1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/dma-direct.h> /* for bus_dma_region */ 17 18 #include "of_private.h" 19 20 /* Max address size we deal with */ 21 #define OF_MAX_ADDR_CELLS 4 22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 24 25 /* Debug utility */ 26 #ifdef DEBUG 27 static void of_dump_addr(const char *s, const __be32 *addr, int na) 28 { 29 pr_debug("%s", s); 30 while (na--) 31 pr_cont(" %08x", be32_to_cpu(*(addr++))); 32 pr_cont("\n"); 33 } 34 #else 35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 36 #endif 37 38 /* Callbacks for bus specific translators */ 39 struct of_bus { 40 const char *name; 41 const char *addresses; 42 int (*match)(struct device_node *parent); 43 void (*count_cells)(struct device_node *child, 44 int *addrc, int *sizec); 45 u64 (*map)(__be32 *addr, const __be32 *range, 46 int na, int ns, int pna, int fna); 47 int (*translate)(__be32 *addr, u64 offset, int na); 48 int flag_cells; 49 unsigned int (*get_flags)(const __be32 *addr); 50 }; 51 52 /* 53 * Default translator (generic bus) 54 */ 55 56 static void of_bus_default_count_cells(struct device_node *dev, 57 int *addrc, int *sizec) 58 { 59 if (addrc) 60 *addrc = of_n_addr_cells(dev); 61 if (sizec) 62 *sizec = of_n_size_cells(dev); 63 } 64 65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 66 int na, int ns, int pna, int fna) 67 { 68 u64 cp, s, da; 69 70 cp = of_read_number(range + fna, na - fna); 71 s = of_read_number(range + na + pna, ns); 72 da = of_read_number(addr + fna, na - fna); 73 74 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 75 76 if (da < cp || da >= (cp + s)) 77 return OF_BAD_ADDR; 78 return da - cp; 79 } 80 81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 82 { 83 u64 a = of_read_number(addr, na); 84 memset(addr, 0, na * 4); 85 a += offset; 86 if (na > 1) 87 addr[na - 2] = cpu_to_be32(a >> 32); 88 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 89 90 return 0; 91 } 92 93 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) 94 { 95 return of_read_number(addr, 1); 96 } 97 98 static unsigned int of_bus_default_get_flags(const __be32 *addr) 99 { 100 return IORESOURCE_MEM; 101 } 102 103 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na, 104 int ns, int pna, int fna) 105 { 106 /* Check that flags match */ 107 if (*addr != *range) 108 return OF_BAD_ADDR; 109 110 return of_bus_default_map(addr, range, na, ns, pna, fna); 111 } 112 113 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na) 114 { 115 /* Keep "flags" part (high cell) in translated address */ 116 return of_bus_default_translate(addr + 1, offset, na - 1); 117 } 118 119 #ifdef CONFIG_PCI 120 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 121 { 122 unsigned int flags = 0; 123 u32 w = be32_to_cpup(addr); 124 125 if (!IS_ENABLED(CONFIG_PCI)) 126 return 0; 127 128 switch((w >> 24) & 0x03) { 129 case 0x01: 130 flags |= IORESOURCE_IO; 131 break; 132 case 0x02: /* 32 bits */ 133 flags |= IORESOURCE_MEM; 134 break; 135 136 case 0x03: /* 64 bits */ 137 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 138 break; 139 } 140 if (w & 0x40000000) 141 flags |= IORESOURCE_PREFETCH; 142 return flags; 143 } 144 145 /* 146 * PCI bus specific translator 147 */ 148 149 static bool of_node_is_pcie(struct device_node *np) 150 { 151 bool is_pcie = of_node_name_eq(np, "pcie"); 152 153 if (is_pcie) 154 pr_warn_once("%pOF: Missing device_type\n", np); 155 156 return is_pcie; 157 } 158 159 static int of_bus_pci_match(struct device_node *np) 160 { 161 /* 162 * "pciex" is PCI Express 163 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 164 * "ht" is hypertransport 165 * 166 * If none of the device_type match, and that the node name is 167 * "pcie", accept the device as PCI (with a warning). 168 */ 169 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 170 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 171 of_node_is_pcie(np); 172 } 173 174 static void of_bus_pci_count_cells(struct device_node *np, 175 int *addrc, int *sizec) 176 { 177 if (addrc) 178 *addrc = 3; 179 if (sizec) 180 *sizec = 2; 181 } 182 183 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 184 int pna, int fna) 185 { 186 unsigned int af, rf; 187 188 af = of_bus_pci_get_flags(addr); 189 rf = of_bus_pci_get_flags(range); 190 191 /* Check address type match */ 192 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 193 return OF_BAD_ADDR; 194 195 return of_bus_default_map(addr, range, na, ns, pna, fna); 196 } 197 198 #endif /* CONFIG_PCI */ 199 200 /* 201 * of_pci_range_to_resource - Create a resource from an of_pci_range 202 * @range: the PCI range that describes the resource 203 * @np: device node where the range belongs to 204 * @res: pointer to a valid resource that will be updated to 205 * reflect the values contained in the range. 206 * 207 * Returns -EINVAL if the range cannot be converted to resource. 208 * 209 * Note that if the range is an IO range, the resource will be converted 210 * using pci_address_to_pio() which can fail if it is called too early or 211 * if the range cannot be matched to any host bridge IO space (our case here). 212 * To guard against that we try to register the IO range first. 213 * If that fails we know that pci_address_to_pio() will do too. 214 */ 215 int of_pci_range_to_resource(struct of_pci_range *range, 216 struct device_node *np, struct resource *res) 217 { 218 int err; 219 res->flags = range->flags; 220 res->parent = res->child = res->sibling = NULL; 221 res->name = np->full_name; 222 223 if (res->flags & IORESOURCE_IO) { 224 unsigned long port; 225 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 226 range->size); 227 if (err) 228 goto invalid_range; 229 port = pci_address_to_pio(range->cpu_addr); 230 if (port == (unsigned long)-1) { 231 err = -EINVAL; 232 goto invalid_range; 233 } 234 res->start = port; 235 } else { 236 if ((sizeof(resource_size_t) < 8) && 237 upper_32_bits(range->cpu_addr)) { 238 err = -EINVAL; 239 goto invalid_range; 240 } 241 242 res->start = range->cpu_addr; 243 } 244 res->end = res->start + range->size - 1; 245 return 0; 246 247 invalid_range: 248 res->start = (resource_size_t)OF_BAD_ADDR; 249 res->end = (resource_size_t)OF_BAD_ADDR; 250 return err; 251 } 252 EXPORT_SYMBOL(of_pci_range_to_resource); 253 254 /* 255 * of_range_to_resource - Create a resource from a ranges entry 256 * @np: device node where the range belongs to 257 * @index: the 'ranges' index to convert to a resource 258 * @res: pointer to a valid resource that will be updated to 259 * reflect the values contained in the range. 260 * 261 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be 262 * converted to resource. 263 */ 264 int of_range_to_resource(struct device_node *np, int index, struct resource *res) 265 { 266 int ret, i = 0; 267 struct of_range_parser parser; 268 struct of_range range; 269 270 ret = of_range_parser_init(&parser, np); 271 if (ret) 272 return ret; 273 274 for_each_of_range(&parser, &range) 275 if (i++ == index) 276 return of_pci_range_to_resource(&range, np, res); 277 278 return -ENOENT; 279 } 280 EXPORT_SYMBOL(of_range_to_resource); 281 282 /* 283 * ISA bus specific translator 284 */ 285 286 static int of_bus_isa_match(struct device_node *np) 287 { 288 return of_node_name_eq(np, "isa"); 289 } 290 291 static void of_bus_isa_count_cells(struct device_node *child, 292 int *addrc, int *sizec) 293 { 294 if (addrc) 295 *addrc = 2; 296 if (sizec) 297 *sizec = 1; 298 } 299 300 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 301 int pna, int fna) 302 { 303 /* Check address type match */ 304 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 305 return OF_BAD_ADDR; 306 307 return of_bus_default_map(addr, range, na, ns, pna, fna); 308 } 309 310 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 311 { 312 unsigned int flags = 0; 313 u32 w = be32_to_cpup(addr); 314 315 if (w & 1) 316 flags |= IORESOURCE_IO; 317 else 318 flags |= IORESOURCE_MEM; 319 return flags; 320 } 321 322 static int of_bus_default_flags_match(struct device_node *np) 323 { 324 return of_bus_n_addr_cells(np) == 3; 325 } 326 327 /* 328 * Array of bus specific translators 329 */ 330 331 static struct of_bus of_busses[] = { 332 #ifdef CONFIG_PCI 333 /* PCI */ 334 { 335 .name = "pci", 336 .addresses = "assigned-addresses", 337 .match = of_bus_pci_match, 338 .count_cells = of_bus_pci_count_cells, 339 .map = of_bus_pci_map, 340 .translate = of_bus_default_flags_translate, 341 .flag_cells = 1, 342 .get_flags = of_bus_pci_get_flags, 343 }, 344 #endif /* CONFIG_PCI */ 345 /* ISA */ 346 { 347 .name = "isa", 348 .addresses = "reg", 349 .match = of_bus_isa_match, 350 .count_cells = of_bus_isa_count_cells, 351 .map = of_bus_isa_map, 352 .translate = of_bus_default_flags_translate, 353 .flag_cells = 1, 354 .get_flags = of_bus_isa_get_flags, 355 }, 356 /* Default with flags cell */ 357 { 358 .name = "default-flags", 359 .addresses = "reg", 360 .match = of_bus_default_flags_match, 361 .count_cells = of_bus_default_count_cells, 362 .map = of_bus_default_flags_map, 363 .translate = of_bus_default_flags_translate, 364 .flag_cells = 1, 365 .get_flags = of_bus_default_flags_get_flags, 366 }, 367 /* Default */ 368 { 369 .name = "default", 370 .addresses = "reg", 371 .match = NULL, 372 .count_cells = of_bus_default_count_cells, 373 .map = of_bus_default_map, 374 .translate = of_bus_default_translate, 375 .get_flags = of_bus_default_get_flags, 376 }, 377 }; 378 379 static struct of_bus *of_match_bus(struct device_node *np) 380 { 381 int i; 382 383 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 384 if (!of_busses[i].match || of_busses[i].match(np)) 385 return &of_busses[i]; 386 BUG(); 387 return NULL; 388 } 389 390 static int of_empty_ranges_quirk(struct device_node *np) 391 { 392 if (IS_ENABLED(CONFIG_PPC)) { 393 /* To save cycles, we cache the result for global "Mac" setting */ 394 static int quirk_state = -1; 395 396 /* PA-SEMI sdc DT bug */ 397 if (of_device_is_compatible(np, "1682m-sdc")) 398 return true; 399 400 /* Make quirk cached */ 401 if (quirk_state < 0) 402 quirk_state = 403 of_machine_is_compatible("Power Macintosh") || 404 of_machine_is_compatible("MacRISC"); 405 return quirk_state; 406 } 407 return false; 408 } 409 410 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 411 struct of_bus *pbus, __be32 *addr, 412 int na, int ns, int pna, const char *rprop) 413 { 414 const __be32 *ranges; 415 unsigned int rlen; 416 int rone; 417 u64 offset = OF_BAD_ADDR; 418 419 /* 420 * Normally, an absence of a "ranges" property means we are 421 * crossing a non-translatable boundary, and thus the addresses 422 * below the current cannot be converted to CPU physical ones. 423 * Unfortunately, while this is very clear in the spec, it's not 424 * what Apple understood, and they do have things like /uni-n or 425 * /ht nodes with no "ranges" property and a lot of perfectly 426 * useable mapped devices below them. Thus we treat the absence of 427 * "ranges" as equivalent to an empty "ranges" property which means 428 * a 1:1 translation at that level. It's up to the caller not to try 429 * to translate addresses that aren't supposed to be translated in 430 * the first place. --BenH. 431 * 432 * As far as we know, this damage only exists on Apple machines, so 433 * This code is only enabled on powerpc. --gcl 434 * 435 * This quirk also applies for 'dma-ranges' which frequently exist in 436 * child nodes without 'dma-ranges' in the parent nodes. --RobH 437 */ 438 ranges = of_get_property(parent, rprop, &rlen); 439 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 440 strcmp(rprop, "dma-ranges")) { 441 pr_debug("no ranges; cannot translate\n"); 442 return 1; 443 } 444 if (ranges == NULL || rlen == 0) { 445 offset = of_read_number(addr, na); 446 memset(addr, 0, pna * 4); 447 pr_debug("empty ranges; 1:1 translation\n"); 448 goto finish; 449 } 450 451 pr_debug("walking ranges...\n"); 452 453 /* Now walk through the ranges */ 454 rlen /= 4; 455 rone = na + pna + ns; 456 for (; rlen >= rone; rlen -= rone, ranges += rone) { 457 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells); 458 if (offset != OF_BAD_ADDR) 459 break; 460 } 461 if (offset == OF_BAD_ADDR) { 462 pr_debug("not found !\n"); 463 return 1; 464 } 465 memcpy(addr, ranges + na, 4 * pna); 466 467 finish: 468 of_dump_addr("parent translation for:", addr, pna); 469 pr_debug("with offset: %llx\n", offset); 470 471 /* Translate it into parent bus space */ 472 return pbus->translate(addr, offset, pna); 473 } 474 475 /* 476 * Translate an address from the device-tree into a CPU physical address, 477 * this walks up the tree and applies the various bus mappings on the 478 * way. 479 * 480 * Note: We consider that crossing any level with #size-cells == 0 to mean 481 * that translation is impossible (that is we are not dealing with a value 482 * that can be mapped to a cpu physical address). This is not really specified 483 * that way, but this is traditionally the way IBM at least do things 484 * 485 * Whenever the translation fails, the *host pointer will be set to the 486 * device that had registered logical PIO mapping, and the return code is 487 * relative to that node. 488 */ 489 static u64 __of_translate_address(struct device_node *dev, 490 struct device_node *(*get_parent)(const struct device_node *), 491 const __be32 *in_addr, const char *rprop, 492 struct device_node **host) 493 { 494 struct device_node *parent = NULL; 495 struct of_bus *bus, *pbus; 496 __be32 addr[OF_MAX_ADDR_CELLS]; 497 int na, ns, pna, pns; 498 u64 result = OF_BAD_ADDR; 499 500 pr_debug("** translation for device %pOF **\n", dev); 501 502 /* Increase refcount at current level */ 503 of_node_get(dev); 504 505 *host = NULL; 506 /* Get parent & match bus type */ 507 parent = get_parent(dev); 508 if (parent == NULL) 509 goto bail; 510 bus = of_match_bus(parent); 511 512 /* Count address cells & copy address locally */ 513 bus->count_cells(dev, &na, &ns); 514 if (!OF_CHECK_COUNTS(na, ns)) { 515 pr_debug("Bad cell count for %pOF\n", dev); 516 goto bail; 517 } 518 memcpy(addr, in_addr, na * 4); 519 520 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 521 bus->name, na, ns, parent); 522 of_dump_addr("translating address:", addr, na); 523 524 /* Translate */ 525 for (;;) { 526 struct logic_pio_hwaddr *iorange; 527 528 /* Switch to parent bus */ 529 of_node_put(dev); 530 dev = parent; 531 parent = get_parent(dev); 532 533 /* If root, we have finished */ 534 if (parent == NULL) { 535 pr_debug("reached root node\n"); 536 result = of_read_number(addr, na); 537 break; 538 } 539 540 /* 541 * For indirectIO device which has no ranges property, get 542 * the address from reg directly. 543 */ 544 iorange = find_io_range_by_fwnode(&dev->fwnode); 545 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 546 result = of_read_number(addr + 1, na - 1); 547 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 548 dev, result); 549 *host = of_node_get(dev); 550 break; 551 } 552 553 /* Get new parent bus and counts */ 554 pbus = of_match_bus(parent); 555 pbus->count_cells(dev, &pna, &pns); 556 if (!OF_CHECK_COUNTS(pna, pns)) { 557 pr_err("Bad cell count for %pOF\n", dev); 558 break; 559 } 560 561 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 562 pbus->name, pna, pns, parent); 563 564 /* Apply bus translation */ 565 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 566 break; 567 568 /* Complete the move up one level */ 569 na = pna; 570 ns = pns; 571 bus = pbus; 572 573 of_dump_addr("one level translation:", addr, na); 574 } 575 bail: 576 of_node_put(parent); 577 of_node_put(dev); 578 579 return result; 580 } 581 582 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 583 { 584 struct device_node *host; 585 u64 ret; 586 587 ret = __of_translate_address(dev, of_get_parent, 588 in_addr, "ranges", &host); 589 if (host) { 590 of_node_put(host); 591 return OF_BAD_ADDR; 592 } 593 594 return ret; 595 } 596 EXPORT_SYMBOL(of_translate_address); 597 598 #ifdef CONFIG_HAS_DMA 599 struct device_node *__of_get_dma_parent(const struct device_node *np) 600 { 601 struct of_phandle_args args; 602 int ret, index; 603 604 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 605 if (index < 0) 606 return of_get_parent(np); 607 608 ret = of_parse_phandle_with_args(np, "interconnects", 609 "#interconnect-cells", 610 index, &args); 611 if (ret < 0) 612 return of_get_parent(np); 613 614 return of_node_get(args.np); 615 } 616 #endif 617 618 static struct device_node *of_get_next_dma_parent(struct device_node *np) 619 { 620 struct device_node *parent; 621 622 parent = __of_get_dma_parent(np); 623 of_node_put(np); 624 625 return parent; 626 } 627 628 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 629 { 630 struct device_node *host; 631 u64 ret; 632 633 ret = __of_translate_address(dev, __of_get_dma_parent, 634 in_addr, "dma-ranges", &host); 635 636 if (host) { 637 of_node_put(host); 638 return OF_BAD_ADDR; 639 } 640 641 return ret; 642 } 643 EXPORT_SYMBOL(of_translate_dma_address); 644 645 /** 646 * of_translate_dma_region - Translate device tree address and size tuple 647 * @dev: device tree node for which to translate 648 * @prop: pointer into array of cells 649 * @start: return value for the start of the DMA range 650 * @length: return value for the length of the DMA range 651 * 652 * Returns a pointer to the cell immediately following the translated DMA region. 653 */ 654 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 655 phys_addr_t *start, size_t *length) 656 { 657 struct device_node *parent; 658 u64 address, size; 659 int na, ns; 660 661 parent = __of_get_dma_parent(dev); 662 if (!parent) 663 return NULL; 664 665 na = of_bus_n_addr_cells(parent); 666 ns = of_bus_n_size_cells(parent); 667 668 of_node_put(parent); 669 670 address = of_translate_dma_address(dev, prop); 671 if (address == OF_BAD_ADDR) 672 return NULL; 673 674 size = of_read_number(prop + na, ns); 675 676 if (start) 677 *start = address; 678 679 if (length) 680 *length = size; 681 682 return prop + na + ns; 683 } 684 EXPORT_SYMBOL(of_translate_dma_region); 685 686 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 687 u64 *size, unsigned int *flags) 688 { 689 const __be32 *prop; 690 unsigned int psize; 691 struct device_node *parent; 692 struct of_bus *bus; 693 int onesize, i, na, ns; 694 695 /* Get parent & match bus type */ 696 parent = of_get_parent(dev); 697 if (parent == NULL) 698 return NULL; 699 bus = of_match_bus(parent); 700 if (strcmp(bus->name, "pci") && (bar_no >= 0)) { 701 of_node_put(parent); 702 return NULL; 703 } 704 bus->count_cells(dev, &na, &ns); 705 of_node_put(parent); 706 if (!OF_CHECK_ADDR_COUNT(na)) 707 return NULL; 708 709 /* Get "reg" or "assigned-addresses" property */ 710 prop = of_get_property(dev, bus->addresses, &psize); 711 if (prop == NULL) 712 return NULL; 713 psize /= 4; 714 715 onesize = na + ns; 716 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 717 u32 val = be32_to_cpu(prop[0]); 718 /* PCI bus matches on BAR number instead of index */ 719 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 720 ((index >= 0) && (i == index))) { 721 if (size) 722 *size = of_read_number(prop + na, ns); 723 if (flags) 724 *flags = bus->get_flags(prop); 725 return prop; 726 } 727 } 728 return NULL; 729 } 730 EXPORT_SYMBOL(__of_get_address); 731 732 /** 733 * of_property_read_reg - Retrieve the specified "reg" entry index without translating 734 * @np: device tree node for which to retrieve "reg" from 735 * @idx: "reg" entry index to read 736 * @addr: return value for the untranslated address 737 * @size: return value for the entry size 738 * 739 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and 740 * size values filled in. 741 */ 742 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) 743 { 744 const __be32 *prop = of_get_address(np, idx, size, NULL); 745 746 if (!prop) 747 return -EINVAL; 748 749 *addr = of_read_number(prop, of_n_addr_cells(np)); 750 751 return 0; 752 } 753 EXPORT_SYMBOL(of_property_read_reg); 754 755 static int parser_init(struct of_pci_range_parser *parser, 756 struct device_node *node, const char *name) 757 { 758 int rlen; 759 760 parser->node = node; 761 parser->pna = of_n_addr_cells(node); 762 parser->na = of_bus_n_addr_cells(node); 763 parser->ns = of_bus_n_size_cells(node); 764 parser->dma = !strcmp(name, "dma-ranges"); 765 parser->bus = of_match_bus(node); 766 767 parser->range = of_get_property(node, name, &rlen); 768 if (parser->range == NULL) 769 return -ENOENT; 770 771 parser->end = parser->range + rlen / sizeof(__be32); 772 773 return 0; 774 } 775 776 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 777 struct device_node *node) 778 { 779 return parser_init(parser, node, "ranges"); 780 } 781 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 782 783 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 784 struct device_node *node) 785 { 786 return parser_init(parser, node, "dma-ranges"); 787 } 788 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 789 #define of_dma_range_parser_init of_pci_dma_range_parser_init 790 791 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 792 struct of_pci_range *range) 793 { 794 int na = parser->na; 795 int ns = parser->ns; 796 int np = parser->pna + na + ns; 797 int busflag_na = parser->bus->flag_cells; 798 799 if (!range) 800 return NULL; 801 802 if (!parser->range || parser->range + np > parser->end) 803 return NULL; 804 805 range->flags = parser->bus->get_flags(parser->range); 806 807 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 808 809 if (parser->dma) 810 range->cpu_addr = of_translate_dma_address(parser->node, 811 parser->range + na); 812 else 813 range->cpu_addr = of_translate_address(parser->node, 814 parser->range + na); 815 range->size = of_read_number(parser->range + parser->pna + na, ns); 816 817 parser->range += np; 818 819 /* Now consume following elements while they are contiguous */ 820 while (parser->range + np <= parser->end) { 821 u32 flags = 0; 822 u64 bus_addr, cpu_addr, size; 823 824 flags = parser->bus->get_flags(parser->range); 825 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 826 if (parser->dma) 827 cpu_addr = of_translate_dma_address(parser->node, 828 parser->range + na); 829 else 830 cpu_addr = of_translate_address(parser->node, 831 parser->range + na); 832 size = of_read_number(parser->range + parser->pna + na, ns); 833 834 if (flags != range->flags) 835 break; 836 if (bus_addr != range->bus_addr + range->size || 837 cpu_addr != range->cpu_addr + range->size) 838 break; 839 840 range->size += size; 841 parser->range += np; 842 } 843 844 return range; 845 } 846 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 847 848 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 849 u64 size) 850 { 851 u64 taddr; 852 unsigned long port; 853 struct device_node *host; 854 855 taddr = __of_translate_address(dev, of_get_parent, 856 in_addr, "ranges", &host); 857 if (host) { 858 /* host-specific port access */ 859 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 860 of_node_put(host); 861 } else { 862 /* memory-mapped I/O range */ 863 port = pci_address_to_pio(taddr); 864 } 865 866 if (port == (unsigned long)-1) 867 return OF_BAD_ADDR; 868 869 return port; 870 } 871 872 #ifdef CONFIG_HAS_DMA 873 /** 874 * of_dma_get_range - Get DMA range info and put it into a map array 875 * @np: device node to get DMA range info 876 * @map: dma range structure to return 877 * 878 * Look in bottom up direction for the first "dma-ranges" property 879 * and parse it. Put the information into a DMA offset map array. 880 * 881 * dma-ranges format: 882 * DMA addr (dma_addr) : naddr cells 883 * CPU addr (phys_addr_t) : pna cells 884 * size : nsize cells 885 * 886 * It returns -ENODEV if "dma-ranges" property was not found for this 887 * device in the DT. 888 */ 889 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 890 { 891 struct device_node *node = of_node_get(np); 892 const __be32 *ranges = NULL; 893 bool found_dma_ranges = false; 894 struct of_range_parser parser; 895 struct of_range range; 896 struct bus_dma_region *r; 897 int len, num_ranges = 0; 898 int ret = 0; 899 900 while (node) { 901 ranges = of_get_property(node, "dma-ranges", &len); 902 903 /* Ignore empty ranges, they imply no translation required */ 904 if (ranges && len > 0) 905 break; 906 907 /* Once we find 'dma-ranges', then a missing one is an error */ 908 if (found_dma_ranges && !ranges) { 909 ret = -ENODEV; 910 goto out; 911 } 912 found_dma_ranges = true; 913 914 node = of_get_next_dma_parent(node); 915 } 916 917 if (!node || !ranges) { 918 pr_debug("no dma-ranges found for node(%pOF)\n", np); 919 ret = -ENODEV; 920 goto out; 921 } 922 923 of_dma_range_parser_init(&parser, node); 924 for_each_of_range(&parser, &range) { 925 if (range.cpu_addr == OF_BAD_ADDR) { 926 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 927 range.bus_addr, node); 928 continue; 929 } 930 num_ranges++; 931 } 932 933 if (!num_ranges) { 934 ret = -EINVAL; 935 goto out; 936 } 937 938 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 939 if (!r) { 940 ret = -ENOMEM; 941 goto out; 942 } 943 944 /* 945 * Record all info in the generic DMA ranges array for struct device, 946 * returning an error if we don't find any parsable ranges. 947 */ 948 *map = r; 949 of_dma_range_parser_init(&parser, node); 950 for_each_of_range(&parser, &range) { 951 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 952 range.bus_addr, range.cpu_addr, range.size); 953 if (range.cpu_addr == OF_BAD_ADDR) 954 continue; 955 r->cpu_start = range.cpu_addr; 956 r->dma_start = range.bus_addr; 957 r->size = range.size; 958 r++; 959 } 960 out: 961 of_node_put(node); 962 return ret; 963 } 964 #endif /* CONFIG_HAS_DMA */ 965 966 /** 967 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 968 * @np: The node to start searching from or NULL to start from the root 969 * 970 * Gets the highest CPU physical address that is addressable by all DMA masters 971 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 972 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 973 */ 974 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 975 { 976 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 977 struct of_range_parser parser; 978 phys_addr_t subtree_max_addr; 979 struct device_node *child; 980 struct of_range range; 981 const __be32 *ranges; 982 u64 cpu_end = 0; 983 int len; 984 985 if (!np) 986 np = of_root; 987 988 ranges = of_get_property(np, "dma-ranges", &len); 989 if (ranges && len) { 990 of_dma_range_parser_init(&parser, np); 991 for_each_of_range(&parser, &range) 992 if (range.cpu_addr + range.size > cpu_end) 993 cpu_end = range.cpu_addr + range.size - 1; 994 995 if (max_cpu_addr > cpu_end) 996 max_cpu_addr = cpu_end; 997 } 998 999 for_each_available_child_of_node(np, child) { 1000 subtree_max_addr = of_dma_get_max_cpu_address(child); 1001 if (max_cpu_addr > subtree_max_addr) 1002 max_cpu_addr = subtree_max_addr; 1003 } 1004 1005 return max_cpu_addr; 1006 } 1007 1008 /** 1009 * of_dma_is_coherent - Check if device is coherent 1010 * @np: device node 1011 * 1012 * It returns true if "dma-coherent" property was found 1013 * for this device in the DT, or if DMA is coherent by 1014 * default for OF devices on the current platform and no 1015 * "dma-noncoherent" property was found for this device. 1016 */ 1017 bool of_dma_is_coherent(struct device_node *np) 1018 { 1019 struct device_node *node; 1020 bool is_coherent = dma_default_coherent; 1021 1022 node = of_node_get(np); 1023 1024 while (node) { 1025 if (of_property_read_bool(node, "dma-coherent")) { 1026 is_coherent = true; 1027 break; 1028 } 1029 if (of_property_read_bool(node, "dma-noncoherent")) { 1030 is_coherent = false; 1031 break; 1032 } 1033 node = of_get_next_dma_parent(node); 1034 } 1035 of_node_put(node); 1036 return is_coherent; 1037 } 1038 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1039 1040 /** 1041 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1042 * @np: device node 1043 * 1044 * Returns true if the "nonposted-mmio" property was found for 1045 * the device's bus. 1046 * 1047 * This is currently only enabled on builds that support Apple ARM devices, as 1048 * an optimization. 1049 */ 1050 static bool of_mmio_is_nonposted(struct device_node *np) 1051 { 1052 struct device_node *parent; 1053 bool nonposted; 1054 1055 if (!IS_ENABLED(CONFIG_ARCH_APPLE)) 1056 return false; 1057 1058 parent = of_get_parent(np); 1059 if (!parent) 1060 return false; 1061 1062 nonposted = of_property_read_bool(parent, "nonposted-mmio"); 1063 1064 of_node_put(parent); 1065 return nonposted; 1066 } 1067 1068 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1069 struct resource *r) 1070 { 1071 u64 taddr; 1072 const __be32 *addrp; 1073 u64 size; 1074 unsigned int flags; 1075 const char *name = NULL; 1076 1077 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1078 if (addrp == NULL) 1079 return -EINVAL; 1080 1081 /* Get optional "reg-names" property to add a name to a resource */ 1082 if (index >= 0) 1083 of_property_read_string_index(dev, "reg-names", index, &name); 1084 1085 if (flags & IORESOURCE_MEM) 1086 taddr = of_translate_address(dev, addrp); 1087 else if (flags & IORESOURCE_IO) 1088 taddr = of_translate_ioport(dev, addrp, size); 1089 else 1090 return -EINVAL; 1091 1092 if (taddr == OF_BAD_ADDR) 1093 return -EINVAL; 1094 memset(r, 0, sizeof(struct resource)); 1095 1096 if (of_mmio_is_nonposted(dev)) 1097 flags |= IORESOURCE_MEM_NONPOSTED; 1098 1099 r->start = taddr; 1100 r->end = taddr + size - 1; 1101 r->flags = flags; 1102 r->name = name ? name : dev->full_name; 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * of_address_to_resource - Translate device tree address and return as resource 1109 * @dev: Caller's Device Node 1110 * @index: Index into the array 1111 * @r: Pointer to resource array 1112 * 1113 * Returns -EINVAL if the range cannot be converted to resource. 1114 * 1115 * Note that if your address is a PIO address, the conversion will fail if 1116 * the physical address can't be internally converted to an IO token with 1117 * pci_address_to_pio(), that is because it's either called too early or it 1118 * can't be matched to any host bridge IO space 1119 */ 1120 int of_address_to_resource(struct device_node *dev, int index, 1121 struct resource *r) 1122 { 1123 return __of_address_to_resource(dev, index, -1, r); 1124 } 1125 EXPORT_SYMBOL_GPL(of_address_to_resource); 1126 1127 int of_pci_address_to_resource(struct device_node *dev, int bar, 1128 struct resource *r) 1129 { 1130 1131 if (!IS_ENABLED(CONFIG_PCI)) 1132 return -ENOSYS; 1133 1134 return __of_address_to_resource(dev, -1, bar, r); 1135 } 1136 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1137 1138 /** 1139 * of_iomap - Maps the memory mapped IO for a given device_node 1140 * @np: the device whose io range will be mapped 1141 * @index: index of the io range 1142 * 1143 * Returns a pointer to the mapped memory 1144 */ 1145 void __iomem *of_iomap(struct device_node *np, int index) 1146 { 1147 struct resource res; 1148 1149 if (of_address_to_resource(np, index, &res)) 1150 return NULL; 1151 1152 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1153 return ioremap_np(res.start, resource_size(&res)); 1154 else 1155 return ioremap(res.start, resource_size(&res)); 1156 } 1157 EXPORT_SYMBOL(of_iomap); 1158 1159 /* 1160 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1161 * for a given device_node 1162 * @device: the device whose io range will be mapped 1163 * @index: index of the io range 1164 * @name: name "override" for the memory region request or NULL 1165 * 1166 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1167 * error code on failure. Usage example: 1168 * 1169 * base = of_io_request_and_map(node, 0, "foo"); 1170 * if (IS_ERR(base)) 1171 * return PTR_ERR(base); 1172 */ 1173 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1174 const char *name) 1175 { 1176 struct resource res; 1177 void __iomem *mem; 1178 1179 if (of_address_to_resource(np, index, &res)) 1180 return IOMEM_ERR_PTR(-EINVAL); 1181 1182 if (!name) 1183 name = res.name; 1184 if (!request_mem_region(res.start, resource_size(&res), name)) 1185 return IOMEM_ERR_PTR(-EBUSY); 1186 1187 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1188 mem = ioremap_np(res.start, resource_size(&res)); 1189 else 1190 mem = ioremap(res.start, resource_size(&res)); 1191 1192 if (!mem) { 1193 release_mem_region(res.start, resource_size(&res)); 1194 return IOMEM_ERR_PTR(-ENOMEM); 1195 } 1196 1197 return mem; 1198 } 1199 EXPORT_SYMBOL(of_io_request_and_map); 1200