xref: /linux/drivers/of/address.c (revision cbc16bceea784210d585a42ac9f8f10ce62b300e)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/overflow.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/dma-direct.h> /* for bus_dma_region */
18 
19 #include "of_private.h"
20 
21 /* Max address size we deal with */
22 #define OF_MAX_ADDR_CELLS	4
23 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
25 
26 /* Debug utility */
27 #ifdef DEBUG
28 static void of_dump_addr(const char *s, const __be32 *addr, int na)
29 {
30 	pr_debug("%s", s);
31 	while (na--)
32 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 	pr_cont("\n");
34 }
35 #else
36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37 #endif
38 
39 /* Callbacks for bus specific translators */
40 struct of_bus {
41 	const char	*name;
42 	const char	*addresses;
43 	int		(*match)(struct device_node *parent);
44 	void		(*count_cells)(struct device_node *child,
45 				       int *addrc, int *sizec);
46 	u64		(*map)(__be32 *addr, const __be32 *range,
47 				int na, int ns, int pna, int fna);
48 	int		(*translate)(__be32 *addr, u64 offset, int na);
49 	int		flag_cells;
50 	unsigned int	(*get_flags)(const __be32 *addr);
51 };
52 
53 /*
54  * Default translator (generic bus)
55  */
56 
57 static void of_bus_default_count_cells(struct device_node *dev,
58 				       int *addrc, int *sizec)
59 {
60 	if (addrc)
61 		*addrc = of_n_addr_cells(dev);
62 	if (sizec)
63 		*sizec = of_n_size_cells(dev);
64 }
65 
66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 		int na, int ns, int pna, int fna)
68 {
69 	u64 cp, s, da;
70 
71 	cp = of_read_number(range + fna, na - fna);
72 	s  = of_read_number(range + na + pna, ns);
73 	da = of_read_number(addr + fna, na - fna);
74 
75 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
76 
77 	if (da < cp || da >= (cp + s))
78 		return OF_BAD_ADDR;
79 	return da - cp;
80 }
81 
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 	u64 a = of_read_number(addr, na);
85 	memset(addr, 0, na * 4);
86 	a += offset;
87 	if (na > 1)
88 		addr[na - 2] = cpu_to_be32(a >> 32);
89 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90 
91 	return 0;
92 }
93 
94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
95 {
96 	return of_read_number(addr, 1);
97 }
98 
99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 {
101 	return IORESOURCE_MEM;
102 }
103 
104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 				    int ns, int pna, int fna)
106 {
107 	/* Check that flags match */
108 	if (*addr != *range)
109 		return OF_BAD_ADDR;
110 
111 	return of_bus_default_map(addr, range, na, ns, pna, fna);
112 }
113 
114 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
115 {
116 	/* Keep "flags" part (high cell) in translated address */
117 	return of_bus_default_translate(addr + 1, offset, na - 1);
118 }
119 
120 #ifdef CONFIG_PCI
121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 	unsigned int flags = 0;
124 	u32 w = be32_to_cpup(addr);
125 
126 	if (!IS_ENABLED(CONFIG_PCI))
127 		return 0;
128 
129 	switch((w >> 24) & 0x03) {
130 	case 0x01:
131 		flags |= IORESOURCE_IO;
132 		break;
133 	case 0x02: /* 32 bits */
134 		flags |= IORESOURCE_MEM;
135 		break;
136 
137 	case 0x03: /* 64 bits */
138 		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
139 		break;
140 	}
141 	if (w & 0x40000000)
142 		flags |= IORESOURCE_PREFETCH;
143 	return flags;
144 }
145 
146 /*
147  * PCI bus specific translator
148  */
149 
150 static bool of_node_is_pcie(const struct device_node *np)
151 {
152 	bool is_pcie = of_node_name_eq(np, "pcie");
153 
154 	if (is_pcie)
155 		pr_warn_once("%pOF: Missing device_type\n", np);
156 
157 	return is_pcie;
158 }
159 
160 static int of_bus_pci_match(struct device_node *np)
161 {
162 	/*
163  	 * "pciex" is PCI Express
164 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
165 	 * "ht" is hypertransport
166 	 *
167 	 * If none of the device_type match, and that the node name is
168 	 * "pcie", accept the device as PCI (with a warning).
169 	 */
170 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
171 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
172 		of_node_is_pcie(np);
173 }
174 
175 static void of_bus_pci_count_cells(struct device_node *np,
176 				   int *addrc, int *sizec)
177 {
178 	if (addrc)
179 		*addrc = 3;
180 	if (sizec)
181 		*sizec = 2;
182 }
183 
184 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
185 		int pna, int fna)
186 {
187 	unsigned int af, rf;
188 
189 	af = of_bus_pci_get_flags(addr);
190 	rf = of_bus_pci_get_flags(range);
191 
192 	/* Check address type match */
193 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
194 		return OF_BAD_ADDR;
195 
196 	return of_bus_default_map(addr, range, na, ns, pna, fna);
197 }
198 
199 #endif /* CONFIG_PCI */
200 
201 static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
202 {
203 	u64 end = start;
204 
205 	if (overflows_type(start, r->start))
206 		return -EOVERFLOW;
207 	if (size && check_add_overflow(end, size - 1, &end))
208 		return -EOVERFLOW;
209 	if (overflows_type(end, r->end))
210 		return -EOVERFLOW;
211 
212 	r->start = start;
213 	r->end = end;
214 
215 	return 0;
216 }
217 
218 /*
219  * of_pci_range_to_resource - Create a resource from an of_pci_range
220  * @range:	the PCI range that describes the resource
221  * @np:		device node where the range belongs to
222  * @res:	pointer to a valid resource that will be updated to
223  *              reflect the values contained in the range.
224  *
225  * Returns -EINVAL if the range cannot be converted to resource.
226  *
227  * Note that if the range is an IO range, the resource will be converted
228  * using pci_address_to_pio() which can fail if it is called too early or
229  * if the range cannot be matched to any host bridge IO space (our case here).
230  * To guard against that we try to register the IO range first.
231  * If that fails we know that pci_address_to_pio() will do too.
232  */
233 int of_pci_range_to_resource(const struct of_pci_range *range,
234 			     const struct device_node *np, struct resource *res)
235 {
236 	u64 start;
237 	int err;
238 	res->flags = range->flags;
239 	res->parent = res->child = res->sibling = NULL;
240 	res->name = np->full_name;
241 
242 	if (res->flags & IORESOURCE_IO) {
243 		unsigned long port;
244 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
245 				range->size);
246 		if (err)
247 			goto invalid_range;
248 		port = pci_address_to_pio(range->cpu_addr);
249 		if (port == (unsigned long)-1) {
250 			err = -EINVAL;
251 			goto invalid_range;
252 		}
253 		start = port;
254 	} else {
255 		start = range->cpu_addr;
256 	}
257 	return __of_address_resource_bounds(res, start, range->size);
258 
259 invalid_range:
260 	res->start = (resource_size_t)OF_BAD_ADDR;
261 	res->end = (resource_size_t)OF_BAD_ADDR;
262 	return err;
263 }
264 EXPORT_SYMBOL(of_pci_range_to_resource);
265 
266 /*
267  * of_range_to_resource - Create a resource from a ranges entry
268  * @np:		device node where the range belongs to
269  * @index:	the 'ranges' index to convert to a resource
270  * @res:	pointer to a valid resource that will be updated to
271  *              reflect the values contained in the range.
272  *
273  * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
274  * cannot be converted to resource.
275  */
276 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
277 {
278 	int ret, i = 0;
279 	struct of_range_parser parser;
280 	struct of_range range;
281 
282 	ret = of_range_parser_init(&parser, np);
283 	if (ret)
284 		return ret;
285 
286 	for_each_of_range(&parser, &range)
287 		if (i++ == index)
288 			return of_pci_range_to_resource(&range, np, res);
289 
290 	return -ENOENT;
291 }
292 EXPORT_SYMBOL(of_range_to_resource);
293 
294 /*
295  * ISA bus specific translator
296  */
297 
298 static int of_bus_isa_match(struct device_node *np)
299 {
300 	return of_node_name_eq(np, "isa");
301 }
302 
303 static void of_bus_isa_count_cells(struct device_node *child,
304 				   int *addrc, int *sizec)
305 {
306 	if (addrc)
307 		*addrc = 2;
308 	if (sizec)
309 		*sizec = 1;
310 }
311 
312 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
313 		int pna, int fna)
314 {
315 	/* Check address type match */
316 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
317 		return OF_BAD_ADDR;
318 
319 	return of_bus_default_map(addr, range, na, ns, pna, fna);
320 }
321 
322 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
323 {
324 	unsigned int flags = 0;
325 	u32 w = be32_to_cpup(addr);
326 
327 	if (w & 1)
328 		flags |= IORESOURCE_IO;
329 	else
330 		flags |= IORESOURCE_MEM;
331 	return flags;
332 }
333 
334 static int of_bus_default_flags_match(struct device_node *np)
335 {
336 	/*
337 	 * Check for presence first since of_bus_n_addr_cells() will warn when
338 	 * walking parent nodes.
339 	 */
340 	return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
341 }
342 
343 /*
344  * Array of bus specific translators
345  */
346 
347 static const struct of_bus of_busses[] = {
348 #ifdef CONFIG_PCI
349 	/* PCI */
350 	{
351 		.name = "pci",
352 		.addresses = "assigned-addresses",
353 		.match = of_bus_pci_match,
354 		.count_cells = of_bus_pci_count_cells,
355 		.map = of_bus_pci_map,
356 		.translate = of_bus_default_flags_translate,
357 		.flag_cells = 1,
358 		.get_flags = of_bus_pci_get_flags,
359 	},
360 #endif /* CONFIG_PCI */
361 	/* ISA */
362 	{
363 		.name = "isa",
364 		.addresses = "reg",
365 		.match = of_bus_isa_match,
366 		.count_cells = of_bus_isa_count_cells,
367 		.map = of_bus_isa_map,
368 		.translate = of_bus_default_flags_translate,
369 		.flag_cells = 1,
370 		.get_flags = of_bus_isa_get_flags,
371 	},
372 	/* Default with flags cell */
373 	{
374 		.name = "default-flags",
375 		.addresses = "reg",
376 		.match = of_bus_default_flags_match,
377 		.count_cells = of_bus_default_count_cells,
378 		.map = of_bus_default_flags_map,
379 		.translate = of_bus_default_flags_translate,
380 		.flag_cells = 1,
381 		.get_flags = of_bus_default_flags_get_flags,
382 	},
383 	/* Default */
384 	{
385 		.name = "default",
386 		.addresses = "reg",
387 		.match = NULL,
388 		.count_cells = of_bus_default_count_cells,
389 		.map = of_bus_default_map,
390 		.translate = of_bus_default_translate,
391 		.get_flags = of_bus_default_get_flags,
392 	},
393 };
394 
395 static const struct of_bus *of_match_bus(struct device_node *np)
396 {
397 	int i;
398 
399 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
400 		if (!of_busses[i].match || of_busses[i].match(np))
401 			return &of_busses[i];
402 	BUG();
403 	return NULL;
404 }
405 
406 static int of_empty_ranges_quirk(const struct device_node *np)
407 {
408 	if (IS_ENABLED(CONFIG_PPC)) {
409 		/* To save cycles, we cache the result for global "Mac" setting */
410 		static int quirk_state = -1;
411 
412 		/* PA-SEMI sdc DT bug */
413 		if (of_device_is_compatible(np, "1682m-sdc"))
414 			return true;
415 
416 		/* Make quirk cached */
417 		if (quirk_state < 0)
418 			quirk_state =
419 				of_machine_is_compatible("Power Macintosh") ||
420 				of_machine_is_compatible("MacRISC");
421 		return quirk_state;
422 	}
423 	return false;
424 }
425 
426 static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
427 			    const struct of_bus *pbus, __be32 *addr,
428 			    int na, int ns, int pna, const char *rprop)
429 {
430 	const __be32 *ranges;
431 	unsigned int rlen;
432 	int rone;
433 	u64 offset = OF_BAD_ADDR;
434 
435 	/*
436 	 * Normally, an absence of a "ranges" property means we are
437 	 * crossing a non-translatable boundary, and thus the addresses
438 	 * below the current cannot be converted to CPU physical ones.
439 	 * Unfortunately, while this is very clear in the spec, it's not
440 	 * what Apple understood, and they do have things like /uni-n or
441 	 * /ht nodes with no "ranges" property and a lot of perfectly
442 	 * useable mapped devices below them. Thus we treat the absence of
443 	 * "ranges" as equivalent to an empty "ranges" property which means
444 	 * a 1:1 translation at that level. It's up to the caller not to try
445 	 * to translate addresses that aren't supposed to be translated in
446 	 * the first place. --BenH.
447 	 *
448 	 * As far as we know, this damage only exists on Apple machines, so
449 	 * This code is only enabled on powerpc. --gcl
450 	 *
451 	 * This quirk also applies for 'dma-ranges' which frequently exist in
452 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
453 	 */
454 	ranges = of_get_property(parent, rprop, &rlen);
455 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
456 	    strcmp(rprop, "dma-ranges")) {
457 		pr_debug("no ranges; cannot translate\n");
458 		return 1;
459 	}
460 	if (ranges == NULL || rlen == 0) {
461 		offset = of_read_number(addr, na);
462 		/* set address to zero, pass flags through */
463 		memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
464 		pr_debug("empty ranges; 1:1 translation\n");
465 		goto finish;
466 	}
467 
468 	pr_debug("walking ranges...\n");
469 
470 	/* Now walk through the ranges */
471 	rlen /= 4;
472 	rone = na + pna + ns;
473 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
474 		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
475 		if (offset != OF_BAD_ADDR)
476 			break;
477 	}
478 	if (offset == OF_BAD_ADDR) {
479 		pr_debug("not found !\n");
480 		return 1;
481 	}
482 	memcpy(addr, ranges + na, 4 * pna);
483 
484  finish:
485 	of_dump_addr("parent translation for:", addr, pna);
486 	pr_debug("with offset: %llx\n", offset);
487 
488 	/* Translate it into parent bus space */
489 	return pbus->translate(addr, offset, pna);
490 }
491 
492 /*
493  * Translate an address from the device-tree into a CPU physical address,
494  * this walks up the tree and applies the various bus mappings on the
495  * way.
496  *
497  * Note: We consider that crossing any level with #size-cells == 0 to mean
498  * that translation is impossible (that is we are not dealing with a value
499  * that can be mapped to a cpu physical address). This is not really specified
500  * that way, but this is traditionally the way IBM at least do things
501  *
502  * Whenever the translation fails, the *host pointer will be set to the
503  * device that had registered logical PIO mapping, and the return code is
504  * relative to that node.
505  */
506 static u64 __of_translate_address(struct device_node *node,
507 				  struct device_node *(*get_parent)(const struct device_node *),
508 				  const __be32 *in_addr, const char *rprop,
509 				  struct device_node **host)
510 {
511 	struct device_node *dev __free(device_node) = of_node_get(node);
512 	struct device_node *parent __free(device_node) = get_parent(dev);
513 	const struct of_bus *bus, *pbus;
514 	__be32 addr[OF_MAX_ADDR_CELLS];
515 	int na, ns, pna, pns;
516 
517 	pr_debug("** translation for device %pOF **\n", dev);
518 
519 	*host = NULL;
520 
521 	if (parent == NULL)
522 		return OF_BAD_ADDR;
523 	bus = of_match_bus(parent);
524 
525 	/* Count address cells & copy address locally */
526 	bus->count_cells(dev, &na, &ns);
527 	if (!OF_CHECK_COUNTS(na, ns)) {
528 		pr_debug("Bad cell count for %pOF\n", dev);
529 		return OF_BAD_ADDR;
530 	}
531 	memcpy(addr, in_addr, na * 4);
532 
533 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
534 	    bus->name, na, ns, parent);
535 	of_dump_addr("translating address:", addr, na);
536 
537 	/* Translate */
538 	for (;;) {
539 		struct logic_pio_hwaddr *iorange;
540 
541 		/* Switch to parent bus */
542 		of_node_put(dev);
543 		dev = parent;
544 		parent = get_parent(dev);
545 
546 		/* If root, we have finished */
547 		if (parent == NULL) {
548 			pr_debug("reached root node\n");
549 			return of_read_number(addr, na);
550 		}
551 
552 		/*
553 		 * For indirectIO device which has no ranges property, get
554 		 * the address from reg directly.
555 		 */
556 		iorange = find_io_range_by_fwnode(&dev->fwnode);
557 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
558 			u64 result = of_read_number(addr + 1, na - 1);
559 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
560 				 dev, result);
561 			*host = no_free_ptr(dev);
562 			return result;
563 		}
564 
565 		/* Get new parent bus and counts */
566 		pbus = of_match_bus(parent);
567 		pbus->count_cells(dev, &pna, &pns);
568 		if (!OF_CHECK_COUNTS(pna, pns)) {
569 			pr_err("Bad cell count for %pOF\n", dev);
570 			return OF_BAD_ADDR;
571 		}
572 
573 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
574 		    pbus->name, pna, pns, parent);
575 
576 		/* Apply bus translation */
577 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
578 			return OF_BAD_ADDR;
579 
580 		/* Complete the move up one level */
581 		na = pna;
582 		ns = pns;
583 		bus = pbus;
584 
585 		of_dump_addr("one level translation:", addr, na);
586 	}
587 
588 	unreachable();
589 }
590 
591 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
592 {
593 	struct device_node *host;
594 	u64 ret;
595 
596 	ret = __of_translate_address(dev, of_get_parent,
597 				     in_addr, "ranges", &host);
598 	if (host) {
599 		of_node_put(host);
600 		return OF_BAD_ADDR;
601 	}
602 
603 	return ret;
604 }
605 EXPORT_SYMBOL(of_translate_address);
606 
607 #ifdef CONFIG_HAS_DMA
608 struct device_node *__of_get_dma_parent(const struct device_node *np)
609 {
610 	struct of_phandle_args args;
611 	int ret, index;
612 
613 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
614 	if (index < 0)
615 		return of_get_parent(np);
616 
617 	ret = of_parse_phandle_with_args(np, "interconnects",
618 					 "#interconnect-cells",
619 					 index, &args);
620 	if (ret < 0)
621 		return of_get_parent(np);
622 
623 	return args.np;
624 }
625 #endif
626 
627 static struct device_node *of_get_next_dma_parent(struct device_node *np)
628 {
629 	struct device_node *parent;
630 
631 	parent = __of_get_dma_parent(np);
632 	of_node_put(np);
633 
634 	return parent;
635 }
636 
637 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
638 {
639 	struct device_node *host;
640 	u64 ret;
641 
642 	ret = __of_translate_address(dev, __of_get_dma_parent,
643 				     in_addr, "dma-ranges", &host);
644 
645 	if (host) {
646 		of_node_put(host);
647 		return OF_BAD_ADDR;
648 	}
649 
650 	return ret;
651 }
652 EXPORT_SYMBOL(of_translate_dma_address);
653 
654 /**
655  * of_translate_dma_region - Translate device tree address and size tuple
656  * @dev: device tree node for which to translate
657  * @prop: pointer into array of cells
658  * @start: return value for the start of the DMA range
659  * @length: return value for the length of the DMA range
660  *
661  * Returns a pointer to the cell immediately following the translated DMA region.
662  */
663 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
664 				      phys_addr_t *start, size_t *length)
665 {
666 	struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
667 	u64 address, size;
668 	int na, ns;
669 
670 	if (!parent)
671 		return NULL;
672 
673 	na = of_bus_n_addr_cells(parent);
674 	ns = of_bus_n_size_cells(parent);
675 
676 	address = of_translate_dma_address(dev, prop);
677 	if (address == OF_BAD_ADDR)
678 		return NULL;
679 
680 	size = of_read_number(prop + na, ns);
681 
682 	if (start)
683 		*start = address;
684 
685 	if (length)
686 		*length = size;
687 
688 	return prop + na + ns;
689 }
690 EXPORT_SYMBOL(of_translate_dma_region);
691 
692 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
693 			       u64 *size, unsigned int *flags)
694 {
695 	const __be32 *prop;
696 	unsigned int psize;
697 	struct device_node *parent __free(device_node) = of_get_parent(dev);
698 	const struct of_bus *bus;
699 	int onesize, i, na, ns;
700 
701 	if (parent == NULL)
702 		return NULL;
703 
704 	/* match the parent's bus type */
705 	bus = of_match_bus(parent);
706 	if (strcmp(bus->name, "pci") && (bar_no >= 0))
707 		return NULL;
708 
709 	/* Get "reg" or "assigned-addresses" property */
710 	prop = of_get_property(dev, bus->addresses, &psize);
711 	if (prop == NULL)
712 		return NULL;
713 	psize /= 4;
714 
715 	bus->count_cells(dev, &na, &ns);
716 	if (!OF_CHECK_ADDR_COUNT(na))
717 		return NULL;
718 
719 	onesize = na + ns;
720 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
721 		u32 val = be32_to_cpu(prop[0]);
722 		/* PCI bus matches on BAR number instead of index */
723 		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
724 		    ((index >= 0) && (i == index))) {
725 			if (size)
726 				*size = of_read_number(prop + na, ns);
727 			if (flags)
728 				*flags = bus->get_flags(prop);
729 			return prop;
730 		}
731 	}
732 	return NULL;
733 }
734 EXPORT_SYMBOL(__of_get_address);
735 
736 /**
737  * of_property_read_reg - Retrieve the specified "reg" entry index without translating
738  * @np: device tree node for which to retrieve "reg" from
739  * @idx: "reg" entry index to read
740  * @addr: return value for the untranslated address
741  * @size: return value for the entry size
742  *
743  * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
744  * size values filled in.
745  */
746 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
747 {
748 	const __be32 *prop = of_get_address(np, idx, size, NULL);
749 
750 	if (!prop)
751 		return -EINVAL;
752 
753 	*addr = of_read_number(prop, of_n_addr_cells(np));
754 
755 	return 0;
756 }
757 EXPORT_SYMBOL(of_property_read_reg);
758 
759 static int parser_init(struct of_pci_range_parser *parser,
760 			struct device_node *node, const char *name)
761 {
762 	int rlen;
763 
764 	parser->node = node;
765 	parser->pna = of_n_addr_cells(node);
766 	parser->na = of_bus_n_addr_cells(node);
767 	parser->ns = of_bus_n_size_cells(node);
768 	parser->dma = !strcmp(name, "dma-ranges");
769 	parser->bus = of_match_bus(node);
770 
771 	parser->range = of_get_property(node, name, &rlen);
772 	if (parser->range == NULL)
773 		return -ENOENT;
774 
775 	parser->end = parser->range + rlen / sizeof(__be32);
776 
777 	return 0;
778 }
779 
780 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
781 				struct device_node *node)
782 {
783 	return parser_init(parser, node, "ranges");
784 }
785 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
786 
787 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
788 				struct device_node *node)
789 {
790 	return parser_init(parser, node, "dma-ranges");
791 }
792 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
793 #define of_dma_range_parser_init of_pci_dma_range_parser_init
794 
795 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
796 						struct of_pci_range *range)
797 {
798 	int na = parser->na;
799 	int ns = parser->ns;
800 	int np = parser->pna + na + ns;
801 	int busflag_na = parser->bus->flag_cells;
802 
803 	if (!range)
804 		return NULL;
805 
806 	if (!parser->range || parser->range + np > parser->end)
807 		return NULL;
808 
809 	range->flags = parser->bus->get_flags(parser->range);
810 
811 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
812 
813 	if (parser->dma)
814 		range->cpu_addr = of_translate_dma_address(parser->node,
815 				parser->range + na);
816 	else
817 		range->cpu_addr = of_translate_address(parser->node,
818 				parser->range + na);
819 	range->size = of_read_number(parser->range + parser->pna + na, ns);
820 
821 	parser->range += np;
822 
823 	/* Now consume following elements while they are contiguous */
824 	while (parser->range + np <= parser->end) {
825 		u32 flags = 0;
826 		u64 bus_addr, cpu_addr, size;
827 
828 		flags = parser->bus->get_flags(parser->range);
829 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
830 		if (parser->dma)
831 			cpu_addr = of_translate_dma_address(parser->node,
832 					parser->range + na);
833 		else
834 			cpu_addr = of_translate_address(parser->node,
835 					parser->range + na);
836 		size = of_read_number(parser->range + parser->pna + na, ns);
837 
838 		if (flags != range->flags)
839 			break;
840 		if (bus_addr != range->bus_addr + range->size ||
841 		    cpu_addr != range->cpu_addr + range->size)
842 			break;
843 
844 		range->size += size;
845 		parser->range += np;
846 	}
847 
848 	return range;
849 }
850 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
851 
852 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
853 			u64 size)
854 {
855 	u64 taddr;
856 	unsigned long port;
857 	struct device_node *host;
858 
859 	taddr = __of_translate_address(dev, of_get_parent,
860 				       in_addr, "ranges", &host);
861 	if (host) {
862 		/* host-specific port access */
863 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
864 		of_node_put(host);
865 	} else {
866 		/* memory-mapped I/O range */
867 		port = pci_address_to_pio(taddr);
868 	}
869 
870 	if (port == (unsigned long)-1)
871 		return OF_BAD_ADDR;
872 
873 	return port;
874 }
875 
876 #ifdef CONFIG_HAS_DMA
877 /**
878  * of_dma_get_range - Get DMA range info and put it into a map array
879  * @np:		device node to get DMA range info
880  * @map:	dma range structure to return
881  *
882  * Look in bottom up direction for the first "dma-ranges" property
883  * and parse it.  Put the information into a DMA offset map array.
884  *
885  * dma-ranges format:
886  *	DMA addr (dma_addr)	: naddr cells
887  *	CPU addr (phys_addr_t)	: pna cells
888  *	size			: nsize cells
889  *
890  * It returns -ENODEV if "dma-ranges" property was not found for this
891  * device in the DT.
892  */
893 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
894 {
895 	struct device_node *node __free(device_node) = of_node_get(np);
896 	const __be32 *ranges = NULL;
897 	bool found_dma_ranges = false;
898 	struct of_range_parser parser;
899 	struct of_range range;
900 	struct bus_dma_region *r;
901 	int len, num_ranges = 0;
902 
903 	while (node) {
904 		ranges = of_get_property(node, "dma-ranges", &len);
905 
906 		/* Ignore empty ranges, they imply no translation required */
907 		if (ranges && len > 0)
908 			break;
909 
910 		/* Once we find 'dma-ranges', then a missing one is an error */
911 		if (found_dma_ranges && !ranges)
912 			return -ENODEV;
913 
914 		found_dma_ranges = true;
915 
916 		node = of_get_next_dma_parent(node);
917 	}
918 
919 	if (!node || !ranges) {
920 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
921 		return -ENODEV;
922 	}
923 	of_dma_range_parser_init(&parser, node);
924 	for_each_of_range(&parser, &range) {
925 		if (range.cpu_addr == OF_BAD_ADDR) {
926 			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
927 			       range.bus_addr, node);
928 			continue;
929 		}
930 		num_ranges++;
931 	}
932 
933 	if (!num_ranges)
934 		return -EINVAL;
935 
936 	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
937 	if (!r)
938 		return -ENOMEM;
939 
940 	/*
941 	 * Record all info in the generic DMA ranges array for struct device,
942 	 * returning an error if we don't find any parsable ranges.
943 	 */
944 	*map = r;
945 	of_dma_range_parser_init(&parser, node);
946 	for_each_of_range(&parser, &range) {
947 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
948 			 range.bus_addr, range.cpu_addr, range.size);
949 		if (range.cpu_addr == OF_BAD_ADDR)
950 			continue;
951 		r->cpu_start = range.cpu_addr;
952 		r->dma_start = range.bus_addr;
953 		r->size = range.size;
954 		r++;
955 	}
956 	return 0;
957 }
958 #endif /* CONFIG_HAS_DMA */
959 
960 /**
961  * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
962  * @np: The node to start searching from or NULL to start from the root
963  *
964  * Gets the highest CPU physical address that is addressable by all DMA masters
965  * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
966  * DMA constrained device is found, it returns PHYS_ADDR_MAX.
967  */
968 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
969 {
970 	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
971 	struct of_range_parser parser;
972 	phys_addr_t subtree_max_addr;
973 	struct device_node *child;
974 	struct of_range range;
975 	const __be32 *ranges;
976 	u64 cpu_end = 0;
977 	int len;
978 
979 	if (!np)
980 		np = of_root;
981 
982 	ranges = of_get_property(np, "dma-ranges", &len);
983 	if (ranges && len) {
984 		of_dma_range_parser_init(&parser, np);
985 		for_each_of_range(&parser, &range)
986 			if (range.cpu_addr + range.size > cpu_end)
987 				cpu_end = range.cpu_addr + range.size - 1;
988 
989 		if (max_cpu_addr > cpu_end)
990 			max_cpu_addr = cpu_end;
991 	}
992 
993 	for_each_available_child_of_node(np, child) {
994 		subtree_max_addr = of_dma_get_max_cpu_address(child);
995 		if (max_cpu_addr > subtree_max_addr)
996 			max_cpu_addr = subtree_max_addr;
997 	}
998 
999 	return max_cpu_addr;
1000 }
1001 
1002 /**
1003  * of_dma_is_coherent - Check if device is coherent
1004  * @np:	device node
1005  *
1006  * It returns true if "dma-coherent" property was found
1007  * for this device in the DT, or if DMA is coherent by
1008  * default for OF devices on the current platform and no
1009  * "dma-noncoherent" property was found for this device.
1010  */
1011 bool of_dma_is_coherent(struct device_node *np)
1012 {
1013 	struct device_node *node __free(device_node) = of_node_get(np);
1014 
1015 	while (node) {
1016 		if (of_property_read_bool(node, "dma-coherent"))
1017 			return true;
1018 
1019 		if (of_property_read_bool(node, "dma-noncoherent"))
1020 			return false;
1021 
1022 		node = of_get_next_dma_parent(node);
1023 	}
1024 	return dma_default_coherent;
1025 }
1026 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1027 
1028 /**
1029  * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1030  * @np:	device node
1031  *
1032  * Returns true if the "nonposted-mmio" property was found for
1033  * the device's bus.
1034  *
1035  * This is currently only enabled on builds that support Apple ARM devices, as
1036  * an optimization.
1037  */
1038 static bool of_mmio_is_nonposted(const struct device_node *np)
1039 {
1040 	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1041 		return false;
1042 
1043 	struct device_node *parent __free(device_node) = of_get_parent(np);
1044 	if (!parent)
1045 		return false;
1046 
1047 	return of_property_read_bool(parent, "nonposted-mmio");
1048 }
1049 
1050 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1051 		struct resource *r)
1052 {
1053 	u64 taddr;
1054 	const __be32	*addrp;
1055 	u64		size;
1056 	unsigned int	flags;
1057 	const char	*name = NULL;
1058 
1059 	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1060 	if (addrp == NULL)
1061 		return -EINVAL;
1062 
1063 	/* Get optional "reg-names" property to add a name to a resource */
1064 	if (index >= 0)
1065 		of_property_read_string_index(dev, "reg-names",	index, &name);
1066 
1067 	if (flags & IORESOURCE_MEM)
1068 		taddr = of_translate_address(dev, addrp);
1069 	else if (flags & IORESOURCE_IO)
1070 		taddr = of_translate_ioport(dev, addrp, size);
1071 	else
1072 		return -EINVAL;
1073 
1074 	if (taddr == OF_BAD_ADDR)
1075 		return -EINVAL;
1076 	memset(r, 0, sizeof(struct resource));
1077 
1078 	if (of_mmio_is_nonposted(dev))
1079 		flags |= IORESOURCE_MEM_NONPOSTED;
1080 
1081 	r->flags = flags;
1082 	r->name = name ? name : dev->full_name;
1083 
1084 	return __of_address_resource_bounds(r, taddr, size);
1085 }
1086 
1087 /**
1088  * of_address_to_resource - Translate device tree address and return as resource
1089  * @dev:	Caller's Device Node
1090  * @index:	Index into the array
1091  * @r:		Pointer to resource array
1092  *
1093  * Returns -EINVAL if the range cannot be converted to resource.
1094  *
1095  * Note that if your address is a PIO address, the conversion will fail if
1096  * the physical address can't be internally converted to an IO token with
1097  * pci_address_to_pio(), that is because it's either called too early or it
1098  * can't be matched to any host bridge IO space
1099  */
1100 int of_address_to_resource(struct device_node *dev, int index,
1101 			   struct resource *r)
1102 {
1103 	return __of_address_to_resource(dev, index, -1, r);
1104 }
1105 EXPORT_SYMBOL_GPL(of_address_to_resource);
1106 
1107 int of_pci_address_to_resource(struct device_node *dev, int bar,
1108 			       struct resource *r)
1109 {
1110 
1111 	if (!IS_ENABLED(CONFIG_PCI))
1112 		return -ENOSYS;
1113 
1114 	return __of_address_to_resource(dev, -1, bar, r);
1115 }
1116 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1117 
1118 /**
1119  * of_iomap - Maps the memory mapped IO for a given device_node
1120  * @np:		the device whose io range will be mapped
1121  * @index:	index of the io range
1122  *
1123  * Returns a pointer to the mapped memory
1124  */
1125 void __iomem *of_iomap(struct device_node *np, int index)
1126 {
1127 	struct resource res;
1128 
1129 	if (of_address_to_resource(np, index, &res))
1130 		return NULL;
1131 
1132 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1133 		return ioremap_np(res.start, resource_size(&res));
1134 	else
1135 		return ioremap(res.start, resource_size(&res));
1136 }
1137 EXPORT_SYMBOL(of_iomap);
1138 
1139 /*
1140  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1141  *			   for a given device_node
1142  * @device:	the device whose io range will be mapped
1143  * @index:	index of the io range
1144  * @name:	name "override" for the memory region request or NULL
1145  *
1146  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1147  * error code on failure. Usage example:
1148  *
1149  *	base = of_io_request_and_map(node, 0, "foo");
1150  *	if (IS_ERR(base))
1151  *		return PTR_ERR(base);
1152  */
1153 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1154 				    const char *name)
1155 {
1156 	struct resource res;
1157 	void __iomem *mem;
1158 
1159 	if (of_address_to_resource(np, index, &res))
1160 		return IOMEM_ERR_PTR(-EINVAL);
1161 
1162 	if (!name)
1163 		name = res.name;
1164 	if (!request_mem_region(res.start, resource_size(&res), name))
1165 		return IOMEM_ERR_PTR(-EBUSY);
1166 
1167 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1168 		mem = ioremap_np(res.start, resource_size(&res));
1169 	else
1170 		mem = ioremap(res.start, resource_size(&res));
1171 
1172 	if (!mem) {
1173 		release_mem_region(res.start, resource_size(&res));
1174 		return IOMEM_ERR_PTR(-ENOMEM);
1175 	}
1176 
1177 	return mem;
1178 }
1179 EXPORT_SYMBOL(of_io_request_and_map);
1180