1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 17 /* Max address size we deal with */ 18 #define OF_MAX_ADDR_CELLS 4 19 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 20 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 21 22 static struct of_bus *of_match_bus(struct device_node *np); 23 static int __of_address_to_resource(struct device_node *dev, 24 const __be32 *addrp, u64 size, unsigned int flags, 25 const char *name, struct resource *r); 26 27 /* Debug utility */ 28 #ifdef DEBUG 29 static void of_dump_addr(const char *s, const __be32 *addr, int na) 30 { 31 pr_debug("%s", s); 32 while (na--) 33 pr_cont(" %08x", be32_to_cpu(*(addr++))); 34 pr_cont("\n"); 35 } 36 #else 37 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 38 #endif 39 40 /* Callbacks for bus specific translators */ 41 struct of_bus { 42 const char *name; 43 const char *addresses; 44 int (*match)(struct device_node *parent); 45 void (*count_cells)(struct device_node *child, 46 int *addrc, int *sizec); 47 u64 (*map)(__be32 *addr, const __be32 *range, 48 int na, int ns, int pna); 49 int (*translate)(__be32 *addr, u64 offset, int na); 50 unsigned int (*get_flags)(const __be32 *addr); 51 }; 52 53 /* 54 * Default translator (generic bus) 55 */ 56 57 static void of_bus_default_count_cells(struct device_node *dev, 58 int *addrc, int *sizec) 59 { 60 if (addrc) 61 *addrc = of_n_addr_cells(dev); 62 if (sizec) 63 *sizec = of_n_size_cells(dev); 64 } 65 66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 67 int na, int ns, int pna) 68 { 69 u64 cp, s, da; 70 71 cp = of_read_number(range, na); 72 s = of_read_number(range + na + pna, ns); 73 da = of_read_number(addr, na); 74 75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", 76 (unsigned long long)cp, (unsigned long long)s, 77 (unsigned long long)da); 78 79 if (da < cp || da >= (cp + s)) 80 return OF_BAD_ADDR; 81 return da - cp; 82 } 83 84 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 85 { 86 u64 a = of_read_number(addr, na); 87 memset(addr, 0, na * 4); 88 a += offset; 89 if (na > 1) 90 addr[na - 2] = cpu_to_be32(a >> 32); 91 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 92 93 return 0; 94 } 95 96 static unsigned int of_bus_default_get_flags(const __be32 *addr) 97 { 98 return IORESOURCE_MEM; 99 } 100 101 #ifdef CONFIG_PCI 102 /* 103 * PCI bus specific translator 104 */ 105 106 static int of_bus_pci_match(struct device_node *np) 107 { 108 /* 109 * "pciex" is PCI Express 110 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 111 * "ht" is hypertransport 112 */ 113 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") || 114 !strcmp(np->type, "vci") || !strcmp(np->type, "ht"); 115 } 116 117 static void of_bus_pci_count_cells(struct device_node *np, 118 int *addrc, int *sizec) 119 { 120 if (addrc) 121 *addrc = 3; 122 if (sizec) 123 *sizec = 2; 124 } 125 126 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 127 { 128 unsigned int flags = 0; 129 u32 w = be32_to_cpup(addr); 130 131 switch((w >> 24) & 0x03) { 132 case 0x01: 133 flags |= IORESOURCE_IO; 134 break; 135 case 0x02: /* 32 bits */ 136 case 0x03: /* 64 bits */ 137 flags |= IORESOURCE_MEM; 138 break; 139 } 140 if (w & 0x40000000) 141 flags |= IORESOURCE_PREFETCH; 142 return flags; 143 } 144 145 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 146 int pna) 147 { 148 u64 cp, s, da; 149 unsigned int af, rf; 150 151 af = of_bus_pci_get_flags(addr); 152 rf = of_bus_pci_get_flags(range); 153 154 /* Check address type match */ 155 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 156 return OF_BAD_ADDR; 157 158 /* Read address values, skipping high cell */ 159 cp = of_read_number(range + 1, na - 1); 160 s = of_read_number(range + na + pna, ns); 161 da = of_read_number(addr + 1, na - 1); 162 163 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", 164 (unsigned long long)cp, (unsigned long long)s, 165 (unsigned long long)da); 166 167 if (da < cp || da >= (cp + s)) 168 return OF_BAD_ADDR; 169 return da - cp; 170 } 171 172 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 173 { 174 return of_bus_default_translate(addr + 1, offset, na - 1); 175 } 176 177 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, 178 unsigned int *flags) 179 { 180 const __be32 *prop; 181 unsigned int psize; 182 struct device_node *parent; 183 struct of_bus *bus; 184 int onesize, i, na, ns; 185 186 /* Get parent & match bus type */ 187 parent = of_get_parent(dev); 188 if (parent == NULL) 189 return NULL; 190 bus = of_match_bus(parent); 191 if (strcmp(bus->name, "pci")) { 192 of_node_put(parent); 193 return NULL; 194 } 195 bus->count_cells(dev, &na, &ns); 196 of_node_put(parent); 197 if (!OF_CHECK_ADDR_COUNT(na)) 198 return NULL; 199 200 /* Get "reg" or "assigned-addresses" property */ 201 prop = of_get_property(dev, bus->addresses, &psize); 202 if (prop == NULL) 203 return NULL; 204 psize /= 4; 205 206 onesize = na + ns; 207 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 208 u32 val = be32_to_cpu(prop[0]); 209 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { 210 if (size) 211 *size = of_read_number(prop + na, ns); 212 if (flags) 213 *flags = bus->get_flags(prop); 214 return prop; 215 } 216 } 217 return NULL; 218 } 219 EXPORT_SYMBOL(of_get_pci_address); 220 221 int of_pci_address_to_resource(struct device_node *dev, int bar, 222 struct resource *r) 223 { 224 const __be32 *addrp; 225 u64 size; 226 unsigned int flags; 227 228 addrp = of_get_pci_address(dev, bar, &size, &flags); 229 if (addrp == NULL) 230 return -EINVAL; 231 return __of_address_to_resource(dev, addrp, size, flags, NULL, r); 232 } 233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 234 235 static int parser_init(struct of_pci_range_parser *parser, 236 struct device_node *node, const char *name) 237 { 238 const int na = 3, ns = 2; 239 int rlen; 240 241 parser->node = node; 242 parser->pna = of_n_addr_cells(node); 243 parser->np = parser->pna + na + ns; 244 245 parser->range = of_get_property(node, name, &rlen); 246 if (parser->range == NULL) 247 return -ENOENT; 248 249 parser->end = parser->range + rlen / sizeof(__be32); 250 251 return 0; 252 } 253 254 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 255 struct device_node *node) 256 { 257 return parser_init(parser, node, "ranges"); 258 } 259 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 260 261 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 262 struct device_node *node) 263 { 264 return parser_init(parser, node, "dma-ranges"); 265 } 266 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 267 268 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 269 struct of_pci_range *range) 270 { 271 const int na = 3, ns = 2; 272 273 if (!range) 274 return NULL; 275 276 if (!parser->range || parser->range + parser->np > parser->end) 277 return NULL; 278 279 range->pci_space = be32_to_cpup(parser->range); 280 range->flags = of_bus_pci_get_flags(parser->range); 281 range->pci_addr = of_read_number(parser->range + 1, ns); 282 range->cpu_addr = of_translate_address(parser->node, 283 parser->range + na); 284 range->size = of_read_number(parser->range + parser->pna + na, ns); 285 286 parser->range += parser->np; 287 288 /* Now consume following elements while they are contiguous */ 289 while (parser->range + parser->np <= parser->end) { 290 u32 flags; 291 u64 pci_addr, cpu_addr, size; 292 293 flags = of_bus_pci_get_flags(parser->range); 294 pci_addr = of_read_number(parser->range + 1, ns); 295 cpu_addr = of_translate_address(parser->node, 296 parser->range + na); 297 size = of_read_number(parser->range + parser->pna + na, ns); 298 299 if (flags != range->flags) 300 break; 301 if (pci_addr != range->pci_addr + range->size || 302 cpu_addr != range->cpu_addr + range->size) 303 break; 304 305 range->size += size; 306 parser->range += parser->np; 307 } 308 309 return range; 310 } 311 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 312 313 /* 314 * of_pci_range_to_resource - Create a resource from an of_pci_range 315 * @range: the PCI range that describes the resource 316 * @np: device node where the range belongs to 317 * @res: pointer to a valid resource that will be updated to 318 * reflect the values contained in the range. 319 * 320 * Returns EINVAL if the range cannot be converted to resource. 321 * 322 * Note that if the range is an IO range, the resource will be converted 323 * using pci_address_to_pio() which can fail if it is called too early or 324 * if the range cannot be matched to any host bridge IO space (our case here). 325 * To guard against that we try to register the IO range first. 326 * If that fails we know that pci_address_to_pio() will do too. 327 */ 328 int of_pci_range_to_resource(struct of_pci_range *range, 329 struct device_node *np, struct resource *res) 330 { 331 int err; 332 res->flags = range->flags; 333 res->parent = res->child = res->sibling = NULL; 334 res->name = np->full_name; 335 336 if (res->flags & IORESOURCE_IO) { 337 unsigned long port; 338 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 339 range->size); 340 if (err) 341 goto invalid_range; 342 port = pci_address_to_pio(range->cpu_addr); 343 if (port == (unsigned long)-1) { 344 err = -EINVAL; 345 goto invalid_range; 346 } 347 res->start = port; 348 } else { 349 if ((sizeof(resource_size_t) < 8) && 350 upper_32_bits(range->cpu_addr)) { 351 err = -EINVAL; 352 goto invalid_range; 353 } 354 355 res->start = range->cpu_addr; 356 } 357 res->end = res->start + range->size - 1; 358 return 0; 359 360 invalid_range: 361 res->start = (resource_size_t)OF_BAD_ADDR; 362 res->end = (resource_size_t)OF_BAD_ADDR; 363 return err; 364 } 365 EXPORT_SYMBOL(of_pci_range_to_resource); 366 #endif /* CONFIG_PCI */ 367 368 /* 369 * ISA bus specific translator 370 */ 371 372 static int of_bus_isa_match(struct device_node *np) 373 { 374 return !strcmp(np->name, "isa"); 375 } 376 377 static void of_bus_isa_count_cells(struct device_node *child, 378 int *addrc, int *sizec) 379 { 380 if (addrc) 381 *addrc = 2; 382 if (sizec) 383 *sizec = 1; 384 } 385 386 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 387 int pna) 388 { 389 u64 cp, s, da; 390 391 /* Check address type match */ 392 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 393 return OF_BAD_ADDR; 394 395 /* Read address values, skipping high cell */ 396 cp = of_read_number(range + 1, na - 1); 397 s = of_read_number(range + na + pna, ns); 398 da = of_read_number(addr + 1, na - 1); 399 400 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", 401 (unsigned long long)cp, (unsigned long long)s, 402 (unsigned long long)da); 403 404 if (da < cp || da >= (cp + s)) 405 return OF_BAD_ADDR; 406 return da - cp; 407 } 408 409 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 410 { 411 return of_bus_default_translate(addr + 1, offset, na - 1); 412 } 413 414 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 415 { 416 unsigned int flags = 0; 417 u32 w = be32_to_cpup(addr); 418 419 if (w & 1) 420 flags |= IORESOURCE_IO; 421 else 422 flags |= IORESOURCE_MEM; 423 return flags; 424 } 425 426 /* 427 * Array of bus specific translators 428 */ 429 430 static struct of_bus of_busses[] = { 431 #ifdef CONFIG_PCI 432 /* PCI */ 433 { 434 .name = "pci", 435 .addresses = "assigned-addresses", 436 .match = of_bus_pci_match, 437 .count_cells = of_bus_pci_count_cells, 438 .map = of_bus_pci_map, 439 .translate = of_bus_pci_translate, 440 .get_flags = of_bus_pci_get_flags, 441 }, 442 #endif /* CONFIG_PCI */ 443 /* ISA */ 444 { 445 .name = "isa", 446 .addresses = "reg", 447 .match = of_bus_isa_match, 448 .count_cells = of_bus_isa_count_cells, 449 .map = of_bus_isa_map, 450 .translate = of_bus_isa_translate, 451 .get_flags = of_bus_isa_get_flags, 452 }, 453 /* Default */ 454 { 455 .name = "default", 456 .addresses = "reg", 457 .match = NULL, 458 .count_cells = of_bus_default_count_cells, 459 .map = of_bus_default_map, 460 .translate = of_bus_default_translate, 461 .get_flags = of_bus_default_get_flags, 462 }, 463 }; 464 465 static struct of_bus *of_match_bus(struct device_node *np) 466 { 467 int i; 468 469 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 470 if (!of_busses[i].match || of_busses[i].match(np)) 471 return &of_busses[i]; 472 BUG(); 473 return NULL; 474 } 475 476 static int of_empty_ranges_quirk(struct device_node *np) 477 { 478 if (IS_ENABLED(CONFIG_PPC)) { 479 /* To save cycles, we cache the result for global "Mac" setting */ 480 static int quirk_state = -1; 481 482 /* PA-SEMI sdc DT bug */ 483 if (of_device_is_compatible(np, "1682m-sdc")) 484 return true; 485 486 /* Make quirk cached */ 487 if (quirk_state < 0) 488 quirk_state = 489 of_machine_is_compatible("Power Macintosh") || 490 of_machine_is_compatible("MacRISC"); 491 return quirk_state; 492 } 493 return false; 494 } 495 496 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 497 struct of_bus *pbus, __be32 *addr, 498 int na, int ns, int pna, const char *rprop) 499 { 500 const __be32 *ranges; 501 unsigned int rlen; 502 int rone; 503 u64 offset = OF_BAD_ADDR; 504 505 /* 506 * Normally, an absence of a "ranges" property means we are 507 * crossing a non-translatable boundary, and thus the addresses 508 * below the current cannot be converted to CPU physical ones. 509 * Unfortunately, while this is very clear in the spec, it's not 510 * what Apple understood, and they do have things like /uni-n or 511 * /ht nodes with no "ranges" property and a lot of perfectly 512 * useable mapped devices below them. Thus we treat the absence of 513 * "ranges" as equivalent to an empty "ranges" property which means 514 * a 1:1 translation at that level. It's up to the caller not to try 515 * to translate addresses that aren't supposed to be translated in 516 * the first place. --BenH. 517 * 518 * As far as we know, this damage only exists on Apple machines, so 519 * This code is only enabled on powerpc. --gcl 520 */ 521 ranges = of_get_property(parent, rprop, &rlen); 522 if (ranges == NULL && !of_empty_ranges_quirk(parent)) { 523 pr_debug("no ranges; cannot translate\n"); 524 return 1; 525 } 526 if (ranges == NULL || rlen == 0) { 527 offset = of_read_number(addr, na); 528 memset(addr, 0, pna * 4); 529 pr_debug("empty ranges; 1:1 translation\n"); 530 goto finish; 531 } 532 533 pr_debug("walking ranges...\n"); 534 535 /* Now walk through the ranges */ 536 rlen /= 4; 537 rone = na + pna + ns; 538 for (; rlen >= rone; rlen -= rone, ranges += rone) { 539 offset = bus->map(addr, ranges, na, ns, pna); 540 if (offset != OF_BAD_ADDR) 541 break; 542 } 543 if (offset == OF_BAD_ADDR) { 544 pr_debug("not found !\n"); 545 return 1; 546 } 547 memcpy(addr, ranges + na, 4 * pna); 548 549 finish: 550 of_dump_addr("parent translation for:", addr, pna); 551 pr_debug("with offset: %llx\n", (unsigned long long)offset); 552 553 /* Translate it into parent bus space */ 554 return pbus->translate(addr, offset, pna); 555 } 556 557 /* 558 * Translate an address from the device-tree into a CPU physical address, 559 * this walks up the tree and applies the various bus mappings on the 560 * way. 561 * 562 * Note: We consider that crossing any level with #size-cells == 0 to mean 563 * that translation is impossible (that is we are not dealing with a value 564 * that can be mapped to a cpu physical address). This is not really specified 565 * that way, but this is traditionally the way IBM at least do things 566 * 567 * Whenever the translation fails, the *host pointer will be set to the 568 * device that had registered logical PIO mapping, and the return code is 569 * relative to that node. 570 */ 571 static u64 __of_translate_address(struct device_node *dev, 572 const __be32 *in_addr, const char *rprop, 573 struct device_node **host) 574 { 575 struct device_node *parent = NULL; 576 struct of_bus *bus, *pbus; 577 __be32 addr[OF_MAX_ADDR_CELLS]; 578 int na, ns, pna, pns; 579 u64 result = OF_BAD_ADDR; 580 581 pr_debug("** translation for device %pOF **\n", dev); 582 583 /* Increase refcount at current level */ 584 of_node_get(dev); 585 586 *host = NULL; 587 /* Get parent & match bus type */ 588 parent = of_get_parent(dev); 589 if (parent == NULL) 590 goto bail; 591 bus = of_match_bus(parent); 592 593 /* Count address cells & copy address locally */ 594 bus->count_cells(dev, &na, &ns); 595 if (!OF_CHECK_COUNTS(na, ns)) { 596 pr_debug("Bad cell count for %pOF\n", dev); 597 goto bail; 598 } 599 memcpy(addr, in_addr, na * 4); 600 601 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 602 bus->name, na, ns, parent); 603 of_dump_addr("translating address:", addr, na); 604 605 /* Translate */ 606 for (;;) { 607 struct logic_pio_hwaddr *iorange; 608 609 /* Switch to parent bus */ 610 of_node_put(dev); 611 dev = parent; 612 parent = of_get_parent(dev); 613 614 /* If root, we have finished */ 615 if (parent == NULL) { 616 pr_debug("reached root node\n"); 617 result = of_read_number(addr, na); 618 break; 619 } 620 621 /* 622 * For indirectIO device which has no ranges property, get 623 * the address from reg directly. 624 */ 625 iorange = find_io_range_by_fwnode(&dev->fwnode); 626 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 627 result = of_read_number(addr + 1, na - 1); 628 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 629 dev, result); 630 *host = of_node_get(dev); 631 break; 632 } 633 634 /* Get new parent bus and counts */ 635 pbus = of_match_bus(parent); 636 pbus->count_cells(dev, &pna, &pns); 637 if (!OF_CHECK_COUNTS(pna, pns)) { 638 pr_err("Bad cell count for %pOF\n", dev); 639 break; 640 } 641 642 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 643 pbus->name, pna, pns, parent); 644 645 /* Apply bus translation */ 646 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 647 break; 648 649 /* Complete the move up one level */ 650 na = pna; 651 ns = pns; 652 bus = pbus; 653 654 of_dump_addr("one level translation:", addr, na); 655 } 656 bail: 657 of_node_put(parent); 658 of_node_put(dev); 659 660 return result; 661 } 662 663 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 664 { 665 struct device_node *host; 666 u64 ret; 667 668 ret = __of_translate_address(dev, in_addr, "ranges", &host); 669 if (host) { 670 of_node_put(host); 671 return OF_BAD_ADDR; 672 } 673 674 return ret; 675 } 676 EXPORT_SYMBOL(of_translate_address); 677 678 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 679 { 680 struct device_node *host; 681 u64 ret; 682 683 ret = __of_translate_address(dev, in_addr, "dma-ranges", &host); 684 685 if (host) { 686 of_node_put(host); 687 return OF_BAD_ADDR; 688 } 689 690 return ret; 691 } 692 EXPORT_SYMBOL(of_translate_dma_address); 693 694 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size, 695 unsigned int *flags) 696 { 697 const __be32 *prop; 698 unsigned int psize; 699 struct device_node *parent; 700 struct of_bus *bus; 701 int onesize, i, na, ns; 702 703 /* Get parent & match bus type */ 704 parent = of_get_parent(dev); 705 if (parent == NULL) 706 return NULL; 707 bus = of_match_bus(parent); 708 bus->count_cells(dev, &na, &ns); 709 of_node_put(parent); 710 if (!OF_CHECK_ADDR_COUNT(na)) 711 return NULL; 712 713 /* Get "reg" or "assigned-addresses" property */ 714 prop = of_get_property(dev, bus->addresses, &psize); 715 if (prop == NULL) 716 return NULL; 717 psize /= 4; 718 719 onesize = na + ns; 720 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) 721 if (i == index) { 722 if (size) 723 *size = of_read_number(prop + na, ns); 724 if (flags) 725 *flags = bus->get_flags(prop); 726 return prop; 727 } 728 return NULL; 729 } 730 EXPORT_SYMBOL(of_get_address); 731 732 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 733 u64 size) 734 { 735 u64 taddr; 736 unsigned long port; 737 struct device_node *host; 738 739 taddr = __of_translate_address(dev, in_addr, "ranges", &host); 740 if (host) { 741 /* host-specific port access */ 742 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 743 of_node_put(host); 744 } else { 745 /* memory-mapped I/O range */ 746 port = pci_address_to_pio(taddr); 747 } 748 749 if (port == (unsigned long)-1) 750 return OF_BAD_ADDR; 751 752 return port; 753 } 754 755 static int __of_address_to_resource(struct device_node *dev, 756 const __be32 *addrp, u64 size, unsigned int flags, 757 const char *name, struct resource *r) 758 { 759 u64 taddr; 760 761 if (flags & IORESOURCE_MEM) 762 taddr = of_translate_address(dev, addrp); 763 else if (flags & IORESOURCE_IO) 764 taddr = of_translate_ioport(dev, addrp, size); 765 else 766 return -EINVAL; 767 768 if (taddr == OF_BAD_ADDR) 769 return -EINVAL; 770 memset(r, 0, sizeof(struct resource)); 771 772 r->start = taddr; 773 r->end = taddr + size - 1; 774 r->flags = flags; 775 r->name = name ? name : dev->full_name; 776 777 return 0; 778 } 779 780 /** 781 * of_address_to_resource - Translate device tree address and return as resource 782 * 783 * Note that if your address is a PIO address, the conversion will fail if 784 * the physical address can't be internally converted to an IO token with 785 * pci_address_to_pio(), that is because it's either called too early or it 786 * can't be matched to any host bridge IO space 787 */ 788 int of_address_to_resource(struct device_node *dev, int index, 789 struct resource *r) 790 { 791 const __be32 *addrp; 792 u64 size; 793 unsigned int flags; 794 const char *name = NULL; 795 796 addrp = of_get_address(dev, index, &size, &flags); 797 if (addrp == NULL) 798 return -EINVAL; 799 800 /* Get optional "reg-names" property to add a name to a resource */ 801 of_property_read_string_index(dev, "reg-names", index, &name); 802 803 return __of_address_to_resource(dev, addrp, size, flags, name, r); 804 } 805 EXPORT_SYMBOL_GPL(of_address_to_resource); 806 807 struct device_node *of_find_matching_node_by_address(struct device_node *from, 808 const struct of_device_id *matches, 809 u64 base_address) 810 { 811 struct device_node *dn = of_find_matching_node(from, matches); 812 struct resource res; 813 814 while (dn) { 815 if (!of_address_to_resource(dn, 0, &res) && 816 res.start == base_address) 817 return dn; 818 819 dn = of_find_matching_node(dn, matches); 820 } 821 822 return NULL; 823 } 824 825 826 /** 827 * of_iomap - Maps the memory mapped IO for a given device_node 828 * @device: the device whose io range will be mapped 829 * @index: index of the io range 830 * 831 * Returns a pointer to the mapped memory 832 */ 833 void __iomem *of_iomap(struct device_node *np, int index) 834 { 835 struct resource res; 836 837 if (of_address_to_resource(np, index, &res)) 838 return NULL; 839 840 return ioremap(res.start, resource_size(&res)); 841 } 842 EXPORT_SYMBOL(of_iomap); 843 844 /* 845 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 846 * for a given device_node 847 * @device: the device whose io range will be mapped 848 * @index: index of the io range 849 * @name: name of the resource 850 * 851 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 852 * error code on failure. Usage example: 853 * 854 * base = of_io_request_and_map(node, 0, "foo"); 855 * if (IS_ERR(base)) 856 * return PTR_ERR(base); 857 */ 858 void __iomem *of_io_request_and_map(struct device_node *np, int index, 859 const char *name) 860 { 861 struct resource res; 862 void __iomem *mem; 863 864 if (of_address_to_resource(np, index, &res)) 865 return IOMEM_ERR_PTR(-EINVAL); 866 867 if (!request_mem_region(res.start, resource_size(&res), name)) 868 return IOMEM_ERR_PTR(-EBUSY); 869 870 mem = ioremap(res.start, resource_size(&res)); 871 if (!mem) { 872 release_mem_region(res.start, resource_size(&res)); 873 return IOMEM_ERR_PTR(-ENOMEM); 874 } 875 876 return mem; 877 } 878 EXPORT_SYMBOL(of_io_request_and_map); 879 880 /** 881 * of_dma_get_range - Get DMA range info 882 * @np: device node to get DMA range info 883 * @dma_addr: pointer to store initial DMA address of DMA range 884 * @paddr: pointer to store initial CPU address of DMA range 885 * @size: pointer to store size of DMA range 886 * 887 * Look in bottom up direction for the first "dma-ranges" property 888 * and parse it. 889 * dma-ranges format: 890 * DMA addr (dma_addr) : naddr cells 891 * CPU addr (phys_addr_t) : pna cells 892 * size : nsize cells 893 * 894 * It returns -ENODEV if "dma-ranges" property was not found 895 * for this device in DT. 896 */ 897 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size) 898 { 899 struct device_node *node = of_node_get(np); 900 const __be32 *ranges = NULL; 901 int len, naddr, nsize, pna; 902 int ret = 0; 903 u64 dmaaddr; 904 905 if (!node) 906 return -EINVAL; 907 908 while (1) { 909 naddr = of_n_addr_cells(node); 910 nsize = of_n_size_cells(node); 911 node = of_get_next_parent(node); 912 if (!node) 913 break; 914 915 ranges = of_get_property(node, "dma-ranges", &len); 916 917 /* Ignore empty ranges, they imply no translation required */ 918 if (ranges && len > 0) 919 break; 920 921 /* 922 * At least empty ranges has to be defined for parent node if 923 * DMA is supported 924 */ 925 if (!ranges) 926 break; 927 } 928 929 if (!ranges) { 930 pr_debug("no dma-ranges found for node(%pOF)\n", np); 931 ret = -ENODEV; 932 goto out; 933 } 934 935 len /= sizeof(u32); 936 937 pna = of_n_addr_cells(node); 938 939 /* dma-ranges format: 940 * DMA addr : naddr cells 941 * CPU addr : pna cells 942 * size : nsize cells 943 */ 944 dmaaddr = of_read_number(ranges, naddr); 945 *paddr = of_translate_dma_address(np, ranges); 946 if (*paddr == OF_BAD_ADDR) { 947 pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n", 948 dma_addr, np); 949 ret = -EINVAL; 950 goto out; 951 } 952 *dma_addr = dmaaddr; 953 954 *size = of_read_number(ranges + naddr + pna, nsize); 955 956 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 957 *dma_addr, *paddr, *size); 958 959 out: 960 of_node_put(node); 961 962 return ret; 963 } 964 EXPORT_SYMBOL_GPL(of_dma_get_range); 965 966 /** 967 * of_dma_is_coherent - Check if device is coherent 968 * @np: device node 969 * 970 * It returns true if "dma-coherent" property was found 971 * for this device in DT. 972 */ 973 bool of_dma_is_coherent(struct device_node *np) 974 { 975 struct device_node *node = of_node_get(np); 976 977 while (node) { 978 if (of_property_read_bool(node, "dma-coherent")) { 979 of_node_put(node); 980 return true; 981 } 982 node = of_get_next_parent(node); 983 } 984 of_node_put(node); 985 return false; 986 } 987 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 988