1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70 } 71 EXPORT_SYMBOL(of_n_addr_cells); 72 73 int of_n_size_cells(struct device_node *np) 74 { 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86 } 87 EXPORT_SYMBOL(of_n_size_cells); 88 89 #ifdef CONFIG_NUMA 90 int __weak of_node_to_nid(struct device_node *np) 91 { 92 return numa_node_id(); 93 } 94 #endif 95 96 #ifndef CONFIG_OF_DYNAMIC 97 static void of_node_release(struct kobject *kobj) 98 { 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100 } 101 #endif /* CONFIG_OF_DYNAMIC */ 102 103 struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105 }; 106 107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110 { 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113 } 114 115 static const char *safe_name(struct kobject *kobj, const char *orig_name) 116 { 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133 } 134 135 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136 { 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157 } 158 159 int __of_attach_node_sysfs(struct device_node *np) 160 { 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190 } 191 192 static int __init of_init(void) 193 { 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 return -ENOMEM; 202 } 203 for_each_of_allnodes(np) 204 __of_attach_node_sysfs(np); 205 mutex_unlock(&of_mutex); 206 207 /* Symlink in /proc as required by userspace ABI */ 208 if (of_root) 209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 210 211 return 0; 212 } 213 core_initcall(of_init); 214 215 static struct property *__of_find_property(const struct device_node *np, 216 const char *name, int *lenp) 217 { 218 struct property *pp; 219 220 if (!np) 221 return NULL; 222 223 for (pp = np->properties; pp; pp = pp->next) { 224 if (of_prop_cmp(pp->name, name) == 0) { 225 if (lenp) 226 *lenp = pp->length; 227 break; 228 } 229 } 230 231 return pp; 232 } 233 234 struct property *of_find_property(const struct device_node *np, 235 const char *name, 236 int *lenp) 237 { 238 struct property *pp; 239 unsigned long flags; 240 241 raw_spin_lock_irqsave(&devtree_lock, flags); 242 pp = __of_find_property(np, name, lenp); 243 raw_spin_unlock_irqrestore(&devtree_lock, flags); 244 245 return pp; 246 } 247 EXPORT_SYMBOL(of_find_property); 248 249 struct device_node *__of_find_all_nodes(struct device_node *prev) 250 { 251 struct device_node *np; 252 if (!prev) { 253 np = of_root; 254 } else if (prev->child) { 255 np = prev->child; 256 } else { 257 /* Walk back up looking for a sibling, or the end of the structure */ 258 np = prev; 259 while (np->parent && !np->sibling) 260 np = np->parent; 261 np = np->sibling; /* Might be null at the end of the tree */ 262 } 263 return np; 264 } 265 266 /** 267 * of_find_all_nodes - Get next node in global list 268 * @prev: Previous node or NULL to start iteration 269 * of_node_put() will be called on it 270 * 271 * Returns a node pointer with refcount incremented, use 272 * of_node_put() on it when done. 273 */ 274 struct device_node *of_find_all_nodes(struct device_node *prev) 275 { 276 struct device_node *np; 277 unsigned long flags; 278 279 raw_spin_lock_irqsave(&devtree_lock, flags); 280 np = __of_find_all_nodes(prev); 281 of_node_get(np); 282 of_node_put(prev); 283 raw_spin_unlock_irqrestore(&devtree_lock, flags); 284 return np; 285 } 286 EXPORT_SYMBOL(of_find_all_nodes); 287 288 /* 289 * Find a property with a given name for a given node 290 * and return the value. 291 */ 292 const void *__of_get_property(const struct device_node *np, 293 const char *name, int *lenp) 294 { 295 struct property *pp = __of_find_property(np, name, lenp); 296 297 return pp ? pp->value : NULL; 298 } 299 300 /* 301 * Find a property with a given name for a given node 302 * and return the value. 303 */ 304 const void *of_get_property(const struct device_node *np, const char *name, 305 int *lenp) 306 { 307 struct property *pp = of_find_property(np, name, lenp); 308 309 return pp ? pp->value : NULL; 310 } 311 EXPORT_SYMBOL(of_get_property); 312 313 /* 314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 315 * 316 * @cpu: logical cpu index of a core/thread 317 * @phys_id: physical identifier of a core/thread 318 * 319 * CPU logical to physical index mapping is architecture specific. 320 * However this __weak function provides a default match of physical 321 * id to logical cpu index. phys_id provided here is usually values read 322 * from the device tree which must match the hardware internal registers. 323 * 324 * Returns true if the physical identifier and the logical cpu index 325 * correspond to the same core/thread, false otherwise. 326 */ 327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 328 { 329 return (u32)phys_id == cpu; 330 } 331 332 /** 333 * Checks if the given "prop_name" property holds the physical id of the 334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 335 * NULL, local thread number within the core is returned in it. 336 */ 337 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 338 const char *prop_name, int cpu, unsigned int *thread) 339 { 340 const __be32 *cell; 341 int ac, prop_len, tid; 342 u64 hwid; 343 344 ac = of_n_addr_cells(cpun); 345 cell = of_get_property(cpun, prop_name, &prop_len); 346 if (!cell || !ac) 347 return false; 348 prop_len /= sizeof(*cell) * ac; 349 for (tid = 0; tid < prop_len; tid++) { 350 hwid = of_read_number(cell, ac); 351 if (arch_match_cpu_phys_id(cpu, hwid)) { 352 if (thread) 353 *thread = tid; 354 return true; 355 } 356 cell += ac; 357 } 358 return false; 359 } 360 361 /* 362 * arch_find_n_match_cpu_physical_id - See if the given device node is 363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 364 * else false. If 'thread' is non-NULL, the local thread number within the 365 * core is returned in it. 366 */ 367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 368 int cpu, unsigned int *thread) 369 { 370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 371 * for thread ids on PowerPC. If it doesn't exist fallback to 372 * standard "reg" property. 373 */ 374 if (IS_ENABLED(CONFIG_PPC) && 375 __of_find_n_match_cpu_property(cpun, 376 "ibm,ppc-interrupt-server#s", 377 cpu, thread)) 378 return true; 379 380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 381 return true; 382 383 return false; 384 } 385 386 /** 387 * of_get_cpu_node - Get device node associated with the given logical CPU 388 * 389 * @cpu: CPU number(logical index) for which device node is required 390 * @thread: if not NULL, local thread number within the physical core is 391 * returned 392 * 393 * The main purpose of this function is to retrieve the device node for the 394 * given logical CPU index. It should be used to initialize the of_node in 395 * cpu device. Once of_node in cpu device is populated, all the further 396 * references can use that instead. 397 * 398 * CPU logical to physical index mapping is architecture specific and is built 399 * before booting secondary cores. This function uses arch_match_cpu_phys_id 400 * which can be overridden by architecture specific implementation. 401 * 402 * Returns a node pointer for the logical cpu if found, else NULL. 403 */ 404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 405 { 406 struct device_node *cpun; 407 408 for_each_node_by_type(cpun, "cpu") { 409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 410 return cpun; 411 } 412 return NULL; 413 } 414 EXPORT_SYMBOL(of_get_cpu_node); 415 416 /** 417 * __of_device_is_compatible() - Check if the node matches given constraints 418 * @device: pointer to node 419 * @compat: required compatible string, NULL or "" for any match 420 * @type: required device_type value, NULL or "" for any match 421 * @name: required node name, NULL or "" for any match 422 * 423 * Checks if the given @compat, @type and @name strings match the 424 * properties of the given @device. A constraints can be skipped by 425 * passing NULL or an empty string as the constraint. 426 * 427 * Returns 0 for no match, and a positive integer on match. The return 428 * value is a relative score with larger values indicating better 429 * matches. The score is weighted for the most specific compatible value 430 * to get the highest score. Matching type is next, followed by matching 431 * name. Practically speaking, this results in the following priority 432 * order for matches: 433 * 434 * 1. specific compatible && type && name 435 * 2. specific compatible && type 436 * 3. specific compatible && name 437 * 4. specific compatible 438 * 5. general compatible && type && name 439 * 6. general compatible && type 440 * 7. general compatible && name 441 * 8. general compatible 442 * 9. type && name 443 * 10. type 444 * 11. name 445 */ 446 static int __of_device_is_compatible(const struct device_node *device, 447 const char *compat, const char *type, const char *name) 448 { 449 struct property *prop; 450 const char *cp; 451 int index = 0, score = 0; 452 453 /* Compatible match has highest priority */ 454 if (compat && compat[0]) { 455 prop = __of_find_property(device, "compatible", NULL); 456 for (cp = of_prop_next_string(prop, NULL); cp; 457 cp = of_prop_next_string(prop, cp), index++) { 458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 459 score = INT_MAX/2 - (index << 2); 460 break; 461 } 462 } 463 if (!score) 464 return 0; 465 } 466 467 /* Matching type is better than matching name */ 468 if (type && type[0]) { 469 if (!device->type || of_node_cmp(type, device->type)) 470 return 0; 471 score += 2; 472 } 473 474 /* Matching name is a bit better than not */ 475 if (name && name[0]) { 476 if (!device->name || of_node_cmp(name, device->name)) 477 return 0; 478 score++; 479 } 480 481 return score; 482 } 483 484 /** Checks if the given "compat" string matches one of the strings in 485 * the device's "compatible" property 486 */ 487 int of_device_is_compatible(const struct device_node *device, 488 const char *compat) 489 { 490 unsigned long flags; 491 int res; 492 493 raw_spin_lock_irqsave(&devtree_lock, flags); 494 res = __of_device_is_compatible(device, compat, NULL, NULL); 495 raw_spin_unlock_irqrestore(&devtree_lock, flags); 496 return res; 497 } 498 EXPORT_SYMBOL(of_device_is_compatible); 499 500 /** 501 * of_machine_is_compatible - Test root of device tree for a given compatible value 502 * @compat: compatible string to look for in root node's compatible property. 503 * 504 * Returns a positive integer if the root node has the given value in its 505 * compatible property. 506 */ 507 int of_machine_is_compatible(const char *compat) 508 { 509 struct device_node *root; 510 int rc = 0; 511 512 root = of_find_node_by_path("/"); 513 if (root) { 514 rc = of_device_is_compatible(root, compat); 515 of_node_put(root); 516 } 517 return rc; 518 } 519 EXPORT_SYMBOL(of_machine_is_compatible); 520 521 /** 522 * __of_device_is_available - check if a device is available for use 523 * 524 * @device: Node to check for availability, with locks already held 525 * 526 * Returns true if the status property is absent or set to "okay" or "ok", 527 * false otherwise 528 */ 529 static bool __of_device_is_available(const struct device_node *device) 530 { 531 const char *status; 532 int statlen; 533 534 if (!device) 535 return false; 536 537 status = __of_get_property(device, "status", &statlen); 538 if (status == NULL) 539 return true; 540 541 if (statlen > 0) { 542 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 543 return true; 544 } 545 546 return false; 547 } 548 549 /** 550 * of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 bool of_device_is_available(const struct device_node *device) 558 { 559 unsigned long flags; 560 bool res; 561 562 raw_spin_lock_irqsave(&devtree_lock, flags); 563 res = __of_device_is_available(device); 564 raw_spin_unlock_irqrestore(&devtree_lock, flags); 565 return res; 566 567 } 568 EXPORT_SYMBOL(of_device_is_available); 569 570 /** 571 * of_get_parent - Get a node's parent if any 572 * @node: Node to get parent 573 * 574 * Returns a node pointer with refcount incremented, use 575 * of_node_put() on it when done. 576 */ 577 struct device_node *of_get_parent(const struct device_node *node) 578 { 579 struct device_node *np; 580 unsigned long flags; 581 582 if (!node) 583 return NULL; 584 585 raw_spin_lock_irqsave(&devtree_lock, flags); 586 np = of_node_get(node->parent); 587 raw_spin_unlock_irqrestore(&devtree_lock, flags); 588 return np; 589 } 590 EXPORT_SYMBOL(of_get_parent); 591 592 /** 593 * of_get_next_parent - Iterate to a node's parent 594 * @node: Node to get parent of 595 * 596 * This is like of_get_parent() except that it drops the 597 * refcount on the passed node, making it suitable for iterating 598 * through a node's parents. 599 * 600 * Returns a node pointer with refcount incremented, use 601 * of_node_put() on it when done. 602 */ 603 struct device_node *of_get_next_parent(struct device_node *node) 604 { 605 struct device_node *parent; 606 unsigned long flags; 607 608 if (!node) 609 return NULL; 610 611 raw_spin_lock_irqsave(&devtree_lock, flags); 612 parent = of_node_get(node->parent); 613 of_node_put(node); 614 raw_spin_unlock_irqrestore(&devtree_lock, flags); 615 return parent; 616 } 617 EXPORT_SYMBOL(of_get_next_parent); 618 619 static struct device_node *__of_get_next_child(const struct device_node *node, 620 struct device_node *prev) 621 { 622 struct device_node *next; 623 624 if (!node) 625 return NULL; 626 627 next = prev ? prev->sibling : node->child; 628 for (; next; next = next->sibling) 629 if (of_node_get(next)) 630 break; 631 of_node_put(prev); 632 return next; 633 } 634 #define __for_each_child_of_node(parent, child) \ 635 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 636 child = __of_get_next_child(parent, child)) 637 638 /** 639 * of_get_next_child - Iterate a node childs 640 * @node: parent node 641 * @prev: previous child of the parent node, or NULL to get first 642 * 643 * Returns a node pointer with refcount incremented, use 644 * of_node_put() on it when done. 645 */ 646 struct device_node *of_get_next_child(const struct device_node *node, 647 struct device_node *prev) 648 { 649 struct device_node *next; 650 unsigned long flags; 651 652 raw_spin_lock_irqsave(&devtree_lock, flags); 653 next = __of_get_next_child(node, prev); 654 raw_spin_unlock_irqrestore(&devtree_lock, flags); 655 return next; 656 } 657 EXPORT_SYMBOL(of_get_next_child); 658 659 /** 660 * of_get_next_available_child - Find the next available child node 661 * @node: parent node 662 * @prev: previous child of the parent node, or NULL to get first 663 * 664 * This function is like of_get_next_child(), except that it 665 * automatically skips any disabled nodes (i.e. status = "disabled"). 666 */ 667 struct device_node *of_get_next_available_child(const struct device_node *node, 668 struct device_node *prev) 669 { 670 struct device_node *next; 671 unsigned long flags; 672 673 if (!node) 674 return NULL; 675 676 raw_spin_lock_irqsave(&devtree_lock, flags); 677 next = prev ? prev->sibling : node->child; 678 for (; next; next = next->sibling) { 679 if (!__of_device_is_available(next)) 680 continue; 681 if (of_node_get(next)) 682 break; 683 } 684 of_node_put(prev); 685 raw_spin_unlock_irqrestore(&devtree_lock, flags); 686 return next; 687 } 688 EXPORT_SYMBOL(of_get_next_available_child); 689 690 /** 691 * of_get_child_by_name - Find the child node by name for a given parent 692 * @node: parent node 693 * @name: child name to look for. 694 * 695 * This function looks for child node for given matching name 696 * 697 * Returns a node pointer if found, with refcount incremented, use 698 * of_node_put() on it when done. 699 * Returns NULL if node is not found. 700 */ 701 struct device_node *of_get_child_by_name(const struct device_node *node, 702 const char *name) 703 { 704 struct device_node *child; 705 706 for_each_child_of_node(node, child) 707 if (child->name && (of_node_cmp(child->name, name) == 0)) 708 break; 709 return child; 710 } 711 EXPORT_SYMBOL(of_get_child_by_name); 712 713 static struct device_node *__of_find_node_by_path(struct device_node *parent, 714 const char *path) 715 { 716 struct device_node *child; 717 int len = strchrnul(path, '/') - path; 718 int term; 719 720 if (!len) 721 return NULL; 722 723 term = strchrnul(path, ':') - path; 724 if (term < len) 725 len = term; 726 727 __for_each_child_of_node(parent, child) { 728 const char *name = strrchr(child->full_name, '/'); 729 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 730 continue; 731 name++; 732 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 733 return child; 734 } 735 return NULL; 736 } 737 738 /** 739 * of_find_node_opts_by_path - Find a node matching a full OF path 740 * @path: Either the full path to match, or if the path does not 741 * start with '/', the name of a property of the /aliases 742 * node (an alias). In the case of an alias, the node 743 * matching the alias' value will be returned. 744 * @opts: Address of a pointer into which to store the start of 745 * an options string appended to the end of the path with 746 * a ':' separator. 747 * 748 * Valid paths: 749 * /foo/bar Full path 750 * foo Valid alias 751 * foo/bar Valid alias + relative path 752 * 753 * Returns a node pointer with refcount incremented, use 754 * of_node_put() on it when done. 755 */ 756 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 757 { 758 struct device_node *np = NULL; 759 struct property *pp; 760 unsigned long flags; 761 const char *separator = strchr(path, ':'); 762 763 if (opts) 764 *opts = separator ? separator + 1 : NULL; 765 766 if (strcmp(path, "/") == 0) 767 return of_node_get(of_root); 768 769 /* The path could begin with an alias */ 770 if (*path != '/') { 771 char *p = strchrnul(path, '/'); 772 int len = separator ? separator - path : p - path; 773 774 /* of_aliases must not be NULL */ 775 if (!of_aliases) 776 return NULL; 777 778 for_each_property_of_node(of_aliases, pp) { 779 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 780 np = of_find_node_by_path(pp->value); 781 break; 782 } 783 } 784 if (!np) 785 return NULL; 786 path = p; 787 } 788 789 /* Step down the tree matching path components */ 790 raw_spin_lock_irqsave(&devtree_lock, flags); 791 if (!np) 792 np = of_node_get(of_root); 793 while (np && *path == '/') { 794 path++; /* Increment past '/' delimiter */ 795 np = __of_find_node_by_path(np, path); 796 path = strchrnul(path, '/'); 797 } 798 raw_spin_unlock_irqrestore(&devtree_lock, flags); 799 return np; 800 } 801 EXPORT_SYMBOL(of_find_node_opts_by_path); 802 803 /** 804 * of_find_node_by_name - Find a node by its "name" property 805 * @from: The node to start searching from or NULL, the node 806 * you pass will not be searched, only the next one 807 * will; typically, you pass what the previous call 808 * returned. of_node_put() will be called on it 809 * @name: The name string to match against 810 * 811 * Returns a node pointer with refcount incremented, use 812 * of_node_put() on it when done. 813 */ 814 struct device_node *of_find_node_by_name(struct device_node *from, 815 const char *name) 816 { 817 struct device_node *np; 818 unsigned long flags; 819 820 raw_spin_lock_irqsave(&devtree_lock, flags); 821 for_each_of_allnodes_from(from, np) 822 if (np->name && (of_node_cmp(np->name, name) == 0) 823 && of_node_get(np)) 824 break; 825 of_node_put(from); 826 raw_spin_unlock_irqrestore(&devtree_lock, flags); 827 return np; 828 } 829 EXPORT_SYMBOL(of_find_node_by_name); 830 831 /** 832 * of_find_node_by_type - Find a node by its "device_type" property 833 * @from: The node to start searching from, or NULL to start searching 834 * the entire device tree. The node you pass will not be 835 * searched, only the next one will; typically, you pass 836 * what the previous call returned. of_node_put() will be 837 * called on from for you. 838 * @type: The type string to match against 839 * 840 * Returns a node pointer with refcount incremented, use 841 * of_node_put() on it when done. 842 */ 843 struct device_node *of_find_node_by_type(struct device_node *from, 844 const char *type) 845 { 846 struct device_node *np; 847 unsigned long flags; 848 849 raw_spin_lock_irqsave(&devtree_lock, flags); 850 for_each_of_allnodes_from(from, np) 851 if (np->type && (of_node_cmp(np->type, type) == 0) 852 && of_node_get(np)) 853 break; 854 of_node_put(from); 855 raw_spin_unlock_irqrestore(&devtree_lock, flags); 856 return np; 857 } 858 EXPORT_SYMBOL(of_find_node_by_type); 859 860 /** 861 * of_find_compatible_node - Find a node based on type and one of the 862 * tokens in its "compatible" property 863 * @from: The node to start searching from or NULL, the node 864 * you pass will not be searched, only the next one 865 * will; typically, you pass what the previous call 866 * returned. of_node_put() will be called on it 867 * @type: The type string to match "device_type" or NULL to ignore 868 * @compatible: The string to match to one of the tokens in the device 869 * "compatible" list. 870 * 871 * Returns a node pointer with refcount incremented, use 872 * of_node_put() on it when done. 873 */ 874 struct device_node *of_find_compatible_node(struct device_node *from, 875 const char *type, const char *compatible) 876 { 877 struct device_node *np; 878 unsigned long flags; 879 880 raw_spin_lock_irqsave(&devtree_lock, flags); 881 for_each_of_allnodes_from(from, np) 882 if (__of_device_is_compatible(np, compatible, type, NULL) && 883 of_node_get(np)) 884 break; 885 of_node_put(from); 886 raw_spin_unlock_irqrestore(&devtree_lock, flags); 887 return np; 888 } 889 EXPORT_SYMBOL(of_find_compatible_node); 890 891 /** 892 * of_find_node_with_property - Find a node which has a property with 893 * the given name. 894 * @from: The node to start searching from or NULL, the node 895 * you pass will not be searched, only the next one 896 * will; typically, you pass what the previous call 897 * returned. of_node_put() will be called on it 898 * @prop_name: The name of the property to look for. 899 * 900 * Returns a node pointer with refcount incremented, use 901 * of_node_put() on it when done. 902 */ 903 struct device_node *of_find_node_with_property(struct device_node *from, 904 const char *prop_name) 905 { 906 struct device_node *np; 907 struct property *pp; 908 unsigned long flags; 909 910 raw_spin_lock_irqsave(&devtree_lock, flags); 911 for_each_of_allnodes_from(from, np) { 912 for (pp = np->properties; pp; pp = pp->next) { 913 if (of_prop_cmp(pp->name, prop_name) == 0) { 914 of_node_get(np); 915 goto out; 916 } 917 } 918 } 919 out: 920 of_node_put(from); 921 raw_spin_unlock_irqrestore(&devtree_lock, flags); 922 return np; 923 } 924 EXPORT_SYMBOL(of_find_node_with_property); 925 926 static 927 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 928 const struct device_node *node) 929 { 930 const struct of_device_id *best_match = NULL; 931 int score, best_score = 0; 932 933 if (!matches) 934 return NULL; 935 936 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 937 score = __of_device_is_compatible(node, matches->compatible, 938 matches->type, matches->name); 939 if (score > best_score) { 940 best_match = matches; 941 best_score = score; 942 } 943 } 944 945 return best_match; 946 } 947 948 /** 949 * of_match_node - Tell if a device_node has a matching of_match structure 950 * @matches: array of of device match structures to search in 951 * @node: the of device structure to match against 952 * 953 * Low level utility function used by device matching. 954 */ 955 const struct of_device_id *of_match_node(const struct of_device_id *matches, 956 const struct device_node *node) 957 { 958 const struct of_device_id *match; 959 unsigned long flags; 960 961 raw_spin_lock_irqsave(&devtree_lock, flags); 962 match = __of_match_node(matches, node); 963 raw_spin_unlock_irqrestore(&devtree_lock, flags); 964 return match; 965 } 966 EXPORT_SYMBOL(of_match_node); 967 968 /** 969 * of_find_matching_node_and_match - Find a node based on an of_device_id 970 * match table. 971 * @from: The node to start searching from or NULL, the node 972 * you pass will not be searched, only the next one 973 * will; typically, you pass what the previous call 974 * returned. of_node_put() will be called on it 975 * @matches: array of of device match structures to search in 976 * @match Updated to point at the matches entry which matched 977 * 978 * Returns a node pointer with refcount incremented, use 979 * of_node_put() on it when done. 980 */ 981 struct device_node *of_find_matching_node_and_match(struct device_node *from, 982 const struct of_device_id *matches, 983 const struct of_device_id **match) 984 { 985 struct device_node *np; 986 const struct of_device_id *m; 987 unsigned long flags; 988 989 if (match) 990 *match = NULL; 991 992 raw_spin_lock_irqsave(&devtree_lock, flags); 993 for_each_of_allnodes_from(from, np) { 994 m = __of_match_node(matches, np); 995 if (m && of_node_get(np)) { 996 if (match) 997 *match = m; 998 break; 999 } 1000 } 1001 of_node_put(from); 1002 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1003 return np; 1004 } 1005 EXPORT_SYMBOL(of_find_matching_node_and_match); 1006 1007 /** 1008 * of_modalias_node - Lookup appropriate modalias for a device node 1009 * @node: pointer to a device tree node 1010 * @modalias: Pointer to buffer that modalias value will be copied into 1011 * @len: Length of modalias value 1012 * 1013 * Based on the value of the compatible property, this routine will attempt 1014 * to choose an appropriate modalias value for a particular device tree node. 1015 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1016 * from the first entry in the compatible list property. 1017 * 1018 * This routine returns 0 on success, <0 on failure. 1019 */ 1020 int of_modalias_node(struct device_node *node, char *modalias, int len) 1021 { 1022 const char *compatible, *p; 1023 int cplen; 1024 1025 compatible = of_get_property(node, "compatible", &cplen); 1026 if (!compatible || strlen(compatible) > cplen) 1027 return -ENODEV; 1028 p = strchr(compatible, ','); 1029 strlcpy(modalias, p ? p + 1 : compatible, len); 1030 return 0; 1031 } 1032 EXPORT_SYMBOL_GPL(of_modalias_node); 1033 1034 /** 1035 * of_find_node_by_phandle - Find a node given a phandle 1036 * @handle: phandle of the node to find 1037 * 1038 * Returns a node pointer with refcount incremented, use 1039 * of_node_put() on it when done. 1040 */ 1041 struct device_node *of_find_node_by_phandle(phandle handle) 1042 { 1043 struct device_node *np; 1044 unsigned long flags; 1045 1046 if (!handle) 1047 return NULL; 1048 1049 raw_spin_lock_irqsave(&devtree_lock, flags); 1050 for_each_of_allnodes(np) 1051 if (np->phandle == handle) 1052 break; 1053 of_node_get(np); 1054 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1055 return np; 1056 } 1057 EXPORT_SYMBOL(of_find_node_by_phandle); 1058 1059 /** 1060 * of_property_count_elems_of_size - Count the number of elements in a property 1061 * 1062 * @np: device node from which the property value is to be read. 1063 * @propname: name of the property to be searched. 1064 * @elem_size: size of the individual element 1065 * 1066 * Search for a property in a device node and count the number of elements of 1067 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1068 * property does not exist or its length does not match a multiple of elem_size 1069 * and -ENODATA if the property does not have a value. 1070 */ 1071 int of_property_count_elems_of_size(const struct device_node *np, 1072 const char *propname, int elem_size) 1073 { 1074 struct property *prop = of_find_property(np, propname, NULL); 1075 1076 if (!prop) 1077 return -EINVAL; 1078 if (!prop->value) 1079 return -ENODATA; 1080 1081 if (prop->length % elem_size != 0) { 1082 pr_err("size of %s in node %s is not a multiple of %d\n", 1083 propname, np->full_name, elem_size); 1084 return -EINVAL; 1085 } 1086 1087 return prop->length / elem_size; 1088 } 1089 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1090 1091 /** 1092 * of_find_property_value_of_size 1093 * 1094 * @np: device node from which the property value is to be read. 1095 * @propname: name of the property to be searched. 1096 * @len: requested length of property value 1097 * 1098 * Search for a property in a device node and valid the requested size. 1099 * Returns the property value on success, -EINVAL if the property does not 1100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1101 * property data isn't large enough. 1102 * 1103 */ 1104 static void *of_find_property_value_of_size(const struct device_node *np, 1105 const char *propname, u32 len) 1106 { 1107 struct property *prop = of_find_property(np, propname, NULL); 1108 1109 if (!prop) 1110 return ERR_PTR(-EINVAL); 1111 if (!prop->value) 1112 return ERR_PTR(-ENODATA); 1113 if (len > prop->length) 1114 return ERR_PTR(-EOVERFLOW); 1115 1116 return prop->value; 1117 } 1118 1119 /** 1120 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1121 * 1122 * @np: device node from which the property value is to be read. 1123 * @propname: name of the property to be searched. 1124 * @index: index of the u32 in the list of values 1125 * @out_value: pointer to return value, modified only if no error. 1126 * 1127 * Search for a property in a device node and read nth 32-bit value from 1128 * it. Returns 0 on success, -EINVAL if the property does not exist, 1129 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1130 * property data isn't large enough. 1131 * 1132 * The out_value is modified only if a valid u32 value can be decoded. 1133 */ 1134 int of_property_read_u32_index(const struct device_node *np, 1135 const char *propname, 1136 u32 index, u32 *out_value) 1137 { 1138 const u32 *val = of_find_property_value_of_size(np, propname, 1139 ((index + 1) * sizeof(*out_value))); 1140 1141 if (IS_ERR(val)) 1142 return PTR_ERR(val); 1143 1144 *out_value = be32_to_cpup(((__be32 *)val) + index); 1145 return 0; 1146 } 1147 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1148 1149 /** 1150 * of_property_read_u8_array - Find and read an array of u8 from a property. 1151 * 1152 * @np: device node from which the property value is to be read. 1153 * @propname: name of the property to be searched. 1154 * @out_values: pointer to return value, modified only if return value is 0. 1155 * @sz: number of array elements to read 1156 * 1157 * Search for a property in a device node and read 8-bit value(s) from 1158 * it. Returns 0 on success, -EINVAL if the property does not exist, 1159 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1160 * property data isn't large enough. 1161 * 1162 * dts entry of array should be like: 1163 * property = /bits/ 8 <0x50 0x60 0x70>; 1164 * 1165 * The out_values is modified only if a valid u8 value can be decoded. 1166 */ 1167 int of_property_read_u8_array(const struct device_node *np, 1168 const char *propname, u8 *out_values, size_t sz) 1169 { 1170 const u8 *val = of_find_property_value_of_size(np, propname, 1171 (sz * sizeof(*out_values))); 1172 1173 if (IS_ERR(val)) 1174 return PTR_ERR(val); 1175 1176 while (sz--) 1177 *out_values++ = *val++; 1178 return 0; 1179 } 1180 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1181 1182 /** 1183 * of_property_read_u16_array - Find and read an array of u16 from a property. 1184 * 1185 * @np: device node from which the property value is to be read. 1186 * @propname: name of the property to be searched. 1187 * @out_values: pointer to return value, modified only if return value is 0. 1188 * @sz: number of array elements to read 1189 * 1190 * Search for a property in a device node and read 16-bit value(s) from 1191 * it. Returns 0 on success, -EINVAL if the property does not exist, 1192 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1193 * property data isn't large enough. 1194 * 1195 * dts entry of array should be like: 1196 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1197 * 1198 * The out_values is modified only if a valid u16 value can be decoded. 1199 */ 1200 int of_property_read_u16_array(const struct device_node *np, 1201 const char *propname, u16 *out_values, size_t sz) 1202 { 1203 const __be16 *val = of_find_property_value_of_size(np, propname, 1204 (sz * sizeof(*out_values))); 1205 1206 if (IS_ERR(val)) 1207 return PTR_ERR(val); 1208 1209 while (sz--) 1210 *out_values++ = be16_to_cpup(val++); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1214 1215 /** 1216 * of_property_read_u32_array - Find and read an array of 32 bit integers 1217 * from a property. 1218 * 1219 * @np: device node from which the property value is to be read. 1220 * @propname: name of the property to be searched. 1221 * @out_values: pointer to return value, modified only if return value is 0. 1222 * @sz: number of array elements to read 1223 * 1224 * Search for a property in a device node and read 32-bit value(s) from 1225 * it. Returns 0 on success, -EINVAL if the property does not exist, 1226 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1227 * property data isn't large enough. 1228 * 1229 * The out_values is modified only if a valid u32 value can be decoded. 1230 */ 1231 int of_property_read_u32_array(const struct device_node *np, 1232 const char *propname, u32 *out_values, 1233 size_t sz) 1234 { 1235 const __be32 *val = of_find_property_value_of_size(np, propname, 1236 (sz * sizeof(*out_values))); 1237 1238 if (IS_ERR(val)) 1239 return PTR_ERR(val); 1240 1241 while (sz--) 1242 *out_values++ = be32_to_cpup(val++); 1243 return 0; 1244 } 1245 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1246 1247 /** 1248 * of_property_read_u64 - Find and read a 64 bit integer from a property 1249 * @np: device node from which the property value is to be read. 1250 * @propname: name of the property to be searched. 1251 * @out_value: pointer to return value, modified only if return value is 0. 1252 * 1253 * Search for a property in a device node and read a 64-bit value from 1254 * it. Returns 0 on success, -EINVAL if the property does not exist, 1255 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1256 * property data isn't large enough. 1257 * 1258 * The out_value is modified only if a valid u64 value can be decoded. 1259 */ 1260 int of_property_read_u64(const struct device_node *np, const char *propname, 1261 u64 *out_value) 1262 { 1263 const __be32 *val = of_find_property_value_of_size(np, propname, 1264 sizeof(*out_value)); 1265 1266 if (IS_ERR(val)) 1267 return PTR_ERR(val); 1268 1269 *out_value = of_read_number(val, 2); 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(of_property_read_u64); 1273 1274 /** 1275 * of_property_read_u64_array - Find and read an array of 64 bit integers 1276 * from a property. 1277 * 1278 * @np: device node from which the property value is to be read. 1279 * @propname: name of the property to be searched. 1280 * @out_values: pointer to return value, modified only if return value is 0. 1281 * @sz: number of array elements to read 1282 * 1283 * Search for a property in a device node and read 64-bit value(s) from 1284 * it. Returns 0 on success, -EINVAL if the property does not exist, 1285 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1286 * property data isn't large enough. 1287 * 1288 * The out_values is modified only if a valid u64 value can be decoded. 1289 */ 1290 int of_property_read_u64_array(const struct device_node *np, 1291 const char *propname, u64 *out_values, 1292 size_t sz) 1293 { 1294 const __be32 *val = of_find_property_value_of_size(np, propname, 1295 (sz * sizeof(*out_values))); 1296 1297 if (IS_ERR(val)) 1298 return PTR_ERR(val); 1299 1300 while (sz--) { 1301 *out_values++ = of_read_number(val, 2); 1302 val += 2; 1303 } 1304 return 0; 1305 } 1306 1307 /** 1308 * of_property_read_string - Find and read a string from a property 1309 * @np: device node from which the property value is to be read. 1310 * @propname: name of the property to be searched. 1311 * @out_string: pointer to null terminated return string, modified only if 1312 * return value is 0. 1313 * 1314 * Search for a property in a device tree node and retrieve a null 1315 * terminated string value (pointer to data, not a copy). Returns 0 on 1316 * success, -EINVAL if the property does not exist, -ENODATA if property 1317 * does not have a value, and -EILSEQ if the string is not null-terminated 1318 * within the length of the property data. 1319 * 1320 * The out_string pointer is modified only if a valid string can be decoded. 1321 */ 1322 int of_property_read_string(struct device_node *np, const char *propname, 1323 const char **out_string) 1324 { 1325 struct property *prop = of_find_property(np, propname, NULL); 1326 if (!prop) 1327 return -EINVAL; 1328 if (!prop->value) 1329 return -ENODATA; 1330 if (strnlen(prop->value, prop->length) >= prop->length) 1331 return -EILSEQ; 1332 *out_string = prop->value; 1333 return 0; 1334 } 1335 EXPORT_SYMBOL_GPL(of_property_read_string); 1336 1337 /** 1338 * of_property_match_string() - Find string in a list and return index 1339 * @np: pointer to node containing string list property 1340 * @propname: string list property name 1341 * @string: pointer to string to search for in string list 1342 * 1343 * This function searches a string list property and returns the index 1344 * of a specific string value. 1345 */ 1346 int of_property_match_string(struct device_node *np, const char *propname, 1347 const char *string) 1348 { 1349 struct property *prop = of_find_property(np, propname, NULL); 1350 size_t l; 1351 int i; 1352 const char *p, *end; 1353 1354 if (!prop) 1355 return -EINVAL; 1356 if (!prop->value) 1357 return -ENODATA; 1358 1359 p = prop->value; 1360 end = p + prop->length; 1361 1362 for (i = 0; p < end; i++, p += l) { 1363 l = strnlen(p, end - p) + 1; 1364 if (p + l > end) 1365 return -EILSEQ; 1366 pr_debug("comparing %s with %s\n", string, p); 1367 if (strcmp(string, p) == 0) 1368 return i; /* Found it; return index */ 1369 } 1370 return -ENODATA; 1371 } 1372 EXPORT_SYMBOL_GPL(of_property_match_string); 1373 1374 /** 1375 * of_property_read_string_helper() - Utility helper for parsing string properties 1376 * @np: device node from which the property value is to be read. 1377 * @propname: name of the property to be searched. 1378 * @out_strs: output array of string pointers. 1379 * @sz: number of array elements to read. 1380 * @skip: Number of strings to skip over at beginning of list. 1381 * 1382 * Don't call this function directly. It is a utility helper for the 1383 * of_property_read_string*() family of functions. 1384 */ 1385 int of_property_read_string_helper(struct device_node *np, const char *propname, 1386 const char **out_strs, size_t sz, int skip) 1387 { 1388 struct property *prop = of_find_property(np, propname, NULL); 1389 int l = 0, i = 0; 1390 const char *p, *end; 1391 1392 if (!prop) 1393 return -EINVAL; 1394 if (!prop->value) 1395 return -ENODATA; 1396 p = prop->value; 1397 end = p + prop->length; 1398 1399 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1400 l = strnlen(p, end - p) + 1; 1401 if (p + l > end) 1402 return -EILSEQ; 1403 if (out_strs && i >= skip) 1404 *out_strs++ = p; 1405 } 1406 i -= skip; 1407 return i <= 0 ? -ENODATA : i; 1408 } 1409 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1410 1411 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1412 { 1413 int i; 1414 printk("%s %s", msg, of_node_full_name(args->np)); 1415 for (i = 0; i < args->args_count; i++) 1416 printk(i ? ",%08x" : ":%08x", args->args[i]); 1417 printk("\n"); 1418 } 1419 1420 static int __of_parse_phandle_with_args(const struct device_node *np, 1421 const char *list_name, 1422 const char *cells_name, 1423 int cell_count, int index, 1424 struct of_phandle_args *out_args) 1425 { 1426 const __be32 *list, *list_end; 1427 int rc = 0, size, cur_index = 0; 1428 uint32_t count = 0; 1429 struct device_node *node = NULL; 1430 phandle phandle; 1431 1432 /* Retrieve the phandle list property */ 1433 list = of_get_property(np, list_name, &size); 1434 if (!list) 1435 return -ENOENT; 1436 list_end = list + size / sizeof(*list); 1437 1438 /* Loop over the phandles until all the requested entry is found */ 1439 while (list < list_end) { 1440 rc = -EINVAL; 1441 count = 0; 1442 1443 /* 1444 * If phandle is 0, then it is an empty entry with no 1445 * arguments. Skip forward to the next entry. 1446 */ 1447 phandle = be32_to_cpup(list++); 1448 if (phandle) { 1449 /* 1450 * Find the provider node and parse the #*-cells 1451 * property to determine the argument length. 1452 * 1453 * This is not needed if the cell count is hard-coded 1454 * (i.e. cells_name not set, but cell_count is set), 1455 * except when we're going to return the found node 1456 * below. 1457 */ 1458 if (cells_name || cur_index == index) { 1459 node = of_find_node_by_phandle(phandle); 1460 if (!node) { 1461 pr_err("%s: could not find phandle\n", 1462 np->full_name); 1463 goto err; 1464 } 1465 } 1466 1467 if (cells_name) { 1468 if (of_property_read_u32(node, cells_name, 1469 &count)) { 1470 pr_err("%s: could not get %s for %s\n", 1471 np->full_name, cells_name, 1472 node->full_name); 1473 goto err; 1474 } 1475 } else { 1476 count = cell_count; 1477 } 1478 1479 /* 1480 * Make sure that the arguments actually fit in the 1481 * remaining property data length 1482 */ 1483 if (list + count > list_end) { 1484 pr_err("%s: arguments longer than property\n", 1485 np->full_name); 1486 goto err; 1487 } 1488 } 1489 1490 /* 1491 * All of the error cases above bail out of the loop, so at 1492 * this point, the parsing is successful. If the requested 1493 * index matches, then fill the out_args structure and return, 1494 * or return -ENOENT for an empty entry. 1495 */ 1496 rc = -ENOENT; 1497 if (cur_index == index) { 1498 if (!phandle) 1499 goto err; 1500 1501 if (out_args) { 1502 int i; 1503 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1504 count = MAX_PHANDLE_ARGS; 1505 out_args->np = node; 1506 out_args->args_count = count; 1507 for (i = 0; i < count; i++) 1508 out_args->args[i] = be32_to_cpup(list++); 1509 } else { 1510 of_node_put(node); 1511 } 1512 1513 /* Found it! return success */ 1514 return 0; 1515 } 1516 1517 of_node_put(node); 1518 node = NULL; 1519 list += count; 1520 cur_index++; 1521 } 1522 1523 /* 1524 * Unlock node before returning result; will be one of: 1525 * -ENOENT : index is for empty phandle 1526 * -EINVAL : parsing error on data 1527 * [1..n] : Number of phandle (count mode; when index = -1) 1528 */ 1529 rc = index < 0 ? cur_index : -ENOENT; 1530 err: 1531 if (node) 1532 of_node_put(node); 1533 return rc; 1534 } 1535 1536 /** 1537 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1538 * @np: Pointer to device node holding phandle property 1539 * @phandle_name: Name of property holding a phandle value 1540 * @index: For properties holding a table of phandles, this is the index into 1541 * the table 1542 * 1543 * Returns the device_node pointer with refcount incremented. Use 1544 * of_node_put() on it when done. 1545 */ 1546 struct device_node *of_parse_phandle(const struct device_node *np, 1547 const char *phandle_name, int index) 1548 { 1549 struct of_phandle_args args; 1550 1551 if (index < 0) 1552 return NULL; 1553 1554 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1555 index, &args)) 1556 return NULL; 1557 1558 return args.np; 1559 } 1560 EXPORT_SYMBOL(of_parse_phandle); 1561 1562 /** 1563 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1564 * @np: pointer to a device tree node containing a list 1565 * @list_name: property name that contains a list 1566 * @cells_name: property name that specifies phandles' arguments count 1567 * @index: index of a phandle to parse out 1568 * @out_args: optional pointer to output arguments structure (will be filled) 1569 * 1570 * This function is useful to parse lists of phandles and their arguments. 1571 * Returns 0 on success and fills out_args, on error returns appropriate 1572 * errno value. 1573 * 1574 * Caller is responsible to call of_node_put() on the returned out_args->np 1575 * pointer. 1576 * 1577 * Example: 1578 * 1579 * phandle1: node1 { 1580 * #list-cells = <2>; 1581 * } 1582 * 1583 * phandle2: node2 { 1584 * #list-cells = <1>; 1585 * } 1586 * 1587 * node3 { 1588 * list = <&phandle1 1 2 &phandle2 3>; 1589 * } 1590 * 1591 * To get a device_node of the `node2' node you may call this: 1592 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1593 */ 1594 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1595 const char *cells_name, int index, 1596 struct of_phandle_args *out_args) 1597 { 1598 if (index < 0) 1599 return -EINVAL; 1600 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1601 index, out_args); 1602 } 1603 EXPORT_SYMBOL(of_parse_phandle_with_args); 1604 1605 /** 1606 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1607 * @np: pointer to a device tree node containing a list 1608 * @list_name: property name that contains a list 1609 * @cell_count: number of argument cells following the phandle 1610 * @index: index of a phandle to parse out 1611 * @out_args: optional pointer to output arguments structure (will be filled) 1612 * 1613 * This function is useful to parse lists of phandles and their arguments. 1614 * Returns 0 on success and fills out_args, on error returns appropriate 1615 * errno value. 1616 * 1617 * Caller is responsible to call of_node_put() on the returned out_args->np 1618 * pointer. 1619 * 1620 * Example: 1621 * 1622 * phandle1: node1 { 1623 * } 1624 * 1625 * phandle2: node2 { 1626 * } 1627 * 1628 * node3 { 1629 * list = <&phandle1 0 2 &phandle2 2 3>; 1630 * } 1631 * 1632 * To get a device_node of the `node2' node you may call this: 1633 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1634 */ 1635 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1636 const char *list_name, int cell_count, 1637 int index, struct of_phandle_args *out_args) 1638 { 1639 if (index < 0) 1640 return -EINVAL; 1641 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1642 index, out_args); 1643 } 1644 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1645 1646 /** 1647 * of_count_phandle_with_args() - Find the number of phandles references in a property 1648 * @np: pointer to a device tree node containing a list 1649 * @list_name: property name that contains a list 1650 * @cells_name: property name that specifies phandles' arguments count 1651 * 1652 * Returns the number of phandle + argument tuples within a property. It 1653 * is a typical pattern to encode a list of phandle and variable 1654 * arguments into a single property. The number of arguments is encoded 1655 * by a property in the phandle-target node. For example, a gpios 1656 * property would contain a list of GPIO specifies consisting of a 1657 * phandle and 1 or more arguments. The number of arguments are 1658 * determined by the #gpio-cells property in the node pointed to by the 1659 * phandle. 1660 */ 1661 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1662 const char *cells_name) 1663 { 1664 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1665 NULL); 1666 } 1667 EXPORT_SYMBOL(of_count_phandle_with_args); 1668 1669 /** 1670 * __of_add_property - Add a property to a node without lock operations 1671 */ 1672 int __of_add_property(struct device_node *np, struct property *prop) 1673 { 1674 struct property **next; 1675 1676 prop->next = NULL; 1677 next = &np->properties; 1678 while (*next) { 1679 if (strcmp(prop->name, (*next)->name) == 0) 1680 /* duplicate ! don't insert it */ 1681 return -EEXIST; 1682 1683 next = &(*next)->next; 1684 } 1685 *next = prop; 1686 1687 return 0; 1688 } 1689 1690 /** 1691 * of_add_property - Add a property to a node 1692 */ 1693 int of_add_property(struct device_node *np, struct property *prop) 1694 { 1695 unsigned long flags; 1696 int rc; 1697 1698 mutex_lock(&of_mutex); 1699 1700 raw_spin_lock_irqsave(&devtree_lock, flags); 1701 rc = __of_add_property(np, prop); 1702 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1703 1704 if (!rc) 1705 __of_add_property_sysfs(np, prop); 1706 1707 mutex_unlock(&of_mutex); 1708 1709 if (!rc) 1710 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1711 1712 return rc; 1713 } 1714 1715 int __of_remove_property(struct device_node *np, struct property *prop) 1716 { 1717 struct property **next; 1718 1719 for (next = &np->properties; *next; next = &(*next)->next) { 1720 if (*next == prop) 1721 break; 1722 } 1723 if (*next == NULL) 1724 return -ENODEV; 1725 1726 /* found the node */ 1727 *next = prop->next; 1728 prop->next = np->deadprops; 1729 np->deadprops = prop; 1730 1731 return 0; 1732 } 1733 1734 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1735 { 1736 if (!IS_ENABLED(CONFIG_SYSFS)) 1737 return; 1738 1739 /* at early boot, bail here and defer setup to of_init() */ 1740 if (of_kset && of_node_is_attached(np)) 1741 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1742 } 1743 1744 /** 1745 * of_remove_property - Remove a property from a node. 1746 * 1747 * Note that we don't actually remove it, since we have given out 1748 * who-knows-how-many pointers to the data using get-property. 1749 * Instead we just move the property to the "dead properties" 1750 * list, so it won't be found any more. 1751 */ 1752 int of_remove_property(struct device_node *np, struct property *prop) 1753 { 1754 unsigned long flags; 1755 int rc; 1756 1757 mutex_lock(&of_mutex); 1758 1759 raw_spin_lock_irqsave(&devtree_lock, flags); 1760 rc = __of_remove_property(np, prop); 1761 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1762 1763 if (!rc) 1764 __of_remove_property_sysfs(np, prop); 1765 1766 mutex_unlock(&of_mutex); 1767 1768 if (!rc) 1769 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1770 1771 return rc; 1772 } 1773 1774 int __of_update_property(struct device_node *np, struct property *newprop, 1775 struct property **oldpropp) 1776 { 1777 struct property **next, *oldprop; 1778 1779 for (next = &np->properties; *next; next = &(*next)->next) { 1780 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1781 break; 1782 } 1783 *oldpropp = oldprop = *next; 1784 1785 if (oldprop) { 1786 /* replace the node */ 1787 newprop->next = oldprop->next; 1788 *next = newprop; 1789 oldprop->next = np->deadprops; 1790 np->deadprops = oldprop; 1791 } else { 1792 /* new node */ 1793 newprop->next = NULL; 1794 *next = newprop; 1795 } 1796 1797 return 0; 1798 } 1799 1800 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1801 struct property *oldprop) 1802 { 1803 if (!IS_ENABLED(CONFIG_SYSFS)) 1804 return; 1805 1806 /* At early boot, bail out and defer setup to of_init() */ 1807 if (!of_kset) 1808 return; 1809 1810 if (oldprop) 1811 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1812 __of_add_property_sysfs(np, newprop); 1813 } 1814 1815 /* 1816 * of_update_property - Update a property in a node, if the property does 1817 * not exist, add it. 1818 * 1819 * Note that we don't actually remove it, since we have given out 1820 * who-knows-how-many pointers to the data using get-property. 1821 * Instead we just move the property to the "dead properties" list, 1822 * and add the new property to the property list 1823 */ 1824 int of_update_property(struct device_node *np, struct property *newprop) 1825 { 1826 struct property *oldprop; 1827 unsigned long flags; 1828 int rc; 1829 1830 if (!newprop->name) 1831 return -EINVAL; 1832 1833 mutex_lock(&of_mutex); 1834 1835 raw_spin_lock_irqsave(&devtree_lock, flags); 1836 rc = __of_update_property(np, newprop, &oldprop); 1837 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1838 1839 if (!rc) 1840 __of_update_property_sysfs(np, newprop, oldprop); 1841 1842 mutex_unlock(&of_mutex); 1843 1844 if (!rc) 1845 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1846 1847 return rc; 1848 } 1849 1850 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1851 int id, const char *stem, int stem_len) 1852 { 1853 ap->np = np; 1854 ap->id = id; 1855 strncpy(ap->stem, stem, stem_len); 1856 ap->stem[stem_len] = 0; 1857 list_add_tail(&ap->link, &aliases_lookup); 1858 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1859 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1860 } 1861 1862 /** 1863 * of_alias_scan - Scan all properties of the 'aliases' node 1864 * 1865 * The function scans all the properties of the 'aliases' node and populates 1866 * the global lookup table with the properties. It returns the 1867 * number of alias properties found, or an error code in case of failure. 1868 * 1869 * @dt_alloc: An allocator that provides a virtual address to memory 1870 * for storing the resulting tree 1871 */ 1872 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1873 { 1874 struct property *pp; 1875 1876 of_aliases = of_find_node_by_path("/aliases"); 1877 of_chosen = of_find_node_by_path("/chosen"); 1878 if (of_chosen == NULL) 1879 of_chosen = of_find_node_by_path("/chosen@0"); 1880 1881 if (of_chosen) { 1882 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1883 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1884 if (!name) 1885 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1886 if (IS_ENABLED(CONFIG_PPC) && !name) 1887 name = of_get_property(of_aliases, "stdout", NULL); 1888 if (name) 1889 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1890 } 1891 1892 if (!of_aliases) 1893 return; 1894 1895 for_each_property_of_node(of_aliases, pp) { 1896 const char *start = pp->name; 1897 const char *end = start + strlen(start); 1898 struct device_node *np; 1899 struct alias_prop *ap; 1900 int id, len; 1901 1902 /* Skip those we do not want to proceed */ 1903 if (!strcmp(pp->name, "name") || 1904 !strcmp(pp->name, "phandle") || 1905 !strcmp(pp->name, "linux,phandle")) 1906 continue; 1907 1908 np = of_find_node_by_path(pp->value); 1909 if (!np) 1910 continue; 1911 1912 /* walk the alias backwards to extract the id and work out 1913 * the 'stem' string */ 1914 while (isdigit(*(end-1)) && end > start) 1915 end--; 1916 len = end - start; 1917 1918 if (kstrtoint(end, 10, &id) < 0) 1919 continue; 1920 1921 /* Allocate an alias_prop with enough space for the stem */ 1922 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1923 if (!ap) 1924 continue; 1925 memset(ap, 0, sizeof(*ap) + len + 1); 1926 ap->alias = start; 1927 of_alias_add(ap, np, id, start, len); 1928 } 1929 } 1930 1931 /** 1932 * of_alias_get_id - Get alias id for the given device_node 1933 * @np: Pointer to the given device_node 1934 * @stem: Alias stem of the given device_node 1935 * 1936 * The function travels the lookup table to get the alias id for the given 1937 * device_node and alias stem. It returns the alias id if found. 1938 */ 1939 int of_alias_get_id(struct device_node *np, const char *stem) 1940 { 1941 struct alias_prop *app; 1942 int id = -ENODEV; 1943 1944 mutex_lock(&of_mutex); 1945 list_for_each_entry(app, &aliases_lookup, link) { 1946 if (strcmp(app->stem, stem) != 0) 1947 continue; 1948 1949 if (np == app->np) { 1950 id = app->id; 1951 break; 1952 } 1953 } 1954 mutex_unlock(&of_mutex); 1955 1956 return id; 1957 } 1958 EXPORT_SYMBOL_GPL(of_alias_get_id); 1959 1960 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1961 u32 *pu) 1962 { 1963 const void *curv = cur; 1964 1965 if (!prop) 1966 return NULL; 1967 1968 if (!cur) { 1969 curv = prop->value; 1970 goto out_val; 1971 } 1972 1973 curv += sizeof(*cur); 1974 if (curv >= prop->value + prop->length) 1975 return NULL; 1976 1977 out_val: 1978 *pu = be32_to_cpup(curv); 1979 return curv; 1980 } 1981 EXPORT_SYMBOL_GPL(of_prop_next_u32); 1982 1983 const char *of_prop_next_string(struct property *prop, const char *cur) 1984 { 1985 const void *curv = cur; 1986 1987 if (!prop) 1988 return NULL; 1989 1990 if (!cur) 1991 return prop->value; 1992 1993 curv += strlen(cur) + 1; 1994 if (curv >= prop->value + prop->length) 1995 return NULL; 1996 1997 return curv; 1998 } 1999 EXPORT_SYMBOL_GPL(of_prop_next_string); 2000 2001 /** 2002 * of_console_check() - Test and setup console for DT setup 2003 * @dn - Pointer to device node 2004 * @name - Name to use for preferred console without index. ex. "ttyS" 2005 * @index - Index to use for preferred console. 2006 * 2007 * Check if the given device node matches the stdout-path property in the 2008 * /chosen node. If it does then register it as the preferred console and return 2009 * TRUE. Otherwise return FALSE. 2010 */ 2011 bool of_console_check(struct device_node *dn, char *name, int index) 2012 { 2013 if (!dn || dn != of_stdout || console_set_on_cmdline) 2014 return false; 2015 return !add_preferred_console(name, index, 2016 kstrdup(of_stdout_options, GFP_KERNEL)); 2017 } 2018 EXPORT_SYMBOL_GPL(of_console_check); 2019 2020 /** 2021 * of_find_next_cache_node - Find a node's subsidiary cache 2022 * @np: node of type "cpu" or "cache" 2023 * 2024 * Returns a node pointer with refcount incremented, use 2025 * of_node_put() on it when done. Caller should hold a reference 2026 * to np. 2027 */ 2028 struct device_node *of_find_next_cache_node(const struct device_node *np) 2029 { 2030 struct device_node *child; 2031 const phandle *handle; 2032 2033 handle = of_get_property(np, "l2-cache", NULL); 2034 if (!handle) 2035 handle = of_get_property(np, "next-level-cache", NULL); 2036 2037 if (handle) 2038 return of_find_node_by_phandle(be32_to_cpup(handle)); 2039 2040 /* OF on pmac has nodes instead of properties named "l2-cache" 2041 * beneath CPU nodes. 2042 */ 2043 if (!strcmp(np->type, "cpu")) 2044 for_each_child_of_node(np, child) 2045 if (!strcmp(child->type, "cache")) 2046 return child; 2047 2048 return NULL; 2049 } 2050 2051 /** 2052 * of_graph_parse_endpoint() - parse common endpoint node properties 2053 * @node: pointer to endpoint device_node 2054 * @endpoint: pointer to the OF endpoint data structure 2055 * 2056 * The caller should hold a reference to @node. 2057 */ 2058 int of_graph_parse_endpoint(const struct device_node *node, 2059 struct of_endpoint *endpoint) 2060 { 2061 struct device_node *port_node = of_get_parent(node); 2062 2063 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2064 __func__, node->full_name); 2065 2066 memset(endpoint, 0, sizeof(*endpoint)); 2067 2068 endpoint->local_node = node; 2069 /* 2070 * It doesn't matter whether the two calls below succeed. 2071 * If they don't then the default value 0 is used. 2072 */ 2073 of_property_read_u32(port_node, "reg", &endpoint->port); 2074 of_property_read_u32(node, "reg", &endpoint->id); 2075 2076 of_node_put(port_node); 2077 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(of_graph_parse_endpoint); 2081 2082 /** 2083 * of_graph_get_next_endpoint() - get next endpoint node 2084 * @parent: pointer to the parent device node 2085 * @prev: previous endpoint node, or NULL to get first 2086 * 2087 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2088 * of the passed @prev node is not decremented, the caller have to use 2089 * of_node_put() on it when done. 2090 */ 2091 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2092 struct device_node *prev) 2093 { 2094 struct device_node *endpoint; 2095 struct device_node *port; 2096 2097 if (!parent) 2098 return NULL; 2099 2100 /* 2101 * Start by locating the port node. If no previous endpoint is specified 2102 * search for the first port node, otherwise get the previous endpoint 2103 * parent port node. 2104 */ 2105 if (!prev) { 2106 struct device_node *node; 2107 2108 node = of_get_child_by_name(parent, "ports"); 2109 if (node) 2110 parent = node; 2111 2112 port = of_get_child_by_name(parent, "port"); 2113 of_node_put(node); 2114 2115 if (!port) { 2116 pr_err("%s(): no port node found in %s\n", 2117 __func__, parent->full_name); 2118 return NULL; 2119 } 2120 } else { 2121 port = of_get_parent(prev); 2122 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2123 __func__, prev->full_name)) 2124 return NULL; 2125 2126 /* 2127 * Avoid dropping prev node refcount to 0 when getting the next 2128 * child below. 2129 */ 2130 of_node_get(prev); 2131 } 2132 2133 while (1) { 2134 /* 2135 * Now that we have a port node, get the next endpoint by 2136 * getting the next child. If the previous endpoint is NULL this 2137 * will return the first child. 2138 */ 2139 endpoint = of_get_next_child(port, prev); 2140 if (endpoint) { 2141 of_node_put(port); 2142 return endpoint; 2143 } 2144 2145 /* No more endpoints under this port, try the next one. */ 2146 prev = NULL; 2147 2148 do { 2149 port = of_get_next_child(parent, port); 2150 if (!port) 2151 return NULL; 2152 } while (of_node_cmp(port->name, "port")); 2153 } 2154 } 2155 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2156 2157 /** 2158 * of_graph_get_remote_port_parent() - get remote port's parent node 2159 * @node: pointer to a local endpoint device_node 2160 * 2161 * Return: Remote device node associated with remote endpoint node linked 2162 * to @node. Use of_node_put() on it when done. 2163 */ 2164 struct device_node *of_graph_get_remote_port_parent( 2165 const struct device_node *node) 2166 { 2167 struct device_node *np; 2168 unsigned int depth; 2169 2170 /* Get remote endpoint node. */ 2171 np = of_parse_phandle(node, "remote-endpoint", 0); 2172 2173 /* Walk 3 levels up only if there is 'ports' node. */ 2174 for (depth = 3; depth && np; depth--) { 2175 np = of_get_next_parent(np); 2176 if (depth == 2 && of_node_cmp(np->name, "ports")) 2177 break; 2178 } 2179 return np; 2180 } 2181 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2182 2183 /** 2184 * of_graph_get_remote_port() - get remote port node 2185 * @node: pointer to a local endpoint device_node 2186 * 2187 * Return: Remote port node associated with remote endpoint node linked 2188 * to @node. Use of_node_put() on it when done. 2189 */ 2190 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2191 { 2192 struct device_node *np; 2193 2194 /* Get remote endpoint node. */ 2195 np = of_parse_phandle(node, "remote-endpoint", 0); 2196 if (!np) 2197 return NULL; 2198 return of_get_next_parent(np); 2199 } 2200 EXPORT_SYMBOL(of_graph_get_remote_port); 2201