xref: /linux/drivers/of/address.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/io.h>
6 #include <linux/ioport.h>
7 #include <linux/module.h>
8 #include <linux/of_address.h>
9 #include <linux/pci.h>
10 #include <linux/pci_regs.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 
15 /* Max address size we deal with */
16 #define OF_MAX_ADDR_CELLS	4
17 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
18 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
19 
20 static struct of_bus *of_match_bus(struct device_node *np);
21 static int __of_address_to_resource(struct device_node *dev,
22 		const __be32 *addrp, u64 size, unsigned int flags,
23 		const char *name, struct resource *r);
24 
25 /* Debug utility */
26 #ifdef DEBUG
27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 	pr_debug("%s", s);
30 	while (na--)
31 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 	pr_cont("\n");
33 }
34 #else
35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37 
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 	const char	*name;
41 	const char	*addresses;
42 	int		(*match)(struct device_node *parent);
43 	void		(*count_cells)(struct device_node *child,
44 				       int *addrc, int *sizec);
45 	u64		(*map)(__be32 *addr, const __be32 *range,
46 				int na, int ns, int pna);
47 	int		(*translate)(__be32 *addr, u64 offset, int na);
48 	unsigned int	(*get_flags)(const __be32 *addr);
49 };
50 
51 /*
52  * Default translator (generic bus)
53  */
54 
55 static void of_bus_default_count_cells(struct device_node *dev,
56 				       int *addrc, int *sizec)
57 {
58 	if (addrc)
59 		*addrc = of_n_addr_cells(dev);
60 	if (sizec)
61 		*sizec = of_n_size_cells(dev);
62 }
63 
64 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
65 		int na, int ns, int pna)
66 {
67 	u64 cp, s, da;
68 
69 	cp = of_read_number(range, na);
70 	s  = of_read_number(range + na + pna, ns);
71 	da = of_read_number(addr, na);
72 
73 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
74 		 (unsigned long long)cp, (unsigned long long)s,
75 		 (unsigned long long)da);
76 
77 	if (da < cp || da >= (cp + s))
78 		return OF_BAD_ADDR;
79 	return da - cp;
80 }
81 
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 	u64 a = of_read_number(addr, na);
85 	memset(addr, 0, na * 4);
86 	a += offset;
87 	if (na > 1)
88 		addr[na - 2] = cpu_to_be32(a >> 32);
89 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90 
91 	return 0;
92 }
93 
94 static unsigned int of_bus_default_get_flags(const __be32 *addr)
95 {
96 	return IORESOURCE_MEM;
97 }
98 
99 #ifdef CONFIG_PCI
100 /*
101  * PCI bus specific translator
102  */
103 
104 static int of_bus_pci_match(struct device_node *np)
105 {
106 	/*
107  	 * "pciex" is PCI Express
108 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
109 	 * "ht" is hypertransport
110 	 */
111 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
112 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
113 }
114 
115 static void of_bus_pci_count_cells(struct device_node *np,
116 				   int *addrc, int *sizec)
117 {
118 	if (addrc)
119 		*addrc = 3;
120 	if (sizec)
121 		*sizec = 2;
122 }
123 
124 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
125 {
126 	unsigned int flags = 0;
127 	u32 w = be32_to_cpup(addr);
128 
129 	switch((w >> 24) & 0x03) {
130 	case 0x01:
131 		flags |= IORESOURCE_IO;
132 		break;
133 	case 0x02: /* 32 bits */
134 	case 0x03: /* 64 bits */
135 		flags |= IORESOURCE_MEM;
136 		break;
137 	}
138 	if (w & 0x40000000)
139 		flags |= IORESOURCE_PREFETCH;
140 	return flags;
141 }
142 
143 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
144 		int pna)
145 {
146 	u64 cp, s, da;
147 	unsigned int af, rf;
148 
149 	af = of_bus_pci_get_flags(addr);
150 	rf = of_bus_pci_get_flags(range);
151 
152 	/* Check address type match */
153 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
154 		return OF_BAD_ADDR;
155 
156 	/* Read address values, skipping high cell */
157 	cp = of_read_number(range + 1, na - 1);
158 	s  = of_read_number(range + na + pna, ns);
159 	da = of_read_number(addr + 1, na - 1);
160 
161 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
162 		 (unsigned long long)cp, (unsigned long long)s,
163 		 (unsigned long long)da);
164 
165 	if (da < cp || da >= (cp + s))
166 		return OF_BAD_ADDR;
167 	return da - cp;
168 }
169 
170 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
171 {
172 	return of_bus_default_translate(addr + 1, offset, na - 1);
173 }
174 
175 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
176 			unsigned int *flags)
177 {
178 	const __be32 *prop;
179 	unsigned int psize;
180 	struct device_node *parent;
181 	struct of_bus *bus;
182 	int onesize, i, na, ns;
183 
184 	/* Get parent & match bus type */
185 	parent = of_get_parent(dev);
186 	if (parent == NULL)
187 		return NULL;
188 	bus = of_match_bus(parent);
189 	if (strcmp(bus->name, "pci")) {
190 		of_node_put(parent);
191 		return NULL;
192 	}
193 	bus->count_cells(dev, &na, &ns);
194 	of_node_put(parent);
195 	if (!OF_CHECK_ADDR_COUNT(na))
196 		return NULL;
197 
198 	/* Get "reg" or "assigned-addresses" property */
199 	prop = of_get_property(dev, bus->addresses, &psize);
200 	if (prop == NULL)
201 		return NULL;
202 	psize /= 4;
203 
204 	onesize = na + ns;
205 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
206 		u32 val = be32_to_cpu(prop[0]);
207 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
208 			if (size)
209 				*size = of_read_number(prop + na, ns);
210 			if (flags)
211 				*flags = bus->get_flags(prop);
212 			return prop;
213 		}
214 	}
215 	return NULL;
216 }
217 EXPORT_SYMBOL(of_get_pci_address);
218 
219 int of_pci_address_to_resource(struct device_node *dev, int bar,
220 			       struct resource *r)
221 {
222 	const __be32	*addrp;
223 	u64		size;
224 	unsigned int	flags;
225 
226 	addrp = of_get_pci_address(dev, bar, &size, &flags);
227 	if (addrp == NULL)
228 		return -EINVAL;
229 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
230 }
231 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
232 
233 static int parser_init(struct of_pci_range_parser *parser,
234 			struct device_node *node, const char *name)
235 {
236 	const int na = 3, ns = 2;
237 	int rlen;
238 
239 	parser->node = node;
240 	parser->pna = of_n_addr_cells(node);
241 	parser->np = parser->pna + na + ns;
242 
243 	parser->range = of_get_property(node, name, &rlen);
244 	if (parser->range == NULL)
245 		return -ENOENT;
246 
247 	parser->end = parser->range + rlen / sizeof(__be32);
248 
249 	return 0;
250 }
251 
252 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
253 				struct device_node *node)
254 {
255 	return parser_init(parser, node, "ranges");
256 }
257 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
258 
259 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
260 				struct device_node *node)
261 {
262 	return parser_init(parser, node, "dma-ranges");
263 }
264 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
265 
266 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
267 						struct of_pci_range *range)
268 {
269 	const int na = 3, ns = 2;
270 
271 	if (!range)
272 		return NULL;
273 
274 	if (!parser->range || parser->range + parser->np > parser->end)
275 		return NULL;
276 
277 	range->pci_space = be32_to_cpup(parser->range);
278 	range->flags = of_bus_pci_get_flags(parser->range);
279 	range->pci_addr = of_read_number(parser->range + 1, ns);
280 	range->cpu_addr = of_translate_address(parser->node,
281 				parser->range + na);
282 	range->size = of_read_number(parser->range + parser->pna + na, ns);
283 
284 	parser->range += parser->np;
285 
286 	/* Now consume following elements while they are contiguous */
287 	while (parser->range + parser->np <= parser->end) {
288 		u32 flags;
289 		u64 pci_addr, cpu_addr, size;
290 
291 		flags = of_bus_pci_get_flags(parser->range);
292 		pci_addr = of_read_number(parser->range + 1, ns);
293 		cpu_addr = of_translate_address(parser->node,
294 				parser->range + na);
295 		size = of_read_number(parser->range + parser->pna + na, ns);
296 
297 		if (flags != range->flags)
298 			break;
299 		if (pci_addr != range->pci_addr + range->size ||
300 		    cpu_addr != range->cpu_addr + range->size)
301 			break;
302 
303 		range->size += size;
304 		parser->range += parser->np;
305 	}
306 
307 	return range;
308 }
309 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
310 
311 /*
312  * of_pci_range_to_resource - Create a resource from an of_pci_range
313  * @range:	the PCI range that describes the resource
314  * @np:		device node where the range belongs to
315  * @res:	pointer to a valid resource that will be updated to
316  *              reflect the values contained in the range.
317  *
318  * Returns EINVAL if the range cannot be converted to resource.
319  *
320  * Note that if the range is an IO range, the resource will be converted
321  * using pci_address_to_pio() which can fail if it is called too early or
322  * if the range cannot be matched to any host bridge IO space (our case here).
323  * To guard against that we try to register the IO range first.
324  * If that fails we know that pci_address_to_pio() will do too.
325  */
326 int of_pci_range_to_resource(struct of_pci_range *range,
327 			     struct device_node *np, struct resource *res)
328 {
329 	int err;
330 	res->flags = range->flags;
331 	res->parent = res->child = res->sibling = NULL;
332 	res->name = np->full_name;
333 
334 	if (res->flags & IORESOURCE_IO) {
335 		unsigned long port;
336 		err = pci_register_io_range(range->cpu_addr, range->size);
337 		if (err)
338 			goto invalid_range;
339 		port = pci_address_to_pio(range->cpu_addr);
340 		if (port == (unsigned long)-1) {
341 			err = -EINVAL;
342 			goto invalid_range;
343 		}
344 		res->start = port;
345 	} else {
346 		if ((sizeof(resource_size_t) < 8) &&
347 		    upper_32_bits(range->cpu_addr)) {
348 			err = -EINVAL;
349 			goto invalid_range;
350 		}
351 
352 		res->start = range->cpu_addr;
353 	}
354 	res->end = res->start + range->size - 1;
355 	return 0;
356 
357 invalid_range:
358 	res->start = (resource_size_t)OF_BAD_ADDR;
359 	res->end = (resource_size_t)OF_BAD_ADDR;
360 	return err;
361 }
362 EXPORT_SYMBOL(of_pci_range_to_resource);
363 #endif /* CONFIG_PCI */
364 
365 /*
366  * ISA bus specific translator
367  */
368 
369 static int of_bus_isa_match(struct device_node *np)
370 {
371 	return !strcmp(np->name, "isa");
372 }
373 
374 static void of_bus_isa_count_cells(struct device_node *child,
375 				   int *addrc, int *sizec)
376 {
377 	if (addrc)
378 		*addrc = 2;
379 	if (sizec)
380 		*sizec = 1;
381 }
382 
383 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
384 		int pna)
385 {
386 	u64 cp, s, da;
387 
388 	/* Check address type match */
389 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
390 		return OF_BAD_ADDR;
391 
392 	/* Read address values, skipping high cell */
393 	cp = of_read_number(range + 1, na - 1);
394 	s  = of_read_number(range + na + pna, ns);
395 	da = of_read_number(addr + 1, na - 1);
396 
397 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
398 		 (unsigned long long)cp, (unsigned long long)s,
399 		 (unsigned long long)da);
400 
401 	if (da < cp || da >= (cp + s))
402 		return OF_BAD_ADDR;
403 	return da - cp;
404 }
405 
406 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
407 {
408 	return of_bus_default_translate(addr + 1, offset, na - 1);
409 }
410 
411 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
412 {
413 	unsigned int flags = 0;
414 	u32 w = be32_to_cpup(addr);
415 
416 	if (w & 1)
417 		flags |= IORESOURCE_IO;
418 	else
419 		flags |= IORESOURCE_MEM;
420 	return flags;
421 }
422 
423 /*
424  * Array of bus specific translators
425  */
426 
427 static struct of_bus of_busses[] = {
428 #ifdef CONFIG_PCI
429 	/* PCI */
430 	{
431 		.name = "pci",
432 		.addresses = "assigned-addresses",
433 		.match = of_bus_pci_match,
434 		.count_cells = of_bus_pci_count_cells,
435 		.map = of_bus_pci_map,
436 		.translate = of_bus_pci_translate,
437 		.get_flags = of_bus_pci_get_flags,
438 	},
439 #endif /* CONFIG_PCI */
440 	/* ISA */
441 	{
442 		.name = "isa",
443 		.addresses = "reg",
444 		.match = of_bus_isa_match,
445 		.count_cells = of_bus_isa_count_cells,
446 		.map = of_bus_isa_map,
447 		.translate = of_bus_isa_translate,
448 		.get_flags = of_bus_isa_get_flags,
449 	},
450 	/* Default */
451 	{
452 		.name = "default",
453 		.addresses = "reg",
454 		.match = NULL,
455 		.count_cells = of_bus_default_count_cells,
456 		.map = of_bus_default_map,
457 		.translate = of_bus_default_translate,
458 		.get_flags = of_bus_default_get_flags,
459 	},
460 };
461 
462 static struct of_bus *of_match_bus(struct device_node *np)
463 {
464 	int i;
465 
466 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
467 		if (!of_busses[i].match || of_busses[i].match(np))
468 			return &of_busses[i];
469 	BUG();
470 	return NULL;
471 }
472 
473 static int of_empty_ranges_quirk(struct device_node *np)
474 {
475 	if (IS_ENABLED(CONFIG_PPC)) {
476 		/* To save cycles, we cache the result for global "Mac" setting */
477 		static int quirk_state = -1;
478 
479 		/* PA-SEMI sdc DT bug */
480 		if (of_device_is_compatible(np, "1682m-sdc"))
481 			return true;
482 
483 		/* Make quirk cached */
484 		if (quirk_state < 0)
485 			quirk_state =
486 				of_machine_is_compatible("Power Macintosh") ||
487 				of_machine_is_compatible("MacRISC");
488 		return quirk_state;
489 	}
490 	return false;
491 }
492 
493 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
494 			    struct of_bus *pbus, __be32 *addr,
495 			    int na, int ns, int pna, const char *rprop)
496 {
497 	const __be32 *ranges;
498 	unsigned int rlen;
499 	int rone;
500 	u64 offset = OF_BAD_ADDR;
501 
502 	/*
503 	 * Normally, an absence of a "ranges" property means we are
504 	 * crossing a non-translatable boundary, and thus the addresses
505 	 * below the current cannot be converted to CPU physical ones.
506 	 * Unfortunately, while this is very clear in the spec, it's not
507 	 * what Apple understood, and they do have things like /uni-n or
508 	 * /ht nodes with no "ranges" property and a lot of perfectly
509 	 * useable mapped devices below them. Thus we treat the absence of
510 	 * "ranges" as equivalent to an empty "ranges" property which means
511 	 * a 1:1 translation at that level. It's up to the caller not to try
512 	 * to translate addresses that aren't supposed to be translated in
513 	 * the first place. --BenH.
514 	 *
515 	 * As far as we know, this damage only exists on Apple machines, so
516 	 * This code is only enabled on powerpc. --gcl
517 	 */
518 	ranges = of_get_property(parent, rprop, &rlen);
519 	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
520 		pr_debug("no ranges; cannot translate\n");
521 		return 1;
522 	}
523 	if (ranges == NULL || rlen == 0) {
524 		offset = of_read_number(addr, na);
525 		memset(addr, 0, pna * 4);
526 		pr_debug("empty ranges; 1:1 translation\n");
527 		goto finish;
528 	}
529 
530 	pr_debug("walking ranges...\n");
531 
532 	/* Now walk through the ranges */
533 	rlen /= 4;
534 	rone = na + pna + ns;
535 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
536 		offset = bus->map(addr, ranges, na, ns, pna);
537 		if (offset != OF_BAD_ADDR)
538 			break;
539 	}
540 	if (offset == OF_BAD_ADDR) {
541 		pr_debug("not found !\n");
542 		return 1;
543 	}
544 	memcpy(addr, ranges + na, 4 * pna);
545 
546  finish:
547 	of_dump_addr("parent translation for:", addr, pna);
548 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
549 
550 	/* Translate it into parent bus space */
551 	return pbus->translate(addr, offset, pna);
552 }
553 
554 /*
555  * Translate an address from the device-tree into a CPU physical address,
556  * this walks up the tree and applies the various bus mappings on the
557  * way.
558  *
559  * Note: We consider that crossing any level with #size-cells == 0 to mean
560  * that translation is impossible (that is we are not dealing with a value
561  * that can be mapped to a cpu physical address). This is not really specified
562  * that way, but this is traditionally the way IBM at least do things
563  */
564 static u64 __of_translate_address(struct device_node *dev,
565 				  const __be32 *in_addr, const char *rprop)
566 {
567 	struct device_node *parent = NULL;
568 	struct of_bus *bus, *pbus;
569 	__be32 addr[OF_MAX_ADDR_CELLS];
570 	int na, ns, pna, pns;
571 	u64 result = OF_BAD_ADDR;
572 
573 	pr_debug("** translation for device %pOF **\n", dev);
574 
575 	/* Increase refcount at current level */
576 	of_node_get(dev);
577 
578 	/* Get parent & match bus type */
579 	parent = of_get_parent(dev);
580 	if (parent == NULL)
581 		goto bail;
582 	bus = of_match_bus(parent);
583 
584 	/* Count address cells & copy address locally */
585 	bus->count_cells(dev, &na, &ns);
586 	if (!OF_CHECK_COUNTS(na, ns)) {
587 		pr_debug("Bad cell count for %pOF\n", dev);
588 		goto bail;
589 	}
590 	memcpy(addr, in_addr, na * 4);
591 
592 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
593 	    bus->name, na, ns, parent);
594 	of_dump_addr("translating address:", addr, na);
595 
596 	/* Translate */
597 	for (;;) {
598 		/* Switch to parent bus */
599 		of_node_put(dev);
600 		dev = parent;
601 		parent = of_get_parent(dev);
602 
603 		/* If root, we have finished */
604 		if (parent == NULL) {
605 			pr_debug("reached root node\n");
606 			result = of_read_number(addr, na);
607 			break;
608 		}
609 
610 		/* Get new parent bus and counts */
611 		pbus = of_match_bus(parent);
612 		pbus->count_cells(dev, &pna, &pns);
613 		if (!OF_CHECK_COUNTS(pna, pns)) {
614 			pr_err("Bad cell count for %pOF\n", dev);
615 			break;
616 		}
617 
618 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
619 		    pbus->name, pna, pns, parent);
620 
621 		/* Apply bus translation */
622 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
623 			break;
624 
625 		/* Complete the move up one level */
626 		na = pna;
627 		ns = pns;
628 		bus = pbus;
629 
630 		of_dump_addr("one level translation:", addr, na);
631 	}
632  bail:
633 	of_node_put(parent);
634 	of_node_put(dev);
635 
636 	return result;
637 }
638 
639 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
640 {
641 	return __of_translate_address(dev, in_addr, "ranges");
642 }
643 EXPORT_SYMBOL(of_translate_address);
644 
645 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
646 {
647 	return __of_translate_address(dev, in_addr, "dma-ranges");
648 }
649 EXPORT_SYMBOL(of_translate_dma_address);
650 
651 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
652 		    unsigned int *flags)
653 {
654 	const __be32 *prop;
655 	unsigned int psize;
656 	struct device_node *parent;
657 	struct of_bus *bus;
658 	int onesize, i, na, ns;
659 
660 	/* Get parent & match bus type */
661 	parent = of_get_parent(dev);
662 	if (parent == NULL)
663 		return NULL;
664 	bus = of_match_bus(parent);
665 	bus->count_cells(dev, &na, &ns);
666 	of_node_put(parent);
667 	if (!OF_CHECK_ADDR_COUNT(na))
668 		return NULL;
669 
670 	/* Get "reg" or "assigned-addresses" property */
671 	prop = of_get_property(dev, bus->addresses, &psize);
672 	if (prop == NULL)
673 		return NULL;
674 	psize /= 4;
675 
676 	onesize = na + ns;
677 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
678 		if (i == index) {
679 			if (size)
680 				*size = of_read_number(prop + na, ns);
681 			if (flags)
682 				*flags = bus->get_flags(prop);
683 			return prop;
684 		}
685 	return NULL;
686 }
687 EXPORT_SYMBOL(of_get_address);
688 
689 static int __of_address_to_resource(struct device_node *dev,
690 		const __be32 *addrp, u64 size, unsigned int flags,
691 		const char *name, struct resource *r)
692 {
693 	u64 taddr;
694 
695 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
696 		return -EINVAL;
697 	taddr = of_translate_address(dev, addrp);
698 	if (taddr == OF_BAD_ADDR)
699 		return -EINVAL;
700 	memset(r, 0, sizeof(struct resource));
701 	if (flags & IORESOURCE_IO) {
702 		unsigned long port;
703 		port = pci_address_to_pio(taddr);
704 		if (port == (unsigned long)-1)
705 			return -EINVAL;
706 		r->start = port;
707 		r->end = port + size - 1;
708 	} else {
709 		r->start = taddr;
710 		r->end = taddr + size - 1;
711 	}
712 	r->flags = flags;
713 	r->name = name ? name : dev->full_name;
714 
715 	return 0;
716 }
717 
718 /**
719  * of_address_to_resource - Translate device tree address and return as resource
720  *
721  * Note that if your address is a PIO address, the conversion will fail if
722  * the physical address can't be internally converted to an IO token with
723  * pci_address_to_pio(), that is because it's either called too early or it
724  * can't be matched to any host bridge IO space
725  */
726 int of_address_to_resource(struct device_node *dev, int index,
727 			   struct resource *r)
728 {
729 	const __be32	*addrp;
730 	u64		size;
731 	unsigned int	flags;
732 	const char	*name = NULL;
733 
734 	addrp = of_get_address(dev, index, &size, &flags);
735 	if (addrp == NULL)
736 		return -EINVAL;
737 
738 	/* Get optional "reg-names" property to add a name to a resource */
739 	of_property_read_string_index(dev, "reg-names",	index, &name);
740 
741 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
742 }
743 EXPORT_SYMBOL_GPL(of_address_to_resource);
744 
745 struct device_node *of_find_matching_node_by_address(struct device_node *from,
746 					const struct of_device_id *matches,
747 					u64 base_address)
748 {
749 	struct device_node *dn = of_find_matching_node(from, matches);
750 	struct resource res;
751 
752 	while (dn) {
753 		if (!of_address_to_resource(dn, 0, &res) &&
754 		    res.start == base_address)
755 			return dn;
756 
757 		dn = of_find_matching_node(dn, matches);
758 	}
759 
760 	return NULL;
761 }
762 
763 
764 /**
765  * of_iomap - Maps the memory mapped IO for a given device_node
766  * @device:	the device whose io range will be mapped
767  * @index:	index of the io range
768  *
769  * Returns a pointer to the mapped memory
770  */
771 void __iomem *of_iomap(struct device_node *np, int index)
772 {
773 	struct resource res;
774 
775 	if (of_address_to_resource(np, index, &res))
776 		return NULL;
777 
778 	return ioremap(res.start, resource_size(&res));
779 }
780 EXPORT_SYMBOL(of_iomap);
781 
782 /*
783  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
784  *			   for a given device_node
785  * @device:	the device whose io range will be mapped
786  * @index:	index of the io range
787  * @name:	name of the resource
788  *
789  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
790  * error code on failure. Usage example:
791  *
792  *	base = of_io_request_and_map(node, 0, "foo");
793  *	if (IS_ERR(base))
794  *		return PTR_ERR(base);
795  */
796 void __iomem *of_io_request_and_map(struct device_node *np, int index,
797 					const char *name)
798 {
799 	struct resource res;
800 	void __iomem *mem;
801 
802 	if (of_address_to_resource(np, index, &res))
803 		return IOMEM_ERR_PTR(-EINVAL);
804 
805 	if (!request_mem_region(res.start, resource_size(&res), name))
806 		return IOMEM_ERR_PTR(-EBUSY);
807 
808 	mem = ioremap(res.start, resource_size(&res));
809 	if (!mem) {
810 		release_mem_region(res.start, resource_size(&res));
811 		return IOMEM_ERR_PTR(-ENOMEM);
812 	}
813 
814 	return mem;
815 }
816 EXPORT_SYMBOL(of_io_request_and_map);
817 
818 /**
819  * of_dma_get_range - Get DMA range info
820  * @np:		device node to get DMA range info
821  * @dma_addr:	pointer to store initial DMA address of DMA range
822  * @paddr:	pointer to store initial CPU address of DMA range
823  * @size:	pointer to store size of DMA range
824  *
825  * Look in bottom up direction for the first "dma-ranges" property
826  * and parse it.
827  *  dma-ranges format:
828  *	DMA addr (dma_addr)	: naddr cells
829  *	CPU addr (phys_addr_t)	: pna cells
830  *	size			: nsize cells
831  *
832  * It returns -ENODEV if "dma-ranges" property was not found
833  * for this device in DT.
834  */
835 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
836 {
837 	struct device_node *node = of_node_get(np);
838 	const __be32 *ranges = NULL;
839 	int len, naddr, nsize, pna;
840 	int ret = 0;
841 	u64 dmaaddr;
842 
843 	if (!node)
844 		return -EINVAL;
845 
846 	while (1) {
847 		naddr = of_n_addr_cells(node);
848 		nsize = of_n_size_cells(node);
849 		node = of_get_next_parent(node);
850 		if (!node)
851 			break;
852 
853 		ranges = of_get_property(node, "dma-ranges", &len);
854 
855 		/* Ignore empty ranges, they imply no translation required */
856 		if (ranges && len > 0)
857 			break;
858 
859 		/*
860 		 * At least empty ranges has to be defined for parent node if
861 		 * DMA is supported
862 		 */
863 		if (!ranges)
864 			break;
865 	}
866 
867 	if (!ranges) {
868 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
869 		ret = -ENODEV;
870 		goto out;
871 	}
872 
873 	len /= sizeof(u32);
874 
875 	pna = of_n_addr_cells(node);
876 
877 	/* dma-ranges format:
878 	 * DMA addr	: naddr cells
879 	 * CPU addr	: pna cells
880 	 * size		: nsize cells
881 	 */
882 	dmaaddr = of_read_number(ranges, naddr);
883 	*paddr = of_translate_dma_address(np, ranges);
884 	if (*paddr == OF_BAD_ADDR) {
885 		pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
886 		       dma_addr, np);
887 		ret = -EINVAL;
888 		goto out;
889 	}
890 	*dma_addr = dmaaddr;
891 
892 	*size = of_read_number(ranges + naddr + pna, nsize);
893 
894 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
895 		 *dma_addr, *paddr, *size);
896 
897 out:
898 	of_node_put(node);
899 
900 	return ret;
901 }
902 EXPORT_SYMBOL_GPL(of_dma_get_range);
903 
904 /**
905  * of_dma_is_coherent - Check if device is coherent
906  * @np:	device node
907  *
908  * It returns true if "dma-coherent" property was found
909  * for this device in DT.
910  */
911 bool of_dma_is_coherent(struct device_node *np)
912 {
913 	struct device_node *node = of_node_get(np);
914 
915 	while (node) {
916 		if (of_property_read_bool(node, "dma-coherent")) {
917 			of_node_put(node);
918 			return true;
919 		}
920 		node = of_get_next_parent(node);
921 	}
922 	of_node_put(node);
923 	return false;
924 }
925 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
926