id_out = id; 2130 return 0; 2131 } 2132 EXPORT_SYMBOL_GPL(of_map_id); 2133