xref: /linux/drivers/of/address.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 
2 #include <linux/device.h>
3 #include <linux/io.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci_regs.h>
8 #include <linux/sizes.h>
9 #include <linux/slab.h>
10 #include <linux/string.h>
11 
12 /* Max address size we deal with */
13 #define OF_MAX_ADDR_CELLS	4
14 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
16 
17 static struct of_bus *of_match_bus(struct device_node *np);
18 static int __of_address_to_resource(struct device_node *dev,
19 		const __be32 *addrp, u64 size, unsigned int flags,
20 		const char *name, struct resource *r);
21 
22 /* Debug utility */
23 #ifdef DEBUG
24 static void of_dump_addr(const char *s, const __be32 *addr, int na)
25 {
26 	printk(KERN_DEBUG "%s", s);
27 	while (na--)
28 		printk(" %08x", be32_to_cpu(*(addr++)));
29 	printk("\n");
30 }
31 #else
32 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
33 #endif
34 
35 /* Callbacks for bus specific translators */
36 struct of_bus {
37 	const char	*name;
38 	const char	*addresses;
39 	int		(*match)(struct device_node *parent);
40 	void		(*count_cells)(struct device_node *child,
41 				       int *addrc, int *sizec);
42 	u64		(*map)(__be32 *addr, const __be32 *range,
43 				int na, int ns, int pna);
44 	int		(*translate)(__be32 *addr, u64 offset, int na);
45 	unsigned int	(*get_flags)(const __be32 *addr);
46 };
47 
48 /*
49  * Default translator (generic bus)
50  */
51 
52 static void of_bus_default_count_cells(struct device_node *dev,
53 				       int *addrc, int *sizec)
54 {
55 	if (addrc)
56 		*addrc = of_n_addr_cells(dev);
57 	if (sizec)
58 		*sizec = of_n_size_cells(dev);
59 }
60 
61 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62 		int na, int ns, int pna)
63 {
64 	u64 cp, s, da;
65 
66 	cp = of_read_number(range, na);
67 	s  = of_read_number(range + na + pna, ns);
68 	da = of_read_number(addr, na);
69 
70 	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 		 (unsigned long long)cp, (unsigned long long)s,
72 		 (unsigned long long)da);
73 
74 	if (da < cp || da >= (cp + s))
75 		return OF_BAD_ADDR;
76 	return da - cp;
77 }
78 
79 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
80 {
81 	u64 a = of_read_number(addr, na);
82 	memset(addr, 0, na * 4);
83 	a += offset;
84 	if (na > 1)
85 		addr[na - 2] = cpu_to_be32(a >> 32);
86 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
87 
88 	return 0;
89 }
90 
91 static unsigned int of_bus_default_get_flags(const __be32 *addr)
92 {
93 	return IORESOURCE_MEM;
94 }
95 
96 #ifdef CONFIG_OF_ADDRESS_PCI
97 /*
98  * PCI bus specific translator
99  */
100 
101 static int of_bus_pci_match(struct device_node *np)
102 {
103 	/*
104  	 * "pciex" is PCI Express
105 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 	 * "ht" is hypertransport
107 	 */
108 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
110 }
111 
112 static void of_bus_pci_count_cells(struct device_node *np,
113 				   int *addrc, int *sizec)
114 {
115 	if (addrc)
116 		*addrc = 3;
117 	if (sizec)
118 		*sizec = 2;
119 }
120 
121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 	unsigned int flags = 0;
124 	u32 w = be32_to_cpup(addr);
125 
126 	switch((w >> 24) & 0x03) {
127 	case 0x01:
128 		flags |= IORESOURCE_IO;
129 		break;
130 	case 0x02: /* 32 bits */
131 	case 0x03: /* 64 bits */
132 		flags |= IORESOURCE_MEM;
133 		break;
134 	}
135 	if (w & 0x40000000)
136 		flags |= IORESOURCE_PREFETCH;
137 	return flags;
138 }
139 
140 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
141 		int pna)
142 {
143 	u64 cp, s, da;
144 	unsigned int af, rf;
145 
146 	af = of_bus_pci_get_flags(addr);
147 	rf = of_bus_pci_get_flags(range);
148 
149 	/* Check address type match */
150 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
151 		return OF_BAD_ADDR;
152 
153 	/* Read address values, skipping high cell */
154 	cp = of_read_number(range + 1, na - 1);
155 	s  = of_read_number(range + na + pna, ns);
156 	da = of_read_number(addr + 1, na - 1);
157 
158 	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 		 (unsigned long long)cp, (unsigned long long)s,
160 		 (unsigned long long)da);
161 
162 	if (da < cp || da >= (cp + s))
163 		return OF_BAD_ADDR;
164 	return da - cp;
165 }
166 
167 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
168 {
169 	return of_bus_default_translate(addr + 1, offset, na - 1);
170 }
171 #endif /* CONFIG_OF_ADDRESS_PCI */
172 
173 #ifdef CONFIG_PCI
174 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
175 			unsigned int *flags)
176 {
177 	const __be32 *prop;
178 	unsigned int psize;
179 	struct device_node *parent;
180 	struct of_bus *bus;
181 	int onesize, i, na, ns;
182 
183 	/* Get parent & match bus type */
184 	parent = of_get_parent(dev);
185 	if (parent == NULL)
186 		return NULL;
187 	bus = of_match_bus(parent);
188 	if (strcmp(bus->name, "pci")) {
189 		of_node_put(parent);
190 		return NULL;
191 	}
192 	bus->count_cells(dev, &na, &ns);
193 	of_node_put(parent);
194 	if (!OF_CHECK_ADDR_COUNT(na))
195 		return NULL;
196 
197 	/* Get "reg" or "assigned-addresses" property */
198 	prop = of_get_property(dev, bus->addresses, &psize);
199 	if (prop == NULL)
200 		return NULL;
201 	psize /= 4;
202 
203 	onesize = na + ns;
204 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205 		u32 val = be32_to_cpu(prop[0]);
206 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
207 			if (size)
208 				*size = of_read_number(prop + na, ns);
209 			if (flags)
210 				*flags = bus->get_flags(prop);
211 			return prop;
212 		}
213 	}
214 	return NULL;
215 }
216 EXPORT_SYMBOL(of_get_pci_address);
217 
218 int of_pci_address_to_resource(struct device_node *dev, int bar,
219 			       struct resource *r)
220 {
221 	const __be32	*addrp;
222 	u64		size;
223 	unsigned int	flags;
224 
225 	addrp = of_get_pci_address(dev, bar, &size, &flags);
226 	if (addrp == NULL)
227 		return -EINVAL;
228 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
229 }
230 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
231 
232 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233 				struct device_node *node)
234 {
235 	const int na = 3, ns = 2;
236 	int rlen;
237 
238 	parser->node = node;
239 	parser->pna = of_n_addr_cells(node);
240 	parser->np = parser->pna + na + ns;
241 
242 	parser->range = of_get_property(node, "ranges", &rlen);
243 	if (parser->range == NULL)
244 		return -ENOENT;
245 
246 	parser->end = parser->range + rlen / sizeof(__be32);
247 
248 	return 0;
249 }
250 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
251 
252 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253 						struct of_pci_range *range)
254 {
255 	const int na = 3, ns = 2;
256 
257 	if (!range)
258 		return NULL;
259 
260 	if (!parser->range || parser->range + parser->np > parser->end)
261 		return NULL;
262 
263 	range->pci_space = parser->range[0];
264 	range->flags = of_bus_pci_get_flags(parser->range);
265 	range->pci_addr = of_read_number(parser->range + 1, ns);
266 	range->cpu_addr = of_translate_address(parser->node,
267 				parser->range + na);
268 	range->size = of_read_number(parser->range + parser->pna + na, ns);
269 
270 	parser->range += parser->np;
271 
272 	/* Now consume following elements while they are contiguous */
273 	while (parser->range + parser->np <= parser->end) {
274 		u32 flags, pci_space;
275 		u64 pci_addr, cpu_addr, size;
276 
277 		pci_space = be32_to_cpup(parser->range);
278 		flags = of_bus_pci_get_flags(parser->range);
279 		pci_addr = of_read_number(parser->range + 1, ns);
280 		cpu_addr = of_translate_address(parser->node,
281 				parser->range + na);
282 		size = of_read_number(parser->range + parser->pna + na, ns);
283 
284 		if (flags != range->flags)
285 			break;
286 		if (pci_addr != range->pci_addr + range->size ||
287 		    cpu_addr != range->cpu_addr + range->size)
288 			break;
289 
290 		range->size += size;
291 		parser->range += parser->np;
292 	}
293 
294 	return range;
295 }
296 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
297 
298 /*
299  * of_pci_range_to_resource - Create a resource from an of_pci_range
300  * @range:	the PCI range that describes the resource
301  * @np:		device node where the range belongs to
302  * @res:	pointer to a valid resource that will be updated to
303  *              reflect the values contained in the range.
304  *
305  * Returns EINVAL if the range cannot be converted to resource.
306  *
307  * Note that if the range is an IO range, the resource will be converted
308  * using pci_address_to_pio() which can fail if it is called too early or
309  * if the range cannot be matched to any host bridge IO space (our case here).
310  * To guard against that we try to register the IO range first.
311  * If that fails we know that pci_address_to_pio() will do too.
312  */
313 int of_pci_range_to_resource(struct of_pci_range *range,
314 			     struct device_node *np, struct resource *res)
315 {
316 	int err;
317 	res->flags = range->flags;
318 	res->parent = res->child = res->sibling = NULL;
319 	res->name = np->full_name;
320 
321 	if (res->flags & IORESOURCE_IO) {
322 		unsigned long port;
323 		err = pci_register_io_range(range->cpu_addr, range->size);
324 		if (err)
325 			goto invalid_range;
326 		port = pci_address_to_pio(range->cpu_addr);
327 		if (port == (unsigned long)-1) {
328 			err = -EINVAL;
329 			goto invalid_range;
330 		}
331 		res->start = port;
332 	} else {
333 		if ((sizeof(resource_size_t) < 8) &&
334 		    upper_32_bits(range->cpu_addr)) {
335 			err = -EINVAL;
336 			goto invalid_range;
337 		}
338 
339 		res->start = range->cpu_addr;
340 	}
341 	res->end = res->start + range->size - 1;
342 	return 0;
343 
344 invalid_range:
345 	res->start = (resource_size_t)OF_BAD_ADDR;
346 	res->end = (resource_size_t)OF_BAD_ADDR;
347 	return err;
348 }
349 #endif /* CONFIG_PCI */
350 
351 /*
352  * ISA bus specific translator
353  */
354 
355 static int of_bus_isa_match(struct device_node *np)
356 {
357 	return !strcmp(np->name, "isa");
358 }
359 
360 static void of_bus_isa_count_cells(struct device_node *child,
361 				   int *addrc, int *sizec)
362 {
363 	if (addrc)
364 		*addrc = 2;
365 	if (sizec)
366 		*sizec = 1;
367 }
368 
369 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
370 		int pna)
371 {
372 	u64 cp, s, da;
373 
374 	/* Check address type match */
375 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
376 		return OF_BAD_ADDR;
377 
378 	/* Read address values, skipping high cell */
379 	cp = of_read_number(range + 1, na - 1);
380 	s  = of_read_number(range + na + pna, ns);
381 	da = of_read_number(addr + 1, na - 1);
382 
383 	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
384 		 (unsigned long long)cp, (unsigned long long)s,
385 		 (unsigned long long)da);
386 
387 	if (da < cp || da >= (cp + s))
388 		return OF_BAD_ADDR;
389 	return da - cp;
390 }
391 
392 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
393 {
394 	return of_bus_default_translate(addr + 1, offset, na - 1);
395 }
396 
397 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
398 {
399 	unsigned int flags = 0;
400 	u32 w = be32_to_cpup(addr);
401 
402 	if (w & 1)
403 		flags |= IORESOURCE_IO;
404 	else
405 		flags |= IORESOURCE_MEM;
406 	return flags;
407 }
408 
409 /*
410  * Array of bus specific translators
411  */
412 
413 static struct of_bus of_busses[] = {
414 #ifdef CONFIG_OF_ADDRESS_PCI
415 	/* PCI */
416 	{
417 		.name = "pci",
418 		.addresses = "assigned-addresses",
419 		.match = of_bus_pci_match,
420 		.count_cells = of_bus_pci_count_cells,
421 		.map = of_bus_pci_map,
422 		.translate = of_bus_pci_translate,
423 		.get_flags = of_bus_pci_get_flags,
424 	},
425 #endif /* CONFIG_OF_ADDRESS_PCI */
426 	/* ISA */
427 	{
428 		.name = "isa",
429 		.addresses = "reg",
430 		.match = of_bus_isa_match,
431 		.count_cells = of_bus_isa_count_cells,
432 		.map = of_bus_isa_map,
433 		.translate = of_bus_isa_translate,
434 		.get_flags = of_bus_isa_get_flags,
435 	},
436 	/* Default */
437 	{
438 		.name = "default",
439 		.addresses = "reg",
440 		.match = NULL,
441 		.count_cells = of_bus_default_count_cells,
442 		.map = of_bus_default_map,
443 		.translate = of_bus_default_translate,
444 		.get_flags = of_bus_default_get_flags,
445 	},
446 };
447 
448 static struct of_bus *of_match_bus(struct device_node *np)
449 {
450 	int i;
451 
452 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
453 		if (!of_busses[i].match || of_busses[i].match(np))
454 			return &of_busses[i];
455 	BUG();
456 	return NULL;
457 }
458 
459 static int of_empty_ranges_quirk(struct device_node *np)
460 {
461 	if (IS_ENABLED(CONFIG_PPC)) {
462 		/* To save cycles, we cache the result for global "Mac" setting */
463 		static int quirk_state = -1;
464 
465 		/* PA-SEMI sdc DT bug */
466 		if (of_device_is_compatible(np, "1682m-sdc"))
467 			return true;
468 
469 		/* Make quirk cached */
470 		if (quirk_state < 0)
471 			quirk_state =
472 				of_machine_is_compatible("Power Macintosh") ||
473 				of_machine_is_compatible("MacRISC");
474 		return quirk_state;
475 	}
476 	return false;
477 }
478 
479 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
480 			    struct of_bus *pbus, __be32 *addr,
481 			    int na, int ns, int pna, const char *rprop)
482 {
483 	const __be32 *ranges;
484 	unsigned int rlen;
485 	int rone;
486 	u64 offset = OF_BAD_ADDR;
487 
488 	/* Normally, an absence of a "ranges" property means we are
489 	 * crossing a non-translatable boundary, and thus the addresses
490 	 * below the current not cannot be converted to CPU physical ones.
491 	 * Unfortunately, while this is very clear in the spec, it's not
492 	 * what Apple understood, and they do have things like /uni-n or
493 	 * /ht nodes with no "ranges" property and a lot of perfectly
494 	 * useable mapped devices below them. Thus we treat the absence of
495 	 * "ranges" as equivalent to an empty "ranges" property which means
496 	 * a 1:1 translation at that level. It's up to the caller not to try
497 	 * to translate addresses that aren't supposed to be translated in
498 	 * the first place. --BenH.
499 	 *
500 	 * As far as we know, this damage only exists on Apple machines, so
501 	 * This code is only enabled on powerpc. --gcl
502 	 */
503 	ranges = of_get_property(parent, rprop, &rlen);
504 	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
505 		pr_debug("OF: no ranges; cannot translate\n");
506 		return 1;
507 	}
508 	if (ranges == NULL || rlen == 0) {
509 		offset = of_read_number(addr, na);
510 		memset(addr, 0, pna * 4);
511 		pr_debug("OF: empty ranges; 1:1 translation\n");
512 		goto finish;
513 	}
514 
515 	pr_debug("OF: walking ranges...\n");
516 
517 	/* Now walk through the ranges */
518 	rlen /= 4;
519 	rone = na + pna + ns;
520 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
521 		offset = bus->map(addr, ranges, na, ns, pna);
522 		if (offset != OF_BAD_ADDR)
523 			break;
524 	}
525 	if (offset == OF_BAD_ADDR) {
526 		pr_debug("OF: not found !\n");
527 		return 1;
528 	}
529 	memcpy(addr, ranges + na, 4 * pna);
530 
531  finish:
532 	of_dump_addr("OF: parent translation for:", addr, pna);
533 	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
534 
535 	/* Translate it into parent bus space */
536 	return pbus->translate(addr, offset, pna);
537 }
538 
539 /*
540  * Translate an address from the device-tree into a CPU physical address,
541  * this walks up the tree and applies the various bus mappings on the
542  * way.
543  *
544  * Note: We consider that crossing any level with #size-cells == 0 to mean
545  * that translation is impossible (that is we are not dealing with a value
546  * that can be mapped to a cpu physical address). This is not really specified
547  * that way, but this is traditionally the way IBM at least do things
548  */
549 static u64 __of_translate_address(struct device_node *dev,
550 				  const __be32 *in_addr, const char *rprop)
551 {
552 	struct device_node *parent = NULL;
553 	struct of_bus *bus, *pbus;
554 	__be32 addr[OF_MAX_ADDR_CELLS];
555 	int na, ns, pna, pns;
556 	u64 result = OF_BAD_ADDR;
557 
558 	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
559 
560 	/* Increase refcount at current level */
561 	of_node_get(dev);
562 
563 	/* Get parent & match bus type */
564 	parent = of_get_parent(dev);
565 	if (parent == NULL)
566 		goto bail;
567 	bus = of_match_bus(parent);
568 
569 	/* Count address cells & copy address locally */
570 	bus->count_cells(dev, &na, &ns);
571 	if (!OF_CHECK_COUNTS(na, ns)) {
572 		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
573 		goto bail;
574 	}
575 	memcpy(addr, in_addr, na * 4);
576 
577 	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
578 	    bus->name, na, ns, of_node_full_name(parent));
579 	of_dump_addr("OF: translating address:", addr, na);
580 
581 	/* Translate */
582 	for (;;) {
583 		/* Switch to parent bus */
584 		of_node_put(dev);
585 		dev = parent;
586 		parent = of_get_parent(dev);
587 
588 		/* If root, we have finished */
589 		if (parent == NULL) {
590 			pr_debug("OF: reached root node\n");
591 			result = of_read_number(addr, na);
592 			break;
593 		}
594 
595 		/* Get new parent bus and counts */
596 		pbus = of_match_bus(parent);
597 		pbus->count_cells(dev, &pna, &pns);
598 		if (!OF_CHECK_COUNTS(pna, pns)) {
599 			printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
600 			       of_node_full_name(dev));
601 			break;
602 		}
603 
604 		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
605 		    pbus->name, pna, pns, of_node_full_name(parent));
606 
607 		/* Apply bus translation */
608 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
609 			break;
610 
611 		/* Complete the move up one level */
612 		na = pna;
613 		ns = pns;
614 		bus = pbus;
615 
616 		of_dump_addr("OF: one level translation:", addr, na);
617 	}
618  bail:
619 	of_node_put(parent);
620 	of_node_put(dev);
621 
622 	return result;
623 }
624 
625 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
626 {
627 	return __of_translate_address(dev, in_addr, "ranges");
628 }
629 EXPORT_SYMBOL(of_translate_address);
630 
631 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
632 {
633 	return __of_translate_address(dev, in_addr, "dma-ranges");
634 }
635 EXPORT_SYMBOL(of_translate_dma_address);
636 
637 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
638 		    unsigned int *flags)
639 {
640 	const __be32 *prop;
641 	unsigned int psize;
642 	struct device_node *parent;
643 	struct of_bus *bus;
644 	int onesize, i, na, ns;
645 
646 	/* Get parent & match bus type */
647 	parent = of_get_parent(dev);
648 	if (parent == NULL)
649 		return NULL;
650 	bus = of_match_bus(parent);
651 	bus->count_cells(dev, &na, &ns);
652 	of_node_put(parent);
653 	if (!OF_CHECK_ADDR_COUNT(na))
654 		return NULL;
655 
656 	/* Get "reg" or "assigned-addresses" property */
657 	prop = of_get_property(dev, bus->addresses, &psize);
658 	if (prop == NULL)
659 		return NULL;
660 	psize /= 4;
661 
662 	onesize = na + ns;
663 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
664 		if (i == index) {
665 			if (size)
666 				*size = of_read_number(prop + na, ns);
667 			if (flags)
668 				*flags = bus->get_flags(prop);
669 			return prop;
670 		}
671 	return NULL;
672 }
673 EXPORT_SYMBOL(of_get_address);
674 
675 #ifdef PCI_IOBASE
676 struct io_range {
677 	struct list_head list;
678 	phys_addr_t start;
679 	resource_size_t size;
680 };
681 
682 static LIST_HEAD(io_range_list);
683 static DEFINE_SPINLOCK(io_range_lock);
684 #endif
685 
686 /*
687  * Record the PCI IO range (expressed as CPU physical address + size).
688  * Return a negative value if an error has occured, zero otherwise
689  */
690 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
691 {
692 	int err = 0;
693 
694 #ifdef PCI_IOBASE
695 	struct io_range *range;
696 	resource_size_t allocated_size = 0;
697 
698 	/* check if the range hasn't been previously recorded */
699 	spin_lock(&io_range_lock);
700 	list_for_each_entry(range, &io_range_list, list) {
701 		if (addr >= range->start && addr + size <= range->start + size) {
702 			/* range already registered, bail out */
703 			goto end_register;
704 		}
705 		allocated_size += range->size;
706 	}
707 
708 	/* range not registed yet, check for available space */
709 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
710 		/* if it's too big check if 64K space can be reserved */
711 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
712 			err = -E2BIG;
713 			goto end_register;
714 		}
715 
716 		size = SZ_64K;
717 		pr_warn("Requested IO range too big, new size set to 64K\n");
718 	}
719 
720 	/* add the range to the list */
721 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
722 	if (!range) {
723 		err = -ENOMEM;
724 		goto end_register;
725 	}
726 
727 	range->start = addr;
728 	range->size = size;
729 
730 	list_add_tail(&range->list, &io_range_list);
731 
732 end_register:
733 	spin_unlock(&io_range_lock);
734 #endif
735 
736 	return err;
737 }
738 
739 phys_addr_t pci_pio_to_address(unsigned long pio)
740 {
741 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
742 
743 #ifdef PCI_IOBASE
744 	struct io_range *range;
745 	resource_size_t allocated_size = 0;
746 
747 	if (pio > IO_SPACE_LIMIT)
748 		return address;
749 
750 	spin_lock(&io_range_lock);
751 	list_for_each_entry(range, &io_range_list, list) {
752 		if (pio >= allocated_size && pio < allocated_size + range->size) {
753 			address = range->start + pio - allocated_size;
754 			break;
755 		}
756 		allocated_size += range->size;
757 	}
758 	spin_unlock(&io_range_lock);
759 #endif
760 
761 	return address;
762 }
763 
764 unsigned long __weak pci_address_to_pio(phys_addr_t address)
765 {
766 #ifdef PCI_IOBASE
767 	struct io_range *res;
768 	resource_size_t offset = 0;
769 	unsigned long addr = -1;
770 
771 	spin_lock(&io_range_lock);
772 	list_for_each_entry(res, &io_range_list, list) {
773 		if (address >= res->start && address < res->start + res->size) {
774 			addr = address - res->start + offset;
775 			break;
776 		}
777 		offset += res->size;
778 	}
779 	spin_unlock(&io_range_lock);
780 
781 	return addr;
782 #else
783 	if (address > IO_SPACE_LIMIT)
784 		return (unsigned long)-1;
785 
786 	return (unsigned long) address;
787 #endif
788 }
789 
790 static int __of_address_to_resource(struct device_node *dev,
791 		const __be32 *addrp, u64 size, unsigned int flags,
792 		const char *name, struct resource *r)
793 {
794 	u64 taddr;
795 
796 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
797 		return -EINVAL;
798 	taddr = of_translate_address(dev, addrp);
799 	if (taddr == OF_BAD_ADDR)
800 		return -EINVAL;
801 	memset(r, 0, sizeof(struct resource));
802 	if (flags & IORESOURCE_IO) {
803 		unsigned long port;
804 		port = pci_address_to_pio(taddr);
805 		if (port == (unsigned long)-1)
806 			return -EINVAL;
807 		r->start = port;
808 		r->end = port + size - 1;
809 	} else {
810 		r->start = taddr;
811 		r->end = taddr + size - 1;
812 	}
813 	r->flags = flags;
814 	r->name = name ? name : dev->full_name;
815 
816 	return 0;
817 }
818 
819 /**
820  * of_address_to_resource - Translate device tree address and return as resource
821  *
822  * Note that if your address is a PIO address, the conversion will fail if
823  * the physical address can't be internally converted to an IO token with
824  * pci_address_to_pio(), that is because it's either called to early or it
825  * can't be matched to any host bridge IO space
826  */
827 int of_address_to_resource(struct device_node *dev, int index,
828 			   struct resource *r)
829 {
830 	const __be32	*addrp;
831 	u64		size;
832 	unsigned int	flags;
833 	const char	*name = NULL;
834 
835 	addrp = of_get_address(dev, index, &size, &flags);
836 	if (addrp == NULL)
837 		return -EINVAL;
838 
839 	/* Get optional "reg-names" property to add a name to a resource */
840 	of_property_read_string_index(dev, "reg-names",	index, &name);
841 
842 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
843 }
844 EXPORT_SYMBOL_GPL(of_address_to_resource);
845 
846 struct device_node *of_find_matching_node_by_address(struct device_node *from,
847 					const struct of_device_id *matches,
848 					u64 base_address)
849 {
850 	struct device_node *dn = of_find_matching_node(from, matches);
851 	struct resource res;
852 
853 	while (dn) {
854 		if (!of_address_to_resource(dn, 0, &res) &&
855 		    res.start == base_address)
856 			return dn;
857 
858 		dn = of_find_matching_node(dn, matches);
859 	}
860 
861 	return NULL;
862 }
863 
864 
865 /**
866  * of_iomap - Maps the memory mapped IO for a given device_node
867  * @device:	the device whose io range will be mapped
868  * @index:	index of the io range
869  *
870  * Returns a pointer to the mapped memory
871  */
872 void __iomem *of_iomap(struct device_node *np, int index)
873 {
874 	struct resource res;
875 
876 	if (of_address_to_resource(np, index, &res))
877 		return NULL;
878 
879 	return ioremap(res.start, resource_size(&res));
880 }
881 EXPORT_SYMBOL(of_iomap);
882 
883 /*
884  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
885  *			   for a given device_node
886  * @device:	the device whose io range will be mapped
887  * @index:	index of the io range
888  * @name:	name of the resource
889  *
890  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
891  * error code on failure. Usage example:
892  *
893  *	base = of_io_request_and_map(node, 0, "foo");
894  *	if (IS_ERR(base))
895  *		return PTR_ERR(base);
896  */
897 void __iomem *of_io_request_and_map(struct device_node *np, int index,
898 					const char *name)
899 {
900 	struct resource res;
901 	void __iomem *mem;
902 
903 	if (of_address_to_resource(np, index, &res))
904 		return IOMEM_ERR_PTR(-EINVAL);
905 
906 	if (!request_mem_region(res.start, resource_size(&res), name))
907 		return IOMEM_ERR_PTR(-EBUSY);
908 
909 	mem = ioremap(res.start, resource_size(&res));
910 	if (!mem) {
911 		release_mem_region(res.start, resource_size(&res));
912 		return IOMEM_ERR_PTR(-ENOMEM);
913 	}
914 
915 	return mem;
916 }
917 EXPORT_SYMBOL(of_io_request_and_map);
918 
919 /**
920  * of_dma_get_range - Get DMA range info
921  * @np:		device node to get DMA range info
922  * @dma_addr:	pointer to store initial DMA address of DMA range
923  * @paddr:	pointer to store initial CPU address of DMA range
924  * @size:	pointer to store size of DMA range
925  *
926  * Look in bottom up direction for the first "dma-ranges" property
927  * and parse it.
928  *  dma-ranges format:
929  *	DMA addr (dma_addr)	: naddr cells
930  *	CPU addr (phys_addr_t)	: pna cells
931  *	size			: nsize cells
932  *
933  * It returns -ENODEV if "dma-ranges" property was not found
934  * for this device in DT.
935  */
936 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
937 {
938 	struct device_node *node = of_node_get(np);
939 	const __be32 *ranges = NULL;
940 	int len, naddr, nsize, pna;
941 	int ret = 0;
942 	u64 dmaaddr;
943 
944 	if (!node)
945 		return -EINVAL;
946 
947 	while (1) {
948 		naddr = of_n_addr_cells(node);
949 		nsize = of_n_size_cells(node);
950 		node = of_get_next_parent(node);
951 		if (!node)
952 			break;
953 
954 		ranges = of_get_property(node, "dma-ranges", &len);
955 
956 		/* Ignore empty ranges, they imply no translation required */
957 		if (ranges && len > 0)
958 			break;
959 
960 		/*
961 		 * At least empty ranges has to be defined for parent node if
962 		 * DMA is supported
963 		 */
964 		if (!ranges)
965 			break;
966 	}
967 
968 	if (!ranges) {
969 		pr_debug("%s: no dma-ranges found for node(%s)\n",
970 			 __func__, np->full_name);
971 		ret = -ENODEV;
972 		goto out;
973 	}
974 
975 	len /= sizeof(u32);
976 
977 	pna = of_n_addr_cells(node);
978 
979 	/* dma-ranges format:
980 	 * DMA addr	: naddr cells
981 	 * CPU addr	: pna cells
982 	 * size		: nsize cells
983 	 */
984 	dmaaddr = of_read_number(ranges, naddr);
985 	*paddr = of_translate_dma_address(np, ranges);
986 	if (*paddr == OF_BAD_ADDR) {
987 		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
988 		       __func__, dma_addr, np->full_name);
989 		ret = -EINVAL;
990 		goto out;
991 	}
992 	*dma_addr = dmaaddr;
993 
994 	*size = of_read_number(ranges + naddr + pna, nsize);
995 
996 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
997 		 *dma_addr, *paddr, *size);
998 
999 out:
1000 	of_node_put(node);
1001 
1002 	return ret;
1003 }
1004 EXPORT_SYMBOL_GPL(of_dma_get_range);
1005 
1006 /**
1007  * of_dma_is_coherent - Check if device is coherent
1008  * @np:	device node
1009  *
1010  * It returns true if "dma-coherent" property was found
1011  * for this device in DT.
1012  */
1013 bool of_dma_is_coherent(struct device_node *np)
1014 {
1015 	struct device_node *node = of_node_get(np);
1016 
1017 	while (node) {
1018 		if (of_property_read_bool(node, "dma-coherent")) {
1019 			of_node_put(node);
1020 			return true;
1021 		}
1022 		node = of_get_next_parent(node);
1023 	}
1024 	of_node_put(node);
1025 	return false;
1026 }
1027 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1028