xref: /linux/drivers/of/base.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \
91 	IS_ENABLED(CONFIG_SPARC) || \
92 	of_find_compatible_node(NULL, NULL, "coreboot") \
93 )
94 
95 int of_bus_n_addr_cells(struct device_node *np)
96 {
97 	u32 cells;
98 
99 	for (; np; np = np->parent) {
100 		if (!of_property_read_u32(np, "#address-cells", &cells))
101 			return cells;
102 		/*
103 		 * Default root value and walking parent nodes for "#address-cells"
104 		 * is deprecated. Any platforms which hit this warning should
105 		 * be added to the excluded list.
106 		 */
107 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
108 			  "Missing '#address-cells' in %pOF\n", np);
109 	}
110 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
111 }
112 
113 int of_n_addr_cells(struct device_node *np)
114 {
115 	if (np->parent)
116 		np = np->parent;
117 
118 	return of_bus_n_addr_cells(np);
119 }
120 EXPORT_SYMBOL(of_n_addr_cells);
121 
122 int of_bus_n_size_cells(struct device_node *np)
123 {
124 	u32 cells;
125 
126 	for (; np; np = np->parent) {
127 		if (!of_property_read_u32(np, "#size-cells", &cells))
128 			return cells;
129 		/*
130 		 * Default root value and walking parent nodes for "#size-cells"
131 		 * is deprecated. Any platforms which hit this warning should
132 		 * be added to the excluded list.
133 		 */
134 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
135 			  "Missing '#size-cells' in %pOF\n", np);
136 	}
137 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
138 }
139 
140 int of_n_size_cells(struct device_node *np)
141 {
142 	if (np->parent)
143 		np = np->parent;
144 
145 	return of_bus_n_size_cells(np);
146 }
147 EXPORT_SYMBOL(of_n_size_cells);
148 
149 #ifdef CONFIG_NUMA
150 int __weak of_node_to_nid(struct device_node *np)
151 {
152 	return NUMA_NO_NODE;
153 }
154 #endif
155 
156 #define OF_PHANDLE_CACHE_BITS	7
157 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
158 
159 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
160 
161 static u32 of_phandle_cache_hash(phandle handle)
162 {
163 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
164 }
165 
166 /*
167  * Caller must hold devtree_lock.
168  */
169 void __of_phandle_cache_inv_entry(phandle handle)
170 {
171 	u32 handle_hash;
172 	struct device_node *np;
173 
174 	if (!handle)
175 		return;
176 
177 	handle_hash = of_phandle_cache_hash(handle);
178 
179 	np = phandle_cache[handle_hash];
180 	if (np && handle == np->phandle)
181 		phandle_cache[handle_hash] = NULL;
182 }
183 
184 void __init of_core_init(void)
185 {
186 	struct device_node *np;
187 
188 	of_platform_register_reconfig_notifier();
189 
190 	/* Create the kset, and register existing nodes */
191 	mutex_lock(&of_mutex);
192 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
193 	if (!of_kset) {
194 		mutex_unlock(&of_mutex);
195 		pr_err("failed to register existing nodes\n");
196 		return;
197 	}
198 	for_each_of_allnodes(np) {
199 		__of_attach_node_sysfs(np);
200 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
201 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
202 	}
203 	mutex_unlock(&of_mutex);
204 
205 	/* Symlink in /proc as required by userspace ABI */
206 	if (of_root)
207 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
208 }
209 
210 static struct property *__of_find_property(const struct device_node *np,
211 					   const char *name, int *lenp)
212 {
213 	struct property *pp;
214 
215 	if (!np)
216 		return NULL;
217 
218 	for (pp = np->properties; pp; pp = pp->next) {
219 		if (of_prop_cmp(pp->name, name) == 0) {
220 			if (lenp)
221 				*lenp = pp->length;
222 			break;
223 		}
224 	}
225 
226 	return pp;
227 }
228 
229 struct property *of_find_property(const struct device_node *np,
230 				  const char *name,
231 				  int *lenp)
232 {
233 	struct property *pp;
234 	unsigned long flags;
235 
236 	raw_spin_lock_irqsave(&devtree_lock, flags);
237 	pp = __of_find_property(np, name, lenp);
238 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
239 
240 	return pp;
241 }
242 EXPORT_SYMBOL(of_find_property);
243 
244 struct device_node *__of_find_all_nodes(struct device_node *prev)
245 {
246 	struct device_node *np;
247 	if (!prev) {
248 		np = of_root;
249 	} else if (prev->child) {
250 		np = prev->child;
251 	} else {
252 		/* Walk back up looking for a sibling, or the end of the structure */
253 		np = prev;
254 		while (np->parent && !np->sibling)
255 			np = np->parent;
256 		np = np->sibling; /* Might be null at the end of the tree */
257 	}
258 	return np;
259 }
260 
261 /**
262  * of_find_all_nodes - Get next node in global list
263  * @prev:	Previous node or NULL to start iteration
264  *		of_node_put() will be called on it
265  *
266  * Return: A node pointer with refcount incremented, use
267  * of_node_put() on it when done.
268  */
269 struct device_node *of_find_all_nodes(struct device_node *prev)
270 {
271 	struct device_node *np;
272 	unsigned long flags;
273 
274 	raw_spin_lock_irqsave(&devtree_lock, flags);
275 	np = __of_find_all_nodes(prev);
276 	of_node_get(np);
277 	of_node_put(prev);
278 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
279 	return np;
280 }
281 EXPORT_SYMBOL(of_find_all_nodes);
282 
283 /*
284  * Find a property with a given name for a given node
285  * and return the value.
286  */
287 const void *__of_get_property(const struct device_node *np,
288 			      const char *name, int *lenp)
289 {
290 	const struct property *pp = __of_find_property(np, name, lenp);
291 
292 	return pp ? pp->value : NULL;
293 }
294 
295 /*
296  * Find a property with a given name for a given node
297  * and return the value.
298  */
299 const void *of_get_property(const struct device_node *np, const char *name,
300 			    int *lenp)
301 {
302 	const struct property *pp = of_find_property(np, name, lenp);
303 
304 	return pp ? pp->value : NULL;
305 }
306 EXPORT_SYMBOL(of_get_property);
307 
308 /**
309  * __of_device_is_compatible() - Check if the node matches given constraints
310  * @device: pointer to node
311  * @compat: required compatible string, NULL or "" for any match
312  * @type: required device_type value, NULL or "" for any match
313  * @name: required node name, NULL or "" for any match
314  *
315  * Checks if the given @compat, @type and @name strings match the
316  * properties of the given @device. A constraints can be skipped by
317  * passing NULL or an empty string as the constraint.
318  *
319  * Returns 0 for no match, and a positive integer on match. The return
320  * value is a relative score with larger values indicating better
321  * matches. The score is weighted for the most specific compatible value
322  * to get the highest score. Matching type is next, followed by matching
323  * name. Practically speaking, this results in the following priority
324  * order for matches:
325  *
326  * 1. specific compatible && type && name
327  * 2. specific compatible && type
328  * 3. specific compatible && name
329  * 4. specific compatible
330  * 5. general compatible && type && name
331  * 6. general compatible && type
332  * 7. general compatible && name
333  * 8. general compatible
334  * 9. type && name
335  * 10. type
336  * 11. name
337  */
338 static int __of_device_is_compatible(const struct device_node *device,
339 				     const char *compat, const char *type, const char *name)
340 {
341 	const struct property *prop;
342 	const char *cp;
343 	int index = 0, score = 0;
344 
345 	/* Compatible match has highest priority */
346 	if (compat && compat[0]) {
347 		prop = __of_find_property(device, "compatible", NULL);
348 		for (cp = of_prop_next_string(prop, NULL); cp;
349 		     cp = of_prop_next_string(prop, cp), index++) {
350 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
351 				score = INT_MAX/2 - (index << 2);
352 				break;
353 			}
354 		}
355 		if (!score)
356 			return 0;
357 	}
358 
359 	/* Matching type is better than matching name */
360 	if (type && type[0]) {
361 		if (!__of_node_is_type(device, type))
362 			return 0;
363 		score += 2;
364 	}
365 
366 	/* Matching name is a bit better than not */
367 	if (name && name[0]) {
368 		if (!of_node_name_eq(device, name))
369 			return 0;
370 		score++;
371 	}
372 
373 	return score;
374 }
375 
376 /** Checks if the given "compat" string matches one of the strings in
377  * the device's "compatible" property
378  */
379 int of_device_is_compatible(const struct device_node *device,
380 		const char *compat)
381 {
382 	unsigned long flags;
383 	int res;
384 
385 	raw_spin_lock_irqsave(&devtree_lock, flags);
386 	res = __of_device_is_compatible(device, compat, NULL, NULL);
387 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
388 	return res;
389 }
390 EXPORT_SYMBOL(of_device_is_compatible);
391 
392 /** Checks if the device is compatible with any of the entries in
393  *  a NULL terminated array of strings. Returns the best match
394  *  score or 0.
395  */
396 int of_device_compatible_match(const struct device_node *device,
397 			       const char *const *compat)
398 {
399 	unsigned int tmp, score = 0;
400 
401 	if (!compat)
402 		return 0;
403 
404 	while (*compat) {
405 		tmp = of_device_is_compatible(device, *compat);
406 		if (tmp > score)
407 			score = tmp;
408 		compat++;
409 	}
410 
411 	return score;
412 }
413 EXPORT_SYMBOL_GPL(of_device_compatible_match);
414 
415 /**
416  * of_machine_compatible_match - Test root of device tree against a compatible array
417  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
418  *
419  * Returns true if the root node has any of the given compatible values in its
420  * compatible property.
421  */
422 bool of_machine_compatible_match(const char *const *compats)
423 {
424 	struct device_node *root;
425 	int rc = 0;
426 
427 	root = of_find_node_by_path("/");
428 	if (root) {
429 		rc = of_device_compatible_match(root, compats);
430 		of_node_put(root);
431 	}
432 
433 	return rc != 0;
434 }
435 EXPORT_SYMBOL(of_machine_compatible_match);
436 
437 static bool __of_device_is_status(const struct device_node *device,
438 				  const char * const*strings)
439 {
440 	const char *status;
441 	int statlen;
442 
443 	if (!device)
444 		return false;
445 
446 	status = __of_get_property(device, "status", &statlen);
447 	if (status == NULL)
448 		return false;
449 
450 	if (statlen > 0) {
451 		while (*strings) {
452 			unsigned int len = strlen(*strings);
453 
454 			if ((*strings)[len - 1] == '-') {
455 				if (!strncmp(status, *strings, len))
456 					return true;
457 			} else {
458 				if (!strcmp(status, *strings))
459 					return true;
460 			}
461 			strings++;
462 		}
463 	}
464 
465 	return false;
466 }
467 
468 /**
469  *  __of_device_is_available - check if a device is available for use
470  *
471  *  @device: Node to check for availability, with locks already held
472  *
473  *  Return: True if the status property is absent or set to "okay" or "ok",
474  *  false otherwise
475  */
476 static bool __of_device_is_available(const struct device_node *device)
477 {
478 	static const char * const ok[] = {"okay", "ok", NULL};
479 
480 	if (!device)
481 		return false;
482 
483 	return !__of_get_property(device, "status", NULL) ||
484 		__of_device_is_status(device, ok);
485 }
486 
487 /**
488  *  __of_device_is_reserved - check if a device is reserved
489  *
490  *  @device: Node to check for availability, with locks already held
491  *
492  *  Return: True if the status property is set to "reserved", false otherwise
493  */
494 static bool __of_device_is_reserved(const struct device_node *device)
495 {
496 	static const char * const reserved[] = {"reserved", NULL};
497 
498 	return __of_device_is_status(device, reserved);
499 }
500 
501 /**
502  *  of_device_is_available - check if a device is available for use
503  *
504  *  @device: Node to check for availability
505  *
506  *  Return: True if the status property is absent or set to "okay" or "ok",
507  *  false otherwise
508  */
509 bool of_device_is_available(const struct device_node *device)
510 {
511 	unsigned long flags;
512 	bool res;
513 
514 	raw_spin_lock_irqsave(&devtree_lock, flags);
515 	res = __of_device_is_available(device);
516 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
517 	return res;
518 
519 }
520 EXPORT_SYMBOL(of_device_is_available);
521 
522 /**
523  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
524  *
525  *  @device: Node to check status for, with locks already held
526  *
527  *  Return: True if the status property is set to "fail" or "fail-..." (for any
528  *  error code suffix), false otherwise
529  */
530 static bool __of_device_is_fail(const struct device_node *device)
531 {
532 	static const char * const fail[] = {"fail", "fail-", NULL};
533 
534 	return __of_device_is_status(device, fail);
535 }
536 
537 /**
538  *  of_device_is_big_endian - check if a device has BE registers
539  *
540  *  @device: Node to check for endianness
541  *
542  *  Return: True if the device has a "big-endian" property, or if the kernel
543  *  was compiled for BE *and* the device has a "native-endian" property.
544  *  Returns false otherwise.
545  *
546  *  Callers would nominally use ioread32be/iowrite32be if
547  *  of_device_is_big_endian() == true, or readl/writel otherwise.
548  */
549 bool of_device_is_big_endian(const struct device_node *device)
550 {
551 	if (of_property_read_bool(device, "big-endian"))
552 		return true;
553 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
554 	    of_property_read_bool(device, "native-endian"))
555 		return true;
556 	return false;
557 }
558 EXPORT_SYMBOL(of_device_is_big_endian);
559 
560 /**
561  * of_get_parent - Get a node's parent if any
562  * @node:	Node to get parent
563  *
564  * Return: A node pointer with refcount incremented, use
565  * of_node_put() on it when done.
566  */
567 struct device_node *of_get_parent(const struct device_node *node)
568 {
569 	struct device_node *np;
570 	unsigned long flags;
571 
572 	if (!node)
573 		return NULL;
574 
575 	raw_spin_lock_irqsave(&devtree_lock, flags);
576 	np = of_node_get(node->parent);
577 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
578 	return np;
579 }
580 EXPORT_SYMBOL(of_get_parent);
581 
582 /**
583  * of_get_next_parent - Iterate to a node's parent
584  * @node:	Node to get parent of
585  *
586  * This is like of_get_parent() except that it drops the
587  * refcount on the passed node, making it suitable for iterating
588  * through a node's parents.
589  *
590  * Return: A node pointer with refcount incremented, use
591  * of_node_put() on it when done.
592  */
593 struct device_node *of_get_next_parent(struct device_node *node)
594 {
595 	struct device_node *parent;
596 	unsigned long flags;
597 
598 	if (!node)
599 		return NULL;
600 
601 	raw_spin_lock_irqsave(&devtree_lock, flags);
602 	parent = of_node_get(node->parent);
603 	of_node_put(node);
604 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
605 	return parent;
606 }
607 EXPORT_SYMBOL(of_get_next_parent);
608 
609 static struct device_node *__of_get_next_child(const struct device_node *node,
610 						struct device_node *prev)
611 {
612 	struct device_node *next;
613 
614 	if (!node)
615 		return NULL;
616 
617 	next = prev ? prev->sibling : node->child;
618 	of_node_get(next);
619 	of_node_put(prev);
620 	return next;
621 }
622 #define __for_each_child_of_node(parent, child) \
623 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
624 	     child = __of_get_next_child(parent, child))
625 
626 /**
627  * of_get_next_child - Iterate a node childs
628  * @node:	parent node
629  * @prev:	previous child of the parent node, or NULL to get first
630  *
631  * Return: A node pointer with refcount incremented, use of_node_put() on
632  * it when done. Returns NULL when prev is the last child. Decrements the
633  * refcount of prev.
634  */
635 struct device_node *of_get_next_child(const struct device_node *node,
636 	struct device_node *prev)
637 {
638 	struct device_node *next;
639 	unsigned long flags;
640 
641 	raw_spin_lock_irqsave(&devtree_lock, flags);
642 	next = __of_get_next_child(node, prev);
643 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 	return next;
645 }
646 EXPORT_SYMBOL(of_get_next_child);
647 
648 /**
649  * of_get_next_child_with_prefix - Find the next child node with prefix
650  * @node:	parent node
651  * @prev:	previous child of the parent node, or NULL to get first
652  * @prefix:	prefix that the node name should have
653  *
654  * This function is like of_get_next_child(), except that it automatically
655  * skips any nodes whose name doesn't have the given prefix.
656  *
657  * Return: A node pointer with refcount incremented, use
658  * of_node_put() on it when done.
659  */
660 struct device_node *of_get_next_child_with_prefix(const struct device_node *node,
661 						  struct device_node *prev,
662 						  const char *prefix)
663 {
664 	struct device_node *next;
665 	unsigned long flags;
666 
667 	if (!node)
668 		return NULL;
669 
670 	raw_spin_lock_irqsave(&devtree_lock, flags);
671 	next = prev ? prev->sibling : node->child;
672 	for (; next; next = next->sibling) {
673 		if (!of_node_name_prefix(next, prefix))
674 			continue;
675 		if (of_node_get(next))
676 			break;
677 	}
678 	of_node_put(prev);
679 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
680 	return next;
681 }
682 EXPORT_SYMBOL(of_get_next_child_with_prefix);
683 
684 static struct device_node *of_get_next_status_child(const struct device_node *node,
685 						    struct device_node *prev,
686 						    bool (*checker)(const struct device_node *))
687 {
688 	struct device_node *next;
689 	unsigned long flags;
690 
691 	if (!node)
692 		return NULL;
693 
694 	raw_spin_lock_irqsave(&devtree_lock, flags);
695 	next = prev ? prev->sibling : node->child;
696 	for (; next; next = next->sibling) {
697 		if (!checker(next))
698 			continue;
699 		if (of_node_get(next))
700 			break;
701 	}
702 	of_node_put(prev);
703 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
704 	return next;
705 }
706 
707 /**
708  * of_get_next_available_child - Find the next available child node
709  * @node:	parent node
710  * @prev:	previous child of the parent node, or NULL to get first
711  *
712  * This function is like of_get_next_child(), except that it
713  * automatically skips any disabled nodes (i.e. status = "disabled").
714  */
715 struct device_node *of_get_next_available_child(const struct device_node *node,
716 	struct device_node *prev)
717 {
718 	return of_get_next_status_child(node, prev, __of_device_is_available);
719 }
720 EXPORT_SYMBOL(of_get_next_available_child);
721 
722 /**
723  * of_get_next_reserved_child - Find the next reserved child node
724  * @node:	parent node
725  * @prev:	previous child of the parent node, or NULL to get first
726  *
727  * This function is like of_get_next_child(), except that it
728  * automatically skips any disabled nodes (i.e. status = "disabled").
729  */
730 struct device_node *of_get_next_reserved_child(const struct device_node *node,
731 						struct device_node *prev)
732 {
733 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
734 }
735 EXPORT_SYMBOL(of_get_next_reserved_child);
736 
737 /**
738  * of_get_next_cpu_node - Iterate on cpu nodes
739  * @prev:	previous child of the /cpus node, or NULL to get first
740  *
741  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
742  * will be skipped.
743  *
744  * Return: A cpu node pointer with refcount incremented, use of_node_put()
745  * on it when done. Returns NULL when prev is the last child. Decrements
746  * the refcount of prev.
747  */
748 struct device_node *of_get_next_cpu_node(struct device_node *prev)
749 {
750 	struct device_node *next = NULL;
751 	unsigned long flags;
752 	struct device_node *node;
753 
754 	if (!prev)
755 		node = of_find_node_by_path("/cpus");
756 
757 	raw_spin_lock_irqsave(&devtree_lock, flags);
758 	if (prev)
759 		next = prev->sibling;
760 	else if (node) {
761 		next = node->child;
762 		of_node_put(node);
763 	}
764 	for (; next; next = next->sibling) {
765 		if (__of_device_is_fail(next))
766 			continue;
767 		if (!(of_node_name_eq(next, "cpu") ||
768 		      __of_node_is_type(next, "cpu")))
769 			continue;
770 		if (of_node_get(next))
771 			break;
772 	}
773 	of_node_put(prev);
774 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
775 	return next;
776 }
777 EXPORT_SYMBOL(of_get_next_cpu_node);
778 
779 /**
780  * of_get_compatible_child - Find compatible child node
781  * @parent:	parent node
782  * @compatible:	compatible string
783  *
784  * Lookup child node whose compatible property contains the given compatible
785  * string.
786  *
787  * Return: a node pointer with refcount incremented, use of_node_put() on it
788  * when done; or NULL if not found.
789  */
790 struct device_node *of_get_compatible_child(const struct device_node *parent,
791 				const char *compatible)
792 {
793 	struct device_node *child;
794 
795 	for_each_child_of_node(parent, child) {
796 		if (of_device_is_compatible(child, compatible))
797 			break;
798 	}
799 
800 	return child;
801 }
802 EXPORT_SYMBOL(of_get_compatible_child);
803 
804 /**
805  * of_get_child_by_name - Find the child node by name for a given parent
806  * @node:	parent node
807  * @name:	child name to look for.
808  *
809  * This function looks for child node for given matching name
810  *
811  * Return: A node pointer if found, with refcount incremented, use
812  * of_node_put() on it when done.
813  * Returns NULL if node is not found.
814  */
815 struct device_node *of_get_child_by_name(const struct device_node *node,
816 				const char *name)
817 {
818 	struct device_node *child;
819 
820 	for_each_child_of_node(node, child)
821 		if (of_node_name_eq(child, name))
822 			break;
823 	return child;
824 }
825 EXPORT_SYMBOL(of_get_child_by_name);
826 
827 struct device_node *__of_find_node_by_path(const struct device_node *parent,
828 						const char *path)
829 {
830 	struct device_node *child;
831 	int len;
832 
833 	len = strcspn(path, "/:");
834 	if (!len)
835 		return NULL;
836 
837 	__for_each_child_of_node(parent, child) {
838 		const char *name = kbasename(child->full_name);
839 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
840 			return child;
841 	}
842 	return NULL;
843 }
844 
845 struct device_node *__of_find_node_by_full_path(struct device_node *node,
846 						const char *path)
847 {
848 	const char *separator = strchr(path, ':');
849 
850 	while (node && *path == '/') {
851 		struct device_node *tmp = node;
852 
853 		path++; /* Increment past '/' delimiter */
854 		node = __of_find_node_by_path(node, path);
855 		of_node_put(tmp);
856 		path = strchrnul(path, '/');
857 		if (separator && separator < path)
858 			break;
859 	}
860 	return node;
861 }
862 
863 /**
864  * of_find_node_opts_by_path - Find a node matching a full OF path
865  * @path: Either the full path to match, or if the path does not
866  *       start with '/', the name of a property of the /aliases
867  *       node (an alias).  In the case of an alias, the node
868  *       matching the alias' value will be returned.
869  * @opts: Address of a pointer into which to store the start of
870  *       an options string appended to the end of the path with
871  *       a ':' separator.
872  *
873  * Valid paths:
874  *  * /foo/bar	Full path
875  *  * foo	Valid alias
876  *  * foo/bar	Valid alias + relative path
877  *
878  * Return: A node pointer with refcount incremented, use
879  * of_node_put() on it when done.
880  */
881 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
882 {
883 	struct device_node *np = NULL;
884 	const struct property *pp;
885 	unsigned long flags;
886 	const char *separator = strchr(path, ':');
887 
888 	if (opts)
889 		*opts = separator ? separator + 1 : NULL;
890 
891 	if (strcmp(path, "/") == 0)
892 		return of_node_get(of_root);
893 
894 	/* The path could begin with an alias */
895 	if (*path != '/') {
896 		int len;
897 		const char *p = separator;
898 
899 		if (!p)
900 			p = strchrnul(path, '/');
901 		len = p - path;
902 
903 		/* of_aliases must not be NULL */
904 		if (!of_aliases)
905 			return NULL;
906 
907 		for_each_property_of_node(of_aliases, pp) {
908 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
909 				np = of_find_node_by_path(pp->value);
910 				break;
911 			}
912 		}
913 		if (!np)
914 			return NULL;
915 		path = p;
916 	}
917 
918 	/* Step down the tree matching path components */
919 	raw_spin_lock_irqsave(&devtree_lock, flags);
920 	if (!np)
921 		np = of_node_get(of_root);
922 	np = __of_find_node_by_full_path(np, path);
923 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
924 	return np;
925 }
926 EXPORT_SYMBOL(of_find_node_opts_by_path);
927 
928 /**
929  * of_find_node_by_name - Find a node by its "name" property
930  * @from:	The node to start searching from or NULL; the node
931  *		you pass will not be searched, only the next one
932  *		will. Typically, you pass what the previous call
933  *		returned. of_node_put() will be called on @from.
934  * @name:	The name string to match against
935  *
936  * Return: A node pointer with refcount incremented, use
937  * of_node_put() on it when done.
938  */
939 struct device_node *of_find_node_by_name(struct device_node *from,
940 	const char *name)
941 {
942 	struct device_node *np;
943 	unsigned long flags;
944 
945 	raw_spin_lock_irqsave(&devtree_lock, flags);
946 	for_each_of_allnodes_from(from, np)
947 		if (of_node_name_eq(np, name) && of_node_get(np))
948 			break;
949 	of_node_put(from);
950 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
951 	return np;
952 }
953 EXPORT_SYMBOL(of_find_node_by_name);
954 
955 /**
956  * of_find_node_by_type - Find a node by its "device_type" property
957  * @from:	The node to start searching from, or NULL to start searching
958  *		the entire device tree. The node you pass will not be
959  *		searched, only the next one will; typically, you pass
960  *		what the previous call returned. of_node_put() will be
961  *		called on from for you.
962  * @type:	The type string to match against
963  *
964  * Return: A node pointer with refcount incremented, use
965  * of_node_put() on it when done.
966  */
967 struct device_node *of_find_node_by_type(struct device_node *from,
968 	const char *type)
969 {
970 	struct device_node *np;
971 	unsigned long flags;
972 
973 	raw_spin_lock_irqsave(&devtree_lock, flags);
974 	for_each_of_allnodes_from(from, np)
975 		if (__of_node_is_type(np, type) && of_node_get(np))
976 			break;
977 	of_node_put(from);
978 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
979 	return np;
980 }
981 EXPORT_SYMBOL(of_find_node_by_type);
982 
983 /**
984  * of_find_compatible_node - Find a node based on type and one of the
985  *                                tokens in its "compatible" property
986  * @from:	The node to start searching from or NULL, the node
987  *		you pass will not be searched, only the next one
988  *		will; typically, you pass what the previous call
989  *		returned. of_node_put() will be called on it
990  * @type:	The type string to match "device_type" or NULL to ignore
991  * @compatible:	The string to match to one of the tokens in the device
992  *		"compatible" list.
993  *
994  * Return: A node pointer with refcount incremented, use
995  * of_node_put() on it when done.
996  */
997 struct device_node *of_find_compatible_node(struct device_node *from,
998 	const char *type, const char *compatible)
999 {
1000 	struct device_node *np;
1001 	unsigned long flags;
1002 
1003 	raw_spin_lock_irqsave(&devtree_lock, flags);
1004 	for_each_of_allnodes_from(from, np)
1005 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1006 		    of_node_get(np))
1007 			break;
1008 	of_node_put(from);
1009 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1010 	return np;
1011 }
1012 EXPORT_SYMBOL(of_find_compatible_node);
1013 
1014 /**
1015  * of_find_node_with_property - Find a node which has a property with
1016  *                              the given name.
1017  * @from:	The node to start searching from or NULL, the node
1018  *		you pass will not be searched, only the next one
1019  *		will; typically, you pass what the previous call
1020  *		returned. of_node_put() will be called on it
1021  * @prop_name:	The name of the property to look for.
1022  *
1023  * Return: A node pointer with refcount incremented, use
1024  * of_node_put() on it when done.
1025  */
1026 struct device_node *of_find_node_with_property(struct device_node *from,
1027 	const char *prop_name)
1028 {
1029 	struct device_node *np;
1030 	const struct property *pp;
1031 	unsigned long flags;
1032 
1033 	raw_spin_lock_irqsave(&devtree_lock, flags);
1034 	for_each_of_allnodes_from(from, np) {
1035 		for (pp = np->properties; pp; pp = pp->next) {
1036 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1037 				of_node_get(np);
1038 				goto out;
1039 			}
1040 		}
1041 	}
1042 out:
1043 	of_node_put(from);
1044 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1045 	return np;
1046 }
1047 EXPORT_SYMBOL(of_find_node_with_property);
1048 
1049 static
1050 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1051 					   const struct device_node *node)
1052 {
1053 	const struct of_device_id *best_match = NULL;
1054 	int score, best_score = 0;
1055 
1056 	if (!matches)
1057 		return NULL;
1058 
1059 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1060 		score = __of_device_is_compatible(node, matches->compatible,
1061 						  matches->type, matches->name);
1062 		if (score > best_score) {
1063 			best_match = matches;
1064 			best_score = score;
1065 		}
1066 	}
1067 
1068 	return best_match;
1069 }
1070 
1071 /**
1072  * of_match_node - Tell if a device_node has a matching of_match structure
1073  * @matches:	array of of device match structures to search in
1074  * @node:	the of device structure to match against
1075  *
1076  * Low level utility function used by device matching.
1077  */
1078 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1079 					 const struct device_node *node)
1080 {
1081 	const struct of_device_id *match;
1082 	unsigned long flags;
1083 
1084 	raw_spin_lock_irqsave(&devtree_lock, flags);
1085 	match = __of_match_node(matches, node);
1086 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1087 	return match;
1088 }
1089 EXPORT_SYMBOL(of_match_node);
1090 
1091 /**
1092  * of_find_matching_node_and_match - Find a node based on an of_device_id
1093  *				     match table.
1094  * @from:	The node to start searching from or NULL, the node
1095  *		you pass will not be searched, only the next one
1096  *		will; typically, you pass what the previous call
1097  *		returned. of_node_put() will be called on it
1098  * @matches:	array of of device match structures to search in
1099  * @match:	Updated to point at the matches entry which matched
1100  *
1101  * Return: A node pointer with refcount incremented, use
1102  * of_node_put() on it when done.
1103  */
1104 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1105 					const struct of_device_id *matches,
1106 					const struct of_device_id **match)
1107 {
1108 	struct device_node *np;
1109 	const struct of_device_id *m;
1110 	unsigned long flags;
1111 
1112 	if (match)
1113 		*match = NULL;
1114 
1115 	raw_spin_lock_irqsave(&devtree_lock, flags);
1116 	for_each_of_allnodes_from(from, np) {
1117 		m = __of_match_node(matches, np);
1118 		if (m && of_node_get(np)) {
1119 			if (match)
1120 				*match = m;
1121 			break;
1122 		}
1123 	}
1124 	of_node_put(from);
1125 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1126 	return np;
1127 }
1128 EXPORT_SYMBOL(of_find_matching_node_and_match);
1129 
1130 /**
1131  * of_alias_from_compatible - Lookup appropriate alias for a device node
1132  *			      depending on compatible
1133  * @node:	pointer to a device tree node
1134  * @alias:	Pointer to buffer that alias value will be copied into
1135  * @len:	Length of alias value
1136  *
1137  * Based on the value of the compatible property, this routine will attempt
1138  * to choose an appropriate alias value for a particular device tree node.
1139  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1140  * from the first entry in the compatible list property.
1141  *
1142  * Note: The matching on just the "product" side of the compatible is a relic
1143  * from I2C and SPI. Please do not add any new user.
1144  *
1145  * Return: This routine returns 0 on success, <0 on failure.
1146  */
1147 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1148 {
1149 	const char *compatible, *p;
1150 	int cplen;
1151 
1152 	compatible = of_get_property(node, "compatible", &cplen);
1153 	if (!compatible || strlen(compatible) > cplen)
1154 		return -ENODEV;
1155 	p = strchr(compatible, ',');
1156 	strscpy(alias, p ? p + 1 : compatible, len);
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1160 
1161 /**
1162  * of_find_node_by_phandle - Find a node given a phandle
1163  * @handle:	phandle of the node to find
1164  *
1165  * Return: A node pointer with refcount incremented, use
1166  * of_node_put() on it when done.
1167  */
1168 struct device_node *of_find_node_by_phandle(phandle handle)
1169 {
1170 	struct device_node *np = NULL;
1171 	unsigned long flags;
1172 	u32 handle_hash;
1173 
1174 	if (!handle)
1175 		return NULL;
1176 
1177 	handle_hash = of_phandle_cache_hash(handle);
1178 
1179 	raw_spin_lock_irqsave(&devtree_lock, flags);
1180 
1181 	if (phandle_cache[handle_hash] &&
1182 	    handle == phandle_cache[handle_hash]->phandle)
1183 		np = phandle_cache[handle_hash];
1184 
1185 	if (!np) {
1186 		for_each_of_allnodes(np)
1187 			if (np->phandle == handle &&
1188 			    !of_node_check_flag(np, OF_DETACHED)) {
1189 				phandle_cache[handle_hash] = np;
1190 				break;
1191 			}
1192 	}
1193 
1194 	of_node_get(np);
1195 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1196 	return np;
1197 }
1198 EXPORT_SYMBOL(of_find_node_by_phandle);
1199 
1200 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1201 {
1202 	int i;
1203 	printk("%s %pOF", msg, args->np);
1204 	for (i = 0; i < args->args_count; i++) {
1205 		const char delim = i ? ',' : ':';
1206 
1207 		pr_cont("%c%08x", delim, args->args[i]);
1208 	}
1209 	pr_cont("\n");
1210 }
1211 
1212 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1213 		const struct device_node *np,
1214 		const char *list_name,
1215 		const char *cells_name,
1216 		int cell_count)
1217 {
1218 	const __be32 *list;
1219 	int size;
1220 
1221 	memset(it, 0, sizeof(*it));
1222 
1223 	/*
1224 	 * one of cell_count or cells_name must be provided to determine the
1225 	 * argument length.
1226 	 */
1227 	if (cell_count < 0 && !cells_name)
1228 		return -EINVAL;
1229 
1230 	list = of_get_property(np, list_name, &size);
1231 	if (!list)
1232 		return -ENOENT;
1233 
1234 	it->cells_name = cells_name;
1235 	it->cell_count = cell_count;
1236 	it->parent = np;
1237 	it->list_end = list + size / sizeof(*list);
1238 	it->phandle_end = list;
1239 	it->cur = list;
1240 
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1244 
1245 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1246 {
1247 	uint32_t count = 0;
1248 
1249 	if (it->node) {
1250 		of_node_put(it->node);
1251 		it->node = NULL;
1252 	}
1253 
1254 	if (!it->cur || it->phandle_end >= it->list_end)
1255 		return -ENOENT;
1256 
1257 	it->cur = it->phandle_end;
1258 
1259 	/* If phandle is 0, then it is an empty entry with no arguments. */
1260 	it->phandle = be32_to_cpup(it->cur++);
1261 
1262 	if (it->phandle) {
1263 
1264 		/*
1265 		 * Find the provider node and parse the #*-cells property to
1266 		 * determine the argument length.
1267 		 */
1268 		it->node = of_find_node_by_phandle(it->phandle);
1269 
1270 		if (it->cells_name) {
1271 			if (!it->node) {
1272 				pr_err("%pOF: could not find phandle %d\n",
1273 				       it->parent, it->phandle);
1274 				goto err;
1275 			}
1276 
1277 			if (of_property_read_u32(it->node, it->cells_name,
1278 						 &count)) {
1279 				/*
1280 				 * If both cell_count and cells_name is given,
1281 				 * fall back to cell_count in absence
1282 				 * of the cells_name property
1283 				 */
1284 				if (it->cell_count >= 0) {
1285 					count = it->cell_count;
1286 				} else {
1287 					pr_err("%pOF: could not get %s for %pOF\n",
1288 					       it->parent,
1289 					       it->cells_name,
1290 					       it->node);
1291 					goto err;
1292 				}
1293 			}
1294 		} else {
1295 			count = it->cell_count;
1296 		}
1297 
1298 		/*
1299 		 * Make sure that the arguments actually fit in the remaining
1300 		 * property data length
1301 		 */
1302 		if (it->cur + count > it->list_end) {
1303 			if (it->cells_name)
1304 				pr_err("%pOF: %s = %d found %td\n",
1305 					it->parent, it->cells_name,
1306 					count, it->list_end - it->cur);
1307 			else
1308 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1309 					it->parent, of_node_full_name(it->node),
1310 					count, it->list_end - it->cur);
1311 			goto err;
1312 		}
1313 	}
1314 
1315 	it->phandle_end = it->cur + count;
1316 	it->cur_count = count;
1317 
1318 	return 0;
1319 
1320 err:
1321 	if (it->node) {
1322 		of_node_put(it->node);
1323 		it->node = NULL;
1324 	}
1325 
1326 	return -EINVAL;
1327 }
1328 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1329 
1330 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1331 			     uint32_t *args,
1332 			     int size)
1333 {
1334 	int i, count;
1335 
1336 	count = it->cur_count;
1337 
1338 	if (WARN_ON(size < count))
1339 		count = size;
1340 
1341 	for (i = 0; i < count; i++)
1342 		args[i] = be32_to_cpup(it->cur++);
1343 
1344 	return count;
1345 }
1346 
1347 int __of_parse_phandle_with_args(const struct device_node *np,
1348 				 const char *list_name,
1349 				 const char *cells_name,
1350 				 int cell_count, int index,
1351 				 struct of_phandle_args *out_args)
1352 {
1353 	struct of_phandle_iterator it;
1354 	int rc, cur_index = 0;
1355 
1356 	if (index < 0)
1357 		return -EINVAL;
1358 
1359 	/* Loop over the phandles until all the requested entry is found */
1360 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1361 		/*
1362 		 * All of the error cases bail out of the loop, so at
1363 		 * this point, the parsing is successful. If the requested
1364 		 * index matches, then fill the out_args structure and return,
1365 		 * or return -ENOENT for an empty entry.
1366 		 */
1367 		rc = -ENOENT;
1368 		if (cur_index == index) {
1369 			if (!it.phandle)
1370 				goto err;
1371 
1372 			if (out_args) {
1373 				int c;
1374 
1375 				c = of_phandle_iterator_args(&it,
1376 							     out_args->args,
1377 							     MAX_PHANDLE_ARGS);
1378 				out_args->np = it.node;
1379 				out_args->args_count = c;
1380 			} else {
1381 				of_node_put(it.node);
1382 			}
1383 
1384 			/* Found it! return success */
1385 			return 0;
1386 		}
1387 
1388 		cur_index++;
1389 	}
1390 
1391 	/*
1392 	 * Unlock node before returning result; will be one of:
1393 	 * -ENOENT : index is for empty phandle
1394 	 * -EINVAL : parsing error on data
1395 	 */
1396 
1397  err:
1398 	of_node_put(it.node);
1399 	return rc;
1400 }
1401 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1402 
1403 /**
1404  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1405  * @np:		pointer to a device tree node containing a list
1406  * @list_name:	property name that contains a list
1407  * @stem_name:	stem of property names that specify phandles' arguments count
1408  * @index:	index of a phandle to parse out
1409  * @out_args:	optional pointer to output arguments structure (will be filled)
1410  *
1411  * This function is useful to parse lists of phandles and their arguments.
1412  * Returns 0 on success and fills out_args, on error returns appropriate errno
1413  * value. The difference between this function and of_parse_phandle_with_args()
1414  * is that this API remaps a phandle if the node the phandle points to has
1415  * a <@stem_name>-map property.
1416  *
1417  * Caller is responsible to call of_node_put() on the returned out_args->np
1418  * pointer.
1419  *
1420  * Example::
1421  *
1422  *  phandle1: node1 {
1423  *  	#list-cells = <2>;
1424  *  };
1425  *
1426  *  phandle2: node2 {
1427  *  	#list-cells = <1>;
1428  *  };
1429  *
1430  *  phandle3: node3 {
1431  *  	#list-cells = <1>;
1432  *  	list-map = <0 &phandle2 3>,
1433  *  		   <1 &phandle2 2>,
1434  *  		   <2 &phandle1 5 1>;
1435  *  	list-map-mask = <0x3>;
1436  *  };
1437  *
1438  *  node4 {
1439  *  	list = <&phandle1 1 2 &phandle3 0>;
1440  *  };
1441  *
1442  * To get a device_node of the ``node2`` node you may call this:
1443  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1444  */
1445 int of_parse_phandle_with_args_map(const struct device_node *np,
1446 				   const char *list_name,
1447 				   const char *stem_name,
1448 				   int index, struct of_phandle_args *out_args)
1449 {
1450 	char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1451 	char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1452 	char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1453 	char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1454 	struct device_node *cur, *new = NULL;
1455 	const __be32 *map, *mask, *pass;
1456 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1457 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1458 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1459 	const __be32 *match_array = initial_match_array;
1460 	int i, ret, map_len, match;
1461 	u32 list_size, new_size;
1462 
1463 	if (index < 0)
1464 		return -EINVAL;
1465 
1466 	if (!cells_name || !map_name || !mask_name || !pass_name)
1467 		return -ENOMEM;
1468 
1469 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1470 					   out_args);
1471 	if (ret)
1472 		return ret;
1473 
1474 	/* Get the #<list>-cells property */
1475 	cur = out_args->np;
1476 	ret = of_property_read_u32(cur, cells_name, &list_size);
1477 	if (ret < 0)
1478 		goto put;
1479 
1480 	/* Precalculate the match array - this simplifies match loop */
1481 	for (i = 0; i < list_size; i++)
1482 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1483 
1484 	ret = -EINVAL;
1485 	while (cur) {
1486 		/* Get the <list>-map property */
1487 		map = of_get_property(cur, map_name, &map_len);
1488 		if (!map) {
1489 			return 0;
1490 		}
1491 		map_len /= sizeof(u32);
1492 
1493 		/* Get the <list>-map-mask property (optional) */
1494 		mask = of_get_property(cur, mask_name, NULL);
1495 		if (!mask)
1496 			mask = dummy_mask;
1497 		/* Iterate through <list>-map property */
1498 		match = 0;
1499 		while (map_len > (list_size + 1) && !match) {
1500 			/* Compare specifiers */
1501 			match = 1;
1502 			for (i = 0; i < list_size; i++, map_len--)
1503 				match &= !((match_array[i] ^ *map++) & mask[i]);
1504 
1505 			of_node_put(new);
1506 			new = of_find_node_by_phandle(be32_to_cpup(map));
1507 			map++;
1508 			map_len--;
1509 
1510 			/* Check if not found */
1511 			if (!new) {
1512 				ret = -EINVAL;
1513 				goto put;
1514 			}
1515 
1516 			if (!of_device_is_available(new))
1517 				match = 0;
1518 
1519 			ret = of_property_read_u32(new, cells_name, &new_size);
1520 			if (ret)
1521 				goto put;
1522 
1523 			/* Check for malformed properties */
1524 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS) ||
1525 			    map_len < new_size) {
1526 				ret = -EINVAL;
1527 				goto put;
1528 			}
1529 
1530 			/* Move forward by new node's #<list>-cells amount */
1531 			map += new_size;
1532 			map_len -= new_size;
1533 		}
1534 		if (!match) {
1535 			ret = -ENOENT;
1536 			goto put;
1537 		}
1538 
1539 		/* Get the <list>-map-pass-thru property (optional) */
1540 		pass = of_get_property(cur, pass_name, NULL);
1541 		if (!pass)
1542 			pass = dummy_pass;
1543 
1544 		/*
1545 		 * Successfully parsed a <list>-map translation; copy new
1546 		 * specifier into the out_args structure, keeping the
1547 		 * bits specified in <list>-map-pass-thru.
1548 		 */
1549 		match_array = map - new_size;
1550 		for (i = 0; i < new_size; i++) {
1551 			__be32 val = *(map - new_size + i);
1552 
1553 			if (i < list_size) {
1554 				val &= ~pass[i];
1555 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1556 			}
1557 
1558 			out_args->args[i] = be32_to_cpu(val);
1559 		}
1560 		out_args->args_count = list_size = new_size;
1561 		/* Iterate again with new provider */
1562 		out_args->np = new;
1563 		of_node_put(cur);
1564 		cur = new;
1565 		new = NULL;
1566 	}
1567 put:
1568 	of_node_put(cur);
1569 	of_node_put(new);
1570 	return ret;
1571 }
1572 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1573 
1574 /**
1575  * of_count_phandle_with_args() - Find the number of phandles references in a property
1576  * @np:		pointer to a device tree node containing a list
1577  * @list_name:	property name that contains a list
1578  * @cells_name:	property name that specifies phandles' arguments count
1579  *
1580  * Return: The number of phandle + argument tuples within a property. It
1581  * is a typical pattern to encode a list of phandle and variable
1582  * arguments into a single property. The number of arguments is encoded
1583  * by a property in the phandle-target node. For example, a gpios
1584  * property would contain a list of GPIO specifies consisting of a
1585  * phandle and 1 or more arguments. The number of arguments are
1586  * determined by the #gpio-cells property in the node pointed to by the
1587  * phandle.
1588  */
1589 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1590 				const char *cells_name)
1591 {
1592 	struct of_phandle_iterator it;
1593 	int rc, cur_index = 0;
1594 
1595 	/*
1596 	 * If cells_name is NULL we assume a cell count of 0. This makes
1597 	 * counting the phandles trivial as each 32bit word in the list is a
1598 	 * phandle and no arguments are to consider. So we don't iterate through
1599 	 * the list but just use the length to determine the phandle count.
1600 	 */
1601 	if (!cells_name) {
1602 		const __be32 *list;
1603 		int size;
1604 
1605 		list = of_get_property(np, list_name, &size);
1606 		if (!list)
1607 			return -ENOENT;
1608 
1609 		return size / sizeof(*list);
1610 	}
1611 
1612 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1613 	if (rc)
1614 		return rc;
1615 
1616 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1617 		cur_index += 1;
1618 
1619 	if (rc != -ENOENT)
1620 		return rc;
1621 
1622 	return cur_index;
1623 }
1624 EXPORT_SYMBOL(of_count_phandle_with_args);
1625 
1626 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1627 {
1628 	struct property **next;
1629 
1630 	for (next = list; *next; next = &(*next)->next) {
1631 		if (*next == prop) {
1632 			*next = prop->next;
1633 			prop->next = NULL;
1634 			return prop;
1635 		}
1636 	}
1637 	return NULL;
1638 }
1639 
1640 /**
1641  * __of_add_property - Add a property to a node without lock operations
1642  * @np:		Caller's Device Node
1643  * @prop:	Property to add
1644  */
1645 int __of_add_property(struct device_node *np, struct property *prop)
1646 {
1647 	int rc = 0;
1648 	unsigned long flags;
1649 	struct property **next;
1650 
1651 	raw_spin_lock_irqsave(&devtree_lock, flags);
1652 
1653 	__of_remove_property_from_list(&np->deadprops, prop);
1654 
1655 	prop->next = NULL;
1656 	next = &np->properties;
1657 	while (*next) {
1658 		if (strcmp(prop->name, (*next)->name) == 0) {
1659 			/* duplicate ! don't insert it */
1660 			rc = -EEXIST;
1661 			goto out_unlock;
1662 		}
1663 		next = &(*next)->next;
1664 	}
1665 	*next = prop;
1666 
1667 out_unlock:
1668 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1669 	if (rc)
1670 		return rc;
1671 
1672 	__of_add_property_sysfs(np, prop);
1673 	return 0;
1674 }
1675 
1676 /**
1677  * of_add_property - Add a property to a node
1678  * @np:		Caller's Device Node
1679  * @prop:	Property to add
1680  */
1681 int of_add_property(struct device_node *np, struct property *prop)
1682 {
1683 	int rc;
1684 
1685 	mutex_lock(&of_mutex);
1686 	rc = __of_add_property(np, prop);
1687 	mutex_unlock(&of_mutex);
1688 
1689 	if (!rc)
1690 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1691 
1692 	return rc;
1693 }
1694 EXPORT_SYMBOL_GPL(of_add_property);
1695 
1696 int __of_remove_property(struct device_node *np, struct property *prop)
1697 {
1698 	unsigned long flags;
1699 	int rc = -ENODEV;
1700 
1701 	raw_spin_lock_irqsave(&devtree_lock, flags);
1702 
1703 	if (__of_remove_property_from_list(&np->properties, prop)) {
1704 		/* Found the property, add it to deadprops list */
1705 		prop->next = np->deadprops;
1706 		np->deadprops = prop;
1707 		rc = 0;
1708 	}
1709 
1710 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1711 	if (rc)
1712 		return rc;
1713 
1714 	__of_remove_property_sysfs(np, prop);
1715 	return 0;
1716 }
1717 
1718 /**
1719  * of_remove_property - Remove a property from a node.
1720  * @np:		Caller's Device Node
1721  * @prop:	Property to remove
1722  *
1723  * Note that we don't actually remove it, since we have given out
1724  * who-knows-how-many pointers to the data using get-property.
1725  * Instead we just move the property to the "dead properties"
1726  * list, so it won't be found any more.
1727  */
1728 int of_remove_property(struct device_node *np, struct property *prop)
1729 {
1730 	int rc;
1731 
1732 	if (!prop)
1733 		return -ENODEV;
1734 
1735 	mutex_lock(&of_mutex);
1736 	rc = __of_remove_property(np, prop);
1737 	mutex_unlock(&of_mutex);
1738 
1739 	if (!rc)
1740 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1741 
1742 	return rc;
1743 }
1744 EXPORT_SYMBOL_GPL(of_remove_property);
1745 
1746 int __of_update_property(struct device_node *np, struct property *newprop,
1747 		struct property **oldpropp)
1748 {
1749 	struct property **next, *oldprop;
1750 	unsigned long flags;
1751 
1752 	raw_spin_lock_irqsave(&devtree_lock, flags);
1753 
1754 	__of_remove_property_from_list(&np->deadprops, newprop);
1755 
1756 	for (next = &np->properties; *next; next = &(*next)->next) {
1757 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1758 			break;
1759 	}
1760 	*oldpropp = oldprop = *next;
1761 
1762 	if (oldprop) {
1763 		/* replace the node */
1764 		newprop->next = oldprop->next;
1765 		*next = newprop;
1766 		oldprop->next = np->deadprops;
1767 		np->deadprops = oldprop;
1768 	} else {
1769 		/* new node */
1770 		newprop->next = NULL;
1771 		*next = newprop;
1772 	}
1773 
1774 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1775 
1776 	__of_update_property_sysfs(np, newprop, oldprop);
1777 
1778 	return 0;
1779 }
1780 
1781 /*
1782  * of_update_property - Update a property in a node, if the property does
1783  * not exist, add it.
1784  *
1785  * Note that we don't actually remove it, since we have given out
1786  * who-knows-how-many pointers to the data using get-property.
1787  * Instead we just move the property to the "dead properties" list,
1788  * and add the new property to the property list
1789  */
1790 int of_update_property(struct device_node *np, struct property *newprop)
1791 {
1792 	struct property *oldprop;
1793 	int rc;
1794 
1795 	if (!newprop->name)
1796 		return -EINVAL;
1797 
1798 	mutex_lock(&of_mutex);
1799 	rc = __of_update_property(np, newprop, &oldprop);
1800 	mutex_unlock(&of_mutex);
1801 
1802 	if (!rc)
1803 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1804 
1805 	return rc;
1806 }
1807 
1808 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1809 			 int id, const char *stem, int stem_len)
1810 {
1811 	ap->np = np;
1812 	ap->id = id;
1813 	strscpy(ap->stem, stem, stem_len + 1);
1814 	list_add_tail(&ap->link, &aliases_lookup);
1815 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1816 		 ap->alias, ap->stem, ap->id, np);
1817 }
1818 
1819 /**
1820  * of_alias_scan - Scan all properties of the 'aliases' node
1821  * @dt_alloc:	An allocator that provides a virtual address to memory
1822  *		for storing the resulting tree
1823  *
1824  * The function scans all the properties of the 'aliases' node and populates
1825  * the global lookup table with the properties.  It returns the
1826  * number of alias properties found, or an error code in case of failure.
1827  */
1828 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1829 {
1830 	const struct property *pp;
1831 
1832 	of_aliases = of_find_node_by_path("/aliases");
1833 	of_chosen = of_find_node_by_path("/chosen");
1834 	if (of_chosen == NULL)
1835 		of_chosen = of_find_node_by_path("/chosen@0");
1836 
1837 	if (of_chosen) {
1838 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1839 		const char *name = NULL;
1840 
1841 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1842 			of_property_read_string(of_chosen, "linux,stdout-path",
1843 						&name);
1844 		if (IS_ENABLED(CONFIG_PPC) && !name)
1845 			of_property_read_string(of_aliases, "stdout", &name);
1846 		if (name)
1847 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1848 		if (of_stdout)
1849 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1850 	}
1851 
1852 	if (!of_aliases)
1853 		return;
1854 
1855 	for_each_property_of_node(of_aliases, pp) {
1856 		const char *start = pp->name;
1857 		const char *end = start + strlen(start);
1858 		struct device_node *np;
1859 		struct alias_prop *ap;
1860 		int id, len;
1861 
1862 		/* Skip those we do not want to proceed */
1863 		if (!strcmp(pp->name, "name") ||
1864 		    !strcmp(pp->name, "phandle") ||
1865 		    !strcmp(pp->name, "linux,phandle"))
1866 			continue;
1867 
1868 		np = of_find_node_by_path(pp->value);
1869 		if (!np)
1870 			continue;
1871 
1872 		/* walk the alias backwards to extract the id and work out
1873 		 * the 'stem' string */
1874 		while (isdigit(*(end-1)) && end > start)
1875 			end--;
1876 		len = end - start;
1877 
1878 		if (kstrtoint(end, 10, &id) < 0)
1879 			continue;
1880 
1881 		/* Allocate an alias_prop with enough space for the stem */
1882 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1883 		if (!ap)
1884 			continue;
1885 		memset(ap, 0, sizeof(*ap) + len + 1);
1886 		ap->alias = start;
1887 		of_alias_add(ap, np, id, start, len);
1888 	}
1889 }
1890 
1891 /**
1892  * of_alias_get_id - Get alias id for the given device_node
1893  * @np:		Pointer to the given device_node
1894  * @stem:	Alias stem of the given device_node
1895  *
1896  * The function travels the lookup table to get the alias id for the given
1897  * device_node and alias stem.
1898  *
1899  * Return: The alias id if found.
1900  */
1901 int of_alias_get_id(const struct device_node *np, const char *stem)
1902 {
1903 	struct alias_prop *app;
1904 	int id = -ENODEV;
1905 
1906 	mutex_lock(&of_mutex);
1907 	list_for_each_entry(app, &aliases_lookup, link) {
1908 		if (strcmp(app->stem, stem) != 0)
1909 			continue;
1910 
1911 		if (np == app->np) {
1912 			id = app->id;
1913 			break;
1914 		}
1915 	}
1916 	mutex_unlock(&of_mutex);
1917 
1918 	return id;
1919 }
1920 EXPORT_SYMBOL_GPL(of_alias_get_id);
1921 
1922 /**
1923  * of_alias_get_highest_id - Get highest alias id for the given stem
1924  * @stem:	Alias stem to be examined
1925  *
1926  * The function travels the lookup table to get the highest alias id for the
1927  * given alias stem.  It returns the alias id if found.
1928  */
1929 int of_alias_get_highest_id(const char *stem)
1930 {
1931 	struct alias_prop *app;
1932 	int id = -ENODEV;
1933 
1934 	mutex_lock(&of_mutex);
1935 	list_for_each_entry(app, &aliases_lookup, link) {
1936 		if (strcmp(app->stem, stem) != 0)
1937 			continue;
1938 
1939 		if (app->id > id)
1940 			id = app->id;
1941 	}
1942 	mutex_unlock(&of_mutex);
1943 
1944 	return id;
1945 }
1946 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1947 
1948 /**
1949  * of_console_check() - Test and setup console for DT setup
1950  * @dn: Pointer to device node
1951  * @name: Name to use for preferred console without index. ex. "ttyS"
1952  * @index: Index to use for preferred console.
1953  *
1954  * Check if the given device node matches the stdout-path property in the
1955  * /chosen node. If it does then register it as the preferred console.
1956  *
1957  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1958  */
1959 bool of_console_check(const struct device_node *dn, char *name, int index)
1960 {
1961 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1962 		return false;
1963 
1964 	/*
1965 	 * XXX: cast `options' to char pointer to suppress complication
1966 	 * warnings: printk, UART and console drivers expect char pointer.
1967 	 */
1968 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1969 }
1970 EXPORT_SYMBOL_GPL(of_console_check);
1971 
1972 /**
1973  * of_find_next_cache_node - Find a node's subsidiary cache
1974  * @np:	node of type "cpu" or "cache"
1975  *
1976  * Return: A node pointer with refcount incremented, use
1977  * of_node_put() on it when done.  Caller should hold a reference
1978  * to np.
1979  */
1980 struct device_node *of_find_next_cache_node(const struct device_node *np)
1981 {
1982 	struct device_node *child, *cache_node;
1983 
1984 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1985 	if (!cache_node)
1986 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1987 
1988 	if (cache_node)
1989 		return cache_node;
1990 
1991 	/* OF on pmac has nodes instead of properties named "l2-cache"
1992 	 * beneath CPU nodes.
1993 	 */
1994 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1995 		for_each_child_of_node(np, child)
1996 			if (of_node_is_type(child, "cache"))
1997 				return child;
1998 
1999 	return NULL;
2000 }
2001 
2002 /**
2003  * of_find_last_cache_level - Find the level at which the last cache is
2004  * 		present for the given logical cpu
2005  *
2006  * @cpu: cpu number(logical index) for which the last cache level is needed
2007  *
2008  * Return: The level at which the last cache is present. It is exactly
2009  * same as  the total number of cache levels for the given logical cpu.
2010  */
2011 int of_find_last_cache_level(unsigned int cpu)
2012 {
2013 	u32 cache_level = 0;
2014 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2015 
2016 	while (np) {
2017 		of_node_put(prev);
2018 		prev = np;
2019 		np = of_find_next_cache_node(np);
2020 	}
2021 
2022 	of_property_read_u32(prev, "cache-level", &cache_level);
2023 	of_node_put(prev);
2024 
2025 	return cache_level;
2026 }
2027 
2028 /**
2029  * of_map_id - Translate an ID through a downstream mapping.
2030  * @np: root complex device node.
2031  * @id: device ID to map.
2032  * @map_name: property name of the map to use.
2033  * @map_mask_name: optional property name of the mask to use.
2034  * @target: optional pointer to a target device node.
2035  * @id_out: optional pointer to receive the translated ID.
2036  *
2037  * Given a device ID, look up the appropriate implementation-defined
2038  * platform ID and/or the target device which receives transactions on that
2039  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2040  * @id_out may be NULL if only the other is required. If @target points to
2041  * a non-NULL device node pointer, only entries targeting that node will be
2042  * matched; if it points to a NULL value, it will receive the device node of
2043  * the first matching target phandle, with a reference held.
2044  *
2045  * Return: 0 on success or a standard error code on failure.
2046  */
2047 int of_map_id(const struct device_node *np, u32 id,
2048 	       const char *map_name, const char *map_mask_name,
2049 	       struct device_node **target, u32 *id_out)
2050 {
2051 	u32 map_mask, masked_id;
2052 	int map_len;
2053 	const __be32 *map = NULL;
2054 
2055 	if (!np || !map_name || (!target && !id_out))
2056 		return -EINVAL;
2057 
2058 	map = of_get_property(np, map_name, &map_len);
2059 	if (!map) {
2060 		if (target)
2061 			return -ENODEV;
2062 		/* Otherwise, no map implies no translation */
2063 		*id_out = id;
2064 		return 0;
2065 	}
2066 
2067 	if (!map_len || map_len % (4 * sizeof(*map))) {
2068 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2069 			map_name, map_len);
2070 		return -EINVAL;
2071 	}
2072 
2073 	/* The default is to select all bits. */
2074 	map_mask = 0xffffffff;
2075 
2076 	/*
2077 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2078 	 * If of_property_read_u32() fails, the default is used.
2079 	 */
2080 	if (map_mask_name)
2081 		of_property_read_u32(np, map_mask_name, &map_mask);
2082 
2083 	masked_id = map_mask & id;
2084 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2085 		struct device_node *phandle_node;
2086 		u32 id_base = be32_to_cpup(map + 0);
2087 		u32 phandle = be32_to_cpup(map + 1);
2088 		u32 out_base = be32_to_cpup(map + 2);
2089 		u32 id_len = be32_to_cpup(map + 3);
2090 
2091 		if (id_base & ~map_mask) {
2092 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2093 				np, map_name, map_name,
2094 				map_mask, id_base);
2095 			return -EFAULT;
2096 		}
2097 
2098 		if (masked_id < id_base || masked_id >= id_base + id_len)
2099 			continue;
2100 
2101 		phandle_node = of_find_node_by_phandle(phandle);
2102 		if (!phandle_node)
2103 			return -ENODEV;
2104 
2105 		if (target) {
2106 			if (*target)
2107 				of_node_put(phandle_node);
2108 			else
2109 				*target = phandle_node;
2110 
2111 			if (*target != phandle_node)
2112 				continue;
2113 		}
2114 
2115 		if (id_out)
2116 			*id_out = masked_id - id_base + out_base;
2117 
2118 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2119 			np, map_name, map_mask, id_base, out_base,
2120 			id_len, id, masked_id - id_base + out_base);
2121 		return 0;
2122 	}
2123 
2124 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2125 		id, target && *target ? *target : NULL);
2126 
2127 	/* Bypasses translation */
2128 	if (id_out)
2129 		*id_out = id;
2130 	return 0;
2131 }
2132 EXPORT_SYMBOL_GPL(of_map_id);
2133