xref: /linux/drivers/of/base.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 EXPORT_SYMBOL(of_chosen);
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 	of_platform_register_reconfig_notifier();
171 
172 	/* Create the kset, and register existing nodes */
173 	mutex_lock(&of_mutex);
174 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 	if (!of_kset) {
176 		mutex_unlock(&of_mutex);
177 		pr_err("failed to register existing nodes\n");
178 		return;
179 	}
180 	for_each_of_allnodes(np) {
181 		__of_attach_node_sysfs(np);
182 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 	}
185 	mutex_unlock(&of_mutex);
186 
187 	/* Symlink in /proc as required by userspace ABI */
188 	if (of_root)
189 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191 
192 static struct property *__of_find_property(const struct device_node *np,
193 					   const char *name, int *lenp)
194 {
195 	struct property *pp;
196 
197 	if (!np)
198 		return NULL;
199 
200 	for (pp = np->properties; pp; pp = pp->next) {
201 		if (of_prop_cmp(pp->name, name) == 0) {
202 			if (lenp)
203 				*lenp = pp->length;
204 			break;
205 		}
206 	}
207 
208 	return pp;
209 }
210 
211 struct property *of_find_property(const struct device_node *np,
212 				  const char *name,
213 				  int *lenp)
214 {
215 	struct property *pp;
216 	unsigned long flags;
217 
218 	raw_spin_lock_irqsave(&devtree_lock, flags);
219 	pp = __of_find_property(np, name, lenp);
220 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
221 
222 	return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225 
226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 	struct device_node *np;
229 	if (!prev) {
230 		np = of_root;
231 	} else if (prev->child) {
232 		np = prev->child;
233 	} else {
234 		/* Walk back up looking for a sibling, or the end of the structure */
235 		np = prev;
236 		while (np->parent && !np->sibling)
237 			np = np->parent;
238 		np = np->sibling; /* Might be null at the end of the tree */
239 	}
240 	return np;
241 }
242 
243 /**
244  * of_find_all_nodes - Get next node in global list
245  * @prev:	Previous node or NULL to start iteration
246  *		of_node_put() will be called on it
247  *
248  * Return: A node pointer with refcount incremented, use
249  * of_node_put() on it when done.
250  */
251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 	struct device_node *np;
254 	unsigned long flags;
255 
256 	raw_spin_lock_irqsave(&devtree_lock, flags);
257 	np = __of_find_all_nodes(prev);
258 	of_node_get(np);
259 	of_node_put(prev);
260 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 	return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264 
265 /*
266  * Find a property with a given name for a given node
267  * and return the value.
268  */
269 const void *__of_get_property(const struct device_node *np,
270 			      const char *name, int *lenp)
271 {
272 	struct property *pp = __of_find_property(np, name, lenp);
273 
274 	return pp ? pp->value : NULL;
275 }
276 
277 /*
278  * Find a property with a given name for a given node
279  * and return the value.
280  */
281 const void *of_get_property(const struct device_node *np, const char *name,
282 			    int *lenp)
283 {
284 	struct property *pp = of_find_property(np, name, lenp);
285 
286 	return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289 
290 /**
291  * __of_device_is_compatible() - Check if the node matches given constraints
292  * @device: pointer to node
293  * @compat: required compatible string, NULL or "" for any match
294  * @type: required device_type value, NULL or "" for any match
295  * @name: required node name, NULL or "" for any match
296  *
297  * Checks if the given @compat, @type and @name strings match the
298  * properties of the given @device. A constraints can be skipped by
299  * passing NULL or an empty string as the constraint.
300  *
301  * Returns 0 for no match, and a positive integer on match. The return
302  * value is a relative score with larger values indicating better
303  * matches. The score is weighted for the most specific compatible value
304  * to get the highest score. Matching type is next, followed by matching
305  * name. Practically speaking, this results in the following priority
306  * order for matches:
307  *
308  * 1. specific compatible && type && name
309  * 2. specific compatible && type
310  * 3. specific compatible && name
311  * 4. specific compatible
312  * 5. general compatible && type && name
313  * 6. general compatible && type
314  * 7. general compatible && name
315  * 8. general compatible
316  * 9. type && name
317  * 10. type
318  * 11. name
319  */
320 static int __of_device_is_compatible(const struct device_node *device,
321 				     const char *compat, const char *type, const char *name)
322 {
323 	struct property *prop;
324 	const char *cp;
325 	int index = 0, score = 0;
326 
327 	/* Compatible match has highest priority */
328 	if (compat && compat[0]) {
329 		prop = __of_find_property(device, "compatible", NULL);
330 		for (cp = of_prop_next_string(prop, NULL); cp;
331 		     cp = of_prop_next_string(prop, cp), index++) {
332 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
333 				score = INT_MAX/2 - (index << 2);
334 				break;
335 			}
336 		}
337 		if (!score)
338 			return 0;
339 	}
340 
341 	/* Matching type is better than matching name */
342 	if (type && type[0]) {
343 		if (!__of_node_is_type(device, type))
344 			return 0;
345 		score += 2;
346 	}
347 
348 	/* Matching name is a bit better than not */
349 	if (name && name[0]) {
350 		if (!of_node_name_eq(device, name))
351 			return 0;
352 		score++;
353 	}
354 
355 	return score;
356 }
357 
358 /** Checks if the given "compat" string matches one of the strings in
359  * the device's "compatible" property
360  */
361 int of_device_is_compatible(const struct device_node *device,
362 		const char *compat)
363 {
364 	unsigned long flags;
365 	int res;
366 
367 	raw_spin_lock_irqsave(&devtree_lock, flags);
368 	res = __of_device_is_compatible(device, compat, NULL, NULL);
369 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
370 	return res;
371 }
372 EXPORT_SYMBOL(of_device_is_compatible);
373 
374 /** Checks if the device is compatible with any of the entries in
375  *  a NULL terminated array of strings. Returns the best match
376  *  score or 0.
377  */
378 int of_device_compatible_match(const struct device_node *device,
379 			       const char *const *compat)
380 {
381 	unsigned int tmp, score = 0;
382 
383 	if (!compat)
384 		return 0;
385 
386 	while (*compat) {
387 		tmp = of_device_is_compatible(device, *compat);
388 		if (tmp > score)
389 			score = tmp;
390 		compat++;
391 	}
392 
393 	return score;
394 }
395 EXPORT_SYMBOL_GPL(of_device_compatible_match);
396 
397 /**
398  * of_machine_compatible_match - Test root of device tree against a compatible array
399  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
400  *
401  * Returns true if the root node has any of the given compatible values in its
402  * compatible property.
403  */
404 bool of_machine_compatible_match(const char *const *compats)
405 {
406 	struct device_node *root;
407 	int rc = 0;
408 
409 	root = of_find_node_by_path("/");
410 	if (root) {
411 		rc = of_device_compatible_match(root, compats);
412 		of_node_put(root);
413 	}
414 
415 	return rc != 0;
416 }
417 EXPORT_SYMBOL(of_machine_compatible_match);
418 
419 static bool __of_device_is_status(const struct device_node *device,
420 				  const char * const*strings)
421 {
422 	const char *status;
423 	int statlen;
424 
425 	if (!device)
426 		return false;
427 
428 	status = __of_get_property(device, "status", &statlen);
429 	if (status == NULL)
430 		return false;
431 
432 	if (statlen > 0) {
433 		while (*strings) {
434 			unsigned int len = strlen(*strings);
435 
436 			if ((*strings)[len - 1] == '-') {
437 				if (!strncmp(status, *strings, len))
438 					return true;
439 			} else {
440 				if (!strcmp(status, *strings))
441 					return true;
442 			}
443 			strings++;
444 		}
445 	}
446 
447 	return false;
448 }
449 
450 /**
451  *  __of_device_is_available - check if a device is available for use
452  *
453  *  @device: Node to check for availability, with locks already held
454  *
455  *  Return: True if the status property is absent or set to "okay" or "ok",
456  *  false otherwise
457  */
458 static bool __of_device_is_available(const struct device_node *device)
459 {
460 	static const char * const ok[] = {"okay", "ok", NULL};
461 
462 	if (!device)
463 		return false;
464 
465 	return !__of_get_property(device, "status", NULL) ||
466 		__of_device_is_status(device, ok);
467 }
468 
469 /**
470  *  __of_device_is_reserved - check if a device is reserved
471  *
472  *  @device: Node to check for availability, with locks already held
473  *
474  *  Return: True if the status property is set to "reserved", false otherwise
475  */
476 static bool __of_device_is_reserved(const struct device_node *device)
477 {
478 	static const char * const reserved[] = {"reserved", NULL};
479 
480 	return __of_device_is_status(device, reserved);
481 }
482 
483 /**
484  *  of_device_is_available - check if a device is available for use
485  *
486  *  @device: Node to check for availability
487  *
488  *  Return: True if the status property is absent or set to "okay" or "ok",
489  *  false otherwise
490  */
491 bool of_device_is_available(const struct device_node *device)
492 {
493 	unsigned long flags;
494 	bool res;
495 
496 	raw_spin_lock_irqsave(&devtree_lock, flags);
497 	res = __of_device_is_available(device);
498 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
499 	return res;
500 
501 }
502 EXPORT_SYMBOL(of_device_is_available);
503 
504 /**
505  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
506  *
507  *  @device: Node to check status for, with locks already held
508  *
509  *  Return: True if the status property is set to "fail" or "fail-..." (for any
510  *  error code suffix), false otherwise
511  */
512 static bool __of_device_is_fail(const struct device_node *device)
513 {
514 	static const char * const fail[] = {"fail", "fail-", NULL};
515 
516 	return __of_device_is_status(device, fail);
517 }
518 
519 /**
520  *  of_device_is_big_endian - check if a device has BE registers
521  *
522  *  @device: Node to check for endianness
523  *
524  *  Return: True if the device has a "big-endian" property, or if the kernel
525  *  was compiled for BE *and* the device has a "native-endian" property.
526  *  Returns false otherwise.
527  *
528  *  Callers would nominally use ioread32be/iowrite32be if
529  *  of_device_is_big_endian() == true, or readl/writel otherwise.
530  */
531 bool of_device_is_big_endian(const struct device_node *device)
532 {
533 	if (of_property_read_bool(device, "big-endian"))
534 		return true;
535 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
536 	    of_property_read_bool(device, "native-endian"))
537 		return true;
538 	return false;
539 }
540 EXPORT_SYMBOL(of_device_is_big_endian);
541 
542 /**
543  * of_get_parent - Get a node's parent if any
544  * @node:	Node to get parent
545  *
546  * Return: A node pointer with refcount incremented, use
547  * of_node_put() on it when done.
548  */
549 struct device_node *of_get_parent(const struct device_node *node)
550 {
551 	struct device_node *np;
552 	unsigned long flags;
553 
554 	if (!node)
555 		return NULL;
556 
557 	raw_spin_lock_irqsave(&devtree_lock, flags);
558 	np = of_node_get(node->parent);
559 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
560 	return np;
561 }
562 EXPORT_SYMBOL(of_get_parent);
563 
564 /**
565  * of_get_next_parent - Iterate to a node's parent
566  * @node:	Node to get parent of
567  *
568  * This is like of_get_parent() except that it drops the
569  * refcount on the passed node, making it suitable for iterating
570  * through a node's parents.
571  *
572  * Return: A node pointer with refcount incremented, use
573  * of_node_put() on it when done.
574  */
575 struct device_node *of_get_next_parent(struct device_node *node)
576 {
577 	struct device_node *parent;
578 	unsigned long flags;
579 
580 	if (!node)
581 		return NULL;
582 
583 	raw_spin_lock_irqsave(&devtree_lock, flags);
584 	parent = of_node_get(node->parent);
585 	of_node_put(node);
586 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
587 	return parent;
588 }
589 EXPORT_SYMBOL(of_get_next_parent);
590 
591 static struct device_node *__of_get_next_child(const struct device_node *node,
592 						struct device_node *prev)
593 {
594 	struct device_node *next;
595 
596 	if (!node)
597 		return NULL;
598 
599 	next = prev ? prev->sibling : node->child;
600 	of_node_get(next);
601 	of_node_put(prev);
602 	return next;
603 }
604 #define __for_each_child_of_node(parent, child) \
605 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
606 	     child = __of_get_next_child(parent, child))
607 
608 /**
609  * of_get_next_child - Iterate a node childs
610  * @node:	parent node
611  * @prev:	previous child of the parent node, or NULL to get first
612  *
613  * Return: A node pointer with refcount incremented, use of_node_put() on
614  * it when done. Returns NULL when prev is the last child. Decrements the
615  * refcount of prev.
616  */
617 struct device_node *of_get_next_child(const struct device_node *node,
618 	struct device_node *prev)
619 {
620 	struct device_node *next;
621 	unsigned long flags;
622 
623 	raw_spin_lock_irqsave(&devtree_lock, flags);
624 	next = __of_get_next_child(node, prev);
625 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 	return next;
627 }
628 EXPORT_SYMBOL(of_get_next_child);
629 
630 static struct device_node *of_get_next_status_child(const struct device_node *node,
631 						    struct device_node *prev,
632 						    bool (*checker)(const struct device_node *))
633 {
634 	struct device_node *next;
635 	unsigned long flags;
636 
637 	if (!node)
638 		return NULL;
639 
640 	raw_spin_lock_irqsave(&devtree_lock, flags);
641 	next = prev ? prev->sibling : node->child;
642 	for (; next; next = next->sibling) {
643 		if (!checker(next))
644 			continue;
645 		if (of_node_get(next))
646 			break;
647 	}
648 	of_node_put(prev);
649 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
650 	return next;
651 }
652 
653 /**
654  * of_get_next_available_child - Find the next available child node
655  * @node:	parent node
656  * @prev:	previous child of the parent node, or NULL to get first
657  *
658  * This function is like of_get_next_child(), except that it
659  * automatically skips any disabled nodes (i.e. status = "disabled").
660  */
661 struct device_node *of_get_next_available_child(const struct device_node *node,
662 	struct device_node *prev)
663 {
664 	return of_get_next_status_child(node, prev, __of_device_is_available);
665 }
666 EXPORT_SYMBOL(of_get_next_available_child);
667 
668 /**
669  * of_get_next_reserved_child - Find the next reserved child node
670  * @node:	parent node
671  * @prev:	previous child of the parent node, or NULL to get first
672  *
673  * This function is like of_get_next_child(), except that it
674  * automatically skips any disabled nodes (i.e. status = "disabled").
675  */
676 struct device_node *of_get_next_reserved_child(const struct device_node *node,
677 						struct device_node *prev)
678 {
679 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
680 }
681 EXPORT_SYMBOL(of_get_next_reserved_child);
682 
683 /**
684  * of_get_next_cpu_node - Iterate on cpu nodes
685  * @prev:	previous child of the /cpus node, or NULL to get first
686  *
687  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
688  * will be skipped.
689  *
690  * Return: A cpu node pointer with refcount incremented, use of_node_put()
691  * on it when done. Returns NULL when prev is the last child. Decrements
692  * the refcount of prev.
693  */
694 struct device_node *of_get_next_cpu_node(struct device_node *prev)
695 {
696 	struct device_node *next = NULL;
697 	unsigned long flags;
698 	struct device_node *node;
699 
700 	if (!prev)
701 		node = of_find_node_by_path("/cpus");
702 
703 	raw_spin_lock_irqsave(&devtree_lock, flags);
704 	if (prev)
705 		next = prev->sibling;
706 	else if (node) {
707 		next = node->child;
708 		of_node_put(node);
709 	}
710 	for (; next; next = next->sibling) {
711 		if (__of_device_is_fail(next))
712 			continue;
713 		if (!(of_node_name_eq(next, "cpu") ||
714 		      __of_node_is_type(next, "cpu")))
715 			continue;
716 		if (of_node_get(next))
717 			break;
718 	}
719 	of_node_put(prev);
720 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
721 	return next;
722 }
723 EXPORT_SYMBOL(of_get_next_cpu_node);
724 
725 /**
726  * of_get_compatible_child - Find compatible child node
727  * @parent:	parent node
728  * @compatible:	compatible string
729  *
730  * Lookup child node whose compatible property contains the given compatible
731  * string.
732  *
733  * Return: a node pointer with refcount incremented, use of_node_put() on it
734  * when done; or NULL if not found.
735  */
736 struct device_node *of_get_compatible_child(const struct device_node *parent,
737 				const char *compatible)
738 {
739 	struct device_node *child;
740 
741 	for_each_child_of_node(parent, child) {
742 		if (of_device_is_compatible(child, compatible))
743 			break;
744 	}
745 
746 	return child;
747 }
748 EXPORT_SYMBOL(of_get_compatible_child);
749 
750 /**
751  * of_get_child_by_name - Find the child node by name for a given parent
752  * @node:	parent node
753  * @name:	child name to look for.
754  *
755  * This function looks for child node for given matching name
756  *
757  * Return: A node pointer if found, with refcount incremented, use
758  * of_node_put() on it when done.
759  * Returns NULL if node is not found.
760  */
761 struct device_node *of_get_child_by_name(const struct device_node *node,
762 				const char *name)
763 {
764 	struct device_node *child;
765 
766 	for_each_child_of_node(node, child)
767 		if (of_node_name_eq(child, name))
768 			break;
769 	return child;
770 }
771 EXPORT_SYMBOL(of_get_child_by_name);
772 
773 struct device_node *__of_find_node_by_path(struct device_node *parent,
774 						const char *path)
775 {
776 	struct device_node *child;
777 	int len;
778 
779 	len = strcspn(path, "/:");
780 	if (!len)
781 		return NULL;
782 
783 	__for_each_child_of_node(parent, child) {
784 		const char *name = kbasename(child->full_name);
785 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
786 			return child;
787 	}
788 	return NULL;
789 }
790 
791 struct device_node *__of_find_node_by_full_path(struct device_node *node,
792 						const char *path)
793 {
794 	const char *separator = strchr(path, ':');
795 
796 	while (node && *path == '/') {
797 		struct device_node *tmp = node;
798 
799 		path++; /* Increment past '/' delimiter */
800 		node = __of_find_node_by_path(node, path);
801 		of_node_put(tmp);
802 		path = strchrnul(path, '/');
803 		if (separator && separator < path)
804 			break;
805 	}
806 	return node;
807 }
808 
809 /**
810  * of_find_node_opts_by_path - Find a node matching a full OF path
811  * @path: Either the full path to match, or if the path does not
812  *       start with '/', the name of a property of the /aliases
813  *       node (an alias).  In the case of an alias, the node
814  *       matching the alias' value will be returned.
815  * @opts: Address of a pointer into which to store the start of
816  *       an options string appended to the end of the path with
817  *       a ':' separator.
818  *
819  * Valid paths:
820  *  * /foo/bar	Full path
821  *  * foo	Valid alias
822  *  * foo/bar	Valid alias + relative path
823  *
824  * Return: A node pointer with refcount incremented, use
825  * of_node_put() on it when done.
826  */
827 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
828 {
829 	struct device_node *np = NULL;
830 	struct property *pp;
831 	unsigned long flags;
832 	const char *separator = strchr(path, ':');
833 
834 	if (opts)
835 		*opts = separator ? separator + 1 : NULL;
836 
837 	if (strcmp(path, "/") == 0)
838 		return of_node_get(of_root);
839 
840 	/* The path could begin with an alias */
841 	if (*path != '/') {
842 		int len;
843 		const char *p = separator;
844 
845 		if (!p)
846 			p = strchrnul(path, '/');
847 		len = p - path;
848 
849 		/* of_aliases must not be NULL */
850 		if (!of_aliases)
851 			return NULL;
852 
853 		for_each_property_of_node(of_aliases, pp) {
854 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
855 				np = of_find_node_by_path(pp->value);
856 				break;
857 			}
858 		}
859 		if (!np)
860 			return NULL;
861 		path = p;
862 	}
863 
864 	/* Step down the tree matching path components */
865 	raw_spin_lock_irqsave(&devtree_lock, flags);
866 	if (!np)
867 		np = of_node_get(of_root);
868 	np = __of_find_node_by_full_path(np, path);
869 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
870 	return np;
871 }
872 EXPORT_SYMBOL(of_find_node_opts_by_path);
873 
874 /**
875  * of_find_node_by_name - Find a node by its "name" property
876  * @from:	The node to start searching from or NULL; the node
877  *		you pass will not be searched, only the next one
878  *		will. Typically, you pass what the previous call
879  *		returned. of_node_put() will be called on @from.
880  * @name:	The name string to match against
881  *
882  * Return: A node pointer with refcount incremented, use
883  * of_node_put() on it when done.
884  */
885 struct device_node *of_find_node_by_name(struct device_node *from,
886 	const char *name)
887 {
888 	struct device_node *np;
889 	unsigned long flags;
890 
891 	raw_spin_lock_irqsave(&devtree_lock, flags);
892 	for_each_of_allnodes_from(from, np)
893 		if (of_node_name_eq(np, name) && of_node_get(np))
894 			break;
895 	of_node_put(from);
896 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
897 	return np;
898 }
899 EXPORT_SYMBOL(of_find_node_by_name);
900 
901 /**
902  * of_find_node_by_type - Find a node by its "device_type" property
903  * @from:	The node to start searching from, or NULL to start searching
904  *		the entire device tree. The node you pass will not be
905  *		searched, only the next one will; typically, you pass
906  *		what the previous call returned. of_node_put() will be
907  *		called on from for you.
908  * @type:	The type string to match against
909  *
910  * Return: A node pointer with refcount incremented, use
911  * of_node_put() on it when done.
912  */
913 struct device_node *of_find_node_by_type(struct device_node *from,
914 	const char *type)
915 {
916 	struct device_node *np;
917 	unsigned long flags;
918 
919 	raw_spin_lock_irqsave(&devtree_lock, flags);
920 	for_each_of_allnodes_from(from, np)
921 		if (__of_node_is_type(np, type) && of_node_get(np))
922 			break;
923 	of_node_put(from);
924 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
925 	return np;
926 }
927 EXPORT_SYMBOL(of_find_node_by_type);
928 
929 /**
930  * of_find_compatible_node - Find a node based on type and one of the
931  *                                tokens in its "compatible" property
932  * @from:	The node to start searching from or NULL, the node
933  *		you pass will not be searched, only the next one
934  *		will; typically, you pass what the previous call
935  *		returned. of_node_put() will be called on it
936  * @type:	The type string to match "device_type" or NULL to ignore
937  * @compatible:	The string to match to one of the tokens in the device
938  *		"compatible" list.
939  *
940  * Return: A node pointer with refcount incremented, use
941  * of_node_put() on it when done.
942  */
943 struct device_node *of_find_compatible_node(struct device_node *from,
944 	const char *type, const char *compatible)
945 {
946 	struct device_node *np;
947 	unsigned long flags;
948 
949 	raw_spin_lock_irqsave(&devtree_lock, flags);
950 	for_each_of_allnodes_from(from, np)
951 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
952 		    of_node_get(np))
953 			break;
954 	of_node_put(from);
955 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
956 	return np;
957 }
958 EXPORT_SYMBOL(of_find_compatible_node);
959 
960 /**
961  * of_find_node_with_property - Find a node which has a property with
962  *                              the given name.
963  * @from:	The node to start searching from or NULL, the node
964  *		you pass will not be searched, only the next one
965  *		will; typically, you pass what the previous call
966  *		returned. of_node_put() will be called on it
967  * @prop_name:	The name of the property to look for.
968  *
969  * Return: A node pointer with refcount incremented, use
970  * of_node_put() on it when done.
971  */
972 struct device_node *of_find_node_with_property(struct device_node *from,
973 	const char *prop_name)
974 {
975 	struct device_node *np;
976 	struct property *pp;
977 	unsigned long flags;
978 
979 	raw_spin_lock_irqsave(&devtree_lock, flags);
980 	for_each_of_allnodes_from(from, np) {
981 		for (pp = np->properties; pp; pp = pp->next) {
982 			if (of_prop_cmp(pp->name, prop_name) == 0) {
983 				of_node_get(np);
984 				goto out;
985 			}
986 		}
987 	}
988 out:
989 	of_node_put(from);
990 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
991 	return np;
992 }
993 EXPORT_SYMBOL(of_find_node_with_property);
994 
995 static
996 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
997 					   const struct device_node *node)
998 {
999 	const struct of_device_id *best_match = NULL;
1000 	int score, best_score = 0;
1001 
1002 	if (!matches)
1003 		return NULL;
1004 
1005 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1006 		score = __of_device_is_compatible(node, matches->compatible,
1007 						  matches->type, matches->name);
1008 		if (score > best_score) {
1009 			best_match = matches;
1010 			best_score = score;
1011 		}
1012 	}
1013 
1014 	return best_match;
1015 }
1016 
1017 /**
1018  * of_match_node - Tell if a device_node has a matching of_match structure
1019  * @matches:	array of of device match structures to search in
1020  * @node:	the of device structure to match against
1021  *
1022  * Low level utility function used by device matching.
1023  */
1024 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1025 					 const struct device_node *node)
1026 {
1027 	const struct of_device_id *match;
1028 	unsigned long flags;
1029 
1030 	raw_spin_lock_irqsave(&devtree_lock, flags);
1031 	match = __of_match_node(matches, node);
1032 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1033 	return match;
1034 }
1035 EXPORT_SYMBOL(of_match_node);
1036 
1037 /**
1038  * of_find_matching_node_and_match - Find a node based on an of_device_id
1039  *				     match table.
1040  * @from:	The node to start searching from or NULL, the node
1041  *		you pass will not be searched, only the next one
1042  *		will; typically, you pass what the previous call
1043  *		returned. of_node_put() will be called on it
1044  * @matches:	array of of device match structures to search in
1045  * @match:	Updated to point at the matches entry which matched
1046  *
1047  * Return: A node pointer with refcount incremented, use
1048  * of_node_put() on it when done.
1049  */
1050 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1051 					const struct of_device_id *matches,
1052 					const struct of_device_id **match)
1053 {
1054 	struct device_node *np;
1055 	const struct of_device_id *m;
1056 	unsigned long flags;
1057 
1058 	if (match)
1059 		*match = NULL;
1060 
1061 	raw_spin_lock_irqsave(&devtree_lock, flags);
1062 	for_each_of_allnodes_from(from, np) {
1063 		m = __of_match_node(matches, np);
1064 		if (m && of_node_get(np)) {
1065 			if (match)
1066 				*match = m;
1067 			break;
1068 		}
1069 	}
1070 	of_node_put(from);
1071 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1072 	return np;
1073 }
1074 EXPORT_SYMBOL(of_find_matching_node_and_match);
1075 
1076 /**
1077  * of_alias_from_compatible - Lookup appropriate alias for a device node
1078  *			      depending on compatible
1079  * @node:	pointer to a device tree node
1080  * @alias:	Pointer to buffer that alias value will be copied into
1081  * @len:	Length of alias value
1082  *
1083  * Based on the value of the compatible property, this routine will attempt
1084  * to choose an appropriate alias value for a particular device tree node.
1085  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1086  * from the first entry in the compatible list property.
1087  *
1088  * Note: The matching on just the "product" side of the compatible is a relic
1089  * from I2C and SPI. Please do not add any new user.
1090  *
1091  * Return: This routine returns 0 on success, <0 on failure.
1092  */
1093 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1094 {
1095 	const char *compatible, *p;
1096 	int cplen;
1097 
1098 	compatible = of_get_property(node, "compatible", &cplen);
1099 	if (!compatible || strlen(compatible) > cplen)
1100 		return -ENODEV;
1101 	p = strchr(compatible, ',');
1102 	strscpy(alias, p ? p + 1 : compatible, len);
1103 	return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1106 
1107 /**
1108  * of_find_node_by_phandle - Find a node given a phandle
1109  * @handle:	phandle of the node to find
1110  *
1111  * Return: A node pointer with refcount incremented, use
1112  * of_node_put() on it when done.
1113  */
1114 struct device_node *of_find_node_by_phandle(phandle handle)
1115 {
1116 	struct device_node *np = NULL;
1117 	unsigned long flags;
1118 	u32 handle_hash;
1119 
1120 	if (!handle)
1121 		return NULL;
1122 
1123 	handle_hash = of_phandle_cache_hash(handle);
1124 
1125 	raw_spin_lock_irqsave(&devtree_lock, flags);
1126 
1127 	if (phandle_cache[handle_hash] &&
1128 	    handle == phandle_cache[handle_hash]->phandle)
1129 		np = phandle_cache[handle_hash];
1130 
1131 	if (!np) {
1132 		for_each_of_allnodes(np)
1133 			if (np->phandle == handle &&
1134 			    !of_node_check_flag(np, OF_DETACHED)) {
1135 				phandle_cache[handle_hash] = np;
1136 				break;
1137 			}
1138 	}
1139 
1140 	of_node_get(np);
1141 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1142 	return np;
1143 }
1144 EXPORT_SYMBOL(of_find_node_by_phandle);
1145 
1146 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1147 {
1148 	int i;
1149 	printk("%s %pOF", msg, args->np);
1150 	for (i = 0; i < args->args_count; i++) {
1151 		const char delim = i ? ',' : ':';
1152 
1153 		pr_cont("%c%08x", delim, args->args[i]);
1154 	}
1155 	pr_cont("\n");
1156 }
1157 
1158 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1159 		const struct device_node *np,
1160 		const char *list_name,
1161 		const char *cells_name,
1162 		int cell_count)
1163 {
1164 	const __be32 *list;
1165 	int size;
1166 
1167 	memset(it, 0, sizeof(*it));
1168 
1169 	/*
1170 	 * one of cell_count or cells_name must be provided to determine the
1171 	 * argument length.
1172 	 */
1173 	if (cell_count < 0 && !cells_name)
1174 		return -EINVAL;
1175 
1176 	list = of_get_property(np, list_name, &size);
1177 	if (!list)
1178 		return -ENOENT;
1179 
1180 	it->cells_name = cells_name;
1181 	it->cell_count = cell_count;
1182 	it->parent = np;
1183 	it->list_end = list + size / sizeof(*list);
1184 	it->phandle_end = list;
1185 	it->cur = list;
1186 
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1190 
1191 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1192 {
1193 	uint32_t count = 0;
1194 
1195 	if (it->node) {
1196 		of_node_put(it->node);
1197 		it->node = NULL;
1198 	}
1199 
1200 	if (!it->cur || it->phandle_end >= it->list_end)
1201 		return -ENOENT;
1202 
1203 	it->cur = it->phandle_end;
1204 
1205 	/* If phandle is 0, then it is an empty entry with no arguments. */
1206 	it->phandle = be32_to_cpup(it->cur++);
1207 
1208 	if (it->phandle) {
1209 
1210 		/*
1211 		 * Find the provider node and parse the #*-cells property to
1212 		 * determine the argument length.
1213 		 */
1214 		it->node = of_find_node_by_phandle(it->phandle);
1215 
1216 		if (it->cells_name) {
1217 			if (!it->node) {
1218 				pr_err("%pOF: could not find phandle %d\n",
1219 				       it->parent, it->phandle);
1220 				goto err;
1221 			}
1222 
1223 			if (of_property_read_u32(it->node, it->cells_name,
1224 						 &count)) {
1225 				/*
1226 				 * If both cell_count and cells_name is given,
1227 				 * fall back to cell_count in absence
1228 				 * of the cells_name property
1229 				 */
1230 				if (it->cell_count >= 0) {
1231 					count = it->cell_count;
1232 				} else {
1233 					pr_err("%pOF: could not get %s for %pOF\n",
1234 					       it->parent,
1235 					       it->cells_name,
1236 					       it->node);
1237 					goto err;
1238 				}
1239 			}
1240 		} else {
1241 			count = it->cell_count;
1242 		}
1243 
1244 		/*
1245 		 * Make sure that the arguments actually fit in the remaining
1246 		 * property data length
1247 		 */
1248 		if (it->cur + count > it->list_end) {
1249 			if (it->cells_name)
1250 				pr_err("%pOF: %s = %d found %td\n",
1251 					it->parent, it->cells_name,
1252 					count, it->list_end - it->cur);
1253 			else
1254 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1255 					it->parent, of_node_full_name(it->node),
1256 					count, it->list_end - it->cur);
1257 			goto err;
1258 		}
1259 	}
1260 
1261 	it->phandle_end = it->cur + count;
1262 	it->cur_count = count;
1263 
1264 	return 0;
1265 
1266 err:
1267 	if (it->node) {
1268 		of_node_put(it->node);
1269 		it->node = NULL;
1270 	}
1271 
1272 	return -EINVAL;
1273 }
1274 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1275 
1276 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1277 			     uint32_t *args,
1278 			     int size)
1279 {
1280 	int i, count;
1281 
1282 	count = it->cur_count;
1283 
1284 	if (WARN_ON(size < count))
1285 		count = size;
1286 
1287 	for (i = 0; i < count; i++)
1288 		args[i] = be32_to_cpup(it->cur++);
1289 
1290 	return count;
1291 }
1292 
1293 int __of_parse_phandle_with_args(const struct device_node *np,
1294 				 const char *list_name,
1295 				 const char *cells_name,
1296 				 int cell_count, int index,
1297 				 struct of_phandle_args *out_args)
1298 {
1299 	struct of_phandle_iterator it;
1300 	int rc, cur_index = 0;
1301 
1302 	if (index < 0)
1303 		return -EINVAL;
1304 
1305 	/* Loop over the phandles until all the requested entry is found */
1306 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1307 		/*
1308 		 * All of the error cases bail out of the loop, so at
1309 		 * this point, the parsing is successful. If the requested
1310 		 * index matches, then fill the out_args structure and return,
1311 		 * or return -ENOENT for an empty entry.
1312 		 */
1313 		rc = -ENOENT;
1314 		if (cur_index == index) {
1315 			if (!it.phandle)
1316 				goto err;
1317 
1318 			if (out_args) {
1319 				int c;
1320 
1321 				c = of_phandle_iterator_args(&it,
1322 							     out_args->args,
1323 							     MAX_PHANDLE_ARGS);
1324 				out_args->np = it.node;
1325 				out_args->args_count = c;
1326 			} else {
1327 				of_node_put(it.node);
1328 			}
1329 
1330 			/* Found it! return success */
1331 			return 0;
1332 		}
1333 
1334 		cur_index++;
1335 	}
1336 
1337 	/*
1338 	 * Unlock node before returning result; will be one of:
1339 	 * -ENOENT : index is for empty phandle
1340 	 * -EINVAL : parsing error on data
1341 	 */
1342 
1343  err:
1344 	of_node_put(it.node);
1345 	return rc;
1346 }
1347 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1348 
1349 /**
1350  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1351  * @np:		pointer to a device tree node containing a list
1352  * @list_name:	property name that contains a list
1353  * @stem_name:	stem of property names that specify phandles' arguments count
1354  * @index:	index of a phandle to parse out
1355  * @out_args:	optional pointer to output arguments structure (will be filled)
1356  *
1357  * This function is useful to parse lists of phandles and their arguments.
1358  * Returns 0 on success and fills out_args, on error returns appropriate errno
1359  * value. The difference between this function and of_parse_phandle_with_args()
1360  * is that this API remaps a phandle if the node the phandle points to has
1361  * a <@stem_name>-map property.
1362  *
1363  * Caller is responsible to call of_node_put() on the returned out_args->np
1364  * pointer.
1365  *
1366  * Example::
1367  *
1368  *  phandle1: node1 {
1369  *  	#list-cells = <2>;
1370  *  };
1371  *
1372  *  phandle2: node2 {
1373  *  	#list-cells = <1>;
1374  *  };
1375  *
1376  *  phandle3: node3 {
1377  *  	#list-cells = <1>;
1378  *  	list-map = <0 &phandle2 3>,
1379  *  		   <1 &phandle2 2>,
1380  *  		   <2 &phandle1 5 1>;
1381  *  	list-map-mask = <0x3>;
1382  *  };
1383  *
1384  *  node4 {
1385  *  	list = <&phandle1 1 2 &phandle3 0>;
1386  *  };
1387  *
1388  * To get a device_node of the ``node2`` node you may call this:
1389  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1390  */
1391 int of_parse_phandle_with_args_map(const struct device_node *np,
1392 				   const char *list_name,
1393 				   const char *stem_name,
1394 				   int index, struct of_phandle_args *out_args)
1395 {
1396 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1397 	char *pass_name = NULL;
1398 	struct device_node *cur, *new = NULL;
1399 	const __be32 *map, *mask, *pass;
1400 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1401 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1402 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1403 	const __be32 *match_array = initial_match_array;
1404 	int i, ret, map_len, match;
1405 	u32 list_size, new_size;
1406 
1407 	if (index < 0)
1408 		return -EINVAL;
1409 
1410 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1411 	if (!cells_name)
1412 		return -ENOMEM;
1413 
1414 	ret = -ENOMEM;
1415 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1416 	if (!map_name)
1417 		goto free;
1418 
1419 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1420 	if (!mask_name)
1421 		goto free;
1422 
1423 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1424 	if (!pass_name)
1425 		goto free;
1426 
1427 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1428 					   out_args);
1429 	if (ret)
1430 		goto free;
1431 
1432 	/* Get the #<list>-cells property */
1433 	cur = out_args->np;
1434 	ret = of_property_read_u32(cur, cells_name, &list_size);
1435 	if (ret < 0)
1436 		goto put;
1437 
1438 	/* Precalculate the match array - this simplifies match loop */
1439 	for (i = 0; i < list_size; i++)
1440 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1441 
1442 	ret = -EINVAL;
1443 	while (cur) {
1444 		/* Get the <list>-map property */
1445 		map = of_get_property(cur, map_name, &map_len);
1446 		if (!map) {
1447 			ret = 0;
1448 			goto free;
1449 		}
1450 		map_len /= sizeof(u32);
1451 
1452 		/* Get the <list>-map-mask property (optional) */
1453 		mask = of_get_property(cur, mask_name, NULL);
1454 		if (!mask)
1455 			mask = dummy_mask;
1456 		/* Iterate through <list>-map property */
1457 		match = 0;
1458 		while (map_len > (list_size + 1) && !match) {
1459 			/* Compare specifiers */
1460 			match = 1;
1461 			for (i = 0; i < list_size; i++, map_len--)
1462 				match &= !((match_array[i] ^ *map++) & mask[i]);
1463 
1464 			of_node_put(new);
1465 			new = of_find_node_by_phandle(be32_to_cpup(map));
1466 			map++;
1467 			map_len--;
1468 
1469 			/* Check if not found */
1470 			if (!new)
1471 				goto put;
1472 
1473 			if (!of_device_is_available(new))
1474 				match = 0;
1475 
1476 			ret = of_property_read_u32(new, cells_name, &new_size);
1477 			if (ret)
1478 				goto put;
1479 
1480 			/* Check for malformed properties */
1481 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1482 				goto put;
1483 			if (map_len < new_size)
1484 				goto put;
1485 
1486 			/* Move forward by new node's #<list>-cells amount */
1487 			map += new_size;
1488 			map_len -= new_size;
1489 		}
1490 		if (!match)
1491 			goto put;
1492 
1493 		/* Get the <list>-map-pass-thru property (optional) */
1494 		pass = of_get_property(cur, pass_name, NULL);
1495 		if (!pass)
1496 			pass = dummy_pass;
1497 
1498 		/*
1499 		 * Successfully parsed a <list>-map translation; copy new
1500 		 * specifier into the out_args structure, keeping the
1501 		 * bits specified in <list>-map-pass-thru.
1502 		 */
1503 		match_array = map - new_size;
1504 		for (i = 0; i < new_size; i++) {
1505 			__be32 val = *(map - new_size + i);
1506 
1507 			if (i < list_size) {
1508 				val &= ~pass[i];
1509 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1510 			}
1511 
1512 			out_args->args[i] = be32_to_cpu(val);
1513 		}
1514 		out_args->args_count = list_size = new_size;
1515 		/* Iterate again with new provider */
1516 		out_args->np = new;
1517 		of_node_put(cur);
1518 		cur = new;
1519 		new = NULL;
1520 	}
1521 put:
1522 	of_node_put(cur);
1523 	of_node_put(new);
1524 free:
1525 	kfree(mask_name);
1526 	kfree(map_name);
1527 	kfree(cells_name);
1528 	kfree(pass_name);
1529 
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1533 
1534 /**
1535  * of_count_phandle_with_args() - Find the number of phandles references in a property
1536  * @np:		pointer to a device tree node containing a list
1537  * @list_name:	property name that contains a list
1538  * @cells_name:	property name that specifies phandles' arguments count
1539  *
1540  * Return: The number of phandle + argument tuples within a property. It
1541  * is a typical pattern to encode a list of phandle and variable
1542  * arguments into a single property. The number of arguments is encoded
1543  * by a property in the phandle-target node. For example, a gpios
1544  * property would contain a list of GPIO specifies consisting of a
1545  * phandle and 1 or more arguments. The number of arguments are
1546  * determined by the #gpio-cells property in the node pointed to by the
1547  * phandle.
1548  */
1549 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1550 				const char *cells_name)
1551 {
1552 	struct of_phandle_iterator it;
1553 	int rc, cur_index = 0;
1554 
1555 	/*
1556 	 * If cells_name is NULL we assume a cell count of 0. This makes
1557 	 * counting the phandles trivial as each 32bit word in the list is a
1558 	 * phandle and no arguments are to consider. So we don't iterate through
1559 	 * the list but just use the length to determine the phandle count.
1560 	 */
1561 	if (!cells_name) {
1562 		const __be32 *list;
1563 		int size;
1564 
1565 		list = of_get_property(np, list_name, &size);
1566 		if (!list)
1567 			return -ENOENT;
1568 
1569 		return size / sizeof(*list);
1570 	}
1571 
1572 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1573 	if (rc)
1574 		return rc;
1575 
1576 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1577 		cur_index += 1;
1578 
1579 	if (rc != -ENOENT)
1580 		return rc;
1581 
1582 	return cur_index;
1583 }
1584 EXPORT_SYMBOL(of_count_phandle_with_args);
1585 
1586 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1587 {
1588 	struct property **next;
1589 
1590 	for (next = list; *next; next = &(*next)->next) {
1591 		if (*next == prop) {
1592 			*next = prop->next;
1593 			prop->next = NULL;
1594 			return prop;
1595 		}
1596 	}
1597 	return NULL;
1598 }
1599 
1600 /**
1601  * __of_add_property - Add a property to a node without lock operations
1602  * @np:		Caller's Device Node
1603  * @prop:	Property to add
1604  */
1605 int __of_add_property(struct device_node *np, struct property *prop)
1606 {
1607 	int rc = 0;
1608 	unsigned long flags;
1609 	struct property **next;
1610 
1611 	raw_spin_lock_irqsave(&devtree_lock, flags);
1612 
1613 	__of_remove_property_from_list(&np->deadprops, prop);
1614 
1615 	prop->next = NULL;
1616 	next = &np->properties;
1617 	while (*next) {
1618 		if (strcmp(prop->name, (*next)->name) == 0) {
1619 			/* duplicate ! don't insert it */
1620 			rc = -EEXIST;
1621 			goto out_unlock;
1622 		}
1623 		next = &(*next)->next;
1624 	}
1625 	*next = prop;
1626 
1627 out_unlock:
1628 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1629 	if (rc)
1630 		return rc;
1631 
1632 	__of_add_property_sysfs(np, prop);
1633 	return 0;
1634 }
1635 
1636 /**
1637  * of_add_property - Add a property to a node
1638  * @np:		Caller's Device Node
1639  * @prop:	Property to add
1640  */
1641 int of_add_property(struct device_node *np, struct property *prop)
1642 {
1643 	int rc;
1644 
1645 	mutex_lock(&of_mutex);
1646 	rc = __of_add_property(np, prop);
1647 	mutex_unlock(&of_mutex);
1648 
1649 	if (!rc)
1650 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1651 
1652 	return rc;
1653 }
1654 EXPORT_SYMBOL_GPL(of_add_property);
1655 
1656 int __of_remove_property(struct device_node *np, struct property *prop)
1657 {
1658 	unsigned long flags;
1659 	int rc = -ENODEV;
1660 
1661 	raw_spin_lock_irqsave(&devtree_lock, flags);
1662 
1663 	if (__of_remove_property_from_list(&np->properties, prop)) {
1664 		/* Found the property, add it to deadprops list */
1665 		prop->next = np->deadprops;
1666 		np->deadprops = prop;
1667 		rc = 0;
1668 	}
1669 
1670 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1671 	if (rc)
1672 		return rc;
1673 
1674 	__of_remove_property_sysfs(np, prop);
1675 	return 0;
1676 }
1677 
1678 /**
1679  * of_remove_property - Remove a property from a node.
1680  * @np:		Caller's Device Node
1681  * @prop:	Property to remove
1682  *
1683  * Note that we don't actually remove it, since we have given out
1684  * who-knows-how-many pointers to the data using get-property.
1685  * Instead we just move the property to the "dead properties"
1686  * list, so it won't be found any more.
1687  */
1688 int of_remove_property(struct device_node *np, struct property *prop)
1689 {
1690 	int rc;
1691 
1692 	if (!prop)
1693 		return -ENODEV;
1694 
1695 	mutex_lock(&of_mutex);
1696 	rc = __of_remove_property(np, prop);
1697 	mutex_unlock(&of_mutex);
1698 
1699 	if (!rc)
1700 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1701 
1702 	return rc;
1703 }
1704 EXPORT_SYMBOL_GPL(of_remove_property);
1705 
1706 int __of_update_property(struct device_node *np, struct property *newprop,
1707 		struct property **oldpropp)
1708 {
1709 	struct property **next, *oldprop;
1710 	unsigned long flags;
1711 
1712 	raw_spin_lock_irqsave(&devtree_lock, flags);
1713 
1714 	__of_remove_property_from_list(&np->deadprops, newprop);
1715 
1716 	for (next = &np->properties; *next; next = &(*next)->next) {
1717 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1718 			break;
1719 	}
1720 	*oldpropp = oldprop = *next;
1721 
1722 	if (oldprop) {
1723 		/* replace the node */
1724 		newprop->next = oldprop->next;
1725 		*next = newprop;
1726 		oldprop->next = np->deadprops;
1727 		np->deadprops = oldprop;
1728 	} else {
1729 		/* new node */
1730 		newprop->next = NULL;
1731 		*next = newprop;
1732 	}
1733 
1734 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1735 
1736 	__of_update_property_sysfs(np, newprop, oldprop);
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * of_update_property - Update a property in a node, if the property does
1743  * not exist, add it.
1744  *
1745  * Note that we don't actually remove it, since we have given out
1746  * who-knows-how-many pointers to the data using get-property.
1747  * Instead we just move the property to the "dead properties" list,
1748  * and add the new property to the property list
1749  */
1750 int of_update_property(struct device_node *np, struct property *newprop)
1751 {
1752 	struct property *oldprop;
1753 	int rc;
1754 
1755 	if (!newprop->name)
1756 		return -EINVAL;
1757 
1758 	mutex_lock(&of_mutex);
1759 	rc = __of_update_property(np, newprop, &oldprop);
1760 	mutex_unlock(&of_mutex);
1761 
1762 	if (!rc)
1763 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1764 
1765 	return rc;
1766 }
1767 
1768 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1769 			 int id, const char *stem, int stem_len)
1770 {
1771 	ap->np = np;
1772 	ap->id = id;
1773 	strscpy(ap->stem, stem, stem_len + 1);
1774 	list_add_tail(&ap->link, &aliases_lookup);
1775 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1776 		 ap->alias, ap->stem, ap->id, np);
1777 }
1778 
1779 /**
1780  * of_alias_scan - Scan all properties of the 'aliases' node
1781  * @dt_alloc:	An allocator that provides a virtual address to memory
1782  *		for storing the resulting tree
1783  *
1784  * The function scans all the properties of the 'aliases' node and populates
1785  * the global lookup table with the properties.  It returns the
1786  * number of alias properties found, or an error code in case of failure.
1787  */
1788 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1789 {
1790 	struct property *pp;
1791 
1792 	of_aliases = of_find_node_by_path("/aliases");
1793 	of_chosen = of_find_node_by_path("/chosen");
1794 	if (of_chosen == NULL)
1795 		of_chosen = of_find_node_by_path("/chosen@0");
1796 
1797 	if (of_chosen) {
1798 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1799 		const char *name = NULL;
1800 
1801 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1802 			of_property_read_string(of_chosen, "linux,stdout-path",
1803 						&name);
1804 		if (IS_ENABLED(CONFIG_PPC) && !name)
1805 			of_property_read_string(of_aliases, "stdout", &name);
1806 		if (name)
1807 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1808 		if (of_stdout)
1809 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1810 	}
1811 
1812 	if (!of_aliases)
1813 		return;
1814 
1815 	for_each_property_of_node(of_aliases, pp) {
1816 		const char *start = pp->name;
1817 		const char *end = start + strlen(start);
1818 		struct device_node *np;
1819 		struct alias_prop *ap;
1820 		int id, len;
1821 
1822 		/* Skip those we do not want to proceed */
1823 		if (!strcmp(pp->name, "name") ||
1824 		    !strcmp(pp->name, "phandle") ||
1825 		    !strcmp(pp->name, "linux,phandle"))
1826 			continue;
1827 
1828 		np = of_find_node_by_path(pp->value);
1829 		if (!np)
1830 			continue;
1831 
1832 		/* walk the alias backwards to extract the id and work out
1833 		 * the 'stem' string */
1834 		while (isdigit(*(end-1)) && end > start)
1835 			end--;
1836 		len = end - start;
1837 
1838 		if (kstrtoint(end, 10, &id) < 0)
1839 			continue;
1840 
1841 		/* Allocate an alias_prop with enough space for the stem */
1842 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1843 		if (!ap)
1844 			continue;
1845 		memset(ap, 0, sizeof(*ap) + len + 1);
1846 		ap->alias = start;
1847 		of_alias_add(ap, np, id, start, len);
1848 	}
1849 }
1850 
1851 /**
1852  * of_alias_get_id - Get alias id for the given device_node
1853  * @np:		Pointer to the given device_node
1854  * @stem:	Alias stem of the given device_node
1855  *
1856  * The function travels the lookup table to get the alias id for the given
1857  * device_node and alias stem.
1858  *
1859  * Return: The alias id if found.
1860  */
1861 int of_alias_get_id(struct device_node *np, const char *stem)
1862 {
1863 	struct alias_prop *app;
1864 	int id = -ENODEV;
1865 
1866 	mutex_lock(&of_mutex);
1867 	list_for_each_entry(app, &aliases_lookup, link) {
1868 		if (strcmp(app->stem, stem) != 0)
1869 			continue;
1870 
1871 		if (np == app->np) {
1872 			id = app->id;
1873 			break;
1874 		}
1875 	}
1876 	mutex_unlock(&of_mutex);
1877 
1878 	return id;
1879 }
1880 EXPORT_SYMBOL_GPL(of_alias_get_id);
1881 
1882 /**
1883  * of_alias_get_highest_id - Get highest alias id for the given stem
1884  * @stem:	Alias stem to be examined
1885  *
1886  * The function travels the lookup table to get the highest alias id for the
1887  * given alias stem.  It returns the alias id if found.
1888  */
1889 int of_alias_get_highest_id(const char *stem)
1890 {
1891 	struct alias_prop *app;
1892 	int id = -ENODEV;
1893 
1894 	mutex_lock(&of_mutex);
1895 	list_for_each_entry(app, &aliases_lookup, link) {
1896 		if (strcmp(app->stem, stem) != 0)
1897 			continue;
1898 
1899 		if (app->id > id)
1900 			id = app->id;
1901 	}
1902 	mutex_unlock(&of_mutex);
1903 
1904 	return id;
1905 }
1906 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1907 
1908 /**
1909  * of_console_check() - Test and setup console for DT setup
1910  * @dn: Pointer to device node
1911  * @name: Name to use for preferred console without index. ex. "ttyS"
1912  * @index: Index to use for preferred console.
1913  *
1914  * Check if the given device node matches the stdout-path property in the
1915  * /chosen node. If it does then register it as the preferred console.
1916  *
1917  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1918  */
1919 bool of_console_check(struct device_node *dn, char *name, int index)
1920 {
1921 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1922 		return false;
1923 
1924 	/*
1925 	 * XXX: cast `options' to char pointer to suppress complication
1926 	 * warnings: printk, UART and console drivers expect char pointer.
1927 	 */
1928 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1929 }
1930 EXPORT_SYMBOL_GPL(of_console_check);
1931 
1932 /**
1933  * of_find_next_cache_node - Find a node's subsidiary cache
1934  * @np:	node of type "cpu" or "cache"
1935  *
1936  * Return: A node pointer with refcount incremented, use
1937  * of_node_put() on it when done.  Caller should hold a reference
1938  * to np.
1939  */
1940 struct device_node *of_find_next_cache_node(const struct device_node *np)
1941 {
1942 	struct device_node *child, *cache_node;
1943 
1944 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1945 	if (!cache_node)
1946 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1947 
1948 	if (cache_node)
1949 		return cache_node;
1950 
1951 	/* OF on pmac has nodes instead of properties named "l2-cache"
1952 	 * beneath CPU nodes.
1953 	 */
1954 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1955 		for_each_child_of_node(np, child)
1956 			if (of_node_is_type(child, "cache"))
1957 				return child;
1958 
1959 	return NULL;
1960 }
1961 
1962 /**
1963  * of_find_last_cache_level - Find the level at which the last cache is
1964  * 		present for the given logical cpu
1965  *
1966  * @cpu: cpu number(logical index) for which the last cache level is needed
1967  *
1968  * Return: The level at which the last cache is present. It is exactly
1969  * same as  the total number of cache levels for the given logical cpu.
1970  */
1971 int of_find_last_cache_level(unsigned int cpu)
1972 {
1973 	u32 cache_level = 0;
1974 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1975 
1976 	while (np) {
1977 		of_node_put(prev);
1978 		prev = np;
1979 		np = of_find_next_cache_node(np);
1980 	}
1981 
1982 	of_property_read_u32(prev, "cache-level", &cache_level);
1983 	of_node_put(prev);
1984 
1985 	return cache_level;
1986 }
1987 
1988 /**
1989  * of_map_id - Translate an ID through a downstream mapping.
1990  * @np: root complex device node.
1991  * @id: device ID to map.
1992  * @map_name: property name of the map to use.
1993  * @map_mask_name: optional property name of the mask to use.
1994  * @target: optional pointer to a target device node.
1995  * @id_out: optional pointer to receive the translated ID.
1996  *
1997  * Given a device ID, look up the appropriate implementation-defined
1998  * platform ID and/or the target device which receives transactions on that
1999  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2000  * @id_out may be NULL if only the other is required. If @target points to
2001  * a non-NULL device node pointer, only entries targeting that node will be
2002  * matched; if it points to a NULL value, it will receive the device node of
2003  * the first matching target phandle, with a reference held.
2004  *
2005  * Return: 0 on success or a standard error code on failure.
2006  */
2007 int of_map_id(struct device_node *np, u32 id,
2008 	       const char *map_name, const char *map_mask_name,
2009 	       struct device_node **target, u32 *id_out)
2010 {
2011 	u32 map_mask, masked_id;
2012 	int map_len;
2013 	const __be32 *map = NULL;
2014 
2015 	if (!np || !map_name || (!target && !id_out))
2016 		return -EINVAL;
2017 
2018 	map = of_get_property(np, map_name, &map_len);
2019 	if (!map) {
2020 		if (target)
2021 			return -ENODEV;
2022 		/* Otherwise, no map implies no translation */
2023 		*id_out = id;
2024 		return 0;
2025 	}
2026 
2027 	if (!map_len || map_len % (4 * sizeof(*map))) {
2028 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2029 			map_name, map_len);
2030 		return -EINVAL;
2031 	}
2032 
2033 	/* The default is to select all bits. */
2034 	map_mask = 0xffffffff;
2035 
2036 	/*
2037 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2038 	 * If of_property_read_u32() fails, the default is used.
2039 	 */
2040 	if (map_mask_name)
2041 		of_property_read_u32(np, map_mask_name, &map_mask);
2042 
2043 	masked_id = map_mask & id;
2044 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2045 		struct device_node *phandle_node;
2046 		u32 id_base = be32_to_cpup(map + 0);
2047 		u32 phandle = be32_to_cpup(map + 1);
2048 		u32 out_base = be32_to_cpup(map + 2);
2049 		u32 id_len = be32_to_cpup(map + 3);
2050 
2051 		if (id_base & ~map_mask) {
2052 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2053 				np, map_name, map_name,
2054 				map_mask, id_base);
2055 			return -EFAULT;
2056 		}
2057 
2058 		if (masked_id < id_base || masked_id >= id_base + id_len)
2059 			continue;
2060 
2061 		phandle_node = of_find_node_by_phandle(phandle);
2062 		if (!phandle_node)
2063 			return -ENODEV;
2064 
2065 		if (target) {
2066 			if (*target)
2067 				of_node_put(phandle_node);
2068 			else
2069 				*target = phandle_node;
2070 
2071 			if (*target != phandle_node)
2072 				continue;
2073 		}
2074 
2075 		if (id_out)
2076 			*id_out = masked_id - id_base + out_base;
2077 
2078 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2079 			np, map_name, map_mask, id_base, out_base,
2080 			id_len, id, masked_id - id_base + out_base);
2081 		return 0;
2082 	}
2083 
2084 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2085 		id, target && *target ? *target : NULL);
2086 
2087 	/* Bypasses translation */
2088 	if (id_out)
2089 		*id_out = id;
2090 	return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(of_map_id);
2093