xref: /linux/drivers/of/base.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 
21 #define pr_fmt(fmt)	"OF: " fmt
22 
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34 
35 #include "of_private.h"
36 
37 LIST_HEAD(aliases_lookup);
38 
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45 
46 struct kset *of_kset;
47 
48 /*
49  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50  * This mutex must be held whenever modifications are being made to the
51  * device tree. The of_{attach,detach}_node() and
52  * of_{add,remove,update}_property() helpers make sure this happens.
53  */
54 DEFINE_MUTEX(of_mutex);
55 
56 /* use when traversing tree through the child, sibling,
57  * or parent members of struct device_node.
58  */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60 
61 int of_n_addr_cells(struct device_node *np)
62 {
63 	const __be32 *ip;
64 
65 	do {
66 		if (np->parent)
67 			np = np->parent;
68 		ip = of_get_property(np, "#address-cells", NULL);
69 		if (ip)
70 			return be32_to_cpup(ip);
71 	} while (np->parent);
72 	/* No #address-cells property for the root node */
73 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_addr_cells);
76 
77 int of_n_size_cells(struct device_node *np)
78 {
79 	const __be32 *ip;
80 
81 	do {
82 		if (np->parent)
83 			np = np->parent;
84 		ip = of_get_property(np, "#size-cells", NULL);
85 		if (ip)
86 			return be32_to_cpup(ip);
87 	} while (np->parent);
88 	/* No #size-cells property for the root node */
89 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
90 }
91 EXPORT_SYMBOL(of_n_size_cells);
92 
93 #ifdef CONFIG_NUMA
94 int __weak of_node_to_nid(struct device_node *np)
95 {
96 	return NUMA_NO_NODE;
97 }
98 #endif
99 
100 #ifndef CONFIG_OF_DYNAMIC
101 static void of_node_release(struct kobject *kobj)
102 {
103 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
104 }
105 #endif /* CONFIG_OF_DYNAMIC */
106 
107 struct kobj_type of_node_ktype = {
108 	.release = of_node_release,
109 };
110 
111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
112 				struct bin_attribute *bin_attr, char *buf,
113 				loff_t offset, size_t count)
114 {
115 	struct property *pp = container_of(bin_attr, struct property, attr);
116 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
117 }
118 
119 /* always return newly allocated name, caller must free after use */
120 static const char *safe_name(struct kobject *kobj, const char *orig_name)
121 {
122 	const char *name = orig_name;
123 	struct kernfs_node *kn;
124 	int i = 0;
125 
126 	/* don't be a hero. After 16 tries give up */
127 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
128 		sysfs_put(kn);
129 		if (name != orig_name)
130 			kfree(name);
131 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
132 	}
133 
134 	if (name == orig_name) {
135 		name = kstrdup(orig_name, GFP_KERNEL);
136 	} else {
137 		pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138 			kobject_name(kobj), name);
139 	}
140 	return name;
141 }
142 
143 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 {
145 	int rc;
146 
147 	/* Important: Don't leak passwords */
148 	bool secure = strncmp(pp->name, "security-", 9) == 0;
149 
150 	if (!IS_ENABLED(CONFIG_SYSFS))
151 		return 0;
152 
153 	if (!of_kset || !of_node_is_attached(np))
154 		return 0;
155 
156 	sysfs_bin_attr_init(&pp->attr);
157 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
158 	pp->attr.attr.mode = secure ? 0400 : 0444;
159 	pp->attr.size = secure ? 0 : pp->length;
160 	pp->attr.read = of_node_property_read;
161 
162 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
163 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
164 	return rc;
165 }
166 
167 int __of_attach_node_sysfs(struct device_node *np)
168 {
169 	const char *name;
170 	struct kobject *parent;
171 	struct property *pp;
172 	int rc;
173 
174 	if (!IS_ENABLED(CONFIG_SYSFS))
175 		return 0;
176 
177 	if (!of_kset)
178 		return 0;
179 
180 	np->kobj.kset = of_kset;
181 	if (!np->parent) {
182 		/* Nodes without parents are new top level trees */
183 		name = safe_name(&of_kset->kobj, "base");
184 		parent = NULL;
185 	} else {
186 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187 		parent = &np->parent->kobj;
188 	}
189 	if (!name)
190 		return -ENOMEM;
191 	rc = kobject_add(&np->kobj, parent, "%s", name);
192 	kfree(name);
193 	if (rc)
194 		return rc;
195 
196 	for_each_property_of_node(np, pp)
197 		__of_add_property_sysfs(np, pp);
198 
199 	return 0;
200 }
201 
202 void __init of_core_init(void)
203 {
204 	struct device_node *np;
205 
206 	/* Create the kset, and register existing nodes */
207 	mutex_lock(&of_mutex);
208 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
209 	if (!of_kset) {
210 		mutex_unlock(&of_mutex);
211 		pr_err("failed to register existing nodes\n");
212 		return;
213 	}
214 	for_each_of_allnodes(np)
215 		__of_attach_node_sysfs(np);
216 	mutex_unlock(&of_mutex);
217 
218 	/* Symlink in /proc as required by userspace ABI */
219 	if (of_root)
220 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
221 }
222 
223 static struct property *__of_find_property(const struct device_node *np,
224 					   const char *name, int *lenp)
225 {
226 	struct property *pp;
227 
228 	if (!np)
229 		return NULL;
230 
231 	for (pp = np->properties; pp; pp = pp->next) {
232 		if (of_prop_cmp(pp->name, name) == 0) {
233 			if (lenp)
234 				*lenp = pp->length;
235 			break;
236 		}
237 	}
238 
239 	return pp;
240 }
241 
242 struct property *of_find_property(const struct device_node *np,
243 				  const char *name,
244 				  int *lenp)
245 {
246 	struct property *pp;
247 	unsigned long flags;
248 
249 	raw_spin_lock_irqsave(&devtree_lock, flags);
250 	pp = __of_find_property(np, name, lenp);
251 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
252 
253 	return pp;
254 }
255 EXPORT_SYMBOL(of_find_property);
256 
257 struct device_node *__of_find_all_nodes(struct device_node *prev)
258 {
259 	struct device_node *np;
260 	if (!prev) {
261 		np = of_root;
262 	} else if (prev->child) {
263 		np = prev->child;
264 	} else {
265 		/* Walk back up looking for a sibling, or the end of the structure */
266 		np = prev;
267 		while (np->parent && !np->sibling)
268 			np = np->parent;
269 		np = np->sibling; /* Might be null at the end of the tree */
270 	}
271 	return np;
272 }
273 
274 /**
275  * of_find_all_nodes - Get next node in global list
276  * @prev:	Previous node or NULL to start iteration
277  *		of_node_put() will be called on it
278  *
279  * Returns a node pointer with refcount incremented, use
280  * of_node_put() on it when done.
281  */
282 struct device_node *of_find_all_nodes(struct device_node *prev)
283 {
284 	struct device_node *np;
285 	unsigned long flags;
286 
287 	raw_spin_lock_irqsave(&devtree_lock, flags);
288 	np = __of_find_all_nodes(prev);
289 	of_node_get(np);
290 	of_node_put(prev);
291 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
292 	return np;
293 }
294 EXPORT_SYMBOL(of_find_all_nodes);
295 
296 /*
297  * Find a property with a given name for a given node
298  * and return the value.
299  */
300 const void *__of_get_property(const struct device_node *np,
301 			      const char *name, int *lenp)
302 {
303 	struct property *pp = __of_find_property(np, name, lenp);
304 
305 	return pp ? pp->value : NULL;
306 }
307 
308 /*
309  * Find a property with a given name for a given node
310  * and return the value.
311  */
312 const void *of_get_property(const struct device_node *np, const char *name,
313 			    int *lenp)
314 {
315 	struct property *pp = of_find_property(np, name, lenp);
316 
317 	return pp ? pp->value : NULL;
318 }
319 EXPORT_SYMBOL(of_get_property);
320 
321 /*
322  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
323  *
324  * @cpu: logical cpu index of a core/thread
325  * @phys_id: physical identifier of a core/thread
326  *
327  * CPU logical to physical index mapping is architecture specific.
328  * However this __weak function provides a default match of physical
329  * id to logical cpu index. phys_id provided here is usually values read
330  * from the device tree which must match the hardware internal registers.
331  *
332  * Returns true if the physical identifier and the logical cpu index
333  * correspond to the same core/thread, false otherwise.
334  */
335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
336 {
337 	return (u32)phys_id == cpu;
338 }
339 
340 /**
341  * Checks if the given "prop_name" property holds the physical id of the
342  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
343  * NULL, local thread number within the core is returned in it.
344  */
345 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
346 			const char *prop_name, int cpu, unsigned int *thread)
347 {
348 	const __be32 *cell;
349 	int ac, prop_len, tid;
350 	u64 hwid;
351 
352 	ac = of_n_addr_cells(cpun);
353 	cell = of_get_property(cpun, prop_name, &prop_len);
354 	if (!cell || !ac)
355 		return false;
356 	prop_len /= sizeof(*cell) * ac;
357 	for (tid = 0; tid < prop_len; tid++) {
358 		hwid = of_read_number(cell, ac);
359 		if (arch_match_cpu_phys_id(cpu, hwid)) {
360 			if (thread)
361 				*thread = tid;
362 			return true;
363 		}
364 		cell += ac;
365 	}
366 	return false;
367 }
368 
369 /*
370  * arch_find_n_match_cpu_physical_id - See if the given device node is
371  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
372  * else false.  If 'thread' is non-NULL, the local thread number within the
373  * core is returned in it.
374  */
375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
376 					      int cpu, unsigned int *thread)
377 {
378 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
379 	 * for thread ids on PowerPC. If it doesn't exist fallback to
380 	 * standard "reg" property.
381 	 */
382 	if (IS_ENABLED(CONFIG_PPC) &&
383 	    __of_find_n_match_cpu_property(cpun,
384 					   "ibm,ppc-interrupt-server#s",
385 					   cpu, thread))
386 		return true;
387 
388 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
389 }
390 
391 /**
392  * of_get_cpu_node - Get device node associated with the given logical CPU
393  *
394  * @cpu: CPU number(logical index) for which device node is required
395  * @thread: if not NULL, local thread number within the physical core is
396  *          returned
397  *
398  * The main purpose of this function is to retrieve the device node for the
399  * given logical CPU index. It should be used to initialize the of_node in
400  * cpu device. Once of_node in cpu device is populated, all the further
401  * references can use that instead.
402  *
403  * CPU logical to physical index mapping is architecture specific and is built
404  * before booting secondary cores. This function uses arch_match_cpu_phys_id
405  * which can be overridden by architecture specific implementation.
406  *
407  * Returns a node pointer for the logical cpu with refcount incremented, use
408  * of_node_put() on it when done. Returns NULL if not found.
409  */
410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
411 {
412 	struct device_node *cpun;
413 
414 	for_each_node_by_type(cpun, "cpu") {
415 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
416 			return cpun;
417 	}
418 	return NULL;
419 }
420 EXPORT_SYMBOL(of_get_cpu_node);
421 
422 /**
423  * __of_device_is_compatible() - Check if the node matches given constraints
424  * @device: pointer to node
425  * @compat: required compatible string, NULL or "" for any match
426  * @type: required device_type value, NULL or "" for any match
427  * @name: required node name, NULL or "" for any match
428  *
429  * Checks if the given @compat, @type and @name strings match the
430  * properties of the given @device. A constraints can be skipped by
431  * passing NULL or an empty string as the constraint.
432  *
433  * Returns 0 for no match, and a positive integer on match. The return
434  * value is a relative score with larger values indicating better
435  * matches. The score is weighted for the most specific compatible value
436  * to get the highest score. Matching type is next, followed by matching
437  * name. Practically speaking, this results in the following priority
438  * order for matches:
439  *
440  * 1. specific compatible && type && name
441  * 2. specific compatible && type
442  * 3. specific compatible && name
443  * 4. specific compatible
444  * 5. general compatible && type && name
445  * 6. general compatible && type
446  * 7. general compatible && name
447  * 8. general compatible
448  * 9. type && name
449  * 10. type
450  * 11. name
451  */
452 static int __of_device_is_compatible(const struct device_node *device,
453 				     const char *compat, const char *type, const char *name)
454 {
455 	struct property *prop;
456 	const char *cp;
457 	int index = 0, score = 0;
458 
459 	/* Compatible match has highest priority */
460 	if (compat && compat[0]) {
461 		prop = __of_find_property(device, "compatible", NULL);
462 		for (cp = of_prop_next_string(prop, NULL); cp;
463 		     cp = of_prop_next_string(prop, cp), index++) {
464 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
465 				score = INT_MAX/2 - (index << 2);
466 				break;
467 			}
468 		}
469 		if (!score)
470 			return 0;
471 	}
472 
473 	/* Matching type is better than matching name */
474 	if (type && type[0]) {
475 		if (!device->type || of_node_cmp(type, device->type))
476 			return 0;
477 		score += 2;
478 	}
479 
480 	/* Matching name is a bit better than not */
481 	if (name && name[0]) {
482 		if (!device->name || of_node_cmp(name, device->name))
483 			return 0;
484 		score++;
485 	}
486 
487 	return score;
488 }
489 
490 /** Checks if the given "compat" string matches one of the strings in
491  * the device's "compatible" property
492  */
493 int of_device_is_compatible(const struct device_node *device,
494 		const char *compat)
495 {
496 	unsigned long flags;
497 	int res;
498 
499 	raw_spin_lock_irqsave(&devtree_lock, flags);
500 	res = __of_device_is_compatible(device, compat, NULL, NULL);
501 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
502 	return res;
503 }
504 EXPORT_SYMBOL(of_device_is_compatible);
505 
506 /** Checks if the device is compatible with any of the entries in
507  *  a NULL terminated array of strings. Returns the best match
508  *  score or 0.
509  */
510 int of_device_compatible_match(struct device_node *device,
511 			       const char *const *compat)
512 {
513 	unsigned int tmp, score = 0;
514 
515 	if (!compat)
516 		return 0;
517 
518 	while (*compat) {
519 		tmp = of_device_is_compatible(device, *compat);
520 		if (tmp > score)
521 			score = tmp;
522 		compat++;
523 	}
524 
525 	return score;
526 }
527 
528 /**
529  * of_machine_is_compatible - Test root of device tree for a given compatible value
530  * @compat: compatible string to look for in root node's compatible property.
531  *
532  * Returns a positive integer if the root node has the given value in its
533  * compatible property.
534  */
535 int of_machine_is_compatible(const char *compat)
536 {
537 	struct device_node *root;
538 	int rc = 0;
539 
540 	root = of_find_node_by_path("/");
541 	if (root) {
542 		rc = of_device_is_compatible(root, compat);
543 		of_node_put(root);
544 	}
545 	return rc;
546 }
547 EXPORT_SYMBOL(of_machine_is_compatible);
548 
549 /**
550  *  __of_device_is_available - check if a device is available for use
551  *
552  *  @device: Node to check for availability, with locks already held
553  *
554  *  Returns true if the status property is absent or set to "okay" or "ok",
555  *  false otherwise
556  */
557 static bool __of_device_is_available(const struct device_node *device)
558 {
559 	const char *status;
560 	int statlen;
561 
562 	if (!device)
563 		return false;
564 
565 	status = __of_get_property(device, "status", &statlen);
566 	if (status == NULL)
567 		return true;
568 
569 	if (statlen > 0) {
570 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
571 			return true;
572 	}
573 
574 	return false;
575 }
576 
577 /**
578  *  of_device_is_available - check if a device is available for use
579  *
580  *  @device: Node to check for availability
581  *
582  *  Returns true if the status property is absent or set to "okay" or "ok",
583  *  false otherwise
584  */
585 bool of_device_is_available(const struct device_node *device)
586 {
587 	unsigned long flags;
588 	bool res;
589 
590 	raw_spin_lock_irqsave(&devtree_lock, flags);
591 	res = __of_device_is_available(device);
592 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 	return res;
594 
595 }
596 EXPORT_SYMBOL(of_device_is_available);
597 
598 /**
599  *  of_device_is_big_endian - check if a device has BE registers
600  *
601  *  @device: Node to check for endianness
602  *
603  *  Returns true if the device has a "big-endian" property, or if the kernel
604  *  was compiled for BE *and* the device has a "native-endian" property.
605  *  Returns false otherwise.
606  *
607  *  Callers would nominally use ioread32be/iowrite32be if
608  *  of_device_is_big_endian() == true, or readl/writel otherwise.
609  */
610 bool of_device_is_big_endian(const struct device_node *device)
611 {
612 	if (of_property_read_bool(device, "big-endian"))
613 		return true;
614 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
615 	    of_property_read_bool(device, "native-endian"))
616 		return true;
617 	return false;
618 }
619 EXPORT_SYMBOL(of_device_is_big_endian);
620 
621 /**
622  *	of_get_parent - Get a node's parent if any
623  *	@node:	Node to get parent
624  *
625  *	Returns a node pointer with refcount incremented, use
626  *	of_node_put() on it when done.
627  */
628 struct device_node *of_get_parent(const struct device_node *node)
629 {
630 	struct device_node *np;
631 	unsigned long flags;
632 
633 	if (!node)
634 		return NULL;
635 
636 	raw_spin_lock_irqsave(&devtree_lock, flags);
637 	np = of_node_get(node->parent);
638 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 	return np;
640 }
641 EXPORT_SYMBOL(of_get_parent);
642 
643 /**
644  *	of_get_next_parent - Iterate to a node's parent
645  *	@node:	Node to get parent of
646  *
647  *	This is like of_get_parent() except that it drops the
648  *	refcount on the passed node, making it suitable for iterating
649  *	through a node's parents.
650  *
651  *	Returns a node pointer with refcount incremented, use
652  *	of_node_put() on it when done.
653  */
654 struct device_node *of_get_next_parent(struct device_node *node)
655 {
656 	struct device_node *parent;
657 	unsigned long flags;
658 
659 	if (!node)
660 		return NULL;
661 
662 	raw_spin_lock_irqsave(&devtree_lock, flags);
663 	parent = of_node_get(node->parent);
664 	of_node_put(node);
665 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
666 	return parent;
667 }
668 EXPORT_SYMBOL(of_get_next_parent);
669 
670 static struct device_node *__of_get_next_child(const struct device_node *node,
671 						struct device_node *prev)
672 {
673 	struct device_node *next;
674 
675 	if (!node)
676 		return NULL;
677 
678 	next = prev ? prev->sibling : node->child;
679 	for (; next; next = next->sibling)
680 		if (of_node_get(next))
681 			break;
682 	of_node_put(prev);
683 	return next;
684 }
685 #define __for_each_child_of_node(parent, child) \
686 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
687 	     child = __of_get_next_child(parent, child))
688 
689 /**
690  *	of_get_next_child - Iterate a node childs
691  *	@node:	parent node
692  *	@prev:	previous child of the parent node, or NULL to get first
693  *
694  *	Returns a node pointer with refcount incremented, use of_node_put() on
695  *	it when done. Returns NULL when prev is the last child. Decrements the
696  *	refcount of prev.
697  */
698 struct device_node *of_get_next_child(const struct device_node *node,
699 	struct device_node *prev)
700 {
701 	struct device_node *next;
702 	unsigned long flags;
703 
704 	raw_spin_lock_irqsave(&devtree_lock, flags);
705 	next = __of_get_next_child(node, prev);
706 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
707 	return next;
708 }
709 EXPORT_SYMBOL(of_get_next_child);
710 
711 /**
712  *	of_get_next_available_child - Find the next available child node
713  *	@node:	parent node
714  *	@prev:	previous child of the parent node, or NULL to get first
715  *
716  *      This function is like of_get_next_child(), except that it
717  *      automatically skips any disabled nodes (i.e. status = "disabled").
718  */
719 struct device_node *of_get_next_available_child(const struct device_node *node,
720 	struct device_node *prev)
721 {
722 	struct device_node *next;
723 	unsigned long flags;
724 
725 	if (!node)
726 		return NULL;
727 
728 	raw_spin_lock_irqsave(&devtree_lock, flags);
729 	next = prev ? prev->sibling : node->child;
730 	for (; next; next = next->sibling) {
731 		if (!__of_device_is_available(next))
732 			continue;
733 		if (of_node_get(next))
734 			break;
735 	}
736 	of_node_put(prev);
737 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 	return next;
739 }
740 EXPORT_SYMBOL(of_get_next_available_child);
741 
742 /**
743  *	of_get_child_by_name - Find the child node by name for a given parent
744  *	@node:	parent node
745  *	@name:	child name to look for.
746  *
747  *      This function looks for child node for given matching name
748  *
749  *	Returns a node pointer if found, with refcount incremented, use
750  *	of_node_put() on it when done.
751  *	Returns NULL if node is not found.
752  */
753 struct device_node *of_get_child_by_name(const struct device_node *node,
754 				const char *name)
755 {
756 	struct device_node *child;
757 
758 	for_each_child_of_node(node, child)
759 		if (child->name && (of_node_cmp(child->name, name) == 0))
760 			break;
761 	return child;
762 }
763 EXPORT_SYMBOL(of_get_child_by_name);
764 
765 static struct device_node *__of_find_node_by_path(struct device_node *parent,
766 						const char *path)
767 {
768 	struct device_node *child;
769 	int len;
770 
771 	len = strcspn(path, "/:");
772 	if (!len)
773 		return NULL;
774 
775 	__for_each_child_of_node(parent, child) {
776 		const char *name = kbasename(child->full_name);
777 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
778 			return child;
779 	}
780 	return NULL;
781 }
782 
783 struct device_node *__of_find_node_by_full_path(struct device_node *node,
784 						const char *path)
785 {
786 	const char *separator = strchr(path, ':');
787 
788 	while (node && *path == '/') {
789 		struct device_node *tmp = node;
790 
791 		path++; /* Increment past '/' delimiter */
792 		node = __of_find_node_by_path(node, path);
793 		of_node_put(tmp);
794 		path = strchrnul(path, '/');
795 		if (separator && separator < path)
796 			break;
797 	}
798 	return node;
799 }
800 
801 /**
802  *	of_find_node_opts_by_path - Find a node matching a full OF path
803  *	@path: Either the full path to match, or if the path does not
804  *	       start with '/', the name of a property of the /aliases
805  *	       node (an alias).  In the case of an alias, the node
806  *	       matching the alias' value will be returned.
807  *	@opts: Address of a pointer into which to store the start of
808  *	       an options string appended to the end of the path with
809  *	       a ':' separator.
810  *
811  *	Valid paths:
812  *		/foo/bar	Full path
813  *		foo		Valid alias
814  *		foo/bar		Valid alias + relative path
815  *
816  *	Returns a node pointer with refcount incremented, use
817  *	of_node_put() on it when done.
818  */
819 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
820 {
821 	struct device_node *np = NULL;
822 	struct property *pp;
823 	unsigned long flags;
824 	const char *separator = strchr(path, ':');
825 
826 	if (opts)
827 		*opts = separator ? separator + 1 : NULL;
828 
829 	if (strcmp(path, "/") == 0)
830 		return of_node_get(of_root);
831 
832 	/* The path could begin with an alias */
833 	if (*path != '/') {
834 		int len;
835 		const char *p = separator;
836 
837 		if (!p)
838 			p = strchrnul(path, '/');
839 		len = p - path;
840 
841 		/* of_aliases must not be NULL */
842 		if (!of_aliases)
843 			return NULL;
844 
845 		for_each_property_of_node(of_aliases, pp) {
846 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
847 				np = of_find_node_by_path(pp->value);
848 				break;
849 			}
850 		}
851 		if (!np)
852 			return NULL;
853 		path = p;
854 	}
855 
856 	/* Step down the tree matching path components */
857 	raw_spin_lock_irqsave(&devtree_lock, flags);
858 	if (!np)
859 		np = of_node_get(of_root);
860 	np = __of_find_node_by_full_path(np, path);
861 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
862 	return np;
863 }
864 EXPORT_SYMBOL(of_find_node_opts_by_path);
865 
866 /**
867  *	of_find_node_by_name - Find a node by its "name" property
868  *	@from:	The node to start searching from or NULL, the node
869  *		you pass will not be searched, only the next one
870  *		will; typically, you pass what the previous call
871  *		returned. of_node_put() will be called on it
872  *	@name:	The name string to match against
873  *
874  *	Returns a node pointer with refcount incremented, use
875  *	of_node_put() on it when done.
876  */
877 struct device_node *of_find_node_by_name(struct device_node *from,
878 	const char *name)
879 {
880 	struct device_node *np;
881 	unsigned long flags;
882 
883 	raw_spin_lock_irqsave(&devtree_lock, flags);
884 	for_each_of_allnodes_from(from, np)
885 		if (np->name && (of_node_cmp(np->name, name) == 0)
886 		    && of_node_get(np))
887 			break;
888 	of_node_put(from);
889 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
890 	return np;
891 }
892 EXPORT_SYMBOL(of_find_node_by_name);
893 
894 /**
895  *	of_find_node_by_type - Find a node by its "device_type" property
896  *	@from:	The node to start searching from, or NULL to start searching
897  *		the entire device tree. The node you pass will not be
898  *		searched, only the next one will; typically, you pass
899  *		what the previous call returned. of_node_put() will be
900  *		called on from for you.
901  *	@type:	The type string to match against
902  *
903  *	Returns a node pointer with refcount incremented, use
904  *	of_node_put() on it when done.
905  */
906 struct device_node *of_find_node_by_type(struct device_node *from,
907 	const char *type)
908 {
909 	struct device_node *np;
910 	unsigned long flags;
911 
912 	raw_spin_lock_irqsave(&devtree_lock, flags);
913 	for_each_of_allnodes_from(from, np)
914 		if (np->type && (of_node_cmp(np->type, type) == 0)
915 		    && of_node_get(np))
916 			break;
917 	of_node_put(from);
918 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
919 	return np;
920 }
921 EXPORT_SYMBOL(of_find_node_by_type);
922 
923 /**
924  *	of_find_compatible_node - Find a node based on type and one of the
925  *                                tokens in its "compatible" property
926  *	@from:		The node to start searching from or NULL, the node
927  *			you pass will not be searched, only the next one
928  *			will; typically, you pass what the previous call
929  *			returned. of_node_put() will be called on it
930  *	@type:		The type string to match "device_type" or NULL to ignore
931  *	@compatible:	The string to match to one of the tokens in the device
932  *			"compatible" list.
933  *
934  *	Returns a node pointer with refcount incremented, use
935  *	of_node_put() on it when done.
936  */
937 struct device_node *of_find_compatible_node(struct device_node *from,
938 	const char *type, const char *compatible)
939 {
940 	struct device_node *np;
941 	unsigned long flags;
942 
943 	raw_spin_lock_irqsave(&devtree_lock, flags);
944 	for_each_of_allnodes_from(from, np)
945 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
946 		    of_node_get(np))
947 			break;
948 	of_node_put(from);
949 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
950 	return np;
951 }
952 EXPORT_SYMBOL(of_find_compatible_node);
953 
954 /**
955  *	of_find_node_with_property - Find a node which has a property with
956  *                                   the given name.
957  *	@from:		The node to start searching from or NULL, the node
958  *			you pass will not be searched, only the next one
959  *			will; typically, you pass what the previous call
960  *			returned. of_node_put() will be called on it
961  *	@prop_name:	The name of the property to look for.
962  *
963  *	Returns a node pointer with refcount incremented, use
964  *	of_node_put() on it when done.
965  */
966 struct device_node *of_find_node_with_property(struct device_node *from,
967 	const char *prop_name)
968 {
969 	struct device_node *np;
970 	struct property *pp;
971 	unsigned long flags;
972 
973 	raw_spin_lock_irqsave(&devtree_lock, flags);
974 	for_each_of_allnodes_from(from, np) {
975 		for (pp = np->properties; pp; pp = pp->next) {
976 			if (of_prop_cmp(pp->name, prop_name) == 0) {
977 				of_node_get(np);
978 				goto out;
979 			}
980 		}
981 	}
982 out:
983 	of_node_put(from);
984 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
985 	return np;
986 }
987 EXPORT_SYMBOL(of_find_node_with_property);
988 
989 static
990 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
991 					   const struct device_node *node)
992 {
993 	const struct of_device_id *best_match = NULL;
994 	int score, best_score = 0;
995 
996 	if (!matches)
997 		return NULL;
998 
999 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1000 		score = __of_device_is_compatible(node, matches->compatible,
1001 						  matches->type, matches->name);
1002 		if (score > best_score) {
1003 			best_match = matches;
1004 			best_score = score;
1005 		}
1006 	}
1007 
1008 	return best_match;
1009 }
1010 
1011 /**
1012  * of_match_node - Tell if a device_node has a matching of_match structure
1013  *	@matches:	array of of device match structures to search in
1014  *	@node:		the of device structure to match against
1015  *
1016  *	Low level utility function used by device matching.
1017  */
1018 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1019 					 const struct device_node *node)
1020 {
1021 	const struct of_device_id *match;
1022 	unsigned long flags;
1023 
1024 	raw_spin_lock_irqsave(&devtree_lock, flags);
1025 	match = __of_match_node(matches, node);
1026 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1027 	return match;
1028 }
1029 EXPORT_SYMBOL(of_match_node);
1030 
1031 /**
1032  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1033  *					  match table.
1034  *	@from:		The node to start searching from or NULL, the node
1035  *			you pass will not be searched, only the next one
1036  *			will; typically, you pass what the previous call
1037  *			returned. of_node_put() will be called on it
1038  *	@matches:	array of of device match structures to search in
1039  *	@match		Updated to point at the matches entry which matched
1040  *
1041  *	Returns a node pointer with refcount incremented, use
1042  *	of_node_put() on it when done.
1043  */
1044 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1045 					const struct of_device_id *matches,
1046 					const struct of_device_id **match)
1047 {
1048 	struct device_node *np;
1049 	const struct of_device_id *m;
1050 	unsigned long flags;
1051 
1052 	if (match)
1053 		*match = NULL;
1054 
1055 	raw_spin_lock_irqsave(&devtree_lock, flags);
1056 	for_each_of_allnodes_from(from, np) {
1057 		m = __of_match_node(matches, np);
1058 		if (m && of_node_get(np)) {
1059 			if (match)
1060 				*match = m;
1061 			break;
1062 		}
1063 	}
1064 	of_node_put(from);
1065 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1066 	return np;
1067 }
1068 EXPORT_SYMBOL(of_find_matching_node_and_match);
1069 
1070 /**
1071  * of_modalias_node - Lookup appropriate modalias for a device node
1072  * @node:	pointer to a device tree node
1073  * @modalias:	Pointer to buffer that modalias value will be copied into
1074  * @len:	Length of modalias value
1075  *
1076  * Based on the value of the compatible property, this routine will attempt
1077  * to choose an appropriate modalias value for a particular device tree node.
1078  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1079  * from the first entry in the compatible list property.
1080  *
1081  * This routine returns 0 on success, <0 on failure.
1082  */
1083 int of_modalias_node(struct device_node *node, char *modalias, int len)
1084 {
1085 	const char *compatible, *p;
1086 	int cplen;
1087 
1088 	compatible = of_get_property(node, "compatible", &cplen);
1089 	if (!compatible || strlen(compatible) > cplen)
1090 		return -ENODEV;
1091 	p = strchr(compatible, ',');
1092 	strlcpy(modalias, p ? p + 1 : compatible, len);
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(of_modalias_node);
1096 
1097 /**
1098  * of_find_node_by_phandle - Find a node given a phandle
1099  * @handle:	phandle of the node to find
1100  *
1101  * Returns a node pointer with refcount incremented, use
1102  * of_node_put() on it when done.
1103  */
1104 struct device_node *of_find_node_by_phandle(phandle handle)
1105 {
1106 	struct device_node *np;
1107 	unsigned long flags;
1108 
1109 	if (!handle)
1110 		return NULL;
1111 
1112 	raw_spin_lock_irqsave(&devtree_lock, flags);
1113 	for_each_of_allnodes(np)
1114 		if (np->phandle == handle)
1115 			break;
1116 	of_node_get(np);
1117 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1118 	return np;
1119 }
1120 EXPORT_SYMBOL(of_find_node_by_phandle);
1121 
1122 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1123 {
1124 	int i;
1125 	printk("%s %s", msg, of_node_full_name(args->np));
1126 	for (i = 0; i < args->args_count; i++) {
1127 		const char delim = i ? ',' : ':';
1128 
1129 		pr_cont("%c%08x", delim, args->args[i]);
1130 	}
1131 	pr_cont("\n");
1132 }
1133 
1134 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1135 		const struct device_node *np,
1136 		const char *list_name,
1137 		const char *cells_name,
1138 		int cell_count)
1139 {
1140 	const __be32 *list;
1141 	int size;
1142 
1143 	memset(it, 0, sizeof(*it));
1144 
1145 	list = of_get_property(np, list_name, &size);
1146 	if (!list)
1147 		return -ENOENT;
1148 
1149 	it->cells_name = cells_name;
1150 	it->cell_count = cell_count;
1151 	it->parent = np;
1152 	it->list_end = list + size / sizeof(*list);
1153 	it->phandle_end = list;
1154 	it->cur = list;
1155 
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1159 
1160 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1161 {
1162 	uint32_t count = 0;
1163 
1164 	if (it->node) {
1165 		of_node_put(it->node);
1166 		it->node = NULL;
1167 	}
1168 
1169 	if (!it->cur || it->phandle_end >= it->list_end)
1170 		return -ENOENT;
1171 
1172 	it->cur = it->phandle_end;
1173 
1174 	/* If phandle is 0, then it is an empty entry with no arguments. */
1175 	it->phandle = be32_to_cpup(it->cur++);
1176 
1177 	if (it->phandle) {
1178 
1179 		/*
1180 		 * Find the provider node and parse the #*-cells property to
1181 		 * determine the argument length.
1182 		 */
1183 		it->node = of_find_node_by_phandle(it->phandle);
1184 
1185 		if (it->cells_name) {
1186 			if (!it->node) {
1187 				pr_err("%s: could not find phandle\n",
1188 				       it->parent->full_name);
1189 				goto err;
1190 			}
1191 
1192 			if (of_property_read_u32(it->node, it->cells_name,
1193 						 &count)) {
1194 				pr_err("%s: could not get %s for %s\n",
1195 				       it->parent->full_name,
1196 				       it->cells_name,
1197 				       it->node->full_name);
1198 				goto err;
1199 			}
1200 		} else {
1201 			count = it->cell_count;
1202 		}
1203 
1204 		/*
1205 		 * Make sure that the arguments actually fit in the remaining
1206 		 * property data length
1207 		 */
1208 		if (it->cur + count > it->list_end) {
1209 			pr_err("%s: arguments longer than property\n",
1210 			       it->parent->full_name);
1211 			goto err;
1212 		}
1213 	}
1214 
1215 	it->phandle_end = it->cur + count;
1216 	it->cur_count = count;
1217 
1218 	return 0;
1219 
1220 err:
1221 	if (it->node) {
1222 		of_node_put(it->node);
1223 		it->node = NULL;
1224 	}
1225 
1226 	return -EINVAL;
1227 }
1228 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1229 
1230 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1231 			     uint32_t *args,
1232 			     int size)
1233 {
1234 	int i, count;
1235 
1236 	count = it->cur_count;
1237 
1238 	if (WARN_ON(size < count))
1239 		count = size;
1240 
1241 	for (i = 0; i < count; i++)
1242 		args[i] = be32_to_cpup(it->cur++);
1243 
1244 	return count;
1245 }
1246 
1247 static int __of_parse_phandle_with_args(const struct device_node *np,
1248 					const char *list_name,
1249 					const char *cells_name,
1250 					int cell_count, int index,
1251 					struct of_phandle_args *out_args)
1252 {
1253 	struct of_phandle_iterator it;
1254 	int rc, cur_index = 0;
1255 
1256 	/* Loop over the phandles until all the requested entry is found */
1257 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1258 		/*
1259 		 * All of the error cases bail out of the loop, so at
1260 		 * this point, the parsing is successful. If the requested
1261 		 * index matches, then fill the out_args structure and return,
1262 		 * or return -ENOENT for an empty entry.
1263 		 */
1264 		rc = -ENOENT;
1265 		if (cur_index == index) {
1266 			if (!it.phandle)
1267 				goto err;
1268 
1269 			if (out_args) {
1270 				int c;
1271 
1272 				c = of_phandle_iterator_args(&it,
1273 							     out_args->args,
1274 							     MAX_PHANDLE_ARGS);
1275 				out_args->np = it.node;
1276 				out_args->args_count = c;
1277 			} else {
1278 				of_node_put(it.node);
1279 			}
1280 
1281 			/* Found it! return success */
1282 			return 0;
1283 		}
1284 
1285 		cur_index++;
1286 	}
1287 
1288 	/*
1289 	 * Unlock node before returning result; will be one of:
1290 	 * -ENOENT : index is for empty phandle
1291 	 * -EINVAL : parsing error on data
1292 	 */
1293 
1294  err:
1295 	of_node_put(it.node);
1296 	return rc;
1297 }
1298 
1299 /**
1300  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1301  * @np: Pointer to device node holding phandle property
1302  * @phandle_name: Name of property holding a phandle value
1303  * @index: For properties holding a table of phandles, this is the index into
1304  *         the table
1305  *
1306  * Returns the device_node pointer with refcount incremented.  Use
1307  * of_node_put() on it when done.
1308  */
1309 struct device_node *of_parse_phandle(const struct device_node *np,
1310 				     const char *phandle_name, int index)
1311 {
1312 	struct of_phandle_args args;
1313 
1314 	if (index < 0)
1315 		return NULL;
1316 
1317 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1318 					 index, &args))
1319 		return NULL;
1320 
1321 	return args.np;
1322 }
1323 EXPORT_SYMBOL(of_parse_phandle);
1324 
1325 /**
1326  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1327  * @np:		pointer to a device tree node containing a list
1328  * @list_name:	property name that contains a list
1329  * @cells_name:	property name that specifies phandles' arguments count
1330  * @index:	index of a phandle to parse out
1331  * @out_args:	optional pointer to output arguments structure (will be filled)
1332  *
1333  * This function is useful to parse lists of phandles and their arguments.
1334  * Returns 0 on success and fills out_args, on error returns appropriate
1335  * errno value.
1336  *
1337  * Caller is responsible to call of_node_put() on the returned out_args->np
1338  * pointer.
1339  *
1340  * Example:
1341  *
1342  * phandle1: node1 {
1343  *	#list-cells = <2>;
1344  * }
1345  *
1346  * phandle2: node2 {
1347  *	#list-cells = <1>;
1348  * }
1349  *
1350  * node3 {
1351  *	list = <&phandle1 1 2 &phandle2 3>;
1352  * }
1353  *
1354  * To get a device_node of the `node2' node you may call this:
1355  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1356  */
1357 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1358 				const char *cells_name, int index,
1359 				struct of_phandle_args *out_args)
1360 {
1361 	if (index < 0)
1362 		return -EINVAL;
1363 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1364 					    index, out_args);
1365 }
1366 EXPORT_SYMBOL(of_parse_phandle_with_args);
1367 
1368 /**
1369  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1370  * @np:		pointer to a device tree node containing a list
1371  * @list_name:	property name that contains a list
1372  * @cell_count: number of argument cells following the phandle
1373  * @index:	index of a phandle to parse out
1374  * @out_args:	optional pointer to output arguments structure (will be filled)
1375  *
1376  * This function is useful to parse lists of phandles and their arguments.
1377  * Returns 0 on success and fills out_args, on error returns appropriate
1378  * errno value.
1379  *
1380  * Caller is responsible to call of_node_put() on the returned out_args->np
1381  * pointer.
1382  *
1383  * Example:
1384  *
1385  * phandle1: node1 {
1386  * }
1387  *
1388  * phandle2: node2 {
1389  * }
1390  *
1391  * node3 {
1392  *	list = <&phandle1 0 2 &phandle2 2 3>;
1393  * }
1394  *
1395  * To get a device_node of the `node2' node you may call this:
1396  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1397  */
1398 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1399 				const char *list_name, int cell_count,
1400 				int index, struct of_phandle_args *out_args)
1401 {
1402 	if (index < 0)
1403 		return -EINVAL;
1404 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1405 					   index, out_args);
1406 }
1407 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1408 
1409 /**
1410  * of_count_phandle_with_args() - Find the number of phandles references in a property
1411  * @np:		pointer to a device tree node containing a list
1412  * @list_name:	property name that contains a list
1413  * @cells_name:	property name that specifies phandles' arguments count
1414  *
1415  * Returns the number of phandle + argument tuples within a property. It
1416  * is a typical pattern to encode a list of phandle and variable
1417  * arguments into a single property. The number of arguments is encoded
1418  * by a property in the phandle-target node. For example, a gpios
1419  * property would contain a list of GPIO specifies consisting of a
1420  * phandle and 1 or more arguments. The number of arguments are
1421  * determined by the #gpio-cells property in the node pointed to by the
1422  * phandle.
1423  */
1424 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1425 				const char *cells_name)
1426 {
1427 	struct of_phandle_iterator it;
1428 	int rc, cur_index = 0;
1429 
1430 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1431 	if (rc)
1432 		return rc;
1433 
1434 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1435 		cur_index += 1;
1436 
1437 	if (rc != -ENOENT)
1438 		return rc;
1439 
1440 	return cur_index;
1441 }
1442 EXPORT_SYMBOL(of_count_phandle_with_args);
1443 
1444 /**
1445  * __of_add_property - Add a property to a node without lock operations
1446  */
1447 int __of_add_property(struct device_node *np, struct property *prop)
1448 {
1449 	struct property **next;
1450 
1451 	prop->next = NULL;
1452 	next = &np->properties;
1453 	while (*next) {
1454 		if (strcmp(prop->name, (*next)->name) == 0)
1455 			/* duplicate ! don't insert it */
1456 			return -EEXIST;
1457 
1458 		next = &(*next)->next;
1459 	}
1460 	*next = prop;
1461 
1462 	return 0;
1463 }
1464 
1465 /**
1466  * of_add_property - Add a property to a node
1467  */
1468 int of_add_property(struct device_node *np, struct property *prop)
1469 {
1470 	unsigned long flags;
1471 	int rc;
1472 
1473 	mutex_lock(&of_mutex);
1474 
1475 	raw_spin_lock_irqsave(&devtree_lock, flags);
1476 	rc = __of_add_property(np, prop);
1477 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1478 
1479 	if (!rc)
1480 		__of_add_property_sysfs(np, prop);
1481 
1482 	mutex_unlock(&of_mutex);
1483 
1484 	if (!rc)
1485 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1486 
1487 	return rc;
1488 }
1489 
1490 int __of_remove_property(struct device_node *np, struct property *prop)
1491 {
1492 	struct property **next;
1493 
1494 	for (next = &np->properties; *next; next = &(*next)->next) {
1495 		if (*next == prop)
1496 			break;
1497 	}
1498 	if (*next == NULL)
1499 		return -ENODEV;
1500 
1501 	/* found the node */
1502 	*next = prop->next;
1503 	prop->next = np->deadprops;
1504 	np->deadprops = prop;
1505 
1506 	return 0;
1507 }
1508 
1509 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1510 {
1511 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1512 	kfree(prop->attr.attr.name);
1513 }
1514 
1515 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1516 {
1517 	if (!IS_ENABLED(CONFIG_SYSFS))
1518 		return;
1519 
1520 	/* at early boot, bail here and defer setup to of_init() */
1521 	if (of_kset && of_node_is_attached(np))
1522 		__of_sysfs_remove_bin_file(np, prop);
1523 }
1524 
1525 /**
1526  * of_remove_property - Remove a property from a node.
1527  *
1528  * Note that we don't actually remove it, since we have given out
1529  * who-knows-how-many pointers to the data using get-property.
1530  * Instead we just move the property to the "dead properties"
1531  * list, so it won't be found any more.
1532  */
1533 int of_remove_property(struct device_node *np, struct property *prop)
1534 {
1535 	unsigned long flags;
1536 	int rc;
1537 
1538 	if (!prop)
1539 		return -ENODEV;
1540 
1541 	mutex_lock(&of_mutex);
1542 
1543 	raw_spin_lock_irqsave(&devtree_lock, flags);
1544 	rc = __of_remove_property(np, prop);
1545 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1546 
1547 	if (!rc)
1548 		__of_remove_property_sysfs(np, prop);
1549 
1550 	mutex_unlock(&of_mutex);
1551 
1552 	if (!rc)
1553 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1554 
1555 	return rc;
1556 }
1557 
1558 int __of_update_property(struct device_node *np, struct property *newprop,
1559 		struct property **oldpropp)
1560 {
1561 	struct property **next, *oldprop;
1562 
1563 	for (next = &np->properties; *next; next = &(*next)->next) {
1564 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1565 			break;
1566 	}
1567 	*oldpropp = oldprop = *next;
1568 
1569 	if (oldprop) {
1570 		/* replace the node */
1571 		newprop->next = oldprop->next;
1572 		*next = newprop;
1573 		oldprop->next = np->deadprops;
1574 		np->deadprops = oldprop;
1575 	} else {
1576 		/* new node */
1577 		newprop->next = NULL;
1578 		*next = newprop;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1585 		struct property *oldprop)
1586 {
1587 	if (!IS_ENABLED(CONFIG_SYSFS))
1588 		return;
1589 
1590 	/* At early boot, bail out and defer setup to of_init() */
1591 	if (!of_kset)
1592 		return;
1593 
1594 	if (oldprop)
1595 		__of_sysfs_remove_bin_file(np, oldprop);
1596 	__of_add_property_sysfs(np, newprop);
1597 }
1598 
1599 /*
1600  * of_update_property - Update a property in a node, if the property does
1601  * not exist, add it.
1602  *
1603  * Note that we don't actually remove it, since we have given out
1604  * who-knows-how-many pointers to the data using get-property.
1605  * Instead we just move the property to the "dead properties" list,
1606  * and add the new property to the property list
1607  */
1608 int of_update_property(struct device_node *np, struct property *newprop)
1609 {
1610 	struct property *oldprop;
1611 	unsigned long flags;
1612 	int rc;
1613 
1614 	if (!newprop->name)
1615 		return -EINVAL;
1616 
1617 	mutex_lock(&of_mutex);
1618 
1619 	raw_spin_lock_irqsave(&devtree_lock, flags);
1620 	rc = __of_update_property(np, newprop, &oldprop);
1621 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1622 
1623 	if (!rc)
1624 		__of_update_property_sysfs(np, newprop, oldprop);
1625 
1626 	mutex_unlock(&of_mutex);
1627 
1628 	if (!rc)
1629 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1630 
1631 	return rc;
1632 }
1633 
1634 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1635 			 int id, const char *stem, int stem_len)
1636 {
1637 	ap->np = np;
1638 	ap->id = id;
1639 	strncpy(ap->stem, stem, stem_len);
1640 	ap->stem[stem_len] = 0;
1641 	list_add_tail(&ap->link, &aliases_lookup);
1642 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1643 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1644 }
1645 
1646 /**
1647  * of_alias_scan - Scan all properties of the 'aliases' node
1648  *
1649  * The function scans all the properties of the 'aliases' node and populates
1650  * the global lookup table with the properties.  It returns the
1651  * number of alias properties found, or an error code in case of failure.
1652  *
1653  * @dt_alloc:	An allocator that provides a virtual address to memory
1654  *		for storing the resulting tree
1655  */
1656 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1657 {
1658 	struct property *pp;
1659 
1660 	of_aliases = of_find_node_by_path("/aliases");
1661 	of_chosen = of_find_node_by_path("/chosen");
1662 	if (of_chosen == NULL)
1663 		of_chosen = of_find_node_by_path("/chosen@0");
1664 
1665 	if (of_chosen) {
1666 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1667 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1668 		if (!name)
1669 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1670 		if (IS_ENABLED(CONFIG_PPC) && !name)
1671 			name = of_get_property(of_aliases, "stdout", NULL);
1672 		if (name)
1673 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1674 	}
1675 
1676 	if (!of_aliases)
1677 		return;
1678 
1679 	for_each_property_of_node(of_aliases, pp) {
1680 		const char *start = pp->name;
1681 		const char *end = start + strlen(start);
1682 		struct device_node *np;
1683 		struct alias_prop *ap;
1684 		int id, len;
1685 
1686 		/* Skip those we do not want to proceed */
1687 		if (!strcmp(pp->name, "name") ||
1688 		    !strcmp(pp->name, "phandle") ||
1689 		    !strcmp(pp->name, "linux,phandle"))
1690 			continue;
1691 
1692 		np = of_find_node_by_path(pp->value);
1693 		if (!np)
1694 			continue;
1695 
1696 		/* walk the alias backwards to extract the id and work out
1697 		 * the 'stem' string */
1698 		while (isdigit(*(end-1)) && end > start)
1699 			end--;
1700 		len = end - start;
1701 
1702 		if (kstrtoint(end, 10, &id) < 0)
1703 			continue;
1704 
1705 		/* Allocate an alias_prop with enough space for the stem */
1706 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1707 		if (!ap)
1708 			continue;
1709 		memset(ap, 0, sizeof(*ap) + len + 1);
1710 		ap->alias = start;
1711 		of_alias_add(ap, np, id, start, len);
1712 	}
1713 }
1714 
1715 /**
1716  * of_alias_get_id - Get alias id for the given device_node
1717  * @np:		Pointer to the given device_node
1718  * @stem:	Alias stem of the given device_node
1719  *
1720  * The function travels the lookup table to get the alias id for the given
1721  * device_node and alias stem.  It returns the alias id if found.
1722  */
1723 int of_alias_get_id(struct device_node *np, const char *stem)
1724 {
1725 	struct alias_prop *app;
1726 	int id = -ENODEV;
1727 
1728 	mutex_lock(&of_mutex);
1729 	list_for_each_entry(app, &aliases_lookup, link) {
1730 		if (strcmp(app->stem, stem) != 0)
1731 			continue;
1732 
1733 		if (np == app->np) {
1734 			id = app->id;
1735 			break;
1736 		}
1737 	}
1738 	mutex_unlock(&of_mutex);
1739 
1740 	return id;
1741 }
1742 EXPORT_SYMBOL_GPL(of_alias_get_id);
1743 
1744 /**
1745  * of_alias_get_highest_id - Get highest alias id for the given stem
1746  * @stem:	Alias stem to be examined
1747  *
1748  * The function travels the lookup table to get the highest alias id for the
1749  * given alias stem.  It returns the alias id if found.
1750  */
1751 int of_alias_get_highest_id(const char *stem)
1752 {
1753 	struct alias_prop *app;
1754 	int id = -ENODEV;
1755 
1756 	mutex_lock(&of_mutex);
1757 	list_for_each_entry(app, &aliases_lookup, link) {
1758 		if (strcmp(app->stem, stem) != 0)
1759 			continue;
1760 
1761 		if (app->id > id)
1762 			id = app->id;
1763 	}
1764 	mutex_unlock(&of_mutex);
1765 
1766 	return id;
1767 }
1768 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1769 
1770 /**
1771  * of_console_check() - Test and setup console for DT setup
1772  * @dn - Pointer to device node
1773  * @name - Name to use for preferred console without index. ex. "ttyS"
1774  * @index - Index to use for preferred console.
1775  *
1776  * Check if the given device node matches the stdout-path property in the
1777  * /chosen node. If it does then register it as the preferred console and return
1778  * TRUE. Otherwise return FALSE.
1779  */
1780 bool of_console_check(struct device_node *dn, char *name, int index)
1781 {
1782 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1783 		return false;
1784 	return !add_preferred_console(name, index,
1785 				      kstrdup(of_stdout_options, GFP_KERNEL));
1786 }
1787 EXPORT_SYMBOL_GPL(of_console_check);
1788 
1789 /**
1790  *	of_find_next_cache_node - Find a node's subsidiary cache
1791  *	@np:	node of type "cpu" or "cache"
1792  *
1793  *	Returns a node pointer with refcount incremented, use
1794  *	of_node_put() on it when done.  Caller should hold a reference
1795  *	to np.
1796  */
1797 struct device_node *of_find_next_cache_node(const struct device_node *np)
1798 {
1799 	struct device_node *child, *cache_node;
1800 
1801 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1802 	if (!cache_node)
1803 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1804 
1805 	if (cache_node)
1806 		return cache_node;
1807 
1808 	/* OF on pmac has nodes instead of properties named "l2-cache"
1809 	 * beneath CPU nodes.
1810 	 */
1811 	if (!strcmp(np->type, "cpu"))
1812 		for_each_child_of_node(np, child)
1813 			if (!strcmp(child->type, "cache"))
1814 				return child;
1815 
1816 	return NULL;
1817 }
1818 
1819 /**
1820  * of_find_last_cache_level - Find the level at which the last cache is
1821  * 		present for the given logical cpu
1822  *
1823  * @cpu: cpu number(logical index) for which the last cache level is needed
1824  *
1825  * Returns the the level at which the last cache is present. It is exactly
1826  * same as  the total number of cache levels for the given logical cpu.
1827  */
1828 int of_find_last_cache_level(unsigned int cpu)
1829 {
1830 	u32 cache_level = 0;
1831 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1832 
1833 	while (np) {
1834 		prev = np;
1835 		of_node_put(np);
1836 		np = of_find_next_cache_node(np);
1837 	}
1838 
1839 	of_property_read_u32(prev, "cache-level", &cache_level);
1840 
1841 	return cache_level;
1842 }
1843