xref: /linux/drivers/of/base.c (revision 44748065ed321041db6e18cdcaa8c2a9554768ac)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \
91 	IS_ENABLED(CONFIG_SPARC) || \
92 	of_find_compatible_node(NULL, NULL, "coreboot") \
93 )
94 
95 int of_bus_n_addr_cells(struct device_node *np)
96 {
97 	u32 cells;
98 
99 	for (; np; np = np->parent) {
100 		if (!of_property_read_u32(np, "#address-cells", &cells))
101 			return cells;
102 		/*
103 		 * Default root value and walking parent nodes for "#address-cells"
104 		 * is deprecated. Any platforms which hit this warning should
105 		 * be added to the excluded list.
106 		 */
107 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
108 			  "Missing '#address-cells' in %pOF\n", np);
109 	}
110 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
111 }
112 
113 int of_n_addr_cells(struct device_node *np)
114 {
115 	if (np->parent)
116 		np = np->parent;
117 
118 	return of_bus_n_addr_cells(np);
119 }
120 EXPORT_SYMBOL(of_n_addr_cells);
121 
122 int of_bus_n_size_cells(struct device_node *np)
123 {
124 	u32 cells;
125 
126 	for (; np; np = np->parent) {
127 		if (!of_property_read_u32(np, "#size-cells", &cells))
128 			return cells;
129 		/*
130 		 * Default root value and walking parent nodes for "#size-cells"
131 		 * is deprecated. Any platforms which hit this warning should
132 		 * be added to the excluded list.
133 		 */
134 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
135 			  "Missing '#size-cells' in %pOF\n", np);
136 	}
137 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
138 }
139 
140 int of_n_size_cells(struct device_node *np)
141 {
142 	if (np->parent)
143 		np = np->parent;
144 
145 	return of_bus_n_size_cells(np);
146 }
147 EXPORT_SYMBOL(of_n_size_cells);
148 
149 #ifdef CONFIG_NUMA
150 int __weak of_node_to_nid(struct device_node *np)
151 {
152 	return NUMA_NO_NODE;
153 }
154 #endif
155 
156 #define OF_PHANDLE_CACHE_BITS	7
157 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
158 
159 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
160 
161 static u32 of_phandle_cache_hash(phandle handle)
162 {
163 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
164 }
165 
166 /*
167  * Caller must hold devtree_lock.
168  */
169 void __of_phandle_cache_inv_entry(phandle handle)
170 {
171 	u32 handle_hash;
172 	struct device_node *np;
173 
174 	if (!handle)
175 		return;
176 
177 	handle_hash = of_phandle_cache_hash(handle);
178 
179 	np = phandle_cache[handle_hash];
180 	if (np && handle == np->phandle)
181 		phandle_cache[handle_hash] = NULL;
182 }
183 
184 void __init of_core_init(void)
185 {
186 	struct device_node *np;
187 
188 	of_platform_register_reconfig_notifier();
189 
190 	/* Create the kset, and register existing nodes */
191 	mutex_lock(&of_mutex);
192 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
193 	if (!of_kset) {
194 		mutex_unlock(&of_mutex);
195 		pr_err("failed to register existing nodes\n");
196 		return;
197 	}
198 	for_each_of_allnodes(np) {
199 		__of_attach_node_sysfs(np);
200 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
201 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
202 	}
203 	mutex_unlock(&of_mutex);
204 
205 	/* Symlink in /proc as required by userspace ABI */
206 	if (of_root)
207 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
208 }
209 
210 static struct property *__of_find_property(const struct device_node *np,
211 					   const char *name, int *lenp)
212 {
213 	struct property *pp;
214 
215 	if (!np)
216 		return NULL;
217 
218 	for (pp = np->properties; pp; pp = pp->next) {
219 		if (of_prop_cmp(pp->name, name) == 0) {
220 			if (lenp)
221 				*lenp = pp->length;
222 			break;
223 		}
224 	}
225 
226 	return pp;
227 }
228 
229 struct property *of_find_property(const struct device_node *np,
230 				  const char *name,
231 				  int *lenp)
232 {
233 	struct property *pp;
234 	unsigned long flags;
235 
236 	raw_spin_lock_irqsave(&devtree_lock, flags);
237 	pp = __of_find_property(np, name, lenp);
238 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
239 
240 	return pp;
241 }
242 EXPORT_SYMBOL(of_find_property);
243 
244 struct device_node *__of_find_all_nodes(struct device_node *prev)
245 {
246 	struct device_node *np;
247 	if (!prev) {
248 		np = of_root;
249 	} else if (prev->child) {
250 		np = prev->child;
251 	} else {
252 		/* Walk back up looking for a sibling, or the end of the structure */
253 		np = prev;
254 		while (np->parent && !np->sibling)
255 			np = np->parent;
256 		np = np->sibling; /* Might be null at the end of the tree */
257 	}
258 	return np;
259 }
260 
261 /**
262  * of_find_all_nodes - Get next node in global list
263  * @prev:	Previous node or NULL to start iteration
264  *		of_node_put() will be called on it
265  *
266  * Return: A node pointer with refcount incremented, use
267  * of_node_put() on it when done.
268  */
269 struct device_node *of_find_all_nodes(struct device_node *prev)
270 {
271 	struct device_node *np;
272 	unsigned long flags;
273 
274 	raw_spin_lock_irqsave(&devtree_lock, flags);
275 	np = __of_find_all_nodes(prev);
276 	of_node_get(np);
277 	of_node_put(prev);
278 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
279 	return np;
280 }
281 EXPORT_SYMBOL(of_find_all_nodes);
282 
283 /*
284  * Find a property with a given name for a given node
285  * and return the value.
286  */
287 const void *__of_get_property(const struct device_node *np,
288 			      const char *name, int *lenp)
289 {
290 	const struct property *pp = __of_find_property(np, name, lenp);
291 
292 	return pp ? pp->value : NULL;
293 }
294 
295 /*
296  * Find a property with a given name for a given node
297  * and return the value.
298  */
299 const void *of_get_property(const struct device_node *np, const char *name,
300 			    int *lenp)
301 {
302 	const struct property *pp = of_find_property(np, name, lenp);
303 
304 	return pp ? pp->value : NULL;
305 }
306 EXPORT_SYMBOL(of_get_property);
307 
308 /**
309  * __of_device_is_compatible() - Check if the node matches given constraints
310  * @device: pointer to node
311  * @compat: required compatible string, NULL or "" for any match
312  * @type: required device_type value, NULL or "" for any match
313  * @name: required node name, NULL or "" for any match
314  *
315  * Checks if the given @compat, @type and @name strings match the
316  * properties of the given @device. A constraints can be skipped by
317  * passing NULL or an empty string as the constraint.
318  *
319  * Returns 0 for no match, and a positive integer on match. The return
320  * value is a relative score with larger values indicating better
321  * matches. The score is weighted for the most specific compatible value
322  * to get the highest score. Matching type is next, followed by matching
323  * name. Practically speaking, this results in the following priority
324  * order for matches:
325  *
326  * 1. specific compatible && type && name
327  * 2. specific compatible && type
328  * 3. specific compatible && name
329  * 4. specific compatible
330  * 5. general compatible && type && name
331  * 6. general compatible && type
332  * 7. general compatible && name
333  * 8. general compatible
334  * 9. type && name
335  * 10. type
336  * 11. name
337  */
338 static int __of_device_is_compatible(const struct device_node *device,
339 				     const char *compat, const char *type, const char *name)
340 {
341 	const struct property *prop;
342 	const char *cp;
343 	int index = 0, score = 0;
344 
345 	/* Compatible match has highest priority */
346 	if (compat && compat[0]) {
347 		prop = __of_find_property(device, "compatible", NULL);
348 		for (cp = of_prop_next_string(prop, NULL); cp;
349 		     cp = of_prop_next_string(prop, cp), index++) {
350 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
351 				score = INT_MAX/2 - (index << 2);
352 				break;
353 			}
354 		}
355 		if (!score)
356 			return 0;
357 	}
358 
359 	/* Matching type is better than matching name */
360 	if (type && type[0]) {
361 		if (!__of_node_is_type(device, type))
362 			return 0;
363 		score += 2;
364 	}
365 
366 	/* Matching name is a bit better than not */
367 	if (name && name[0]) {
368 		if (!of_node_name_eq(device, name))
369 			return 0;
370 		score++;
371 	}
372 
373 	return score;
374 }
375 
376 /** Checks if the given "compat" string matches one of the strings in
377  * the device's "compatible" property
378  */
379 int of_device_is_compatible(const struct device_node *device,
380 		const char *compat)
381 {
382 	unsigned long flags;
383 	int res;
384 
385 	raw_spin_lock_irqsave(&devtree_lock, flags);
386 	res = __of_device_is_compatible(device, compat, NULL, NULL);
387 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
388 	return res;
389 }
390 EXPORT_SYMBOL(of_device_is_compatible);
391 
392 /** Checks if the device is compatible with any of the entries in
393  *  a NULL terminated array of strings. Returns the best match
394  *  score or 0.
395  */
396 int of_device_compatible_match(const struct device_node *device,
397 			       const char *const *compat)
398 {
399 	unsigned int tmp, score = 0;
400 
401 	if (!compat)
402 		return 0;
403 
404 	while (*compat) {
405 		tmp = of_device_is_compatible(device, *compat);
406 		if (tmp > score)
407 			score = tmp;
408 		compat++;
409 	}
410 
411 	return score;
412 }
413 EXPORT_SYMBOL_GPL(of_device_compatible_match);
414 
415 /**
416  * of_machine_compatible_match - Test root of device tree against a compatible array
417  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
418  *
419  * Returns true if the root node has any of the given compatible values in its
420  * compatible property.
421  */
422 bool of_machine_compatible_match(const char *const *compats)
423 {
424 	struct device_node *root;
425 	int rc = 0;
426 
427 	root = of_find_node_by_path("/");
428 	if (root) {
429 		rc = of_device_compatible_match(root, compats);
430 		of_node_put(root);
431 	}
432 
433 	return rc != 0;
434 }
435 EXPORT_SYMBOL(of_machine_compatible_match);
436 
437 static bool __of_device_is_status(const struct device_node *device,
438 				  const char * const*strings)
439 {
440 	const char *status;
441 	int statlen;
442 
443 	if (!device)
444 		return false;
445 
446 	status = __of_get_property(device, "status", &statlen);
447 	if (status == NULL)
448 		return false;
449 
450 	if (statlen > 0) {
451 		while (*strings) {
452 			unsigned int len = strlen(*strings);
453 
454 			if ((*strings)[len - 1] == '-') {
455 				if (!strncmp(status, *strings, len))
456 					return true;
457 			} else {
458 				if (!strcmp(status, *strings))
459 					return true;
460 			}
461 			strings++;
462 		}
463 	}
464 
465 	return false;
466 }
467 
468 /**
469  *  __of_device_is_available - check if a device is available for use
470  *
471  *  @device: Node to check for availability, with locks already held
472  *
473  *  Return: True if the status property is absent or set to "okay" or "ok",
474  *  false otherwise
475  */
476 static bool __of_device_is_available(const struct device_node *device)
477 {
478 	static const char * const ok[] = {"okay", "ok", NULL};
479 
480 	if (!device)
481 		return false;
482 
483 	return !__of_get_property(device, "status", NULL) ||
484 		__of_device_is_status(device, ok);
485 }
486 
487 /**
488  *  __of_device_is_reserved - check if a device is reserved
489  *
490  *  @device: Node to check for availability, with locks already held
491  *
492  *  Return: True if the status property is set to "reserved", false otherwise
493  */
494 static bool __of_device_is_reserved(const struct device_node *device)
495 {
496 	static const char * const reserved[] = {"reserved", NULL};
497 
498 	return __of_device_is_status(device, reserved);
499 }
500 
501 /**
502  *  of_device_is_available - check if a device is available for use
503  *
504  *  @device: Node to check for availability
505  *
506  *  Return: True if the status property is absent or set to "okay" or "ok",
507  *  false otherwise
508  */
509 bool of_device_is_available(const struct device_node *device)
510 {
511 	unsigned long flags;
512 	bool res;
513 
514 	raw_spin_lock_irqsave(&devtree_lock, flags);
515 	res = __of_device_is_available(device);
516 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
517 	return res;
518 
519 }
520 EXPORT_SYMBOL(of_device_is_available);
521 
522 /**
523  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
524  *
525  *  @device: Node to check status for, with locks already held
526  *
527  *  Return: True if the status property is set to "fail" or "fail-..." (for any
528  *  error code suffix), false otherwise
529  */
530 static bool __of_device_is_fail(const struct device_node *device)
531 {
532 	static const char * const fail[] = {"fail", "fail-", NULL};
533 
534 	return __of_device_is_status(device, fail);
535 }
536 
537 /**
538  *  of_device_is_big_endian - check if a device has BE registers
539  *
540  *  @device: Node to check for endianness
541  *
542  *  Return: True if the device has a "big-endian" property, or if the kernel
543  *  was compiled for BE *and* the device has a "native-endian" property.
544  *  Returns false otherwise.
545  *
546  *  Callers would nominally use ioread32be/iowrite32be if
547  *  of_device_is_big_endian() == true, or readl/writel otherwise.
548  */
549 bool of_device_is_big_endian(const struct device_node *device)
550 {
551 	if (of_property_read_bool(device, "big-endian"))
552 		return true;
553 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
554 	    of_property_read_bool(device, "native-endian"))
555 		return true;
556 	return false;
557 }
558 EXPORT_SYMBOL(of_device_is_big_endian);
559 
560 /**
561  * of_get_parent - Get a node's parent if any
562  * @node:	Node to get parent
563  *
564  * Return: A node pointer with refcount incremented, use
565  * of_node_put() on it when done.
566  */
567 struct device_node *of_get_parent(const struct device_node *node)
568 {
569 	struct device_node *np;
570 	unsigned long flags;
571 
572 	if (!node)
573 		return NULL;
574 
575 	raw_spin_lock_irqsave(&devtree_lock, flags);
576 	np = of_node_get(node->parent);
577 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
578 	return np;
579 }
580 EXPORT_SYMBOL(of_get_parent);
581 
582 /**
583  * of_get_next_parent - Iterate to a node's parent
584  * @node:	Node to get parent of
585  *
586  * This is like of_get_parent() except that it drops the
587  * refcount on the passed node, making it suitable for iterating
588  * through a node's parents.
589  *
590  * Return: A node pointer with refcount incremented, use
591  * of_node_put() on it when done.
592  */
593 struct device_node *of_get_next_parent(struct device_node *node)
594 {
595 	struct device_node *parent;
596 	unsigned long flags;
597 
598 	if (!node)
599 		return NULL;
600 
601 	raw_spin_lock_irqsave(&devtree_lock, flags);
602 	parent = of_node_get(node->parent);
603 	of_node_put(node);
604 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
605 	return parent;
606 }
607 EXPORT_SYMBOL(of_get_next_parent);
608 
609 static struct device_node *__of_get_next_child(const struct device_node *node,
610 						struct device_node *prev)
611 {
612 	struct device_node *next;
613 
614 	if (!node)
615 		return NULL;
616 
617 	next = prev ? prev->sibling : node->child;
618 	of_node_get(next);
619 	of_node_put(prev);
620 	return next;
621 }
622 #define __for_each_child_of_node(parent, child) \
623 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
624 	     child = __of_get_next_child(parent, child))
625 
626 /**
627  * of_get_next_child - Iterate a node childs
628  * @node:	parent node
629  * @prev:	previous child of the parent node, or NULL to get first
630  *
631  * Return: A node pointer with refcount incremented, use of_node_put() on
632  * it when done. Returns NULL when prev is the last child. Decrements the
633  * refcount of prev.
634  */
635 struct device_node *of_get_next_child(const struct device_node *node,
636 	struct device_node *prev)
637 {
638 	struct device_node *next;
639 	unsigned long flags;
640 
641 	raw_spin_lock_irqsave(&devtree_lock, flags);
642 	next = __of_get_next_child(node, prev);
643 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 	return next;
645 }
646 EXPORT_SYMBOL(of_get_next_child);
647 
648 static struct device_node *of_get_next_status_child(const struct device_node *node,
649 						    struct device_node *prev,
650 						    bool (*checker)(const struct device_node *))
651 {
652 	struct device_node *next;
653 	unsigned long flags;
654 
655 	if (!node)
656 		return NULL;
657 
658 	raw_spin_lock_irqsave(&devtree_lock, flags);
659 	next = prev ? prev->sibling : node->child;
660 	for (; next; next = next->sibling) {
661 		if (!checker(next))
662 			continue;
663 		if (of_node_get(next))
664 			break;
665 	}
666 	of_node_put(prev);
667 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
668 	return next;
669 }
670 
671 /**
672  * of_get_next_available_child - Find the next available child node
673  * @node:	parent node
674  * @prev:	previous child of the parent node, or NULL to get first
675  *
676  * This function is like of_get_next_child(), except that it
677  * automatically skips any disabled nodes (i.e. status = "disabled").
678  */
679 struct device_node *of_get_next_available_child(const struct device_node *node,
680 	struct device_node *prev)
681 {
682 	return of_get_next_status_child(node, prev, __of_device_is_available);
683 }
684 EXPORT_SYMBOL(of_get_next_available_child);
685 
686 /**
687  * of_get_next_reserved_child - Find the next reserved child node
688  * @node:	parent node
689  * @prev:	previous child of the parent node, or NULL to get first
690  *
691  * This function is like of_get_next_child(), except that it
692  * automatically skips any disabled nodes (i.e. status = "disabled").
693  */
694 struct device_node *of_get_next_reserved_child(const struct device_node *node,
695 						struct device_node *prev)
696 {
697 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
698 }
699 EXPORT_SYMBOL(of_get_next_reserved_child);
700 
701 /**
702  * of_get_next_cpu_node - Iterate on cpu nodes
703  * @prev:	previous child of the /cpus node, or NULL to get first
704  *
705  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
706  * will be skipped.
707  *
708  * Return: A cpu node pointer with refcount incremented, use of_node_put()
709  * on it when done. Returns NULL when prev is the last child. Decrements
710  * the refcount of prev.
711  */
712 struct device_node *of_get_next_cpu_node(struct device_node *prev)
713 {
714 	struct device_node *next = NULL;
715 	unsigned long flags;
716 	struct device_node *node;
717 
718 	if (!prev)
719 		node = of_find_node_by_path("/cpus");
720 
721 	raw_spin_lock_irqsave(&devtree_lock, flags);
722 	if (prev)
723 		next = prev->sibling;
724 	else if (node) {
725 		next = node->child;
726 		of_node_put(node);
727 	}
728 	for (; next; next = next->sibling) {
729 		if (__of_device_is_fail(next))
730 			continue;
731 		if (!(of_node_name_eq(next, "cpu") ||
732 		      __of_node_is_type(next, "cpu")))
733 			continue;
734 		if (of_node_get(next))
735 			break;
736 	}
737 	of_node_put(prev);
738 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
739 	return next;
740 }
741 EXPORT_SYMBOL(of_get_next_cpu_node);
742 
743 /**
744  * of_get_compatible_child - Find compatible child node
745  * @parent:	parent node
746  * @compatible:	compatible string
747  *
748  * Lookup child node whose compatible property contains the given compatible
749  * string.
750  *
751  * Return: a node pointer with refcount incremented, use of_node_put() on it
752  * when done; or NULL if not found.
753  */
754 struct device_node *of_get_compatible_child(const struct device_node *parent,
755 				const char *compatible)
756 {
757 	struct device_node *child;
758 
759 	for_each_child_of_node(parent, child) {
760 		if (of_device_is_compatible(child, compatible))
761 			break;
762 	}
763 
764 	return child;
765 }
766 EXPORT_SYMBOL(of_get_compatible_child);
767 
768 /**
769  * of_get_child_by_name - Find the child node by name for a given parent
770  * @node:	parent node
771  * @name:	child name to look for.
772  *
773  * This function looks for child node for given matching name
774  *
775  * Return: A node pointer if found, with refcount incremented, use
776  * of_node_put() on it when done.
777  * Returns NULL if node is not found.
778  */
779 struct device_node *of_get_child_by_name(const struct device_node *node,
780 				const char *name)
781 {
782 	struct device_node *child;
783 
784 	for_each_child_of_node(node, child)
785 		if (of_node_name_eq(child, name))
786 			break;
787 	return child;
788 }
789 EXPORT_SYMBOL(of_get_child_by_name);
790 
791 struct device_node *__of_find_node_by_path(const struct device_node *parent,
792 						const char *path)
793 {
794 	struct device_node *child;
795 	int len;
796 
797 	len = strcspn(path, "/:");
798 	if (!len)
799 		return NULL;
800 
801 	__for_each_child_of_node(parent, child) {
802 		const char *name = kbasename(child->full_name);
803 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
804 			return child;
805 	}
806 	return NULL;
807 }
808 
809 struct device_node *__of_find_node_by_full_path(struct device_node *node,
810 						const char *path)
811 {
812 	const char *separator = strchr(path, ':');
813 
814 	while (node && *path == '/') {
815 		struct device_node *tmp = node;
816 
817 		path++; /* Increment past '/' delimiter */
818 		node = __of_find_node_by_path(node, path);
819 		of_node_put(tmp);
820 		path = strchrnul(path, '/');
821 		if (separator && separator < path)
822 			break;
823 	}
824 	return node;
825 }
826 
827 /**
828  * of_find_node_opts_by_path - Find a node matching a full OF path
829  * @path: Either the full path to match, or if the path does not
830  *       start with '/', the name of a property of the /aliases
831  *       node (an alias).  In the case of an alias, the node
832  *       matching the alias' value will be returned.
833  * @opts: Address of a pointer into which to store the start of
834  *       an options string appended to the end of the path with
835  *       a ':' separator.
836  *
837  * Valid paths:
838  *  * /foo/bar	Full path
839  *  * foo	Valid alias
840  *  * foo/bar	Valid alias + relative path
841  *
842  * Return: A node pointer with refcount incremented, use
843  * of_node_put() on it when done.
844  */
845 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
846 {
847 	struct device_node *np = NULL;
848 	const struct property *pp;
849 	unsigned long flags;
850 	const char *separator = strchr(path, ':');
851 
852 	if (opts)
853 		*opts = separator ? separator + 1 : NULL;
854 
855 	if (strcmp(path, "/") == 0)
856 		return of_node_get(of_root);
857 
858 	/* The path could begin with an alias */
859 	if (*path != '/') {
860 		int len;
861 		const char *p = separator;
862 
863 		if (!p)
864 			p = strchrnul(path, '/');
865 		len = p - path;
866 
867 		/* of_aliases must not be NULL */
868 		if (!of_aliases)
869 			return NULL;
870 
871 		for_each_property_of_node(of_aliases, pp) {
872 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
873 				np = of_find_node_by_path(pp->value);
874 				break;
875 			}
876 		}
877 		if (!np)
878 			return NULL;
879 		path = p;
880 	}
881 
882 	/* Step down the tree matching path components */
883 	raw_spin_lock_irqsave(&devtree_lock, flags);
884 	if (!np)
885 		np = of_node_get(of_root);
886 	np = __of_find_node_by_full_path(np, path);
887 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
888 	return np;
889 }
890 EXPORT_SYMBOL(of_find_node_opts_by_path);
891 
892 /**
893  * of_find_node_by_name - Find a node by its "name" property
894  * @from:	The node to start searching from or NULL; the node
895  *		you pass will not be searched, only the next one
896  *		will. Typically, you pass what the previous call
897  *		returned. of_node_put() will be called on @from.
898  * @name:	The name string to match against
899  *
900  * Return: A node pointer with refcount incremented, use
901  * of_node_put() on it when done.
902  */
903 struct device_node *of_find_node_by_name(struct device_node *from,
904 	const char *name)
905 {
906 	struct device_node *np;
907 	unsigned long flags;
908 
909 	raw_spin_lock_irqsave(&devtree_lock, flags);
910 	for_each_of_allnodes_from(from, np)
911 		if (of_node_name_eq(np, name) && of_node_get(np))
912 			break;
913 	of_node_put(from);
914 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
915 	return np;
916 }
917 EXPORT_SYMBOL(of_find_node_by_name);
918 
919 /**
920  * of_find_node_by_type - Find a node by its "device_type" property
921  * @from:	The node to start searching from, or NULL to start searching
922  *		the entire device tree. The node you pass will not be
923  *		searched, only the next one will; typically, you pass
924  *		what the previous call returned. of_node_put() will be
925  *		called on from for you.
926  * @type:	The type string to match against
927  *
928  * Return: A node pointer with refcount incremented, use
929  * of_node_put() on it when done.
930  */
931 struct device_node *of_find_node_by_type(struct device_node *from,
932 	const char *type)
933 {
934 	struct device_node *np;
935 	unsigned long flags;
936 
937 	raw_spin_lock_irqsave(&devtree_lock, flags);
938 	for_each_of_allnodes_from(from, np)
939 		if (__of_node_is_type(np, type) && of_node_get(np))
940 			break;
941 	of_node_put(from);
942 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
943 	return np;
944 }
945 EXPORT_SYMBOL(of_find_node_by_type);
946 
947 /**
948  * of_find_compatible_node - Find a node based on type and one of the
949  *                                tokens in its "compatible" property
950  * @from:	The node to start searching from or NULL, the node
951  *		you pass will not be searched, only the next one
952  *		will; typically, you pass what the previous call
953  *		returned. of_node_put() will be called on it
954  * @type:	The type string to match "device_type" or NULL to ignore
955  * @compatible:	The string to match to one of the tokens in the device
956  *		"compatible" list.
957  *
958  * Return: A node pointer with refcount incremented, use
959  * of_node_put() on it when done.
960  */
961 struct device_node *of_find_compatible_node(struct device_node *from,
962 	const char *type, const char *compatible)
963 {
964 	struct device_node *np;
965 	unsigned long flags;
966 
967 	raw_spin_lock_irqsave(&devtree_lock, flags);
968 	for_each_of_allnodes_from(from, np)
969 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
970 		    of_node_get(np))
971 			break;
972 	of_node_put(from);
973 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
974 	return np;
975 }
976 EXPORT_SYMBOL(of_find_compatible_node);
977 
978 /**
979  * of_find_node_with_property - Find a node which has a property with
980  *                              the given name.
981  * @from:	The node to start searching from or NULL, the node
982  *		you pass will not be searched, only the next one
983  *		will; typically, you pass what the previous call
984  *		returned. of_node_put() will be called on it
985  * @prop_name:	The name of the property to look for.
986  *
987  * Return: A node pointer with refcount incremented, use
988  * of_node_put() on it when done.
989  */
990 struct device_node *of_find_node_with_property(struct device_node *from,
991 	const char *prop_name)
992 {
993 	struct device_node *np;
994 	const struct property *pp;
995 	unsigned long flags;
996 
997 	raw_spin_lock_irqsave(&devtree_lock, flags);
998 	for_each_of_allnodes_from(from, np) {
999 		for (pp = np->properties; pp; pp = pp->next) {
1000 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1001 				of_node_get(np);
1002 				goto out;
1003 			}
1004 		}
1005 	}
1006 out:
1007 	of_node_put(from);
1008 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 	return np;
1010 }
1011 EXPORT_SYMBOL(of_find_node_with_property);
1012 
1013 static
1014 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1015 					   const struct device_node *node)
1016 {
1017 	const struct of_device_id *best_match = NULL;
1018 	int score, best_score = 0;
1019 
1020 	if (!matches)
1021 		return NULL;
1022 
1023 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1024 		score = __of_device_is_compatible(node, matches->compatible,
1025 						  matches->type, matches->name);
1026 		if (score > best_score) {
1027 			best_match = matches;
1028 			best_score = score;
1029 		}
1030 	}
1031 
1032 	return best_match;
1033 }
1034 
1035 /**
1036  * of_match_node - Tell if a device_node has a matching of_match structure
1037  * @matches:	array of of device match structures to search in
1038  * @node:	the of device structure to match against
1039  *
1040  * Low level utility function used by device matching.
1041  */
1042 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1043 					 const struct device_node *node)
1044 {
1045 	const struct of_device_id *match;
1046 	unsigned long flags;
1047 
1048 	raw_spin_lock_irqsave(&devtree_lock, flags);
1049 	match = __of_match_node(matches, node);
1050 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1051 	return match;
1052 }
1053 EXPORT_SYMBOL(of_match_node);
1054 
1055 /**
1056  * of_find_matching_node_and_match - Find a node based on an of_device_id
1057  *				     match table.
1058  * @from:	The node to start searching from or NULL, the node
1059  *		you pass will not be searched, only the next one
1060  *		will; typically, you pass what the previous call
1061  *		returned. of_node_put() will be called on it
1062  * @matches:	array of of device match structures to search in
1063  * @match:	Updated to point at the matches entry which matched
1064  *
1065  * Return: A node pointer with refcount incremented, use
1066  * of_node_put() on it when done.
1067  */
1068 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1069 					const struct of_device_id *matches,
1070 					const struct of_device_id **match)
1071 {
1072 	struct device_node *np;
1073 	const struct of_device_id *m;
1074 	unsigned long flags;
1075 
1076 	if (match)
1077 		*match = NULL;
1078 
1079 	raw_spin_lock_irqsave(&devtree_lock, flags);
1080 	for_each_of_allnodes_from(from, np) {
1081 		m = __of_match_node(matches, np);
1082 		if (m && of_node_get(np)) {
1083 			if (match)
1084 				*match = m;
1085 			break;
1086 		}
1087 	}
1088 	of_node_put(from);
1089 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1090 	return np;
1091 }
1092 EXPORT_SYMBOL(of_find_matching_node_and_match);
1093 
1094 /**
1095  * of_alias_from_compatible - Lookup appropriate alias for a device node
1096  *			      depending on compatible
1097  * @node:	pointer to a device tree node
1098  * @alias:	Pointer to buffer that alias value will be copied into
1099  * @len:	Length of alias value
1100  *
1101  * Based on the value of the compatible property, this routine will attempt
1102  * to choose an appropriate alias value for a particular device tree node.
1103  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1104  * from the first entry in the compatible list property.
1105  *
1106  * Note: The matching on just the "product" side of the compatible is a relic
1107  * from I2C and SPI. Please do not add any new user.
1108  *
1109  * Return: This routine returns 0 on success, <0 on failure.
1110  */
1111 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1112 {
1113 	const char *compatible, *p;
1114 	int cplen;
1115 
1116 	compatible = of_get_property(node, "compatible", &cplen);
1117 	if (!compatible || strlen(compatible) > cplen)
1118 		return -ENODEV;
1119 	p = strchr(compatible, ',');
1120 	strscpy(alias, p ? p + 1 : compatible, len);
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1124 
1125 /**
1126  * of_find_node_by_phandle - Find a node given a phandle
1127  * @handle:	phandle of the node to find
1128  *
1129  * Return: A node pointer with refcount incremented, use
1130  * of_node_put() on it when done.
1131  */
1132 struct device_node *of_find_node_by_phandle(phandle handle)
1133 {
1134 	struct device_node *np = NULL;
1135 	unsigned long flags;
1136 	u32 handle_hash;
1137 
1138 	if (!handle)
1139 		return NULL;
1140 
1141 	handle_hash = of_phandle_cache_hash(handle);
1142 
1143 	raw_spin_lock_irqsave(&devtree_lock, flags);
1144 
1145 	if (phandle_cache[handle_hash] &&
1146 	    handle == phandle_cache[handle_hash]->phandle)
1147 		np = phandle_cache[handle_hash];
1148 
1149 	if (!np) {
1150 		for_each_of_allnodes(np)
1151 			if (np->phandle == handle &&
1152 			    !of_node_check_flag(np, OF_DETACHED)) {
1153 				phandle_cache[handle_hash] = np;
1154 				break;
1155 			}
1156 	}
1157 
1158 	of_node_get(np);
1159 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1160 	return np;
1161 }
1162 EXPORT_SYMBOL(of_find_node_by_phandle);
1163 
1164 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1165 {
1166 	int i;
1167 	printk("%s %pOF", msg, args->np);
1168 	for (i = 0; i < args->args_count; i++) {
1169 		const char delim = i ? ',' : ':';
1170 
1171 		pr_cont("%c%08x", delim, args->args[i]);
1172 	}
1173 	pr_cont("\n");
1174 }
1175 
1176 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1177 		const struct device_node *np,
1178 		const char *list_name,
1179 		const char *cells_name,
1180 		int cell_count)
1181 {
1182 	const __be32 *list;
1183 	int size;
1184 
1185 	memset(it, 0, sizeof(*it));
1186 
1187 	/*
1188 	 * one of cell_count or cells_name must be provided to determine the
1189 	 * argument length.
1190 	 */
1191 	if (cell_count < 0 && !cells_name)
1192 		return -EINVAL;
1193 
1194 	list = of_get_property(np, list_name, &size);
1195 	if (!list)
1196 		return -ENOENT;
1197 
1198 	it->cells_name = cells_name;
1199 	it->cell_count = cell_count;
1200 	it->parent = np;
1201 	it->list_end = list + size / sizeof(*list);
1202 	it->phandle_end = list;
1203 	it->cur = list;
1204 
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1208 
1209 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1210 {
1211 	uint32_t count = 0;
1212 
1213 	if (it->node) {
1214 		of_node_put(it->node);
1215 		it->node = NULL;
1216 	}
1217 
1218 	if (!it->cur || it->phandle_end >= it->list_end)
1219 		return -ENOENT;
1220 
1221 	it->cur = it->phandle_end;
1222 
1223 	/* If phandle is 0, then it is an empty entry with no arguments. */
1224 	it->phandle = be32_to_cpup(it->cur++);
1225 
1226 	if (it->phandle) {
1227 
1228 		/*
1229 		 * Find the provider node and parse the #*-cells property to
1230 		 * determine the argument length.
1231 		 */
1232 		it->node = of_find_node_by_phandle(it->phandle);
1233 
1234 		if (it->cells_name) {
1235 			if (!it->node) {
1236 				pr_err("%pOF: could not find phandle %d\n",
1237 				       it->parent, it->phandle);
1238 				goto err;
1239 			}
1240 
1241 			if (of_property_read_u32(it->node, it->cells_name,
1242 						 &count)) {
1243 				/*
1244 				 * If both cell_count and cells_name is given,
1245 				 * fall back to cell_count in absence
1246 				 * of the cells_name property
1247 				 */
1248 				if (it->cell_count >= 0) {
1249 					count = it->cell_count;
1250 				} else {
1251 					pr_err("%pOF: could not get %s for %pOF\n",
1252 					       it->parent,
1253 					       it->cells_name,
1254 					       it->node);
1255 					goto err;
1256 				}
1257 			}
1258 		} else {
1259 			count = it->cell_count;
1260 		}
1261 
1262 		/*
1263 		 * Make sure that the arguments actually fit in the remaining
1264 		 * property data length
1265 		 */
1266 		if (it->cur + count > it->list_end) {
1267 			if (it->cells_name)
1268 				pr_err("%pOF: %s = %d found %td\n",
1269 					it->parent, it->cells_name,
1270 					count, it->list_end - it->cur);
1271 			else
1272 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1273 					it->parent, of_node_full_name(it->node),
1274 					count, it->list_end - it->cur);
1275 			goto err;
1276 		}
1277 	}
1278 
1279 	it->phandle_end = it->cur + count;
1280 	it->cur_count = count;
1281 
1282 	return 0;
1283 
1284 err:
1285 	if (it->node) {
1286 		of_node_put(it->node);
1287 		it->node = NULL;
1288 	}
1289 
1290 	return -EINVAL;
1291 }
1292 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1293 
1294 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1295 			     uint32_t *args,
1296 			     int size)
1297 {
1298 	int i, count;
1299 
1300 	count = it->cur_count;
1301 
1302 	if (WARN_ON(size < count))
1303 		count = size;
1304 
1305 	for (i = 0; i < count; i++)
1306 		args[i] = be32_to_cpup(it->cur++);
1307 
1308 	return count;
1309 }
1310 
1311 int __of_parse_phandle_with_args(const struct device_node *np,
1312 				 const char *list_name,
1313 				 const char *cells_name,
1314 				 int cell_count, int index,
1315 				 struct of_phandle_args *out_args)
1316 {
1317 	struct of_phandle_iterator it;
1318 	int rc, cur_index = 0;
1319 
1320 	if (index < 0)
1321 		return -EINVAL;
1322 
1323 	/* Loop over the phandles until all the requested entry is found */
1324 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1325 		/*
1326 		 * All of the error cases bail out of the loop, so at
1327 		 * this point, the parsing is successful. If the requested
1328 		 * index matches, then fill the out_args structure and return,
1329 		 * or return -ENOENT for an empty entry.
1330 		 */
1331 		rc = -ENOENT;
1332 		if (cur_index == index) {
1333 			if (!it.phandle)
1334 				goto err;
1335 
1336 			if (out_args) {
1337 				int c;
1338 
1339 				c = of_phandle_iterator_args(&it,
1340 							     out_args->args,
1341 							     MAX_PHANDLE_ARGS);
1342 				out_args->np = it.node;
1343 				out_args->args_count = c;
1344 			} else {
1345 				of_node_put(it.node);
1346 			}
1347 
1348 			/* Found it! return success */
1349 			return 0;
1350 		}
1351 
1352 		cur_index++;
1353 	}
1354 
1355 	/*
1356 	 * Unlock node before returning result; will be one of:
1357 	 * -ENOENT : index is for empty phandle
1358 	 * -EINVAL : parsing error on data
1359 	 */
1360 
1361  err:
1362 	of_node_put(it.node);
1363 	return rc;
1364 }
1365 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1366 
1367 /**
1368  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1369  * @np:		pointer to a device tree node containing a list
1370  * @list_name:	property name that contains a list
1371  * @stem_name:	stem of property names that specify phandles' arguments count
1372  * @index:	index of a phandle to parse out
1373  * @out_args:	optional pointer to output arguments structure (will be filled)
1374  *
1375  * This function is useful to parse lists of phandles and their arguments.
1376  * Returns 0 on success and fills out_args, on error returns appropriate errno
1377  * value. The difference between this function and of_parse_phandle_with_args()
1378  * is that this API remaps a phandle if the node the phandle points to has
1379  * a <@stem_name>-map property.
1380  *
1381  * Caller is responsible to call of_node_put() on the returned out_args->np
1382  * pointer.
1383  *
1384  * Example::
1385  *
1386  *  phandle1: node1 {
1387  *  	#list-cells = <2>;
1388  *  };
1389  *
1390  *  phandle2: node2 {
1391  *  	#list-cells = <1>;
1392  *  };
1393  *
1394  *  phandle3: node3 {
1395  *  	#list-cells = <1>;
1396  *  	list-map = <0 &phandle2 3>,
1397  *  		   <1 &phandle2 2>,
1398  *  		   <2 &phandle1 5 1>;
1399  *  	list-map-mask = <0x3>;
1400  *  };
1401  *
1402  *  node4 {
1403  *  	list = <&phandle1 1 2 &phandle3 0>;
1404  *  };
1405  *
1406  * To get a device_node of the ``node2`` node you may call this:
1407  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1408  */
1409 int of_parse_phandle_with_args_map(const struct device_node *np,
1410 				   const char *list_name,
1411 				   const char *stem_name,
1412 				   int index, struct of_phandle_args *out_args)
1413 {
1414 	char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1415 	char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1416 	char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1417 	char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1418 	struct device_node *cur, *new = NULL;
1419 	const __be32 *map, *mask, *pass;
1420 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1421 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1422 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1423 	const __be32 *match_array = initial_match_array;
1424 	int i, ret, map_len, match;
1425 	u32 list_size, new_size;
1426 
1427 	if (index < 0)
1428 		return -EINVAL;
1429 
1430 	if (!cells_name || !map_name || !mask_name || !pass_name)
1431 		return -ENOMEM;
1432 
1433 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1434 					   out_args);
1435 	if (ret)
1436 		return ret;
1437 
1438 	/* Get the #<list>-cells property */
1439 	cur = out_args->np;
1440 	ret = of_property_read_u32(cur, cells_name, &list_size);
1441 	if (ret < 0)
1442 		goto put;
1443 
1444 	/* Precalculate the match array - this simplifies match loop */
1445 	for (i = 0; i < list_size; i++)
1446 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1447 
1448 	ret = -EINVAL;
1449 	while (cur) {
1450 		/* Get the <list>-map property */
1451 		map = of_get_property(cur, map_name, &map_len);
1452 		if (!map) {
1453 			return 0;
1454 		}
1455 		map_len /= sizeof(u32);
1456 
1457 		/* Get the <list>-map-mask property (optional) */
1458 		mask = of_get_property(cur, mask_name, NULL);
1459 		if (!mask)
1460 			mask = dummy_mask;
1461 		/* Iterate through <list>-map property */
1462 		match = 0;
1463 		while (map_len > (list_size + 1) && !match) {
1464 			/* Compare specifiers */
1465 			match = 1;
1466 			for (i = 0; i < list_size; i++, map_len--)
1467 				match &= !((match_array[i] ^ *map++) & mask[i]);
1468 
1469 			of_node_put(new);
1470 			new = of_find_node_by_phandle(be32_to_cpup(map));
1471 			map++;
1472 			map_len--;
1473 
1474 			/* Check if not found */
1475 			if (!new) {
1476 				ret = -EINVAL;
1477 				goto put;
1478 			}
1479 
1480 			if (!of_device_is_available(new))
1481 				match = 0;
1482 
1483 			ret = of_property_read_u32(new, cells_name, &new_size);
1484 			if (ret)
1485 				goto put;
1486 
1487 			/* Check for malformed properties */
1488 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS) ||
1489 			    map_len < new_size) {
1490 				ret = -EINVAL;
1491 				goto put;
1492 			}
1493 
1494 			/* Move forward by new node's #<list>-cells amount */
1495 			map += new_size;
1496 			map_len -= new_size;
1497 		}
1498 		if (!match) {
1499 			ret = -ENOENT;
1500 			goto put;
1501 		}
1502 
1503 		/* Get the <list>-map-pass-thru property (optional) */
1504 		pass = of_get_property(cur, pass_name, NULL);
1505 		if (!pass)
1506 			pass = dummy_pass;
1507 
1508 		/*
1509 		 * Successfully parsed a <list>-map translation; copy new
1510 		 * specifier into the out_args structure, keeping the
1511 		 * bits specified in <list>-map-pass-thru.
1512 		 */
1513 		match_array = map - new_size;
1514 		for (i = 0; i < new_size; i++) {
1515 			__be32 val = *(map - new_size + i);
1516 
1517 			if (i < list_size) {
1518 				val &= ~pass[i];
1519 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1520 			}
1521 
1522 			out_args->args[i] = be32_to_cpu(val);
1523 		}
1524 		out_args->args_count = list_size = new_size;
1525 		/* Iterate again with new provider */
1526 		out_args->np = new;
1527 		of_node_put(cur);
1528 		cur = new;
1529 		new = NULL;
1530 	}
1531 put:
1532 	of_node_put(cur);
1533 	of_node_put(new);
1534 	return ret;
1535 }
1536 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1537 
1538 /**
1539  * of_count_phandle_with_args() - Find the number of phandles references in a property
1540  * @np:		pointer to a device tree node containing a list
1541  * @list_name:	property name that contains a list
1542  * @cells_name:	property name that specifies phandles' arguments count
1543  *
1544  * Return: The number of phandle + argument tuples within a property. It
1545  * is a typical pattern to encode a list of phandle and variable
1546  * arguments into a single property. The number of arguments is encoded
1547  * by a property in the phandle-target node. For example, a gpios
1548  * property would contain a list of GPIO specifies consisting of a
1549  * phandle and 1 or more arguments. The number of arguments are
1550  * determined by the #gpio-cells property in the node pointed to by the
1551  * phandle.
1552  */
1553 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1554 				const char *cells_name)
1555 {
1556 	struct of_phandle_iterator it;
1557 	int rc, cur_index = 0;
1558 
1559 	/*
1560 	 * If cells_name is NULL we assume a cell count of 0. This makes
1561 	 * counting the phandles trivial as each 32bit word in the list is a
1562 	 * phandle and no arguments are to consider. So we don't iterate through
1563 	 * the list but just use the length to determine the phandle count.
1564 	 */
1565 	if (!cells_name) {
1566 		const __be32 *list;
1567 		int size;
1568 
1569 		list = of_get_property(np, list_name, &size);
1570 		if (!list)
1571 			return -ENOENT;
1572 
1573 		return size / sizeof(*list);
1574 	}
1575 
1576 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1577 	if (rc)
1578 		return rc;
1579 
1580 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1581 		cur_index += 1;
1582 
1583 	if (rc != -ENOENT)
1584 		return rc;
1585 
1586 	return cur_index;
1587 }
1588 EXPORT_SYMBOL(of_count_phandle_with_args);
1589 
1590 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1591 {
1592 	struct property **next;
1593 
1594 	for (next = list; *next; next = &(*next)->next) {
1595 		if (*next == prop) {
1596 			*next = prop->next;
1597 			prop->next = NULL;
1598 			return prop;
1599 		}
1600 	}
1601 	return NULL;
1602 }
1603 
1604 /**
1605  * __of_add_property - Add a property to a node without lock operations
1606  * @np:		Caller's Device Node
1607  * @prop:	Property to add
1608  */
1609 int __of_add_property(struct device_node *np, struct property *prop)
1610 {
1611 	int rc = 0;
1612 	unsigned long flags;
1613 	struct property **next;
1614 
1615 	raw_spin_lock_irqsave(&devtree_lock, flags);
1616 
1617 	__of_remove_property_from_list(&np->deadprops, prop);
1618 
1619 	prop->next = NULL;
1620 	next = &np->properties;
1621 	while (*next) {
1622 		if (strcmp(prop->name, (*next)->name) == 0) {
1623 			/* duplicate ! don't insert it */
1624 			rc = -EEXIST;
1625 			goto out_unlock;
1626 		}
1627 		next = &(*next)->next;
1628 	}
1629 	*next = prop;
1630 
1631 out_unlock:
1632 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1633 	if (rc)
1634 		return rc;
1635 
1636 	__of_add_property_sysfs(np, prop);
1637 	return 0;
1638 }
1639 
1640 /**
1641  * of_add_property - Add a property to a node
1642  * @np:		Caller's Device Node
1643  * @prop:	Property to add
1644  */
1645 int of_add_property(struct device_node *np, struct property *prop)
1646 {
1647 	int rc;
1648 
1649 	mutex_lock(&of_mutex);
1650 	rc = __of_add_property(np, prop);
1651 	mutex_unlock(&of_mutex);
1652 
1653 	if (!rc)
1654 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1655 
1656 	return rc;
1657 }
1658 EXPORT_SYMBOL_GPL(of_add_property);
1659 
1660 int __of_remove_property(struct device_node *np, struct property *prop)
1661 {
1662 	unsigned long flags;
1663 	int rc = -ENODEV;
1664 
1665 	raw_spin_lock_irqsave(&devtree_lock, flags);
1666 
1667 	if (__of_remove_property_from_list(&np->properties, prop)) {
1668 		/* Found the property, add it to deadprops list */
1669 		prop->next = np->deadprops;
1670 		np->deadprops = prop;
1671 		rc = 0;
1672 	}
1673 
1674 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1675 	if (rc)
1676 		return rc;
1677 
1678 	__of_remove_property_sysfs(np, prop);
1679 	return 0;
1680 }
1681 
1682 /**
1683  * of_remove_property - Remove a property from a node.
1684  * @np:		Caller's Device Node
1685  * @prop:	Property to remove
1686  *
1687  * Note that we don't actually remove it, since we have given out
1688  * who-knows-how-many pointers to the data using get-property.
1689  * Instead we just move the property to the "dead properties"
1690  * list, so it won't be found any more.
1691  */
1692 int of_remove_property(struct device_node *np, struct property *prop)
1693 {
1694 	int rc;
1695 
1696 	if (!prop)
1697 		return -ENODEV;
1698 
1699 	mutex_lock(&of_mutex);
1700 	rc = __of_remove_property(np, prop);
1701 	mutex_unlock(&of_mutex);
1702 
1703 	if (!rc)
1704 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1705 
1706 	return rc;
1707 }
1708 EXPORT_SYMBOL_GPL(of_remove_property);
1709 
1710 int __of_update_property(struct device_node *np, struct property *newprop,
1711 		struct property **oldpropp)
1712 {
1713 	struct property **next, *oldprop;
1714 	unsigned long flags;
1715 
1716 	raw_spin_lock_irqsave(&devtree_lock, flags);
1717 
1718 	__of_remove_property_from_list(&np->deadprops, newprop);
1719 
1720 	for (next = &np->properties; *next; next = &(*next)->next) {
1721 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1722 			break;
1723 	}
1724 	*oldpropp = oldprop = *next;
1725 
1726 	if (oldprop) {
1727 		/* replace the node */
1728 		newprop->next = oldprop->next;
1729 		*next = newprop;
1730 		oldprop->next = np->deadprops;
1731 		np->deadprops = oldprop;
1732 	} else {
1733 		/* new node */
1734 		newprop->next = NULL;
1735 		*next = newprop;
1736 	}
1737 
1738 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1739 
1740 	__of_update_property_sysfs(np, newprop, oldprop);
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * of_update_property - Update a property in a node, if the property does
1747  * not exist, add it.
1748  *
1749  * Note that we don't actually remove it, since we have given out
1750  * who-knows-how-many pointers to the data using get-property.
1751  * Instead we just move the property to the "dead properties" list,
1752  * and add the new property to the property list
1753  */
1754 int of_update_property(struct device_node *np, struct property *newprop)
1755 {
1756 	struct property *oldprop;
1757 	int rc;
1758 
1759 	if (!newprop->name)
1760 		return -EINVAL;
1761 
1762 	mutex_lock(&of_mutex);
1763 	rc = __of_update_property(np, newprop, &oldprop);
1764 	mutex_unlock(&of_mutex);
1765 
1766 	if (!rc)
1767 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1768 
1769 	return rc;
1770 }
1771 
1772 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1773 			 int id, const char *stem, int stem_len)
1774 {
1775 	ap->np = np;
1776 	ap->id = id;
1777 	strscpy(ap->stem, stem, stem_len + 1);
1778 	list_add_tail(&ap->link, &aliases_lookup);
1779 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1780 		 ap->alias, ap->stem, ap->id, np);
1781 }
1782 
1783 /**
1784  * of_alias_scan - Scan all properties of the 'aliases' node
1785  * @dt_alloc:	An allocator that provides a virtual address to memory
1786  *		for storing the resulting tree
1787  *
1788  * The function scans all the properties of the 'aliases' node and populates
1789  * the global lookup table with the properties.  It returns the
1790  * number of alias properties found, or an error code in case of failure.
1791  */
1792 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1793 {
1794 	const struct property *pp;
1795 
1796 	of_aliases = of_find_node_by_path("/aliases");
1797 	of_chosen = of_find_node_by_path("/chosen");
1798 	if (of_chosen == NULL)
1799 		of_chosen = of_find_node_by_path("/chosen@0");
1800 
1801 	if (of_chosen) {
1802 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1803 		const char *name = NULL;
1804 
1805 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1806 			of_property_read_string(of_chosen, "linux,stdout-path",
1807 						&name);
1808 		if (IS_ENABLED(CONFIG_PPC) && !name)
1809 			of_property_read_string(of_aliases, "stdout", &name);
1810 		if (name)
1811 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1812 		if (of_stdout)
1813 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1814 	}
1815 
1816 	if (!of_aliases)
1817 		return;
1818 
1819 	for_each_property_of_node(of_aliases, pp) {
1820 		const char *start = pp->name;
1821 		const char *end = start + strlen(start);
1822 		struct device_node *np;
1823 		struct alias_prop *ap;
1824 		int id, len;
1825 
1826 		/* Skip those we do not want to proceed */
1827 		if (!strcmp(pp->name, "name") ||
1828 		    !strcmp(pp->name, "phandle") ||
1829 		    !strcmp(pp->name, "linux,phandle"))
1830 			continue;
1831 
1832 		np = of_find_node_by_path(pp->value);
1833 		if (!np)
1834 			continue;
1835 
1836 		/* walk the alias backwards to extract the id and work out
1837 		 * the 'stem' string */
1838 		while (isdigit(*(end-1)) && end > start)
1839 			end--;
1840 		len = end - start;
1841 
1842 		if (kstrtoint(end, 10, &id) < 0)
1843 			continue;
1844 
1845 		/* Allocate an alias_prop with enough space for the stem */
1846 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1847 		if (!ap)
1848 			continue;
1849 		memset(ap, 0, sizeof(*ap) + len + 1);
1850 		ap->alias = start;
1851 		of_alias_add(ap, np, id, start, len);
1852 	}
1853 }
1854 
1855 /**
1856  * of_alias_get_id - Get alias id for the given device_node
1857  * @np:		Pointer to the given device_node
1858  * @stem:	Alias stem of the given device_node
1859  *
1860  * The function travels the lookup table to get the alias id for the given
1861  * device_node and alias stem.
1862  *
1863  * Return: The alias id if found.
1864  */
1865 int of_alias_get_id(const struct device_node *np, const char *stem)
1866 {
1867 	struct alias_prop *app;
1868 	int id = -ENODEV;
1869 
1870 	mutex_lock(&of_mutex);
1871 	list_for_each_entry(app, &aliases_lookup, link) {
1872 		if (strcmp(app->stem, stem) != 0)
1873 			continue;
1874 
1875 		if (np == app->np) {
1876 			id = app->id;
1877 			break;
1878 		}
1879 	}
1880 	mutex_unlock(&of_mutex);
1881 
1882 	return id;
1883 }
1884 EXPORT_SYMBOL_GPL(of_alias_get_id);
1885 
1886 /**
1887  * of_alias_get_highest_id - Get highest alias id for the given stem
1888  * @stem:	Alias stem to be examined
1889  *
1890  * The function travels the lookup table to get the highest alias id for the
1891  * given alias stem.  It returns the alias id if found.
1892  */
1893 int of_alias_get_highest_id(const char *stem)
1894 {
1895 	struct alias_prop *app;
1896 	int id = -ENODEV;
1897 
1898 	mutex_lock(&of_mutex);
1899 	list_for_each_entry(app, &aliases_lookup, link) {
1900 		if (strcmp(app->stem, stem) != 0)
1901 			continue;
1902 
1903 		if (app->id > id)
1904 			id = app->id;
1905 	}
1906 	mutex_unlock(&of_mutex);
1907 
1908 	return id;
1909 }
1910 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1911 
1912 /**
1913  * of_console_check() - Test and setup console for DT setup
1914  * @dn: Pointer to device node
1915  * @name: Name to use for preferred console without index. ex. "ttyS"
1916  * @index: Index to use for preferred console.
1917  *
1918  * Check if the given device node matches the stdout-path property in the
1919  * /chosen node. If it does then register it as the preferred console.
1920  *
1921  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1922  */
1923 bool of_console_check(const struct device_node *dn, char *name, int index)
1924 {
1925 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1926 		return false;
1927 
1928 	/*
1929 	 * XXX: cast `options' to char pointer to suppress complication
1930 	 * warnings: printk, UART and console drivers expect char pointer.
1931 	 */
1932 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1933 }
1934 EXPORT_SYMBOL_GPL(of_console_check);
1935 
1936 /**
1937  * of_find_next_cache_node - Find a node's subsidiary cache
1938  * @np:	node of type "cpu" or "cache"
1939  *
1940  * Return: A node pointer with refcount incremented, use
1941  * of_node_put() on it when done.  Caller should hold a reference
1942  * to np.
1943  */
1944 struct device_node *of_find_next_cache_node(const struct device_node *np)
1945 {
1946 	struct device_node *child, *cache_node;
1947 
1948 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1949 	if (!cache_node)
1950 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1951 
1952 	if (cache_node)
1953 		return cache_node;
1954 
1955 	/* OF on pmac has nodes instead of properties named "l2-cache"
1956 	 * beneath CPU nodes.
1957 	 */
1958 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1959 		for_each_child_of_node(np, child)
1960 			if (of_node_is_type(child, "cache"))
1961 				return child;
1962 
1963 	return NULL;
1964 }
1965 
1966 /**
1967  * of_find_last_cache_level - Find the level at which the last cache is
1968  * 		present for the given logical cpu
1969  *
1970  * @cpu: cpu number(logical index) for which the last cache level is needed
1971  *
1972  * Return: The level at which the last cache is present. It is exactly
1973  * same as  the total number of cache levels for the given logical cpu.
1974  */
1975 int of_find_last_cache_level(unsigned int cpu)
1976 {
1977 	u32 cache_level = 0;
1978 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1979 
1980 	while (np) {
1981 		of_node_put(prev);
1982 		prev = np;
1983 		np = of_find_next_cache_node(np);
1984 	}
1985 
1986 	of_property_read_u32(prev, "cache-level", &cache_level);
1987 	of_node_put(prev);
1988 
1989 	return cache_level;
1990 }
1991 
1992 /**
1993  * of_map_id - Translate an ID through a downstream mapping.
1994  * @np: root complex device node.
1995  * @id: device ID to map.
1996  * @map_name: property name of the map to use.
1997  * @map_mask_name: optional property name of the mask to use.
1998  * @target: optional pointer to a target device node.
1999  * @id_out: optional pointer to receive the translated ID.
2000  *
2001  * Given a device ID, look up the appropriate implementation-defined
2002  * platform ID and/or the target device which receives transactions on that
2003  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2004  * @id_out may be NULL if only the other is required. If @target points to
2005  * a non-NULL device node pointer, only entries targeting that node will be
2006  * matched; if it points to a NULL value, it will receive the device node of
2007  * the first matching target phandle, with a reference held.
2008  *
2009  * Return: 0 on success or a standard error code on failure.
2010  */
2011 int of_map_id(const struct device_node *np, u32 id,
2012 	       const char *map_name, const char *map_mask_name,
2013 	       struct device_node **target, u32 *id_out)
2014 {
2015 	u32 map_mask, masked_id;
2016 	int map_len;
2017 	const __be32 *map = NULL;
2018 
2019 	if (!np || !map_name || (!target && !id_out))
2020 		return -EINVAL;
2021 
2022 	map = of_get_property(np, map_name, &map_len);
2023 	if (!map) {
2024 		if (target)
2025 			return -ENODEV;
2026 		/* Otherwise, no map implies no translation */
2027 		*id_out = id;
2028 		return 0;
2029 	}
2030 
2031 	if (!map_len || map_len % (4 * sizeof(*map))) {
2032 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2033 			map_name, map_len);
2034 		return -EINVAL;
2035 	}
2036 
2037 	/* The default is to select all bits. */
2038 	map_mask = 0xffffffff;
2039 
2040 	/*
2041 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2042 	 * If of_property_read_u32() fails, the default is used.
2043 	 */
2044 	if (map_mask_name)
2045 		of_property_read_u32(np, map_mask_name, &map_mask);
2046 
2047 	masked_id = map_mask & id;
2048 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2049 		struct device_node *phandle_node;
2050 		u32 id_base = be32_to_cpup(map + 0);
2051 		u32 phandle = be32_to_cpup(map + 1);
2052 		u32 out_base = be32_to_cpup(map + 2);
2053 		u32 id_len = be32_to_cpup(map + 3);
2054 
2055 		if (id_base & ~map_mask) {
2056 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2057 				np, map_name, map_name,
2058 				map_mask, id_base);
2059 			return -EFAULT;
2060 		}
2061 
2062 		if (masked_id < id_base || masked_id >= id_base + id_len)
2063 			continue;
2064 
2065 		phandle_node = of_find_node_by_phandle(phandle);
2066 		if (!phandle_node)
2067 			return -ENODEV;
2068 
2069 		if (target) {
2070 			if (*target)
2071 				of_node_put(phandle_node);
2072 			else
2073 				*target = phandle_node;
2074 
2075 			if (*target != phandle_node)
2076 				continue;
2077 		}
2078 
2079 		if (id_out)
2080 			*id_out = masked_id - id_base + out_base;
2081 
2082 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2083 			np, map_name, map_mask, id_base, out_base,
2084 			id_len, id, masked_id - id_base + out_base);
2085 		return 0;
2086 	}
2087 
2088 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2089 		id, target && *target ? *target : NULL);
2090 
2091 	/* Bypasses translation */
2092 	if (id_out)
2093 		*id_out = id;
2094 	return 0;
2095 }
2096 EXPORT_SYMBOL_GPL(of_map_id);
2097