1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 21 #define pr_fmt(fmt) "OF: " fmt 22 23 #include <linux/console.h> 24 #include <linux/ctype.h> 25 #include <linux/cpu.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/of_graph.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/proc_fs.h> 34 35 #include "of_private.h" 36 37 LIST_HEAD(aliases_lookup); 38 39 struct device_node *of_root; 40 EXPORT_SYMBOL(of_root); 41 struct device_node *of_chosen; 42 struct device_node *of_aliases; 43 struct device_node *of_stdout; 44 static const char *of_stdout_options; 45 46 struct kset *of_kset; 47 48 /* 49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 50 * This mutex must be held whenever modifications are being made to the 51 * device tree. The of_{attach,detach}_node() and 52 * of_{add,remove,update}_property() helpers make sure this happens. 53 */ 54 DEFINE_MUTEX(of_mutex); 55 56 /* use when traversing tree through the child, sibling, 57 * or parent members of struct device_node. 58 */ 59 DEFINE_RAW_SPINLOCK(devtree_lock); 60 61 int of_n_addr_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#address-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #address-cells property for the root node */ 73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_addr_cells); 76 77 int of_n_size_cells(struct device_node *np) 78 { 79 const __be32 *ip; 80 81 do { 82 if (np->parent) 83 np = np->parent; 84 ip = of_get_property(np, "#size-cells", NULL); 85 if (ip) 86 return be32_to_cpup(ip); 87 } while (np->parent); 88 /* No #size-cells property for the root node */ 89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 90 } 91 EXPORT_SYMBOL(of_n_size_cells); 92 93 #ifdef CONFIG_NUMA 94 int __weak of_node_to_nid(struct device_node *np) 95 { 96 return NUMA_NO_NODE; 97 } 98 #endif 99 100 #ifndef CONFIG_OF_DYNAMIC 101 static void of_node_release(struct kobject *kobj) 102 { 103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 104 } 105 #endif /* CONFIG_OF_DYNAMIC */ 106 107 struct kobj_type of_node_ktype = { 108 .release = of_node_release, 109 }; 110 111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 112 struct bin_attribute *bin_attr, char *buf, 113 loff_t offset, size_t count) 114 { 115 struct property *pp = container_of(bin_attr, struct property, attr); 116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 117 } 118 119 /* always return newly allocated name, caller must free after use */ 120 static const char *safe_name(struct kobject *kobj, const char *orig_name) 121 { 122 const char *name = orig_name; 123 struct kernfs_node *kn; 124 int i = 0; 125 126 /* don't be a hero. After 16 tries give up */ 127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 128 sysfs_put(kn); 129 if (name != orig_name) 130 kfree(name); 131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 132 } 133 134 if (name == orig_name) { 135 name = kstrdup(orig_name, GFP_KERNEL); 136 } else { 137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n", 138 kobject_name(kobj), name); 139 } 140 return name; 141 } 142 143 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 144 { 145 int rc; 146 147 /* Important: Don't leak passwords */ 148 bool secure = strncmp(pp->name, "security-", 9) == 0; 149 150 if (!IS_ENABLED(CONFIG_SYSFS)) 151 return 0; 152 153 if (!of_kset || !of_node_is_attached(np)) 154 return 0; 155 156 sysfs_bin_attr_init(&pp->attr); 157 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 158 pp->attr.attr.mode = secure ? 0400 : 0444; 159 pp->attr.size = secure ? 0 : pp->length; 160 pp->attr.read = of_node_property_read; 161 162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 164 return rc; 165 } 166 167 int __of_attach_node_sysfs(struct device_node *np) 168 { 169 const char *name; 170 struct kobject *parent; 171 struct property *pp; 172 int rc; 173 174 if (!IS_ENABLED(CONFIG_SYSFS)) 175 return 0; 176 177 if (!of_kset) 178 return 0; 179 180 np->kobj.kset = of_kset; 181 if (!np->parent) { 182 /* Nodes without parents are new top level trees */ 183 name = safe_name(&of_kset->kobj, "base"); 184 parent = NULL; 185 } else { 186 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 187 parent = &np->parent->kobj; 188 } 189 if (!name) 190 return -ENOMEM; 191 rc = kobject_add(&np->kobj, parent, "%s", name); 192 kfree(name); 193 if (rc) 194 return rc; 195 196 for_each_property_of_node(np, pp) 197 __of_add_property_sysfs(np, pp); 198 199 return 0; 200 } 201 202 void __init of_core_init(void) 203 { 204 struct device_node *np; 205 206 /* Create the kset, and register existing nodes */ 207 mutex_lock(&of_mutex); 208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 209 if (!of_kset) { 210 mutex_unlock(&of_mutex); 211 pr_err("failed to register existing nodes\n"); 212 return; 213 } 214 for_each_of_allnodes(np) 215 __of_attach_node_sysfs(np); 216 mutex_unlock(&of_mutex); 217 218 /* Symlink in /proc as required by userspace ABI */ 219 if (of_root) 220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 221 } 222 223 static struct property *__of_find_property(const struct device_node *np, 224 const char *name, int *lenp) 225 { 226 struct property *pp; 227 228 if (!np) 229 return NULL; 230 231 for (pp = np->properties; pp; pp = pp->next) { 232 if (of_prop_cmp(pp->name, name) == 0) { 233 if (lenp) 234 *lenp = pp->length; 235 break; 236 } 237 } 238 239 return pp; 240 } 241 242 struct property *of_find_property(const struct device_node *np, 243 const char *name, 244 int *lenp) 245 { 246 struct property *pp; 247 unsigned long flags; 248 249 raw_spin_lock_irqsave(&devtree_lock, flags); 250 pp = __of_find_property(np, name, lenp); 251 raw_spin_unlock_irqrestore(&devtree_lock, flags); 252 253 return pp; 254 } 255 EXPORT_SYMBOL(of_find_property); 256 257 struct device_node *__of_find_all_nodes(struct device_node *prev) 258 { 259 struct device_node *np; 260 if (!prev) { 261 np = of_root; 262 } else if (prev->child) { 263 np = prev->child; 264 } else { 265 /* Walk back up looking for a sibling, or the end of the structure */ 266 np = prev; 267 while (np->parent && !np->sibling) 268 np = np->parent; 269 np = np->sibling; /* Might be null at the end of the tree */ 270 } 271 return np; 272 } 273 274 /** 275 * of_find_all_nodes - Get next node in global list 276 * @prev: Previous node or NULL to start iteration 277 * of_node_put() will be called on it 278 * 279 * Returns a node pointer with refcount incremented, use 280 * of_node_put() on it when done. 281 */ 282 struct device_node *of_find_all_nodes(struct device_node *prev) 283 { 284 struct device_node *np; 285 unsigned long flags; 286 287 raw_spin_lock_irqsave(&devtree_lock, flags); 288 np = __of_find_all_nodes(prev); 289 of_node_get(np); 290 of_node_put(prev); 291 raw_spin_unlock_irqrestore(&devtree_lock, flags); 292 return np; 293 } 294 EXPORT_SYMBOL(of_find_all_nodes); 295 296 /* 297 * Find a property with a given name for a given node 298 * and return the value. 299 */ 300 const void *__of_get_property(const struct device_node *np, 301 const char *name, int *lenp) 302 { 303 struct property *pp = __of_find_property(np, name, lenp); 304 305 return pp ? pp->value : NULL; 306 } 307 308 /* 309 * Find a property with a given name for a given node 310 * and return the value. 311 */ 312 const void *of_get_property(const struct device_node *np, const char *name, 313 int *lenp) 314 { 315 struct property *pp = of_find_property(np, name, lenp); 316 317 return pp ? pp->value : NULL; 318 } 319 EXPORT_SYMBOL(of_get_property); 320 321 /* 322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 323 * 324 * @cpu: logical cpu index of a core/thread 325 * @phys_id: physical identifier of a core/thread 326 * 327 * CPU logical to physical index mapping is architecture specific. 328 * However this __weak function provides a default match of physical 329 * id to logical cpu index. phys_id provided here is usually values read 330 * from the device tree which must match the hardware internal registers. 331 * 332 * Returns true if the physical identifier and the logical cpu index 333 * correspond to the same core/thread, false otherwise. 334 */ 335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 336 { 337 return (u32)phys_id == cpu; 338 } 339 340 /** 341 * Checks if the given "prop_name" property holds the physical id of the 342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 343 * NULL, local thread number within the core is returned in it. 344 */ 345 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 346 const char *prop_name, int cpu, unsigned int *thread) 347 { 348 const __be32 *cell; 349 int ac, prop_len, tid; 350 u64 hwid; 351 352 ac = of_n_addr_cells(cpun); 353 cell = of_get_property(cpun, prop_name, &prop_len); 354 if (!cell || !ac) 355 return false; 356 prop_len /= sizeof(*cell) * ac; 357 for (tid = 0; tid < prop_len; tid++) { 358 hwid = of_read_number(cell, ac); 359 if (arch_match_cpu_phys_id(cpu, hwid)) { 360 if (thread) 361 *thread = tid; 362 return true; 363 } 364 cell += ac; 365 } 366 return false; 367 } 368 369 /* 370 * arch_find_n_match_cpu_physical_id - See if the given device node is 371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 372 * else false. If 'thread' is non-NULL, the local thread number within the 373 * core is returned in it. 374 */ 375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 376 int cpu, unsigned int *thread) 377 { 378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 379 * for thread ids on PowerPC. If it doesn't exist fallback to 380 * standard "reg" property. 381 */ 382 if (IS_ENABLED(CONFIG_PPC) && 383 __of_find_n_match_cpu_property(cpun, 384 "ibm,ppc-interrupt-server#s", 385 cpu, thread)) 386 return true; 387 388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 389 } 390 391 /** 392 * of_get_cpu_node - Get device node associated with the given logical CPU 393 * 394 * @cpu: CPU number(logical index) for which device node is required 395 * @thread: if not NULL, local thread number within the physical core is 396 * returned 397 * 398 * The main purpose of this function is to retrieve the device node for the 399 * given logical CPU index. It should be used to initialize the of_node in 400 * cpu device. Once of_node in cpu device is populated, all the further 401 * references can use that instead. 402 * 403 * CPU logical to physical index mapping is architecture specific and is built 404 * before booting secondary cores. This function uses arch_match_cpu_phys_id 405 * which can be overridden by architecture specific implementation. 406 * 407 * Returns a node pointer for the logical cpu with refcount incremented, use 408 * of_node_put() on it when done. Returns NULL if not found. 409 */ 410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 411 { 412 struct device_node *cpun; 413 414 for_each_node_by_type(cpun, "cpu") { 415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 416 return cpun; 417 } 418 return NULL; 419 } 420 EXPORT_SYMBOL(of_get_cpu_node); 421 422 /** 423 * __of_device_is_compatible() - Check if the node matches given constraints 424 * @device: pointer to node 425 * @compat: required compatible string, NULL or "" for any match 426 * @type: required device_type value, NULL or "" for any match 427 * @name: required node name, NULL or "" for any match 428 * 429 * Checks if the given @compat, @type and @name strings match the 430 * properties of the given @device. A constraints can be skipped by 431 * passing NULL or an empty string as the constraint. 432 * 433 * Returns 0 for no match, and a positive integer on match. The return 434 * value is a relative score with larger values indicating better 435 * matches. The score is weighted for the most specific compatible value 436 * to get the highest score. Matching type is next, followed by matching 437 * name. Practically speaking, this results in the following priority 438 * order for matches: 439 * 440 * 1. specific compatible && type && name 441 * 2. specific compatible && type 442 * 3. specific compatible && name 443 * 4. specific compatible 444 * 5. general compatible && type && name 445 * 6. general compatible && type 446 * 7. general compatible && name 447 * 8. general compatible 448 * 9. type && name 449 * 10. type 450 * 11. name 451 */ 452 static int __of_device_is_compatible(const struct device_node *device, 453 const char *compat, const char *type, const char *name) 454 { 455 struct property *prop; 456 const char *cp; 457 int index = 0, score = 0; 458 459 /* Compatible match has highest priority */ 460 if (compat && compat[0]) { 461 prop = __of_find_property(device, "compatible", NULL); 462 for (cp = of_prop_next_string(prop, NULL); cp; 463 cp = of_prop_next_string(prop, cp), index++) { 464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 465 score = INT_MAX/2 - (index << 2); 466 break; 467 } 468 } 469 if (!score) 470 return 0; 471 } 472 473 /* Matching type is better than matching name */ 474 if (type && type[0]) { 475 if (!device->type || of_node_cmp(type, device->type)) 476 return 0; 477 score += 2; 478 } 479 480 /* Matching name is a bit better than not */ 481 if (name && name[0]) { 482 if (!device->name || of_node_cmp(name, device->name)) 483 return 0; 484 score++; 485 } 486 487 return score; 488 } 489 490 /** Checks if the given "compat" string matches one of the strings in 491 * the device's "compatible" property 492 */ 493 int of_device_is_compatible(const struct device_node *device, 494 const char *compat) 495 { 496 unsigned long flags; 497 int res; 498 499 raw_spin_lock_irqsave(&devtree_lock, flags); 500 res = __of_device_is_compatible(device, compat, NULL, NULL); 501 raw_spin_unlock_irqrestore(&devtree_lock, flags); 502 return res; 503 } 504 EXPORT_SYMBOL(of_device_is_compatible); 505 506 /** Checks if the device is compatible with any of the entries in 507 * a NULL terminated array of strings. Returns the best match 508 * score or 0. 509 */ 510 int of_device_compatible_match(struct device_node *device, 511 const char *const *compat) 512 { 513 unsigned int tmp, score = 0; 514 515 if (!compat) 516 return 0; 517 518 while (*compat) { 519 tmp = of_device_is_compatible(device, *compat); 520 if (tmp > score) 521 score = tmp; 522 compat++; 523 } 524 525 return score; 526 } 527 528 /** 529 * of_machine_is_compatible - Test root of device tree for a given compatible value 530 * @compat: compatible string to look for in root node's compatible property. 531 * 532 * Returns a positive integer if the root node has the given value in its 533 * compatible property. 534 */ 535 int of_machine_is_compatible(const char *compat) 536 { 537 struct device_node *root; 538 int rc = 0; 539 540 root = of_find_node_by_path("/"); 541 if (root) { 542 rc = of_device_is_compatible(root, compat); 543 of_node_put(root); 544 } 545 return rc; 546 } 547 EXPORT_SYMBOL(of_machine_is_compatible); 548 549 /** 550 * __of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability, with locks already held 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 static bool __of_device_is_available(const struct device_node *device) 558 { 559 const char *status; 560 int statlen; 561 562 if (!device) 563 return false; 564 565 status = __of_get_property(device, "status", &statlen); 566 if (status == NULL) 567 return true; 568 569 if (statlen > 0) { 570 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 571 return true; 572 } 573 574 return false; 575 } 576 577 /** 578 * of_device_is_available - check if a device is available for use 579 * 580 * @device: Node to check for availability 581 * 582 * Returns true if the status property is absent or set to "okay" or "ok", 583 * false otherwise 584 */ 585 bool of_device_is_available(const struct device_node *device) 586 { 587 unsigned long flags; 588 bool res; 589 590 raw_spin_lock_irqsave(&devtree_lock, flags); 591 res = __of_device_is_available(device); 592 raw_spin_unlock_irqrestore(&devtree_lock, flags); 593 return res; 594 595 } 596 EXPORT_SYMBOL(of_device_is_available); 597 598 /** 599 * of_device_is_big_endian - check if a device has BE registers 600 * 601 * @device: Node to check for endianness 602 * 603 * Returns true if the device has a "big-endian" property, or if the kernel 604 * was compiled for BE *and* the device has a "native-endian" property. 605 * Returns false otherwise. 606 * 607 * Callers would nominally use ioread32be/iowrite32be if 608 * of_device_is_big_endian() == true, or readl/writel otherwise. 609 */ 610 bool of_device_is_big_endian(const struct device_node *device) 611 { 612 if (of_property_read_bool(device, "big-endian")) 613 return true; 614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 615 of_property_read_bool(device, "native-endian")) 616 return true; 617 return false; 618 } 619 EXPORT_SYMBOL(of_device_is_big_endian); 620 621 /** 622 * of_get_parent - Get a node's parent if any 623 * @node: Node to get parent 624 * 625 * Returns a node pointer with refcount incremented, use 626 * of_node_put() on it when done. 627 */ 628 struct device_node *of_get_parent(const struct device_node *node) 629 { 630 struct device_node *np; 631 unsigned long flags; 632 633 if (!node) 634 return NULL; 635 636 raw_spin_lock_irqsave(&devtree_lock, flags); 637 np = of_node_get(node->parent); 638 raw_spin_unlock_irqrestore(&devtree_lock, flags); 639 return np; 640 } 641 EXPORT_SYMBOL(of_get_parent); 642 643 /** 644 * of_get_next_parent - Iterate to a node's parent 645 * @node: Node to get parent of 646 * 647 * This is like of_get_parent() except that it drops the 648 * refcount on the passed node, making it suitable for iterating 649 * through a node's parents. 650 * 651 * Returns a node pointer with refcount incremented, use 652 * of_node_put() on it when done. 653 */ 654 struct device_node *of_get_next_parent(struct device_node *node) 655 { 656 struct device_node *parent; 657 unsigned long flags; 658 659 if (!node) 660 return NULL; 661 662 raw_spin_lock_irqsave(&devtree_lock, flags); 663 parent = of_node_get(node->parent); 664 of_node_put(node); 665 raw_spin_unlock_irqrestore(&devtree_lock, flags); 666 return parent; 667 } 668 EXPORT_SYMBOL(of_get_next_parent); 669 670 static struct device_node *__of_get_next_child(const struct device_node *node, 671 struct device_node *prev) 672 { 673 struct device_node *next; 674 675 if (!node) 676 return NULL; 677 678 next = prev ? prev->sibling : node->child; 679 for (; next; next = next->sibling) 680 if (of_node_get(next)) 681 break; 682 of_node_put(prev); 683 return next; 684 } 685 #define __for_each_child_of_node(parent, child) \ 686 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 687 child = __of_get_next_child(parent, child)) 688 689 /** 690 * of_get_next_child - Iterate a node childs 691 * @node: parent node 692 * @prev: previous child of the parent node, or NULL to get first 693 * 694 * Returns a node pointer with refcount incremented, use of_node_put() on 695 * it when done. Returns NULL when prev is the last child. Decrements the 696 * refcount of prev. 697 */ 698 struct device_node *of_get_next_child(const struct device_node *node, 699 struct device_node *prev) 700 { 701 struct device_node *next; 702 unsigned long flags; 703 704 raw_spin_lock_irqsave(&devtree_lock, flags); 705 next = __of_get_next_child(node, prev); 706 raw_spin_unlock_irqrestore(&devtree_lock, flags); 707 return next; 708 } 709 EXPORT_SYMBOL(of_get_next_child); 710 711 /** 712 * of_get_next_available_child - Find the next available child node 713 * @node: parent node 714 * @prev: previous child of the parent node, or NULL to get first 715 * 716 * This function is like of_get_next_child(), except that it 717 * automatically skips any disabled nodes (i.e. status = "disabled"). 718 */ 719 struct device_node *of_get_next_available_child(const struct device_node *node, 720 struct device_node *prev) 721 { 722 struct device_node *next; 723 unsigned long flags; 724 725 if (!node) 726 return NULL; 727 728 raw_spin_lock_irqsave(&devtree_lock, flags); 729 next = prev ? prev->sibling : node->child; 730 for (; next; next = next->sibling) { 731 if (!__of_device_is_available(next)) 732 continue; 733 if (of_node_get(next)) 734 break; 735 } 736 of_node_put(prev); 737 raw_spin_unlock_irqrestore(&devtree_lock, flags); 738 return next; 739 } 740 EXPORT_SYMBOL(of_get_next_available_child); 741 742 /** 743 * of_get_child_by_name - Find the child node by name for a given parent 744 * @node: parent node 745 * @name: child name to look for. 746 * 747 * This function looks for child node for given matching name 748 * 749 * Returns a node pointer if found, with refcount incremented, use 750 * of_node_put() on it when done. 751 * Returns NULL if node is not found. 752 */ 753 struct device_node *of_get_child_by_name(const struct device_node *node, 754 const char *name) 755 { 756 struct device_node *child; 757 758 for_each_child_of_node(node, child) 759 if (child->name && (of_node_cmp(child->name, name) == 0)) 760 break; 761 return child; 762 } 763 EXPORT_SYMBOL(of_get_child_by_name); 764 765 static struct device_node *__of_find_node_by_path(struct device_node *parent, 766 const char *path) 767 { 768 struct device_node *child; 769 int len; 770 771 len = strcspn(path, "/:"); 772 if (!len) 773 return NULL; 774 775 __for_each_child_of_node(parent, child) { 776 const char *name = kbasename(child->full_name); 777 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 778 return child; 779 } 780 return NULL; 781 } 782 783 struct device_node *__of_find_node_by_full_path(struct device_node *node, 784 const char *path) 785 { 786 const char *separator = strchr(path, ':'); 787 788 while (node && *path == '/') { 789 struct device_node *tmp = node; 790 791 path++; /* Increment past '/' delimiter */ 792 node = __of_find_node_by_path(node, path); 793 of_node_put(tmp); 794 path = strchrnul(path, '/'); 795 if (separator && separator < path) 796 break; 797 } 798 return node; 799 } 800 801 /** 802 * of_find_node_opts_by_path - Find a node matching a full OF path 803 * @path: Either the full path to match, or if the path does not 804 * start with '/', the name of a property of the /aliases 805 * node (an alias). In the case of an alias, the node 806 * matching the alias' value will be returned. 807 * @opts: Address of a pointer into which to store the start of 808 * an options string appended to the end of the path with 809 * a ':' separator. 810 * 811 * Valid paths: 812 * /foo/bar Full path 813 * foo Valid alias 814 * foo/bar Valid alias + relative path 815 * 816 * Returns a node pointer with refcount incremented, use 817 * of_node_put() on it when done. 818 */ 819 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 820 { 821 struct device_node *np = NULL; 822 struct property *pp; 823 unsigned long flags; 824 const char *separator = strchr(path, ':'); 825 826 if (opts) 827 *opts = separator ? separator + 1 : NULL; 828 829 if (strcmp(path, "/") == 0) 830 return of_node_get(of_root); 831 832 /* The path could begin with an alias */ 833 if (*path != '/') { 834 int len; 835 const char *p = separator; 836 837 if (!p) 838 p = strchrnul(path, '/'); 839 len = p - path; 840 841 /* of_aliases must not be NULL */ 842 if (!of_aliases) 843 return NULL; 844 845 for_each_property_of_node(of_aliases, pp) { 846 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 847 np = of_find_node_by_path(pp->value); 848 break; 849 } 850 } 851 if (!np) 852 return NULL; 853 path = p; 854 } 855 856 /* Step down the tree matching path components */ 857 raw_spin_lock_irqsave(&devtree_lock, flags); 858 if (!np) 859 np = of_node_get(of_root); 860 np = __of_find_node_by_full_path(np, path); 861 raw_spin_unlock_irqrestore(&devtree_lock, flags); 862 return np; 863 } 864 EXPORT_SYMBOL(of_find_node_opts_by_path); 865 866 /** 867 * of_find_node_by_name - Find a node by its "name" property 868 * @from: The node to start searching from or NULL, the node 869 * you pass will not be searched, only the next one 870 * will; typically, you pass what the previous call 871 * returned. of_node_put() will be called on it 872 * @name: The name string to match against 873 * 874 * Returns a node pointer with refcount incremented, use 875 * of_node_put() on it when done. 876 */ 877 struct device_node *of_find_node_by_name(struct device_node *from, 878 const char *name) 879 { 880 struct device_node *np; 881 unsigned long flags; 882 883 raw_spin_lock_irqsave(&devtree_lock, flags); 884 for_each_of_allnodes_from(from, np) 885 if (np->name && (of_node_cmp(np->name, name) == 0) 886 && of_node_get(np)) 887 break; 888 of_node_put(from); 889 raw_spin_unlock_irqrestore(&devtree_lock, flags); 890 return np; 891 } 892 EXPORT_SYMBOL(of_find_node_by_name); 893 894 /** 895 * of_find_node_by_type - Find a node by its "device_type" property 896 * @from: The node to start searching from, or NULL to start searching 897 * the entire device tree. The node you pass will not be 898 * searched, only the next one will; typically, you pass 899 * what the previous call returned. of_node_put() will be 900 * called on from for you. 901 * @type: The type string to match against 902 * 903 * Returns a node pointer with refcount incremented, use 904 * of_node_put() on it when done. 905 */ 906 struct device_node *of_find_node_by_type(struct device_node *from, 907 const char *type) 908 { 909 struct device_node *np; 910 unsigned long flags; 911 912 raw_spin_lock_irqsave(&devtree_lock, flags); 913 for_each_of_allnodes_from(from, np) 914 if (np->type && (of_node_cmp(np->type, type) == 0) 915 && of_node_get(np)) 916 break; 917 of_node_put(from); 918 raw_spin_unlock_irqrestore(&devtree_lock, flags); 919 return np; 920 } 921 EXPORT_SYMBOL(of_find_node_by_type); 922 923 /** 924 * of_find_compatible_node - Find a node based on type and one of the 925 * tokens in its "compatible" property 926 * @from: The node to start searching from or NULL, the node 927 * you pass will not be searched, only the next one 928 * will; typically, you pass what the previous call 929 * returned. of_node_put() will be called on it 930 * @type: The type string to match "device_type" or NULL to ignore 931 * @compatible: The string to match to one of the tokens in the device 932 * "compatible" list. 933 * 934 * Returns a node pointer with refcount incremented, use 935 * of_node_put() on it when done. 936 */ 937 struct device_node *of_find_compatible_node(struct device_node *from, 938 const char *type, const char *compatible) 939 { 940 struct device_node *np; 941 unsigned long flags; 942 943 raw_spin_lock_irqsave(&devtree_lock, flags); 944 for_each_of_allnodes_from(from, np) 945 if (__of_device_is_compatible(np, compatible, type, NULL) && 946 of_node_get(np)) 947 break; 948 of_node_put(from); 949 raw_spin_unlock_irqrestore(&devtree_lock, flags); 950 return np; 951 } 952 EXPORT_SYMBOL(of_find_compatible_node); 953 954 /** 955 * of_find_node_with_property - Find a node which has a property with 956 * the given name. 957 * @from: The node to start searching from or NULL, the node 958 * you pass will not be searched, only the next one 959 * will; typically, you pass what the previous call 960 * returned. of_node_put() will be called on it 961 * @prop_name: The name of the property to look for. 962 * 963 * Returns a node pointer with refcount incremented, use 964 * of_node_put() on it when done. 965 */ 966 struct device_node *of_find_node_with_property(struct device_node *from, 967 const char *prop_name) 968 { 969 struct device_node *np; 970 struct property *pp; 971 unsigned long flags; 972 973 raw_spin_lock_irqsave(&devtree_lock, flags); 974 for_each_of_allnodes_from(from, np) { 975 for (pp = np->properties; pp; pp = pp->next) { 976 if (of_prop_cmp(pp->name, prop_name) == 0) { 977 of_node_get(np); 978 goto out; 979 } 980 } 981 } 982 out: 983 of_node_put(from); 984 raw_spin_unlock_irqrestore(&devtree_lock, flags); 985 return np; 986 } 987 EXPORT_SYMBOL(of_find_node_with_property); 988 989 static 990 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 991 const struct device_node *node) 992 { 993 const struct of_device_id *best_match = NULL; 994 int score, best_score = 0; 995 996 if (!matches) 997 return NULL; 998 999 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1000 score = __of_device_is_compatible(node, matches->compatible, 1001 matches->type, matches->name); 1002 if (score > best_score) { 1003 best_match = matches; 1004 best_score = score; 1005 } 1006 } 1007 1008 return best_match; 1009 } 1010 1011 /** 1012 * of_match_node - Tell if a device_node has a matching of_match structure 1013 * @matches: array of of device match structures to search in 1014 * @node: the of device structure to match against 1015 * 1016 * Low level utility function used by device matching. 1017 */ 1018 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1019 const struct device_node *node) 1020 { 1021 const struct of_device_id *match; 1022 unsigned long flags; 1023 1024 raw_spin_lock_irqsave(&devtree_lock, flags); 1025 match = __of_match_node(matches, node); 1026 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1027 return match; 1028 } 1029 EXPORT_SYMBOL(of_match_node); 1030 1031 /** 1032 * of_find_matching_node_and_match - Find a node based on an of_device_id 1033 * match table. 1034 * @from: The node to start searching from or NULL, the node 1035 * you pass will not be searched, only the next one 1036 * will; typically, you pass what the previous call 1037 * returned. of_node_put() will be called on it 1038 * @matches: array of of device match structures to search in 1039 * @match Updated to point at the matches entry which matched 1040 * 1041 * Returns a node pointer with refcount incremented, use 1042 * of_node_put() on it when done. 1043 */ 1044 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1045 const struct of_device_id *matches, 1046 const struct of_device_id **match) 1047 { 1048 struct device_node *np; 1049 const struct of_device_id *m; 1050 unsigned long flags; 1051 1052 if (match) 1053 *match = NULL; 1054 1055 raw_spin_lock_irqsave(&devtree_lock, flags); 1056 for_each_of_allnodes_from(from, np) { 1057 m = __of_match_node(matches, np); 1058 if (m && of_node_get(np)) { 1059 if (match) 1060 *match = m; 1061 break; 1062 } 1063 } 1064 of_node_put(from); 1065 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1066 return np; 1067 } 1068 EXPORT_SYMBOL(of_find_matching_node_and_match); 1069 1070 /** 1071 * of_modalias_node - Lookup appropriate modalias for a device node 1072 * @node: pointer to a device tree node 1073 * @modalias: Pointer to buffer that modalias value will be copied into 1074 * @len: Length of modalias value 1075 * 1076 * Based on the value of the compatible property, this routine will attempt 1077 * to choose an appropriate modalias value for a particular device tree node. 1078 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1079 * from the first entry in the compatible list property. 1080 * 1081 * This routine returns 0 on success, <0 on failure. 1082 */ 1083 int of_modalias_node(struct device_node *node, char *modalias, int len) 1084 { 1085 const char *compatible, *p; 1086 int cplen; 1087 1088 compatible = of_get_property(node, "compatible", &cplen); 1089 if (!compatible || strlen(compatible) > cplen) 1090 return -ENODEV; 1091 p = strchr(compatible, ','); 1092 strlcpy(modalias, p ? p + 1 : compatible, len); 1093 return 0; 1094 } 1095 EXPORT_SYMBOL_GPL(of_modalias_node); 1096 1097 /** 1098 * of_find_node_by_phandle - Find a node given a phandle 1099 * @handle: phandle of the node to find 1100 * 1101 * Returns a node pointer with refcount incremented, use 1102 * of_node_put() on it when done. 1103 */ 1104 struct device_node *of_find_node_by_phandle(phandle handle) 1105 { 1106 struct device_node *np; 1107 unsigned long flags; 1108 1109 if (!handle) 1110 return NULL; 1111 1112 raw_spin_lock_irqsave(&devtree_lock, flags); 1113 for_each_of_allnodes(np) 1114 if (np->phandle == handle) 1115 break; 1116 of_node_get(np); 1117 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1118 return np; 1119 } 1120 EXPORT_SYMBOL(of_find_node_by_phandle); 1121 1122 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1123 { 1124 int i; 1125 printk("%s %s", msg, of_node_full_name(args->np)); 1126 for (i = 0; i < args->args_count; i++) { 1127 const char delim = i ? ',' : ':'; 1128 1129 pr_cont("%c%08x", delim, args->args[i]); 1130 } 1131 pr_cont("\n"); 1132 } 1133 1134 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1135 const struct device_node *np, 1136 const char *list_name, 1137 const char *cells_name, 1138 int cell_count) 1139 { 1140 const __be32 *list; 1141 int size; 1142 1143 memset(it, 0, sizeof(*it)); 1144 1145 list = of_get_property(np, list_name, &size); 1146 if (!list) 1147 return -ENOENT; 1148 1149 it->cells_name = cells_name; 1150 it->cell_count = cell_count; 1151 it->parent = np; 1152 it->list_end = list + size / sizeof(*list); 1153 it->phandle_end = list; 1154 it->cur = list; 1155 1156 return 0; 1157 } 1158 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1159 1160 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1161 { 1162 uint32_t count = 0; 1163 1164 if (it->node) { 1165 of_node_put(it->node); 1166 it->node = NULL; 1167 } 1168 1169 if (!it->cur || it->phandle_end >= it->list_end) 1170 return -ENOENT; 1171 1172 it->cur = it->phandle_end; 1173 1174 /* If phandle is 0, then it is an empty entry with no arguments. */ 1175 it->phandle = be32_to_cpup(it->cur++); 1176 1177 if (it->phandle) { 1178 1179 /* 1180 * Find the provider node and parse the #*-cells property to 1181 * determine the argument length. 1182 */ 1183 it->node = of_find_node_by_phandle(it->phandle); 1184 1185 if (it->cells_name) { 1186 if (!it->node) { 1187 pr_err("%s: could not find phandle\n", 1188 it->parent->full_name); 1189 goto err; 1190 } 1191 1192 if (of_property_read_u32(it->node, it->cells_name, 1193 &count)) { 1194 pr_err("%s: could not get %s for %s\n", 1195 it->parent->full_name, 1196 it->cells_name, 1197 it->node->full_name); 1198 goto err; 1199 } 1200 } else { 1201 count = it->cell_count; 1202 } 1203 1204 /* 1205 * Make sure that the arguments actually fit in the remaining 1206 * property data length 1207 */ 1208 if (it->cur + count > it->list_end) { 1209 pr_err("%s: arguments longer than property\n", 1210 it->parent->full_name); 1211 goto err; 1212 } 1213 } 1214 1215 it->phandle_end = it->cur + count; 1216 it->cur_count = count; 1217 1218 return 0; 1219 1220 err: 1221 if (it->node) { 1222 of_node_put(it->node); 1223 it->node = NULL; 1224 } 1225 1226 return -EINVAL; 1227 } 1228 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1229 1230 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1231 uint32_t *args, 1232 int size) 1233 { 1234 int i, count; 1235 1236 count = it->cur_count; 1237 1238 if (WARN_ON(size < count)) 1239 count = size; 1240 1241 for (i = 0; i < count; i++) 1242 args[i] = be32_to_cpup(it->cur++); 1243 1244 return count; 1245 } 1246 1247 static int __of_parse_phandle_with_args(const struct device_node *np, 1248 const char *list_name, 1249 const char *cells_name, 1250 int cell_count, int index, 1251 struct of_phandle_args *out_args) 1252 { 1253 struct of_phandle_iterator it; 1254 int rc, cur_index = 0; 1255 1256 /* Loop over the phandles until all the requested entry is found */ 1257 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1258 /* 1259 * All of the error cases bail out of the loop, so at 1260 * this point, the parsing is successful. If the requested 1261 * index matches, then fill the out_args structure and return, 1262 * or return -ENOENT for an empty entry. 1263 */ 1264 rc = -ENOENT; 1265 if (cur_index == index) { 1266 if (!it.phandle) 1267 goto err; 1268 1269 if (out_args) { 1270 int c; 1271 1272 c = of_phandle_iterator_args(&it, 1273 out_args->args, 1274 MAX_PHANDLE_ARGS); 1275 out_args->np = it.node; 1276 out_args->args_count = c; 1277 } else { 1278 of_node_put(it.node); 1279 } 1280 1281 /* Found it! return success */ 1282 return 0; 1283 } 1284 1285 cur_index++; 1286 } 1287 1288 /* 1289 * Unlock node before returning result; will be one of: 1290 * -ENOENT : index is for empty phandle 1291 * -EINVAL : parsing error on data 1292 */ 1293 1294 err: 1295 of_node_put(it.node); 1296 return rc; 1297 } 1298 1299 /** 1300 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1301 * @np: Pointer to device node holding phandle property 1302 * @phandle_name: Name of property holding a phandle value 1303 * @index: For properties holding a table of phandles, this is the index into 1304 * the table 1305 * 1306 * Returns the device_node pointer with refcount incremented. Use 1307 * of_node_put() on it when done. 1308 */ 1309 struct device_node *of_parse_phandle(const struct device_node *np, 1310 const char *phandle_name, int index) 1311 { 1312 struct of_phandle_args args; 1313 1314 if (index < 0) 1315 return NULL; 1316 1317 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1318 index, &args)) 1319 return NULL; 1320 1321 return args.np; 1322 } 1323 EXPORT_SYMBOL(of_parse_phandle); 1324 1325 /** 1326 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1327 * @np: pointer to a device tree node containing a list 1328 * @list_name: property name that contains a list 1329 * @cells_name: property name that specifies phandles' arguments count 1330 * @index: index of a phandle to parse out 1331 * @out_args: optional pointer to output arguments structure (will be filled) 1332 * 1333 * This function is useful to parse lists of phandles and their arguments. 1334 * Returns 0 on success and fills out_args, on error returns appropriate 1335 * errno value. 1336 * 1337 * Caller is responsible to call of_node_put() on the returned out_args->np 1338 * pointer. 1339 * 1340 * Example: 1341 * 1342 * phandle1: node1 { 1343 * #list-cells = <2>; 1344 * } 1345 * 1346 * phandle2: node2 { 1347 * #list-cells = <1>; 1348 * } 1349 * 1350 * node3 { 1351 * list = <&phandle1 1 2 &phandle2 3>; 1352 * } 1353 * 1354 * To get a device_node of the `node2' node you may call this: 1355 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1356 */ 1357 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1358 const char *cells_name, int index, 1359 struct of_phandle_args *out_args) 1360 { 1361 if (index < 0) 1362 return -EINVAL; 1363 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1364 index, out_args); 1365 } 1366 EXPORT_SYMBOL(of_parse_phandle_with_args); 1367 1368 /** 1369 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1370 * @np: pointer to a device tree node containing a list 1371 * @list_name: property name that contains a list 1372 * @cell_count: number of argument cells following the phandle 1373 * @index: index of a phandle to parse out 1374 * @out_args: optional pointer to output arguments structure (will be filled) 1375 * 1376 * This function is useful to parse lists of phandles and their arguments. 1377 * Returns 0 on success and fills out_args, on error returns appropriate 1378 * errno value. 1379 * 1380 * Caller is responsible to call of_node_put() on the returned out_args->np 1381 * pointer. 1382 * 1383 * Example: 1384 * 1385 * phandle1: node1 { 1386 * } 1387 * 1388 * phandle2: node2 { 1389 * } 1390 * 1391 * node3 { 1392 * list = <&phandle1 0 2 &phandle2 2 3>; 1393 * } 1394 * 1395 * To get a device_node of the `node2' node you may call this: 1396 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1397 */ 1398 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1399 const char *list_name, int cell_count, 1400 int index, struct of_phandle_args *out_args) 1401 { 1402 if (index < 0) 1403 return -EINVAL; 1404 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1405 index, out_args); 1406 } 1407 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1408 1409 /** 1410 * of_count_phandle_with_args() - Find the number of phandles references in a property 1411 * @np: pointer to a device tree node containing a list 1412 * @list_name: property name that contains a list 1413 * @cells_name: property name that specifies phandles' arguments count 1414 * 1415 * Returns the number of phandle + argument tuples within a property. It 1416 * is a typical pattern to encode a list of phandle and variable 1417 * arguments into a single property. The number of arguments is encoded 1418 * by a property in the phandle-target node. For example, a gpios 1419 * property would contain a list of GPIO specifies consisting of a 1420 * phandle and 1 or more arguments. The number of arguments are 1421 * determined by the #gpio-cells property in the node pointed to by the 1422 * phandle. 1423 */ 1424 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1425 const char *cells_name) 1426 { 1427 struct of_phandle_iterator it; 1428 int rc, cur_index = 0; 1429 1430 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1431 if (rc) 1432 return rc; 1433 1434 while ((rc = of_phandle_iterator_next(&it)) == 0) 1435 cur_index += 1; 1436 1437 if (rc != -ENOENT) 1438 return rc; 1439 1440 return cur_index; 1441 } 1442 EXPORT_SYMBOL(of_count_phandle_with_args); 1443 1444 /** 1445 * __of_add_property - Add a property to a node without lock operations 1446 */ 1447 int __of_add_property(struct device_node *np, struct property *prop) 1448 { 1449 struct property **next; 1450 1451 prop->next = NULL; 1452 next = &np->properties; 1453 while (*next) { 1454 if (strcmp(prop->name, (*next)->name) == 0) 1455 /* duplicate ! don't insert it */ 1456 return -EEXIST; 1457 1458 next = &(*next)->next; 1459 } 1460 *next = prop; 1461 1462 return 0; 1463 } 1464 1465 /** 1466 * of_add_property - Add a property to a node 1467 */ 1468 int of_add_property(struct device_node *np, struct property *prop) 1469 { 1470 unsigned long flags; 1471 int rc; 1472 1473 mutex_lock(&of_mutex); 1474 1475 raw_spin_lock_irqsave(&devtree_lock, flags); 1476 rc = __of_add_property(np, prop); 1477 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1478 1479 if (!rc) 1480 __of_add_property_sysfs(np, prop); 1481 1482 mutex_unlock(&of_mutex); 1483 1484 if (!rc) 1485 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1486 1487 return rc; 1488 } 1489 1490 int __of_remove_property(struct device_node *np, struct property *prop) 1491 { 1492 struct property **next; 1493 1494 for (next = &np->properties; *next; next = &(*next)->next) { 1495 if (*next == prop) 1496 break; 1497 } 1498 if (*next == NULL) 1499 return -ENODEV; 1500 1501 /* found the node */ 1502 *next = prop->next; 1503 prop->next = np->deadprops; 1504 np->deadprops = prop; 1505 1506 return 0; 1507 } 1508 1509 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) 1510 { 1511 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1512 kfree(prop->attr.attr.name); 1513 } 1514 1515 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1516 { 1517 if (!IS_ENABLED(CONFIG_SYSFS)) 1518 return; 1519 1520 /* at early boot, bail here and defer setup to of_init() */ 1521 if (of_kset && of_node_is_attached(np)) 1522 __of_sysfs_remove_bin_file(np, prop); 1523 } 1524 1525 /** 1526 * of_remove_property - Remove a property from a node. 1527 * 1528 * Note that we don't actually remove it, since we have given out 1529 * who-knows-how-many pointers to the data using get-property. 1530 * Instead we just move the property to the "dead properties" 1531 * list, so it won't be found any more. 1532 */ 1533 int of_remove_property(struct device_node *np, struct property *prop) 1534 { 1535 unsigned long flags; 1536 int rc; 1537 1538 if (!prop) 1539 return -ENODEV; 1540 1541 mutex_lock(&of_mutex); 1542 1543 raw_spin_lock_irqsave(&devtree_lock, flags); 1544 rc = __of_remove_property(np, prop); 1545 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1546 1547 if (!rc) 1548 __of_remove_property_sysfs(np, prop); 1549 1550 mutex_unlock(&of_mutex); 1551 1552 if (!rc) 1553 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1554 1555 return rc; 1556 } 1557 1558 int __of_update_property(struct device_node *np, struct property *newprop, 1559 struct property **oldpropp) 1560 { 1561 struct property **next, *oldprop; 1562 1563 for (next = &np->properties; *next; next = &(*next)->next) { 1564 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1565 break; 1566 } 1567 *oldpropp = oldprop = *next; 1568 1569 if (oldprop) { 1570 /* replace the node */ 1571 newprop->next = oldprop->next; 1572 *next = newprop; 1573 oldprop->next = np->deadprops; 1574 np->deadprops = oldprop; 1575 } else { 1576 /* new node */ 1577 newprop->next = NULL; 1578 *next = newprop; 1579 } 1580 1581 return 0; 1582 } 1583 1584 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1585 struct property *oldprop) 1586 { 1587 if (!IS_ENABLED(CONFIG_SYSFS)) 1588 return; 1589 1590 /* At early boot, bail out and defer setup to of_init() */ 1591 if (!of_kset) 1592 return; 1593 1594 if (oldprop) 1595 __of_sysfs_remove_bin_file(np, oldprop); 1596 __of_add_property_sysfs(np, newprop); 1597 } 1598 1599 /* 1600 * of_update_property - Update a property in a node, if the property does 1601 * not exist, add it. 1602 * 1603 * Note that we don't actually remove it, since we have given out 1604 * who-knows-how-many pointers to the data using get-property. 1605 * Instead we just move the property to the "dead properties" list, 1606 * and add the new property to the property list 1607 */ 1608 int of_update_property(struct device_node *np, struct property *newprop) 1609 { 1610 struct property *oldprop; 1611 unsigned long flags; 1612 int rc; 1613 1614 if (!newprop->name) 1615 return -EINVAL; 1616 1617 mutex_lock(&of_mutex); 1618 1619 raw_spin_lock_irqsave(&devtree_lock, flags); 1620 rc = __of_update_property(np, newprop, &oldprop); 1621 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1622 1623 if (!rc) 1624 __of_update_property_sysfs(np, newprop, oldprop); 1625 1626 mutex_unlock(&of_mutex); 1627 1628 if (!rc) 1629 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1630 1631 return rc; 1632 } 1633 1634 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1635 int id, const char *stem, int stem_len) 1636 { 1637 ap->np = np; 1638 ap->id = id; 1639 strncpy(ap->stem, stem, stem_len); 1640 ap->stem[stem_len] = 0; 1641 list_add_tail(&ap->link, &aliases_lookup); 1642 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1643 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1644 } 1645 1646 /** 1647 * of_alias_scan - Scan all properties of the 'aliases' node 1648 * 1649 * The function scans all the properties of the 'aliases' node and populates 1650 * the global lookup table with the properties. It returns the 1651 * number of alias properties found, or an error code in case of failure. 1652 * 1653 * @dt_alloc: An allocator that provides a virtual address to memory 1654 * for storing the resulting tree 1655 */ 1656 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1657 { 1658 struct property *pp; 1659 1660 of_aliases = of_find_node_by_path("/aliases"); 1661 of_chosen = of_find_node_by_path("/chosen"); 1662 if (of_chosen == NULL) 1663 of_chosen = of_find_node_by_path("/chosen@0"); 1664 1665 if (of_chosen) { 1666 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1667 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1668 if (!name) 1669 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1670 if (IS_ENABLED(CONFIG_PPC) && !name) 1671 name = of_get_property(of_aliases, "stdout", NULL); 1672 if (name) 1673 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1674 } 1675 1676 if (!of_aliases) 1677 return; 1678 1679 for_each_property_of_node(of_aliases, pp) { 1680 const char *start = pp->name; 1681 const char *end = start + strlen(start); 1682 struct device_node *np; 1683 struct alias_prop *ap; 1684 int id, len; 1685 1686 /* Skip those we do not want to proceed */ 1687 if (!strcmp(pp->name, "name") || 1688 !strcmp(pp->name, "phandle") || 1689 !strcmp(pp->name, "linux,phandle")) 1690 continue; 1691 1692 np = of_find_node_by_path(pp->value); 1693 if (!np) 1694 continue; 1695 1696 /* walk the alias backwards to extract the id and work out 1697 * the 'stem' string */ 1698 while (isdigit(*(end-1)) && end > start) 1699 end--; 1700 len = end - start; 1701 1702 if (kstrtoint(end, 10, &id) < 0) 1703 continue; 1704 1705 /* Allocate an alias_prop with enough space for the stem */ 1706 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1707 if (!ap) 1708 continue; 1709 memset(ap, 0, sizeof(*ap) + len + 1); 1710 ap->alias = start; 1711 of_alias_add(ap, np, id, start, len); 1712 } 1713 } 1714 1715 /** 1716 * of_alias_get_id - Get alias id for the given device_node 1717 * @np: Pointer to the given device_node 1718 * @stem: Alias stem of the given device_node 1719 * 1720 * The function travels the lookup table to get the alias id for the given 1721 * device_node and alias stem. It returns the alias id if found. 1722 */ 1723 int of_alias_get_id(struct device_node *np, const char *stem) 1724 { 1725 struct alias_prop *app; 1726 int id = -ENODEV; 1727 1728 mutex_lock(&of_mutex); 1729 list_for_each_entry(app, &aliases_lookup, link) { 1730 if (strcmp(app->stem, stem) != 0) 1731 continue; 1732 1733 if (np == app->np) { 1734 id = app->id; 1735 break; 1736 } 1737 } 1738 mutex_unlock(&of_mutex); 1739 1740 return id; 1741 } 1742 EXPORT_SYMBOL_GPL(of_alias_get_id); 1743 1744 /** 1745 * of_alias_get_highest_id - Get highest alias id for the given stem 1746 * @stem: Alias stem to be examined 1747 * 1748 * The function travels the lookup table to get the highest alias id for the 1749 * given alias stem. It returns the alias id if found. 1750 */ 1751 int of_alias_get_highest_id(const char *stem) 1752 { 1753 struct alias_prop *app; 1754 int id = -ENODEV; 1755 1756 mutex_lock(&of_mutex); 1757 list_for_each_entry(app, &aliases_lookup, link) { 1758 if (strcmp(app->stem, stem) != 0) 1759 continue; 1760 1761 if (app->id > id) 1762 id = app->id; 1763 } 1764 mutex_unlock(&of_mutex); 1765 1766 return id; 1767 } 1768 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1769 1770 /** 1771 * of_console_check() - Test and setup console for DT setup 1772 * @dn - Pointer to device node 1773 * @name - Name to use for preferred console without index. ex. "ttyS" 1774 * @index - Index to use for preferred console. 1775 * 1776 * Check if the given device node matches the stdout-path property in the 1777 * /chosen node. If it does then register it as the preferred console and return 1778 * TRUE. Otherwise return FALSE. 1779 */ 1780 bool of_console_check(struct device_node *dn, char *name, int index) 1781 { 1782 if (!dn || dn != of_stdout || console_set_on_cmdline) 1783 return false; 1784 return !add_preferred_console(name, index, 1785 kstrdup(of_stdout_options, GFP_KERNEL)); 1786 } 1787 EXPORT_SYMBOL_GPL(of_console_check); 1788 1789 /** 1790 * of_find_next_cache_node - Find a node's subsidiary cache 1791 * @np: node of type "cpu" or "cache" 1792 * 1793 * Returns a node pointer with refcount incremented, use 1794 * of_node_put() on it when done. Caller should hold a reference 1795 * to np. 1796 */ 1797 struct device_node *of_find_next_cache_node(const struct device_node *np) 1798 { 1799 struct device_node *child, *cache_node; 1800 1801 cache_node = of_parse_phandle(np, "l2-cache", 0); 1802 if (!cache_node) 1803 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1804 1805 if (cache_node) 1806 return cache_node; 1807 1808 /* OF on pmac has nodes instead of properties named "l2-cache" 1809 * beneath CPU nodes. 1810 */ 1811 if (!strcmp(np->type, "cpu")) 1812 for_each_child_of_node(np, child) 1813 if (!strcmp(child->type, "cache")) 1814 return child; 1815 1816 return NULL; 1817 } 1818 1819 /** 1820 * of_find_last_cache_level - Find the level at which the last cache is 1821 * present for the given logical cpu 1822 * 1823 * @cpu: cpu number(logical index) for which the last cache level is needed 1824 * 1825 * Returns the the level at which the last cache is present. It is exactly 1826 * same as the total number of cache levels for the given logical cpu. 1827 */ 1828 int of_find_last_cache_level(unsigned int cpu) 1829 { 1830 u32 cache_level = 0; 1831 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1832 1833 while (np) { 1834 prev = np; 1835 of_node_put(np); 1836 np = of_find_next_cache_node(np); 1837 } 1838 1839 of_property_read_u32(prev, "cache-level", &cache_level); 1840 1841 return cache_level; 1842 } 1843