xref: /linux/drivers/of/base.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26 
27 /**
28  * struct alias_prop - Alias property in 'aliases' node
29  * @link:	List node to link the structure in aliases_lookup list
30  * @alias:	Alias property name
31  * @np:		Pointer to device_node that the alias stands for
32  * @id:		Index value from end of alias name
33  * @stem:	Alias string without the index
34  *
35  * The structure represents one alias property of 'aliases' node as
36  * an entry in aliases_lookup list.
37  */
38 struct alias_prop {
39 	struct list_head link;
40 	const char *alias;
41 	struct device_node *np;
42 	int id;
43 	char stem[0];
44 };
45 
46 static LIST_HEAD(aliases_lookup);
47 
48 struct device_node *allnodes;
49 struct device_node *of_chosen;
50 struct device_node *of_aliases;
51 
52 static DEFINE_MUTEX(of_aliases_mutex);
53 
54 /* use when traversing tree through the allnext, child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RWLOCK(devtree_lock);
58 
59 int of_n_addr_cells(struct device_node *np)
60 {
61 	const __be32 *ip;
62 
63 	do {
64 		if (np->parent)
65 			np = np->parent;
66 		ip = of_get_property(np, "#address-cells", NULL);
67 		if (ip)
68 			return be32_to_cpup(ip);
69 	} while (np->parent);
70 	/* No #address-cells property for the root node */
71 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_addr_cells);
74 
75 int of_n_size_cells(struct device_node *np)
76 {
77 	const __be32 *ip;
78 
79 	do {
80 		if (np->parent)
81 			np = np->parent;
82 		ip = of_get_property(np, "#size-cells", NULL);
83 		if (ip)
84 			return be32_to_cpup(ip);
85 	} while (np->parent);
86 	/* No #size-cells property for the root node */
87 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90 
91 #if defined(CONFIG_OF_DYNAMIC)
92 /**
93  *	of_node_get - Increment refcount of a node
94  *	@node:	Node to inc refcount, NULL is supported to
95  *		simplify writing of callers
96  *
97  *	Returns node.
98  */
99 struct device_node *of_node_get(struct device_node *node)
100 {
101 	if (node)
102 		kref_get(&node->kref);
103 	return node;
104 }
105 EXPORT_SYMBOL(of_node_get);
106 
107 static inline struct device_node *kref_to_device_node(struct kref *kref)
108 {
109 	return container_of(kref, struct device_node, kref);
110 }
111 
112 /**
113  *	of_node_release - release a dynamically allocated node
114  *	@kref:  kref element of the node to be released
115  *
116  *	In of_node_put() this function is passed to kref_put()
117  *	as the destructor.
118  */
119 static void of_node_release(struct kref *kref)
120 {
121 	struct device_node *node = kref_to_device_node(kref);
122 	struct property *prop = node->properties;
123 
124 	/* We should never be releasing nodes that haven't been detached. */
125 	if (!of_node_check_flag(node, OF_DETACHED)) {
126 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
127 		dump_stack();
128 		kref_init(&node->kref);
129 		return;
130 	}
131 
132 	if (!of_node_check_flag(node, OF_DYNAMIC))
133 		return;
134 
135 	while (prop) {
136 		struct property *next = prop->next;
137 		kfree(prop->name);
138 		kfree(prop->value);
139 		kfree(prop);
140 		prop = next;
141 
142 		if (!prop) {
143 			prop = node->deadprops;
144 			node->deadprops = NULL;
145 		}
146 	}
147 	kfree(node->full_name);
148 	kfree(node->data);
149 	kfree(node);
150 }
151 
152 /**
153  *	of_node_put - Decrement refcount of a node
154  *	@node:	Node to dec refcount, NULL is supported to
155  *		simplify writing of callers
156  *
157  */
158 void of_node_put(struct device_node *node)
159 {
160 	if (node)
161 		kref_put(&node->kref, of_node_release);
162 }
163 EXPORT_SYMBOL(of_node_put);
164 #endif /* CONFIG_OF_DYNAMIC */
165 
166 struct property *of_find_property(const struct device_node *np,
167 				  const char *name,
168 				  int *lenp)
169 {
170 	struct property *pp;
171 
172 	if (!np)
173 		return NULL;
174 
175 	read_lock(&devtree_lock);
176 	for (pp = np->properties; pp != 0; pp = pp->next) {
177 		if (of_prop_cmp(pp->name, name) == 0) {
178 			if (lenp != 0)
179 				*lenp = pp->length;
180 			break;
181 		}
182 	}
183 	read_unlock(&devtree_lock);
184 
185 	return pp;
186 }
187 EXPORT_SYMBOL(of_find_property);
188 
189 /**
190  * of_find_all_nodes - Get next node in global list
191  * @prev:	Previous node or NULL to start iteration
192  *		of_node_put() will be called on it
193  *
194  * Returns a node pointer with refcount incremented, use
195  * of_node_put() on it when done.
196  */
197 struct device_node *of_find_all_nodes(struct device_node *prev)
198 {
199 	struct device_node *np;
200 
201 	read_lock(&devtree_lock);
202 	np = prev ? prev->allnext : allnodes;
203 	for (; np != NULL; np = np->allnext)
204 		if (of_node_get(np))
205 			break;
206 	of_node_put(prev);
207 	read_unlock(&devtree_lock);
208 	return np;
209 }
210 EXPORT_SYMBOL(of_find_all_nodes);
211 
212 /*
213  * Find a property with a given name for a given node
214  * and return the value.
215  */
216 const void *of_get_property(const struct device_node *np, const char *name,
217 			 int *lenp)
218 {
219 	struct property *pp = of_find_property(np, name, lenp);
220 
221 	return pp ? pp->value : NULL;
222 }
223 EXPORT_SYMBOL(of_get_property);
224 
225 /** Checks if the given "compat" string matches one of the strings in
226  * the device's "compatible" property
227  */
228 int of_device_is_compatible(const struct device_node *device,
229 		const char *compat)
230 {
231 	const char* cp;
232 	int cplen, l;
233 
234 	cp = of_get_property(device, "compatible", &cplen);
235 	if (cp == NULL)
236 		return 0;
237 	while (cplen > 0) {
238 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
239 			return 1;
240 		l = strlen(cp) + 1;
241 		cp += l;
242 		cplen -= l;
243 	}
244 
245 	return 0;
246 }
247 EXPORT_SYMBOL(of_device_is_compatible);
248 
249 /**
250  * of_machine_is_compatible - Test root of device tree for a given compatible value
251  * @compat: compatible string to look for in root node's compatible property.
252  *
253  * Returns true if the root node has the given value in its
254  * compatible property.
255  */
256 int of_machine_is_compatible(const char *compat)
257 {
258 	struct device_node *root;
259 	int rc = 0;
260 
261 	root = of_find_node_by_path("/");
262 	if (root) {
263 		rc = of_device_is_compatible(root, compat);
264 		of_node_put(root);
265 	}
266 	return rc;
267 }
268 EXPORT_SYMBOL(of_machine_is_compatible);
269 
270 /**
271  *  of_device_is_available - check if a device is available for use
272  *
273  *  @device: Node to check for availability
274  *
275  *  Returns 1 if the status property is absent or set to "okay" or "ok",
276  *  0 otherwise
277  */
278 int of_device_is_available(const struct device_node *device)
279 {
280 	const char *status;
281 	int statlen;
282 
283 	status = of_get_property(device, "status", &statlen);
284 	if (status == NULL)
285 		return 1;
286 
287 	if (statlen > 0) {
288 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
289 			return 1;
290 	}
291 
292 	return 0;
293 }
294 EXPORT_SYMBOL(of_device_is_available);
295 
296 /**
297  *	of_get_parent - Get a node's parent if any
298  *	@node:	Node to get parent
299  *
300  *	Returns a node pointer with refcount incremented, use
301  *	of_node_put() on it when done.
302  */
303 struct device_node *of_get_parent(const struct device_node *node)
304 {
305 	struct device_node *np;
306 
307 	if (!node)
308 		return NULL;
309 
310 	read_lock(&devtree_lock);
311 	np = of_node_get(node->parent);
312 	read_unlock(&devtree_lock);
313 	return np;
314 }
315 EXPORT_SYMBOL(of_get_parent);
316 
317 /**
318  *	of_get_next_parent - Iterate to a node's parent
319  *	@node:	Node to get parent of
320  *
321  * 	This is like of_get_parent() except that it drops the
322  * 	refcount on the passed node, making it suitable for iterating
323  * 	through a node's parents.
324  *
325  *	Returns a node pointer with refcount incremented, use
326  *	of_node_put() on it when done.
327  */
328 struct device_node *of_get_next_parent(struct device_node *node)
329 {
330 	struct device_node *parent;
331 
332 	if (!node)
333 		return NULL;
334 
335 	read_lock(&devtree_lock);
336 	parent = of_node_get(node->parent);
337 	of_node_put(node);
338 	read_unlock(&devtree_lock);
339 	return parent;
340 }
341 
342 /**
343  *	of_get_next_child - Iterate a node childs
344  *	@node:	parent node
345  *	@prev:	previous child of the parent node, or NULL to get first
346  *
347  *	Returns a node pointer with refcount incremented, use
348  *	of_node_put() on it when done.
349  */
350 struct device_node *of_get_next_child(const struct device_node *node,
351 	struct device_node *prev)
352 {
353 	struct device_node *next;
354 
355 	read_lock(&devtree_lock);
356 	next = prev ? prev->sibling : node->child;
357 	for (; next; next = next->sibling)
358 		if (of_node_get(next))
359 			break;
360 	of_node_put(prev);
361 	read_unlock(&devtree_lock);
362 	return next;
363 }
364 EXPORT_SYMBOL(of_get_next_child);
365 
366 /**
367  *	of_find_node_by_path - Find a node matching a full OF path
368  *	@path:	The full path to match
369  *
370  *	Returns a node pointer with refcount incremented, use
371  *	of_node_put() on it when done.
372  */
373 struct device_node *of_find_node_by_path(const char *path)
374 {
375 	struct device_node *np = allnodes;
376 
377 	read_lock(&devtree_lock);
378 	for (; np; np = np->allnext) {
379 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
380 		    && of_node_get(np))
381 			break;
382 	}
383 	read_unlock(&devtree_lock);
384 	return np;
385 }
386 EXPORT_SYMBOL(of_find_node_by_path);
387 
388 /**
389  *	of_find_node_by_name - Find a node by its "name" property
390  *	@from:	The node to start searching from or NULL, the node
391  *		you pass will not be searched, only the next one
392  *		will; typically, you pass what the previous call
393  *		returned. of_node_put() will be called on it
394  *	@name:	The name string to match against
395  *
396  *	Returns a node pointer with refcount incremented, use
397  *	of_node_put() on it when done.
398  */
399 struct device_node *of_find_node_by_name(struct device_node *from,
400 	const char *name)
401 {
402 	struct device_node *np;
403 
404 	read_lock(&devtree_lock);
405 	np = from ? from->allnext : allnodes;
406 	for (; np; np = np->allnext)
407 		if (np->name && (of_node_cmp(np->name, name) == 0)
408 		    && of_node_get(np))
409 			break;
410 	of_node_put(from);
411 	read_unlock(&devtree_lock);
412 	return np;
413 }
414 EXPORT_SYMBOL(of_find_node_by_name);
415 
416 /**
417  *	of_find_node_by_type - Find a node by its "device_type" property
418  *	@from:	The node to start searching from, or NULL to start searching
419  *		the entire device tree. The node you pass will not be
420  *		searched, only the next one will; typically, you pass
421  *		what the previous call returned. of_node_put() will be
422  *		called on from for you.
423  *	@type:	The type string to match against
424  *
425  *	Returns a node pointer with refcount incremented, use
426  *	of_node_put() on it when done.
427  */
428 struct device_node *of_find_node_by_type(struct device_node *from,
429 	const char *type)
430 {
431 	struct device_node *np;
432 
433 	read_lock(&devtree_lock);
434 	np = from ? from->allnext : allnodes;
435 	for (; np; np = np->allnext)
436 		if (np->type && (of_node_cmp(np->type, type) == 0)
437 		    && of_node_get(np))
438 			break;
439 	of_node_put(from);
440 	read_unlock(&devtree_lock);
441 	return np;
442 }
443 EXPORT_SYMBOL(of_find_node_by_type);
444 
445 /**
446  *	of_find_compatible_node - Find a node based on type and one of the
447  *                                tokens in its "compatible" property
448  *	@from:		The node to start searching from or NULL, the node
449  *			you pass will not be searched, only the next one
450  *			will; typically, you pass what the previous call
451  *			returned. of_node_put() will be called on it
452  *	@type:		The type string to match "device_type" or NULL to ignore
453  *	@compatible:	The string to match to one of the tokens in the device
454  *			"compatible" list.
455  *
456  *	Returns a node pointer with refcount incremented, use
457  *	of_node_put() on it when done.
458  */
459 struct device_node *of_find_compatible_node(struct device_node *from,
460 	const char *type, const char *compatible)
461 {
462 	struct device_node *np;
463 
464 	read_lock(&devtree_lock);
465 	np = from ? from->allnext : allnodes;
466 	for (; np; np = np->allnext) {
467 		if (type
468 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
469 			continue;
470 		if (of_device_is_compatible(np, compatible) && of_node_get(np))
471 			break;
472 	}
473 	of_node_put(from);
474 	read_unlock(&devtree_lock);
475 	return np;
476 }
477 EXPORT_SYMBOL(of_find_compatible_node);
478 
479 /**
480  *	of_find_node_with_property - Find a node which has a property with
481  *                                   the given name.
482  *	@from:		The node to start searching from or NULL, the node
483  *			you pass will not be searched, only the next one
484  *			will; typically, you pass what the previous call
485  *			returned. of_node_put() will be called on it
486  *	@prop_name:	The name of the property to look for.
487  *
488  *	Returns a node pointer with refcount incremented, use
489  *	of_node_put() on it when done.
490  */
491 struct device_node *of_find_node_with_property(struct device_node *from,
492 	const char *prop_name)
493 {
494 	struct device_node *np;
495 	struct property *pp;
496 
497 	read_lock(&devtree_lock);
498 	np = from ? from->allnext : allnodes;
499 	for (; np; np = np->allnext) {
500 		for (pp = np->properties; pp != 0; pp = pp->next) {
501 			if (of_prop_cmp(pp->name, prop_name) == 0) {
502 				of_node_get(np);
503 				goto out;
504 			}
505 		}
506 	}
507 out:
508 	of_node_put(from);
509 	read_unlock(&devtree_lock);
510 	return np;
511 }
512 EXPORT_SYMBOL(of_find_node_with_property);
513 
514 static const struct of_device_id *of_match_compat(const struct of_device_id *matches,
515 						  const char *compat)
516 {
517 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
518 		const char *cp = matches->compatible;
519 		int len = strlen(cp);
520 
521 		if (len > 0 && of_compat_cmp(compat, cp, len) == 0)
522 			return matches;
523 
524 		matches++;
525 	}
526 
527 	return NULL;
528 }
529 
530 /**
531  * of_match_node - Tell if an device_node has a matching of_match structure
532  *	@matches:	array of of device match structures to search in
533  *	@node:		the of device structure to match against
534  *
535  *	Low level utility function used by device matching.
536  */
537 const struct of_device_id *of_match_node(const struct of_device_id *matches,
538 					 const struct device_node *node)
539 {
540 	struct property *prop;
541 	const char *cp;
542 
543 	if (!matches)
544 		return NULL;
545 
546 	of_property_for_each_string(node, "compatible", prop, cp) {
547 		const struct of_device_id *match = of_match_compat(matches, cp);
548 		if (match)
549 			return match;
550 	}
551 
552 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
553 		int match = 1;
554 		if (matches->name[0])
555 			match &= node->name
556 				&& !strcmp(matches->name, node->name);
557 		if (matches->type[0])
558 			match &= node->type
559 				&& !strcmp(matches->type, node->type);
560 		if (match && !matches->compatible[0])
561 			return matches;
562 		matches++;
563 	}
564 	return NULL;
565 }
566 EXPORT_SYMBOL(of_match_node);
567 
568 /**
569  *	of_find_matching_node - Find a node based on an of_device_id match
570  *				table.
571  *	@from:		The node to start searching from or NULL, the node
572  *			you pass will not be searched, only the next one
573  *			will; typically, you pass what the previous call
574  *			returned. of_node_put() will be called on it
575  *	@matches:	array of of device match structures to search in
576  *
577  *	Returns a node pointer with refcount incremented, use
578  *	of_node_put() on it when done.
579  */
580 struct device_node *of_find_matching_node(struct device_node *from,
581 					  const struct of_device_id *matches)
582 {
583 	struct device_node *np;
584 
585 	read_lock(&devtree_lock);
586 	np = from ? from->allnext : allnodes;
587 	for (; np; np = np->allnext) {
588 		if (of_match_node(matches, np) && of_node_get(np))
589 			break;
590 	}
591 	of_node_put(from);
592 	read_unlock(&devtree_lock);
593 	return np;
594 }
595 EXPORT_SYMBOL(of_find_matching_node);
596 
597 /**
598  * of_modalias_node - Lookup appropriate modalias for a device node
599  * @node:	pointer to a device tree node
600  * @modalias:	Pointer to buffer that modalias value will be copied into
601  * @len:	Length of modalias value
602  *
603  * Based on the value of the compatible property, this routine will attempt
604  * to choose an appropriate modalias value for a particular device tree node.
605  * It does this by stripping the manufacturer prefix (as delimited by a ',')
606  * from the first entry in the compatible list property.
607  *
608  * This routine returns 0 on success, <0 on failure.
609  */
610 int of_modalias_node(struct device_node *node, char *modalias, int len)
611 {
612 	const char *compatible, *p;
613 	int cplen;
614 
615 	compatible = of_get_property(node, "compatible", &cplen);
616 	if (!compatible || strlen(compatible) > cplen)
617 		return -ENODEV;
618 	p = strchr(compatible, ',');
619 	strlcpy(modalias, p ? p + 1 : compatible, len);
620 	return 0;
621 }
622 EXPORT_SYMBOL_GPL(of_modalias_node);
623 
624 /**
625  * of_find_node_by_phandle - Find a node given a phandle
626  * @handle:	phandle of the node to find
627  *
628  * Returns a node pointer with refcount incremented, use
629  * of_node_put() on it when done.
630  */
631 struct device_node *of_find_node_by_phandle(phandle handle)
632 {
633 	struct device_node *np;
634 
635 	read_lock(&devtree_lock);
636 	for (np = allnodes; np; np = np->allnext)
637 		if (np->phandle == handle)
638 			break;
639 	of_node_get(np);
640 	read_unlock(&devtree_lock);
641 	return np;
642 }
643 EXPORT_SYMBOL(of_find_node_by_phandle);
644 
645 /**
646  * of_property_read_u32_array - Find and read an array of 32 bit integers
647  * from a property.
648  *
649  * @np:		device node from which the property value is to be read.
650  * @propname:	name of the property to be searched.
651  * @out_value:	pointer to return value, modified only if return value is 0.
652  *
653  * Search for a property in a device node and read 32-bit value(s) from
654  * it. Returns 0 on success, -EINVAL if the property does not exist,
655  * -ENODATA if property does not have a value, and -EOVERFLOW if the
656  * property data isn't large enough.
657  *
658  * The out_value is modified only if a valid u32 value can be decoded.
659  */
660 int of_property_read_u32_array(const struct device_node *np,
661 			       const char *propname, u32 *out_values,
662 			       size_t sz)
663 {
664 	struct property *prop = of_find_property(np, propname, NULL);
665 	const __be32 *val;
666 
667 	if (!prop)
668 		return -EINVAL;
669 	if (!prop->value)
670 		return -ENODATA;
671 	if ((sz * sizeof(*out_values)) > prop->length)
672 		return -EOVERFLOW;
673 
674 	val = prop->value;
675 	while (sz--)
676 		*out_values++ = be32_to_cpup(val++);
677 	return 0;
678 }
679 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
680 
681 /**
682  * of_property_read_u64 - Find and read a 64 bit integer from a property
683  * @np:		device node from which the property value is to be read.
684  * @propname:	name of the property to be searched.
685  * @out_value:	pointer to return value, modified only if return value is 0.
686  *
687  * Search for a property in a device node and read a 64-bit value from
688  * it. Returns 0 on success, -EINVAL if the property does not exist,
689  * -ENODATA if property does not have a value, and -EOVERFLOW if the
690  * property data isn't large enough.
691  *
692  * The out_value is modified only if a valid u64 value can be decoded.
693  */
694 int of_property_read_u64(const struct device_node *np, const char *propname,
695 			 u64 *out_value)
696 {
697 	struct property *prop = of_find_property(np, propname, NULL);
698 
699 	if (!prop)
700 		return -EINVAL;
701 	if (!prop->value)
702 		return -ENODATA;
703 	if (sizeof(*out_value) > prop->length)
704 		return -EOVERFLOW;
705 	*out_value = of_read_number(prop->value, 2);
706 	return 0;
707 }
708 EXPORT_SYMBOL_GPL(of_property_read_u64);
709 
710 /**
711  * of_property_read_string - Find and read a string from a property
712  * @np:		device node from which the property value is to be read.
713  * @propname:	name of the property to be searched.
714  * @out_string:	pointer to null terminated return string, modified only if
715  *		return value is 0.
716  *
717  * Search for a property in a device tree node and retrieve a null
718  * terminated string value (pointer to data, not a copy). Returns 0 on
719  * success, -EINVAL if the property does not exist, -ENODATA if property
720  * does not have a value, and -EILSEQ if the string is not null-terminated
721  * within the length of the property data.
722  *
723  * The out_string pointer is modified only if a valid string can be decoded.
724  */
725 int of_property_read_string(struct device_node *np, const char *propname,
726 				const char **out_string)
727 {
728 	struct property *prop = of_find_property(np, propname, NULL);
729 	if (!prop)
730 		return -EINVAL;
731 	if (!prop->value)
732 		return -ENODATA;
733 	if (strnlen(prop->value, prop->length) >= prop->length)
734 		return -EILSEQ;
735 	*out_string = prop->value;
736 	return 0;
737 }
738 EXPORT_SYMBOL_GPL(of_property_read_string);
739 
740 /**
741  * of_property_read_string_index - Find and read a string from a multiple
742  * strings property.
743  * @np:		device node from which the property value is to be read.
744  * @propname:	name of the property to be searched.
745  * @index:	index of the string in the list of strings
746  * @out_string:	pointer to null terminated return string, modified only if
747  *		return value is 0.
748  *
749  * Search for a property in a device tree node and retrieve a null
750  * terminated string value (pointer to data, not a copy) in the list of strings
751  * contained in that property.
752  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
753  * property does not have a value, and -EILSEQ if the string is not
754  * null-terminated within the length of the property data.
755  *
756  * The out_string pointer is modified only if a valid string can be decoded.
757  */
758 int of_property_read_string_index(struct device_node *np, const char *propname,
759 				  int index, const char **output)
760 {
761 	struct property *prop = of_find_property(np, propname, NULL);
762 	int i = 0;
763 	size_t l = 0, total = 0;
764 	const char *p;
765 
766 	if (!prop)
767 		return -EINVAL;
768 	if (!prop->value)
769 		return -ENODATA;
770 	if (strnlen(prop->value, prop->length) >= prop->length)
771 		return -EILSEQ;
772 
773 	p = prop->value;
774 
775 	for (i = 0; total < prop->length; total += l, p += l) {
776 		l = strlen(p) + 1;
777 		if (i++ == index) {
778 			*output = p;
779 			return 0;
780 		}
781 	}
782 	return -ENODATA;
783 }
784 EXPORT_SYMBOL_GPL(of_property_read_string_index);
785 
786 /**
787  * of_property_match_string() - Find string in a list and return index
788  * @np: pointer to node containing string list property
789  * @propname: string list property name
790  * @string: pointer to string to search for in string list
791  *
792  * This function searches a string list property and returns the index
793  * of a specific string value.
794  */
795 int of_property_match_string(struct device_node *np, const char *propname,
796 			     const char *string)
797 {
798 	struct property *prop = of_find_property(np, propname, NULL);
799 	size_t l;
800 	int i;
801 	const char *p, *end;
802 
803 	if (!prop)
804 		return -EINVAL;
805 	if (!prop->value)
806 		return -ENODATA;
807 
808 	p = prop->value;
809 	end = p + prop->length;
810 
811 	for (i = 0; p < end; i++, p += l) {
812 		l = strlen(p) + 1;
813 		if (p + l > end)
814 			return -EILSEQ;
815 		pr_debug("comparing %s with %s\n", string, p);
816 		if (strcmp(string, p) == 0)
817 			return i; /* Found it; return index */
818 	}
819 	return -ENODATA;
820 }
821 EXPORT_SYMBOL_GPL(of_property_match_string);
822 
823 /**
824  * of_property_count_strings - Find and return the number of strings from a
825  * multiple strings property.
826  * @np:		device node from which the property value is to be read.
827  * @propname:	name of the property to be searched.
828  *
829  * Search for a property in a device tree node and retrieve the number of null
830  * terminated string contain in it. Returns the number of strings on
831  * success, -EINVAL if the property does not exist, -ENODATA if property
832  * does not have a value, and -EILSEQ if the string is not null-terminated
833  * within the length of the property data.
834  */
835 int of_property_count_strings(struct device_node *np, const char *propname)
836 {
837 	struct property *prop = of_find_property(np, propname, NULL);
838 	int i = 0;
839 	size_t l = 0, total = 0;
840 	const char *p;
841 
842 	if (!prop)
843 		return -EINVAL;
844 	if (!prop->value)
845 		return -ENODATA;
846 	if (strnlen(prop->value, prop->length) >= prop->length)
847 		return -EILSEQ;
848 
849 	p = prop->value;
850 
851 	for (i = 0; total < prop->length; total += l, p += l, i++)
852 		l = strlen(p) + 1;
853 
854 	return i;
855 }
856 EXPORT_SYMBOL_GPL(of_property_count_strings);
857 
858 /**
859  * of_parse_phandle - Resolve a phandle property to a device_node pointer
860  * @np: Pointer to device node holding phandle property
861  * @phandle_name: Name of property holding a phandle value
862  * @index: For properties holding a table of phandles, this is the index into
863  *         the table
864  *
865  * Returns the device_node pointer with refcount incremented.  Use
866  * of_node_put() on it when done.
867  */
868 struct device_node *
869 of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
870 {
871 	const __be32 *phandle;
872 	int size;
873 
874 	phandle = of_get_property(np, phandle_name, &size);
875 	if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
876 		return NULL;
877 
878 	return of_find_node_by_phandle(be32_to_cpup(phandle + index));
879 }
880 EXPORT_SYMBOL(of_parse_phandle);
881 
882 /**
883  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
884  * @np:		pointer to a device tree node containing a list
885  * @list_name:	property name that contains a list
886  * @cells_name:	property name that specifies phandles' arguments count
887  * @index:	index of a phandle to parse out
888  * @out_args:	optional pointer to output arguments structure (will be filled)
889  *
890  * This function is useful to parse lists of phandles and their arguments.
891  * Returns 0 on success and fills out_args, on error returns appropriate
892  * errno value.
893  *
894  * Caller is responsible to call of_node_put() on the returned out_args->node
895  * pointer.
896  *
897  * Example:
898  *
899  * phandle1: node1 {
900  * 	#list-cells = <2>;
901  * }
902  *
903  * phandle2: node2 {
904  * 	#list-cells = <1>;
905  * }
906  *
907  * node3 {
908  * 	list = <&phandle1 1 2 &phandle2 3>;
909  * }
910  *
911  * To get a device_node of the `node2' node you may call this:
912  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
913  */
914 int of_parse_phandle_with_args(struct device_node *np, const char *list_name,
915 				const char *cells_name, int index,
916 				struct of_phandle_args *out_args)
917 {
918 	const __be32 *list, *list_end;
919 	int size, cur_index = 0;
920 	uint32_t count = 0;
921 	struct device_node *node = NULL;
922 	phandle phandle;
923 
924 	/* Retrieve the phandle list property */
925 	list = of_get_property(np, list_name, &size);
926 	if (!list)
927 		return -EINVAL;
928 	list_end = list + size / sizeof(*list);
929 
930 	/* Loop over the phandles until all the requested entry is found */
931 	while (list < list_end) {
932 		count = 0;
933 
934 		/*
935 		 * If phandle is 0, then it is an empty entry with no
936 		 * arguments.  Skip forward to the next entry.
937 		 */
938 		phandle = be32_to_cpup(list++);
939 		if (phandle) {
940 			/*
941 			 * Find the provider node and parse the #*-cells
942 			 * property to determine the argument length
943 			 */
944 			node = of_find_node_by_phandle(phandle);
945 			if (!node) {
946 				pr_err("%s: could not find phandle\n",
947 					 np->full_name);
948 				break;
949 			}
950 			if (of_property_read_u32(node, cells_name, &count)) {
951 				pr_err("%s: could not get %s for %s\n",
952 					 np->full_name, cells_name,
953 					 node->full_name);
954 				break;
955 			}
956 
957 			/*
958 			 * Make sure that the arguments actually fit in the
959 			 * remaining property data length
960 			 */
961 			if (list + count > list_end) {
962 				pr_err("%s: arguments longer than property\n",
963 					 np->full_name);
964 				break;
965 			}
966 		}
967 
968 		/*
969 		 * All of the error cases above bail out of the loop, so at
970 		 * this point, the parsing is successful. If the requested
971 		 * index matches, then fill the out_args structure and return,
972 		 * or return -ENOENT for an empty entry.
973 		 */
974 		if (cur_index == index) {
975 			if (!phandle)
976 				return -ENOENT;
977 
978 			if (out_args) {
979 				int i;
980 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
981 					count = MAX_PHANDLE_ARGS;
982 				out_args->np = node;
983 				out_args->args_count = count;
984 				for (i = 0; i < count; i++)
985 					out_args->args[i] = be32_to_cpup(list++);
986 			}
987 			return 0;
988 		}
989 
990 		of_node_put(node);
991 		node = NULL;
992 		list += count;
993 		cur_index++;
994 	}
995 
996 	/* Loop exited without finding a valid entry; return an error */
997 	if (node)
998 		of_node_put(node);
999 	return -EINVAL;
1000 }
1001 EXPORT_SYMBOL(of_parse_phandle_with_args);
1002 
1003 /**
1004  * prom_add_property - Add a property to a node
1005  */
1006 int prom_add_property(struct device_node *np, struct property *prop)
1007 {
1008 	struct property **next;
1009 	unsigned long flags;
1010 
1011 	prop->next = NULL;
1012 	write_lock_irqsave(&devtree_lock, flags);
1013 	next = &np->properties;
1014 	while (*next) {
1015 		if (strcmp(prop->name, (*next)->name) == 0) {
1016 			/* duplicate ! don't insert it */
1017 			write_unlock_irqrestore(&devtree_lock, flags);
1018 			return -1;
1019 		}
1020 		next = &(*next)->next;
1021 	}
1022 	*next = prop;
1023 	write_unlock_irqrestore(&devtree_lock, flags);
1024 
1025 #ifdef CONFIG_PROC_DEVICETREE
1026 	/* try to add to proc as well if it was initialized */
1027 	if (np->pde)
1028 		proc_device_tree_add_prop(np->pde, prop);
1029 #endif /* CONFIG_PROC_DEVICETREE */
1030 
1031 	return 0;
1032 }
1033 
1034 /**
1035  * prom_remove_property - Remove a property from a node.
1036  *
1037  * Note that we don't actually remove it, since we have given out
1038  * who-knows-how-many pointers to the data using get-property.
1039  * Instead we just move the property to the "dead properties"
1040  * list, so it won't be found any more.
1041  */
1042 int prom_remove_property(struct device_node *np, struct property *prop)
1043 {
1044 	struct property **next;
1045 	unsigned long flags;
1046 	int found = 0;
1047 
1048 	write_lock_irqsave(&devtree_lock, flags);
1049 	next = &np->properties;
1050 	while (*next) {
1051 		if (*next == prop) {
1052 			/* found the node */
1053 			*next = prop->next;
1054 			prop->next = np->deadprops;
1055 			np->deadprops = prop;
1056 			found = 1;
1057 			break;
1058 		}
1059 		next = &(*next)->next;
1060 	}
1061 	write_unlock_irqrestore(&devtree_lock, flags);
1062 
1063 	if (!found)
1064 		return -ENODEV;
1065 
1066 #ifdef CONFIG_PROC_DEVICETREE
1067 	/* try to remove the proc node as well */
1068 	if (np->pde)
1069 		proc_device_tree_remove_prop(np->pde, prop);
1070 #endif /* CONFIG_PROC_DEVICETREE */
1071 
1072 	return 0;
1073 }
1074 
1075 /*
1076  * prom_update_property - Update a property in a node, if the property does
1077  * not exist, add it.
1078  *
1079  * Note that we don't actually remove it, since we have given out
1080  * who-knows-how-many pointers to the data using get-property.
1081  * Instead we just move the property to the "dead properties" list,
1082  * and add the new property to the property list
1083  */
1084 int prom_update_property(struct device_node *np,
1085 			 struct property *newprop)
1086 {
1087 	struct property **next, *oldprop;
1088 	unsigned long flags;
1089 	int found = 0;
1090 
1091 	if (!newprop->name)
1092 		return -EINVAL;
1093 
1094 	oldprop = of_find_property(np, newprop->name, NULL);
1095 	if (!oldprop)
1096 		return prom_add_property(np, newprop);
1097 
1098 	write_lock_irqsave(&devtree_lock, flags);
1099 	next = &np->properties;
1100 	while (*next) {
1101 		if (*next == oldprop) {
1102 			/* found the node */
1103 			newprop->next = oldprop->next;
1104 			*next = newprop;
1105 			oldprop->next = np->deadprops;
1106 			np->deadprops = oldprop;
1107 			found = 1;
1108 			break;
1109 		}
1110 		next = &(*next)->next;
1111 	}
1112 	write_unlock_irqrestore(&devtree_lock, flags);
1113 
1114 	if (!found)
1115 		return -ENODEV;
1116 
1117 #ifdef CONFIG_PROC_DEVICETREE
1118 	/* try to add to proc as well if it was initialized */
1119 	if (np->pde)
1120 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1121 #endif /* CONFIG_PROC_DEVICETREE */
1122 
1123 	return 0;
1124 }
1125 
1126 #if defined(CONFIG_OF_DYNAMIC)
1127 /*
1128  * Support for dynamic device trees.
1129  *
1130  * On some platforms, the device tree can be manipulated at runtime.
1131  * The routines in this section support adding, removing and changing
1132  * device tree nodes.
1133  */
1134 
1135 /**
1136  * of_attach_node - Plug a device node into the tree and global list.
1137  */
1138 void of_attach_node(struct device_node *np)
1139 {
1140 	unsigned long flags;
1141 
1142 	write_lock_irqsave(&devtree_lock, flags);
1143 	np->sibling = np->parent->child;
1144 	np->allnext = allnodes;
1145 	np->parent->child = np;
1146 	allnodes = np;
1147 	write_unlock_irqrestore(&devtree_lock, flags);
1148 }
1149 
1150 /**
1151  * of_detach_node - "Unplug" a node from the device tree.
1152  *
1153  * The caller must hold a reference to the node.  The memory associated with
1154  * the node is not freed until its refcount goes to zero.
1155  */
1156 void of_detach_node(struct device_node *np)
1157 {
1158 	struct device_node *parent;
1159 	unsigned long flags;
1160 
1161 	write_lock_irqsave(&devtree_lock, flags);
1162 
1163 	parent = np->parent;
1164 	if (!parent)
1165 		goto out_unlock;
1166 
1167 	if (allnodes == np)
1168 		allnodes = np->allnext;
1169 	else {
1170 		struct device_node *prev;
1171 		for (prev = allnodes;
1172 		     prev->allnext != np;
1173 		     prev = prev->allnext)
1174 			;
1175 		prev->allnext = np->allnext;
1176 	}
1177 
1178 	if (parent->child == np)
1179 		parent->child = np->sibling;
1180 	else {
1181 		struct device_node *prevsib;
1182 		for (prevsib = np->parent->child;
1183 		     prevsib->sibling != np;
1184 		     prevsib = prevsib->sibling)
1185 			;
1186 		prevsib->sibling = np->sibling;
1187 	}
1188 
1189 	of_node_set_flag(np, OF_DETACHED);
1190 
1191 out_unlock:
1192 	write_unlock_irqrestore(&devtree_lock, flags);
1193 }
1194 #endif /* defined(CONFIG_OF_DYNAMIC) */
1195 
1196 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1197 			 int id, const char *stem, int stem_len)
1198 {
1199 	ap->np = np;
1200 	ap->id = id;
1201 	strncpy(ap->stem, stem, stem_len);
1202 	ap->stem[stem_len] = 0;
1203 	list_add_tail(&ap->link, &aliases_lookup);
1204 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1205 		 ap->alias, ap->stem, ap->id, np ? np->full_name : NULL);
1206 }
1207 
1208 /**
1209  * of_alias_scan - Scan all properties of 'aliases' node
1210  *
1211  * The function scans all the properties of 'aliases' node and populate
1212  * the the global lookup table with the properties.  It returns the
1213  * number of alias_prop found, or error code in error case.
1214  *
1215  * @dt_alloc:	An allocator that provides a virtual address to memory
1216  *		for the resulting tree
1217  */
1218 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1219 {
1220 	struct property *pp;
1221 
1222 	of_chosen = of_find_node_by_path("/chosen");
1223 	if (of_chosen == NULL)
1224 		of_chosen = of_find_node_by_path("/chosen@0");
1225 	of_aliases = of_find_node_by_path("/aliases");
1226 	if (!of_aliases)
1227 		return;
1228 
1229 	for_each_property_of_node(of_aliases, pp) {
1230 		const char *start = pp->name;
1231 		const char *end = start + strlen(start);
1232 		struct device_node *np;
1233 		struct alias_prop *ap;
1234 		int id, len;
1235 
1236 		/* Skip those we do not want to proceed */
1237 		if (!strcmp(pp->name, "name") ||
1238 		    !strcmp(pp->name, "phandle") ||
1239 		    !strcmp(pp->name, "linux,phandle"))
1240 			continue;
1241 
1242 		np = of_find_node_by_path(pp->value);
1243 		if (!np)
1244 			continue;
1245 
1246 		/* walk the alias backwards to extract the id and work out
1247 		 * the 'stem' string */
1248 		while (isdigit(*(end-1)) && end > start)
1249 			end--;
1250 		len = end - start;
1251 
1252 		if (kstrtoint(end, 10, &id) < 0)
1253 			continue;
1254 
1255 		/* Allocate an alias_prop with enough space for the stem */
1256 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1257 		if (!ap)
1258 			continue;
1259 		ap->alias = start;
1260 		of_alias_add(ap, np, id, start, len);
1261 	}
1262 }
1263 
1264 /**
1265  * of_alias_get_id - Get alias id for the given device_node
1266  * @np:		Pointer to the given device_node
1267  * @stem:	Alias stem of the given device_node
1268  *
1269  * The function travels the lookup table to get alias id for the given
1270  * device_node and alias stem.  It returns the alias id if find it.
1271  */
1272 int of_alias_get_id(struct device_node *np, const char *stem)
1273 {
1274 	struct alias_prop *app;
1275 	int id = -ENODEV;
1276 
1277 	mutex_lock(&of_aliases_mutex);
1278 	list_for_each_entry(app, &aliases_lookup, link) {
1279 		if (strcmp(app->stem, stem) != 0)
1280 			continue;
1281 
1282 		if (np == app->np) {
1283 			id = app->id;
1284 			break;
1285 		}
1286 	}
1287 	mutex_unlock(&of_aliases_mutex);
1288 
1289 	return id;
1290 }
1291 EXPORT_SYMBOL_GPL(of_alias_get_id);
1292 
1293 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1294 			       u32 *pu)
1295 {
1296 	const void *curv = cur;
1297 
1298 	if (!prop)
1299 		return NULL;
1300 
1301 	if (!cur) {
1302 		curv = prop->value;
1303 		goto out_val;
1304 	}
1305 
1306 	curv += sizeof(*cur);
1307 	if (curv >= prop->value + prop->length)
1308 		return NULL;
1309 
1310 out_val:
1311 	*pu = be32_to_cpup(curv);
1312 	return curv;
1313 }
1314 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1315 
1316 const char *of_prop_next_string(struct property *prop, const char *cur)
1317 {
1318 	const void *curv = cur;
1319 
1320 	if (!prop)
1321 		return NULL;
1322 
1323 	if (!cur)
1324 		return prop->value;
1325 
1326 	curv += strlen(cur) + 1;
1327 	if (curv >= prop->value + prop->length)
1328 		return NULL;
1329 
1330 	return curv;
1331 }
1332 EXPORT_SYMBOL_GPL(of_prop_next_string);
1333