1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/dma-direct.h> /* for bus_dma_region */ 17 18 #include "of_private.h" 19 20 /* Max address size we deal with */ 21 #define OF_MAX_ADDR_CELLS 4 22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 24 25 static struct of_bus *of_match_bus(struct device_node *np); 26 static int __of_address_to_resource(struct device_node *dev, 27 const __be32 *addrp, u64 size, unsigned int flags, 28 const char *name, struct resource *r); 29 static bool of_mmio_is_nonposted(struct device_node *np); 30 31 /* Debug utility */ 32 #ifdef DEBUG 33 static void of_dump_addr(const char *s, const __be32 *addr, int na) 34 { 35 pr_debug("%s", s); 36 while (na--) 37 pr_cont(" %08x", be32_to_cpu(*(addr++))); 38 pr_cont("\n"); 39 } 40 #else 41 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 42 #endif 43 44 /* Callbacks for bus specific translators */ 45 struct of_bus { 46 const char *name; 47 const char *addresses; 48 int (*match)(struct device_node *parent); 49 void (*count_cells)(struct device_node *child, 50 int *addrc, int *sizec); 51 u64 (*map)(__be32 *addr, const __be32 *range, 52 int na, int ns, int pna); 53 int (*translate)(__be32 *addr, u64 offset, int na); 54 bool has_flags; 55 unsigned int (*get_flags)(const __be32 *addr); 56 }; 57 58 /* 59 * Default translator (generic bus) 60 */ 61 62 static void of_bus_default_count_cells(struct device_node *dev, 63 int *addrc, int *sizec) 64 { 65 if (addrc) 66 *addrc = of_n_addr_cells(dev); 67 if (sizec) 68 *sizec = of_n_size_cells(dev); 69 } 70 71 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 72 int na, int ns, int pna) 73 { 74 u64 cp, s, da; 75 76 cp = of_read_number(range, na); 77 s = of_read_number(range + na + pna, ns); 78 da = of_read_number(addr, na); 79 80 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", 81 (unsigned long long)cp, (unsigned long long)s, 82 (unsigned long long)da); 83 84 if (da < cp || da >= (cp + s)) 85 return OF_BAD_ADDR; 86 return da - cp; 87 } 88 89 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 90 { 91 u64 a = of_read_number(addr, na); 92 memset(addr, 0, na * 4); 93 a += offset; 94 if (na > 1) 95 addr[na - 2] = cpu_to_be32(a >> 32); 96 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 97 98 return 0; 99 } 100 101 static unsigned int of_bus_default_get_flags(const __be32 *addr) 102 { 103 return IORESOURCE_MEM; 104 } 105 106 #ifdef CONFIG_PCI 107 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 108 { 109 unsigned int flags = 0; 110 u32 w = be32_to_cpup(addr); 111 112 if (!IS_ENABLED(CONFIG_PCI)) 113 return 0; 114 115 switch((w >> 24) & 0x03) { 116 case 0x01: 117 flags |= IORESOURCE_IO; 118 break; 119 case 0x02: /* 32 bits */ 120 flags |= IORESOURCE_MEM; 121 break; 122 123 case 0x03: /* 64 bits */ 124 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 125 break; 126 } 127 if (w & 0x40000000) 128 flags |= IORESOURCE_PREFETCH; 129 return flags; 130 } 131 132 /* 133 * PCI bus specific translator 134 */ 135 136 static bool of_node_is_pcie(struct device_node *np) 137 { 138 bool is_pcie = of_node_name_eq(np, "pcie"); 139 140 if (is_pcie) 141 pr_warn_once("%pOF: Missing device_type\n", np); 142 143 return is_pcie; 144 } 145 146 static int of_bus_pci_match(struct device_node *np) 147 { 148 /* 149 * "pciex" is PCI Express 150 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 151 * "ht" is hypertransport 152 * 153 * If none of the device_type match, and that the node name is 154 * "pcie", accept the device as PCI (with a warning). 155 */ 156 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 157 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 158 of_node_is_pcie(np); 159 } 160 161 static void of_bus_pci_count_cells(struct device_node *np, 162 int *addrc, int *sizec) 163 { 164 if (addrc) 165 *addrc = 3; 166 if (sizec) 167 *sizec = 2; 168 } 169 170 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 171 int pna) 172 { 173 u64 cp, s, da; 174 unsigned int af, rf; 175 176 af = of_bus_pci_get_flags(addr); 177 rf = of_bus_pci_get_flags(range); 178 179 /* Check address type match */ 180 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 181 return OF_BAD_ADDR; 182 183 /* Read address values, skipping high cell */ 184 cp = of_read_number(range + 1, na - 1); 185 s = of_read_number(range + na + pna, ns); 186 da = of_read_number(addr + 1, na - 1); 187 188 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", 189 (unsigned long long)cp, (unsigned long long)s, 190 (unsigned long long)da); 191 192 if (da < cp || da >= (cp + s)) 193 return OF_BAD_ADDR; 194 return da - cp; 195 } 196 197 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 198 { 199 return of_bus_default_translate(addr + 1, offset, na - 1); 200 } 201 202 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, 203 unsigned int *flags) 204 { 205 const __be32 *prop; 206 unsigned int psize; 207 struct device_node *parent; 208 struct of_bus *bus; 209 int onesize, i, na, ns; 210 211 /* Get parent & match bus type */ 212 parent = of_get_parent(dev); 213 if (parent == NULL) 214 return NULL; 215 bus = of_match_bus(parent); 216 if (strcmp(bus->name, "pci")) { 217 of_node_put(parent); 218 return NULL; 219 } 220 bus->count_cells(dev, &na, &ns); 221 of_node_put(parent); 222 if (!OF_CHECK_ADDR_COUNT(na)) 223 return NULL; 224 225 /* Get "reg" or "assigned-addresses" property */ 226 prop = of_get_property(dev, bus->addresses, &psize); 227 if (prop == NULL) 228 return NULL; 229 psize /= 4; 230 231 onesize = na + ns; 232 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 233 u32 val = be32_to_cpu(prop[0]); 234 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { 235 if (size) 236 *size = of_read_number(prop + na, ns); 237 if (flags) 238 *flags = bus->get_flags(prop); 239 return prop; 240 } 241 } 242 return NULL; 243 } 244 EXPORT_SYMBOL(of_get_pci_address); 245 246 int of_pci_address_to_resource(struct device_node *dev, int bar, 247 struct resource *r) 248 { 249 const __be32 *addrp; 250 u64 size; 251 unsigned int flags; 252 253 addrp = of_get_pci_address(dev, bar, &size, &flags); 254 if (addrp == NULL) 255 return -EINVAL; 256 return __of_address_to_resource(dev, addrp, size, flags, NULL, r); 257 } 258 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 259 260 /* 261 * of_pci_range_to_resource - Create a resource from an of_pci_range 262 * @range: the PCI range that describes the resource 263 * @np: device node where the range belongs to 264 * @res: pointer to a valid resource that will be updated to 265 * reflect the values contained in the range. 266 * 267 * Returns EINVAL if the range cannot be converted to resource. 268 * 269 * Note that if the range is an IO range, the resource will be converted 270 * using pci_address_to_pio() which can fail if it is called too early or 271 * if the range cannot be matched to any host bridge IO space (our case here). 272 * To guard against that we try to register the IO range first. 273 * If that fails we know that pci_address_to_pio() will do too. 274 */ 275 int of_pci_range_to_resource(struct of_pci_range *range, 276 struct device_node *np, struct resource *res) 277 { 278 int err; 279 res->flags = range->flags; 280 res->parent = res->child = res->sibling = NULL; 281 res->name = np->full_name; 282 283 if (res->flags & IORESOURCE_IO) { 284 unsigned long port; 285 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 286 range->size); 287 if (err) 288 goto invalid_range; 289 port = pci_address_to_pio(range->cpu_addr); 290 if (port == (unsigned long)-1) { 291 err = -EINVAL; 292 goto invalid_range; 293 } 294 res->start = port; 295 } else { 296 if ((sizeof(resource_size_t) < 8) && 297 upper_32_bits(range->cpu_addr)) { 298 err = -EINVAL; 299 goto invalid_range; 300 } 301 302 res->start = range->cpu_addr; 303 } 304 res->end = res->start + range->size - 1; 305 return 0; 306 307 invalid_range: 308 res->start = (resource_size_t)OF_BAD_ADDR; 309 res->end = (resource_size_t)OF_BAD_ADDR; 310 return err; 311 } 312 EXPORT_SYMBOL(of_pci_range_to_resource); 313 #endif /* CONFIG_PCI */ 314 315 /* 316 * ISA bus specific translator 317 */ 318 319 static int of_bus_isa_match(struct device_node *np) 320 { 321 return of_node_name_eq(np, "isa"); 322 } 323 324 static void of_bus_isa_count_cells(struct device_node *child, 325 int *addrc, int *sizec) 326 { 327 if (addrc) 328 *addrc = 2; 329 if (sizec) 330 *sizec = 1; 331 } 332 333 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 334 int pna) 335 { 336 u64 cp, s, da; 337 338 /* Check address type match */ 339 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 340 return OF_BAD_ADDR; 341 342 /* Read address values, skipping high cell */ 343 cp = of_read_number(range + 1, na - 1); 344 s = of_read_number(range + na + pna, ns); 345 da = of_read_number(addr + 1, na - 1); 346 347 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", 348 (unsigned long long)cp, (unsigned long long)s, 349 (unsigned long long)da); 350 351 if (da < cp || da >= (cp + s)) 352 return OF_BAD_ADDR; 353 return da - cp; 354 } 355 356 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 357 { 358 return of_bus_default_translate(addr + 1, offset, na - 1); 359 } 360 361 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 362 { 363 unsigned int flags = 0; 364 u32 w = be32_to_cpup(addr); 365 366 if (w & 1) 367 flags |= IORESOURCE_IO; 368 else 369 flags |= IORESOURCE_MEM; 370 return flags; 371 } 372 373 /* 374 * Array of bus specific translators 375 */ 376 377 static struct of_bus of_busses[] = { 378 #ifdef CONFIG_PCI 379 /* PCI */ 380 { 381 .name = "pci", 382 .addresses = "assigned-addresses", 383 .match = of_bus_pci_match, 384 .count_cells = of_bus_pci_count_cells, 385 .map = of_bus_pci_map, 386 .translate = of_bus_pci_translate, 387 .has_flags = true, 388 .get_flags = of_bus_pci_get_flags, 389 }, 390 #endif /* CONFIG_PCI */ 391 /* ISA */ 392 { 393 .name = "isa", 394 .addresses = "reg", 395 .match = of_bus_isa_match, 396 .count_cells = of_bus_isa_count_cells, 397 .map = of_bus_isa_map, 398 .translate = of_bus_isa_translate, 399 .has_flags = true, 400 .get_flags = of_bus_isa_get_flags, 401 }, 402 /* Default */ 403 { 404 .name = "default", 405 .addresses = "reg", 406 .match = NULL, 407 .count_cells = of_bus_default_count_cells, 408 .map = of_bus_default_map, 409 .translate = of_bus_default_translate, 410 .get_flags = of_bus_default_get_flags, 411 }, 412 }; 413 414 static struct of_bus *of_match_bus(struct device_node *np) 415 { 416 int i; 417 418 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 419 if (!of_busses[i].match || of_busses[i].match(np)) 420 return &of_busses[i]; 421 BUG(); 422 return NULL; 423 } 424 425 static int of_empty_ranges_quirk(struct device_node *np) 426 { 427 if (IS_ENABLED(CONFIG_PPC)) { 428 /* To save cycles, we cache the result for global "Mac" setting */ 429 static int quirk_state = -1; 430 431 /* PA-SEMI sdc DT bug */ 432 if (of_device_is_compatible(np, "1682m-sdc")) 433 return true; 434 435 /* Make quirk cached */ 436 if (quirk_state < 0) 437 quirk_state = 438 of_machine_is_compatible("Power Macintosh") || 439 of_machine_is_compatible("MacRISC"); 440 return quirk_state; 441 } 442 return false; 443 } 444 445 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 446 struct of_bus *pbus, __be32 *addr, 447 int na, int ns, int pna, const char *rprop) 448 { 449 const __be32 *ranges; 450 unsigned int rlen; 451 int rone; 452 u64 offset = OF_BAD_ADDR; 453 454 /* 455 * Normally, an absence of a "ranges" property means we are 456 * crossing a non-translatable boundary, and thus the addresses 457 * below the current cannot be converted to CPU physical ones. 458 * Unfortunately, while this is very clear in the spec, it's not 459 * what Apple understood, and they do have things like /uni-n or 460 * /ht nodes with no "ranges" property and a lot of perfectly 461 * useable mapped devices below them. Thus we treat the absence of 462 * "ranges" as equivalent to an empty "ranges" property which means 463 * a 1:1 translation at that level. It's up to the caller not to try 464 * to translate addresses that aren't supposed to be translated in 465 * the first place. --BenH. 466 * 467 * As far as we know, this damage only exists on Apple machines, so 468 * This code is only enabled on powerpc. --gcl 469 * 470 * This quirk also applies for 'dma-ranges' which frequently exist in 471 * child nodes without 'dma-ranges' in the parent nodes. --RobH 472 */ 473 ranges = of_get_property(parent, rprop, &rlen); 474 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 475 strcmp(rprop, "dma-ranges")) { 476 pr_debug("no ranges; cannot translate\n"); 477 return 1; 478 } 479 if (ranges == NULL || rlen == 0) { 480 offset = of_read_number(addr, na); 481 memset(addr, 0, pna * 4); 482 pr_debug("empty ranges; 1:1 translation\n"); 483 goto finish; 484 } 485 486 pr_debug("walking ranges...\n"); 487 488 /* Now walk through the ranges */ 489 rlen /= 4; 490 rone = na + pna + ns; 491 for (; rlen >= rone; rlen -= rone, ranges += rone) { 492 offset = bus->map(addr, ranges, na, ns, pna); 493 if (offset != OF_BAD_ADDR) 494 break; 495 } 496 if (offset == OF_BAD_ADDR) { 497 pr_debug("not found !\n"); 498 return 1; 499 } 500 memcpy(addr, ranges + na, 4 * pna); 501 502 finish: 503 of_dump_addr("parent translation for:", addr, pna); 504 pr_debug("with offset: %llx\n", (unsigned long long)offset); 505 506 /* Translate it into parent bus space */ 507 return pbus->translate(addr, offset, pna); 508 } 509 510 /* 511 * Translate an address from the device-tree into a CPU physical address, 512 * this walks up the tree and applies the various bus mappings on the 513 * way. 514 * 515 * Note: We consider that crossing any level with #size-cells == 0 to mean 516 * that translation is impossible (that is we are not dealing with a value 517 * that can be mapped to a cpu physical address). This is not really specified 518 * that way, but this is traditionally the way IBM at least do things 519 * 520 * Whenever the translation fails, the *host pointer will be set to the 521 * device that had registered logical PIO mapping, and the return code is 522 * relative to that node. 523 */ 524 static u64 __of_translate_address(struct device_node *dev, 525 struct device_node *(*get_parent)(const struct device_node *), 526 const __be32 *in_addr, const char *rprop, 527 struct device_node **host) 528 { 529 struct device_node *parent = NULL; 530 struct of_bus *bus, *pbus; 531 __be32 addr[OF_MAX_ADDR_CELLS]; 532 int na, ns, pna, pns; 533 u64 result = OF_BAD_ADDR; 534 535 pr_debug("** translation for device %pOF **\n", dev); 536 537 /* Increase refcount at current level */ 538 of_node_get(dev); 539 540 *host = NULL; 541 /* Get parent & match bus type */ 542 parent = get_parent(dev); 543 if (parent == NULL) 544 goto bail; 545 bus = of_match_bus(parent); 546 547 /* Count address cells & copy address locally */ 548 bus->count_cells(dev, &na, &ns); 549 if (!OF_CHECK_COUNTS(na, ns)) { 550 pr_debug("Bad cell count for %pOF\n", dev); 551 goto bail; 552 } 553 memcpy(addr, in_addr, na * 4); 554 555 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 556 bus->name, na, ns, parent); 557 of_dump_addr("translating address:", addr, na); 558 559 /* Translate */ 560 for (;;) { 561 struct logic_pio_hwaddr *iorange; 562 563 /* Switch to parent bus */ 564 of_node_put(dev); 565 dev = parent; 566 parent = get_parent(dev); 567 568 /* If root, we have finished */ 569 if (parent == NULL) { 570 pr_debug("reached root node\n"); 571 result = of_read_number(addr, na); 572 break; 573 } 574 575 /* 576 * For indirectIO device which has no ranges property, get 577 * the address from reg directly. 578 */ 579 iorange = find_io_range_by_fwnode(&dev->fwnode); 580 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 581 result = of_read_number(addr + 1, na - 1); 582 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 583 dev, result); 584 *host = of_node_get(dev); 585 break; 586 } 587 588 /* Get new parent bus and counts */ 589 pbus = of_match_bus(parent); 590 pbus->count_cells(dev, &pna, &pns); 591 if (!OF_CHECK_COUNTS(pna, pns)) { 592 pr_err("Bad cell count for %pOF\n", dev); 593 break; 594 } 595 596 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 597 pbus->name, pna, pns, parent); 598 599 /* Apply bus translation */ 600 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 601 break; 602 603 /* Complete the move up one level */ 604 na = pna; 605 ns = pns; 606 bus = pbus; 607 608 of_dump_addr("one level translation:", addr, na); 609 } 610 bail: 611 of_node_put(parent); 612 of_node_put(dev); 613 614 return result; 615 } 616 617 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 618 { 619 struct device_node *host; 620 u64 ret; 621 622 ret = __of_translate_address(dev, of_get_parent, 623 in_addr, "ranges", &host); 624 if (host) { 625 of_node_put(host); 626 return OF_BAD_ADDR; 627 } 628 629 return ret; 630 } 631 EXPORT_SYMBOL(of_translate_address); 632 633 static struct device_node *__of_get_dma_parent(const struct device_node *np) 634 { 635 struct of_phandle_args args; 636 int ret, index; 637 638 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 639 if (index < 0) 640 return of_get_parent(np); 641 642 ret = of_parse_phandle_with_args(np, "interconnects", 643 "#interconnect-cells", 644 index, &args); 645 if (ret < 0) 646 return of_get_parent(np); 647 648 return of_node_get(args.np); 649 } 650 651 static struct device_node *of_get_next_dma_parent(struct device_node *np) 652 { 653 struct device_node *parent; 654 655 parent = __of_get_dma_parent(np); 656 of_node_put(np); 657 658 return parent; 659 } 660 661 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 662 { 663 struct device_node *host; 664 u64 ret; 665 666 ret = __of_translate_address(dev, __of_get_dma_parent, 667 in_addr, "dma-ranges", &host); 668 669 if (host) { 670 of_node_put(host); 671 return OF_BAD_ADDR; 672 } 673 674 return ret; 675 } 676 EXPORT_SYMBOL(of_translate_dma_address); 677 678 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size, 679 unsigned int *flags) 680 { 681 const __be32 *prop; 682 unsigned int psize; 683 struct device_node *parent; 684 struct of_bus *bus; 685 int onesize, i, na, ns; 686 687 /* Get parent & match bus type */ 688 parent = of_get_parent(dev); 689 if (parent == NULL) 690 return NULL; 691 bus = of_match_bus(parent); 692 bus->count_cells(dev, &na, &ns); 693 of_node_put(parent); 694 if (!OF_CHECK_ADDR_COUNT(na)) 695 return NULL; 696 697 /* Get "reg" or "assigned-addresses" property */ 698 prop = of_get_property(dev, bus->addresses, &psize); 699 if (prop == NULL) 700 return NULL; 701 psize /= 4; 702 703 onesize = na + ns; 704 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) 705 if (i == index) { 706 if (size) 707 *size = of_read_number(prop + na, ns); 708 if (flags) 709 *flags = bus->get_flags(prop); 710 return prop; 711 } 712 return NULL; 713 } 714 EXPORT_SYMBOL(of_get_address); 715 716 static int parser_init(struct of_pci_range_parser *parser, 717 struct device_node *node, const char *name) 718 { 719 int rlen; 720 721 parser->node = node; 722 parser->pna = of_n_addr_cells(node); 723 parser->na = of_bus_n_addr_cells(node); 724 parser->ns = of_bus_n_size_cells(node); 725 parser->dma = !strcmp(name, "dma-ranges"); 726 parser->bus = of_match_bus(node); 727 728 parser->range = of_get_property(node, name, &rlen); 729 if (parser->range == NULL) 730 return -ENOENT; 731 732 parser->end = parser->range + rlen / sizeof(__be32); 733 734 return 0; 735 } 736 737 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 738 struct device_node *node) 739 { 740 return parser_init(parser, node, "ranges"); 741 } 742 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 743 744 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 745 struct device_node *node) 746 { 747 return parser_init(parser, node, "dma-ranges"); 748 } 749 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 750 #define of_dma_range_parser_init of_pci_dma_range_parser_init 751 752 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 753 struct of_pci_range *range) 754 { 755 int na = parser->na; 756 int ns = parser->ns; 757 int np = parser->pna + na + ns; 758 int busflag_na = 0; 759 760 if (!range) 761 return NULL; 762 763 if (!parser->range || parser->range + np > parser->end) 764 return NULL; 765 766 range->flags = parser->bus->get_flags(parser->range); 767 768 /* A extra cell for resource flags */ 769 if (parser->bus->has_flags) 770 busflag_na = 1; 771 772 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 773 774 if (parser->dma) 775 range->cpu_addr = of_translate_dma_address(parser->node, 776 parser->range + na); 777 else 778 range->cpu_addr = of_translate_address(parser->node, 779 parser->range + na); 780 range->size = of_read_number(parser->range + parser->pna + na, ns); 781 782 parser->range += np; 783 784 /* Now consume following elements while they are contiguous */ 785 while (parser->range + np <= parser->end) { 786 u32 flags = 0; 787 u64 bus_addr, cpu_addr, size; 788 789 flags = parser->bus->get_flags(parser->range); 790 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 791 if (parser->dma) 792 cpu_addr = of_translate_dma_address(parser->node, 793 parser->range + na); 794 else 795 cpu_addr = of_translate_address(parser->node, 796 parser->range + na); 797 size = of_read_number(parser->range + parser->pna + na, ns); 798 799 if (flags != range->flags) 800 break; 801 if (bus_addr != range->bus_addr + range->size || 802 cpu_addr != range->cpu_addr + range->size) 803 break; 804 805 range->size += size; 806 parser->range += np; 807 } 808 809 return range; 810 } 811 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 812 813 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 814 u64 size) 815 { 816 u64 taddr; 817 unsigned long port; 818 struct device_node *host; 819 820 taddr = __of_translate_address(dev, of_get_parent, 821 in_addr, "ranges", &host); 822 if (host) { 823 /* host-specific port access */ 824 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 825 of_node_put(host); 826 } else { 827 /* memory-mapped I/O range */ 828 port = pci_address_to_pio(taddr); 829 } 830 831 if (port == (unsigned long)-1) 832 return OF_BAD_ADDR; 833 834 return port; 835 } 836 837 static int __of_address_to_resource(struct device_node *dev, 838 const __be32 *addrp, u64 size, unsigned int flags, 839 const char *name, struct resource *r) 840 { 841 u64 taddr; 842 843 if (flags & IORESOURCE_MEM) 844 taddr = of_translate_address(dev, addrp); 845 else if (flags & IORESOURCE_IO) 846 taddr = of_translate_ioport(dev, addrp, size); 847 else 848 return -EINVAL; 849 850 if (taddr == OF_BAD_ADDR) 851 return -EINVAL; 852 memset(r, 0, sizeof(struct resource)); 853 854 if (of_mmio_is_nonposted(dev)) 855 flags |= IORESOURCE_MEM_NONPOSTED; 856 857 r->start = taddr; 858 r->end = taddr + size - 1; 859 r->flags = flags; 860 r->name = name ? name : dev->full_name; 861 862 return 0; 863 } 864 865 /** 866 * of_address_to_resource - Translate device tree address and return as resource 867 * @dev: Caller's Device Node 868 * @index: Index into the array 869 * @r: Pointer to resource array 870 * 871 * Note that if your address is a PIO address, the conversion will fail if 872 * the physical address can't be internally converted to an IO token with 873 * pci_address_to_pio(), that is because it's either called too early or it 874 * can't be matched to any host bridge IO space 875 */ 876 int of_address_to_resource(struct device_node *dev, int index, 877 struct resource *r) 878 { 879 const __be32 *addrp; 880 u64 size; 881 unsigned int flags; 882 const char *name = NULL; 883 884 addrp = of_get_address(dev, index, &size, &flags); 885 if (addrp == NULL) 886 return -EINVAL; 887 888 /* Get optional "reg-names" property to add a name to a resource */ 889 of_property_read_string_index(dev, "reg-names", index, &name); 890 891 return __of_address_to_resource(dev, addrp, size, flags, name, r); 892 } 893 EXPORT_SYMBOL_GPL(of_address_to_resource); 894 895 /** 896 * of_iomap - Maps the memory mapped IO for a given device_node 897 * @np: the device whose io range will be mapped 898 * @index: index of the io range 899 * 900 * Returns a pointer to the mapped memory 901 */ 902 void __iomem *of_iomap(struct device_node *np, int index) 903 { 904 struct resource res; 905 906 if (of_address_to_resource(np, index, &res)) 907 return NULL; 908 909 if (res.flags & IORESOURCE_MEM_NONPOSTED) 910 return ioremap_np(res.start, resource_size(&res)); 911 else 912 return ioremap(res.start, resource_size(&res)); 913 } 914 EXPORT_SYMBOL(of_iomap); 915 916 /* 917 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 918 * for a given device_node 919 * @device: the device whose io range will be mapped 920 * @index: index of the io range 921 * @name: name "override" for the memory region request or NULL 922 * 923 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 924 * error code on failure. Usage example: 925 * 926 * base = of_io_request_and_map(node, 0, "foo"); 927 * if (IS_ERR(base)) 928 * return PTR_ERR(base); 929 */ 930 void __iomem *of_io_request_and_map(struct device_node *np, int index, 931 const char *name) 932 { 933 struct resource res; 934 void __iomem *mem; 935 936 if (of_address_to_resource(np, index, &res)) 937 return IOMEM_ERR_PTR(-EINVAL); 938 939 if (!name) 940 name = res.name; 941 if (!request_mem_region(res.start, resource_size(&res), name)) 942 return IOMEM_ERR_PTR(-EBUSY); 943 944 if (res.flags & IORESOURCE_MEM_NONPOSTED) 945 mem = ioremap_np(res.start, resource_size(&res)); 946 else 947 mem = ioremap(res.start, resource_size(&res)); 948 949 if (!mem) { 950 release_mem_region(res.start, resource_size(&res)); 951 return IOMEM_ERR_PTR(-ENOMEM); 952 } 953 954 return mem; 955 } 956 EXPORT_SYMBOL(of_io_request_and_map); 957 958 #ifdef CONFIG_HAS_DMA 959 /** 960 * of_dma_get_range - Get DMA range info and put it into a map array 961 * @np: device node to get DMA range info 962 * @map: dma range structure to return 963 * 964 * Look in bottom up direction for the first "dma-ranges" property 965 * and parse it. Put the information into a DMA offset map array. 966 * 967 * dma-ranges format: 968 * DMA addr (dma_addr) : naddr cells 969 * CPU addr (phys_addr_t) : pna cells 970 * size : nsize cells 971 * 972 * It returns -ENODEV if "dma-ranges" property was not found for this 973 * device in the DT. 974 */ 975 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 976 { 977 struct device_node *node = of_node_get(np); 978 const __be32 *ranges = NULL; 979 bool found_dma_ranges = false; 980 struct of_range_parser parser; 981 struct of_range range; 982 struct bus_dma_region *r; 983 int len, num_ranges = 0; 984 int ret = 0; 985 986 while (node) { 987 ranges = of_get_property(node, "dma-ranges", &len); 988 989 /* Ignore empty ranges, they imply no translation required */ 990 if (ranges && len > 0) 991 break; 992 993 /* Once we find 'dma-ranges', then a missing one is an error */ 994 if (found_dma_ranges && !ranges) { 995 ret = -ENODEV; 996 goto out; 997 } 998 found_dma_ranges = true; 999 1000 node = of_get_next_dma_parent(node); 1001 } 1002 1003 if (!node || !ranges) { 1004 pr_debug("no dma-ranges found for node(%pOF)\n", np); 1005 ret = -ENODEV; 1006 goto out; 1007 } 1008 1009 of_dma_range_parser_init(&parser, node); 1010 for_each_of_range(&parser, &range) 1011 num_ranges++; 1012 1013 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 1014 if (!r) { 1015 ret = -ENOMEM; 1016 goto out; 1017 } 1018 1019 /* 1020 * Record all info in the generic DMA ranges array for struct device. 1021 */ 1022 *map = r; 1023 of_dma_range_parser_init(&parser, node); 1024 for_each_of_range(&parser, &range) { 1025 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 1026 range.bus_addr, range.cpu_addr, range.size); 1027 if (range.cpu_addr == OF_BAD_ADDR) { 1028 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 1029 range.bus_addr, node); 1030 continue; 1031 } 1032 r->cpu_start = range.cpu_addr; 1033 r->dma_start = range.bus_addr; 1034 r->size = range.size; 1035 r->offset = range.cpu_addr - range.bus_addr; 1036 r++; 1037 } 1038 out: 1039 of_node_put(node); 1040 return ret; 1041 } 1042 #endif /* CONFIG_HAS_DMA */ 1043 1044 /** 1045 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 1046 * @np: The node to start searching from or NULL to start from the root 1047 * 1048 * Gets the highest CPU physical address that is addressable by all DMA masters 1049 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 1050 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 1051 */ 1052 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 1053 { 1054 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 1055 struct of_range_parser parser; 1056 phys_addr_t subtree_max_addr; 1057 struct device_node *child; 1058 struct of_range range; 1059 const __be32 *ranges; 1060 u64 cpu_end = 0; 1061 int len; 1062 1063 if (!np) 1064 np = of_root; 1065 1066 ranges = of_get_property(np, "dma-ranges", &len); 1067 if (ranges && len) { 1068 of_dma_range_parser_init(&parser, np); 1069 for_each_of_range(&parser, &range) 1070 if (range.cpu_addr + range.size > cpu_end) 1071 cpu_end = range.cpu_addr + range.size - 1; 1072 1073 if (max_cpu_addr > cpu_end) 1074 max_cpu_addr = cpu_end; 1075 } 1076 1077 for_each_available_child_of_node(np, child) { 1078 subtree_max_addr = of_dma_get_max_cpu_address(child); 1079 if (max_cpu_addr > subtree_max_addr) 1080 max_cpu_addr = subtree_max_addr; 1081 } 1082 1083 return max_cpu_addr; 1084 } 1085 1086 /** 1087 * of_dma_is_coherent - Check if device is coherent 1088 * @np: device node 1089 * 1090 * It returns true if "dma-coherent" property was found 1091 * for this device in the DT, or if DMA is coherent by 1092 * default for OF devices on the current platform. 1093 */ 1094 bool of_dma_is_coherent(struct device_node *np) 1095 { 1096 struct device_node *node; 1097 1098 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT)) 1099 return true; 1100 1101 node = of_node_get(np); 1102 1103 while (node) { 1104 if (of_property_read_bool(node, "dma-coherent")) { 1105 of_node_put(node); 1106 return true; 1107 } 1108 node = of_get_next_dma_parent(node); 1109 } 1110 of_node_put(node); 1111 return false; 1112 } 1113 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1114 1115 /** 1116 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1117 * @np: device node 1118 * 1119 * Returns true if the "nonposted-mmio" property was found for 1120 * the device's bus. 1121 * 1122 * This is currently only enabled on builds that support Apple ARM devices, as 1123 * an optimization. 1124 */ 1125 static bool of_mmio_is_nonposted(struct device_node *np) 1126 { 1127 struct device_node *parent; 1128 bool nonposted; 1129 1130 if (!IS_ENABLED(CONFIG_ARCH_APPLE)) 1131 return false; 1132 1133 parent = of_get_parent(np); 1134 if (!parent) 1135 return false; 1136 1137 nonposted = of_property_read_bool(parent, "nonposted-mmio"); 1138 1139 of_node_put(parent); 1140 return nonposted; 1141 } 1142