xref: /linux/drivers/of/address.c (revision 962fad301c33dec69324dc2d9320fd84a119a24c)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #include "of_private.h"
18 
19 /* Max address size we deal with */
20 #define OF_MAX_ADDR_CELLS	4
21 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
22 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
23 
24 static struct of_bus *of_match_bus(struct device_node *np);
25 static int __of_address_to_resource(struct device_node *dev,
26 		const __be32 *addrp, u64 size, unsigned int flags,
27 		const char *name, struct resource *r);
28 
29 /* Debug utility */
30 #ifdef DEBUG
31 static void of_dump_addr(const char *s, const __be32 *addr, int na)
32 {
33 	pr_debug("%s", s);
34 	while (na--)
35 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
36 	pr_cont("\n");
37 }
38 #else
39 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
40 #endif
41 
42 /* Callbacks for bus specific translators */
43 struct of_bus {
44 	const char	*name;
45 	const char	*addresses;
46 	int		(*match)(struct device_node *parent);
47 	void		(*count_cells)(struct device_node *child,
48 				       int *addrc, int *sizec);
49 	u64		(*map)(__be32 *addr, const __be32 *range,
50 				int na, int ns, int pna);
51 	int		(*translate)(__be32 *addr, u64 offset, int na);
52 	bool	has_flags;
53 	unsigned int	(*get_flags)(const __be32 *addr);
54 };
55 
56 /*
57  * Default translator (generic bus)
58  */
59 
60 static void of_bus_default_count_cells(struct device_node *dev,
61 				       int *addrc, int *sizec)
62 {
63 	if (addrc)
64 		*addrc = of_n_addr_cells(dev);
65 	if (sizec)
66 		*sizec = of_n_size_cells(dev);
67 }
68 
69 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
70 		int na, int ns, int pna)
71 {
72 	u64 cp, s, da;
73 
74 	cp = of_read_number(range, na);
75 	s  = of_read_number(range + na + pna, ns);
76 	da = of_read_number(addr, na);
77 
78 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
79 		 (unsigned long long)cp, (unsigned long long)s,
80 		 (unsigned long long)da);
81 
82 	if (da < cp || da >= (cp + s))
83 		return OF_BAD_ADDR;
84 	return da - cp;
85 }
86 
87 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
88 {
89 	u64 a = of_read_number(addr, na);
90 	memset(addr, 0, na * 4);
91 	a += offset;
92 	if (na > 1)
93 		addr[na - 2] = cpu_to_be32(a >> 32);
94 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
95 
96 	return 0;
97 }
98 
99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 {
101 	return IORESOURCE_MEM;
102 }
103 
104 #ifdef CONFIG_PCI
105 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
106 {
107 	unsigned int flags = 0;
108 	u32 w = be32_to_cpup(addr);
109 
110 	if (!IS_ENABLED(CONFIG_PCI))
111 		return 0;
112 
113 	switch((w >> 24) & 0x03) {
114 	case 0x01:
115 		flags |= IORESOURCE_IO;
116 		break;
117 	case 0x02: /* 32 bits */
118 	case 0x03: /* 64 bits */
119 		flags |= IORESOURCE_MEM;
120 		break;
121 	}
122 	if (w & 0x40000000)
123 		flags |= IORESOURCE_PREFETCH;
124 	return flags;
125 }
126 
127 /*
128  * PCI bus specific translator
129  */
130 
131 static int of_bus_pci_match(struct device_node *np)
132 {
133 	/*
134  	 * "pciex" is PCI Express
135 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
136 	 * "ht" is hypertransport
137 	 */
138 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
139 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
140 }
141 
142 static void of_bus_pci_count_cells(struct device_node *np,
143 				   int *addrc, int *sizec)
144 {
145 	if (addrc)
146 		*addrc = 3;
147 	if (sizec)
148 		*sizec = 2;
149 }
150 
151 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
152 		int pna)
153 {
154 	u64 cp, s, da;
155 	unsigned int af, rf;
156 
157 	af = of_bus_pci_get_flags(addr);
158 	rf = of_bus_pci_get_flags(range);
159 
160 	/* Check address type match */
161 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
162 		return OF_BAD_ADDR;
163 
164 	/* Read address values, skipping high cell */
165 	cp = of_read_number(range + 1, na - 1);
166 	s  = of_read_number(range + na + pna, ns);
167 	da = of_read_number(addr + 1, na - 1);
168 
169 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
170 		 (unsigned long long)cp, (unsigned long long)s,
171 		 (unsigned long long)da);
172 
173 	if (da < cp || da >= (cp + s))
174 		return OF_BAD_ADDR;
175 	return da - cp;
176 }
177 
178 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
179 {
180 	return of_bus_default_translate(addr + 1, offset, na - 1);
181 }
182 
183 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
184 			unsigned int *flags)
185 {
186 	const __be32 *prop;
187 	unsigned int psize;
188 	struct device_node *parent;
189 	struct of_bus *bus;
190 	int onesize, i, na, ns;
191 
192 	/* Get parent & match bus type */
193 	parent = of_get_parent(dev);
194 	if (parent == NULL)
195 		return NULL;
196 	bus = of_match_bus(parent);
197 	if (strcmp(bus->name, "pci")) {
198 		of_node_put(parent);
199 		return NULL;
200 	}
201 	bus->count_cells(dev, &na, &ns);
202 	of_node_put(parent);
203 	if (!OF_CHECK_ADDR_COUNT(na))
204 		return NULL;
205 
206 	/* Get "reg" or "assigned-addresses" property */
207 	prop = of_get_property(dev, bus->addresses, &psize);
208 	if (prop == NULL)
209 		return NULL;
210 	psize /= 4;
211 
212 	onesize = na + ns;
213 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
214 		u32 val = be32_to_cpu(prop[0]);
215 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
216 			if (size)
217 				*size = of_read_number(prop + na, ns);
218 			if (flags)
219 				*flags = bus->get_flags(prop);
220 			return prop;
221 		}
222 	}
223 	return NULL;
224 }
225 EXPORT_SYMBOL(of_get_pci_address);
226 
227 int of_pci_address_to_resource(struct device_node *dev, int bar,
228 			       struct resource *r)
229 {
230 	const __be32	*addrp;
231 	u64		size;
232 	unsigned int	flags;
233 
234 	addrp = of_get_pci_address(dev, bar, &size, &flags);
235 	if (addrp == NULL)
236 		return -EINVAL;
237 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
238 }
239 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
240 
241 /*
242  * of_pci_range_to_resource - Create a resource from an of_pci_range
243  * @range:	the PCI range that describes the resource
244  * @np:		device node where the range belongs to
245  * @res:	pointer to a valid resource that will be updated to
246  *              reflect the values contained in the range.
247  *
248  * Returns EINVAL if the range cannot be converted to resource.
249  *
250  * Note that if the range is an IO range, the resource will be converted
251  * using pci_address_to_pio() which can fail if it is called too early or
252  * if the range cannot be matched to any host bridge IO space (our case here).
253  * To guard against that we try to register the IO range first.
254  * If that fails we know that pci_address_to_pio() will do too.
255  */
256 int of_pci_range_to_resource(struct of_pci_range *range,
257 			     struct device_node *np, struct resource *res)
258 {
259 	int err;
260 	res->flags = range->flags;
261 	res->parent = res->child = res->sibling = NULL;
262 	res->name = np->full_name;
263 
264 	if (res->flags & IORESOURCE_IO) {
265 		unsigned long port;
266 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
267 				range->size);
268 		if (err)
269 			goto invalid_range;
270 		port = pci_address_to_pio(range->cpu_addr);
271 		if (port == (unsigned long)-1) {
272 			err = -EINVAL;
273 			goto invalid_range;
274 		}
275 		res->start = port;
276 	} else {
277 		if ((sizeof(resource_size_t) < 8) &&
278 		    upper_32_bits(range->cpu_addr)) {
279 			err = -EINVAL;
280 			goto invalid_range;
281 		}
282 
283 		res->start = range->cpu_addr;
284 	}
285 	res->end = res->start + range->size - 1;
286 	return 0;
287 
288 invalid_range:
289 	res->start = (resource_size_t)OF_BAD_ADDR;
290 	res->end = (resource_size_t)OF_BAD_ADDR;
291 	return err;
292 }
293 EXPORT_SYMBOL(of_pci_range_to_resource);
294 #endif /* CONFIG_PCI */
295 
296 /*
297  * ISA bus specific translator
298  */
299 
300 static int of_bus_isa_match(struct device_node *np)
301 {
302 	return of_node_name_eq(np, "isa");
303 }
304 
305 static void of_bus_isa_count_cells(struct device_node *child,
306 				   int *addrc, int *sizec)
307 {
308 	if (addrc)
309 		*addrc = 2;
310 	if (sizec)
311 		*sizec = 1;
312 }
313 
314 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
315 		int pna)
316 {
317 	u64 cp, s, da;
318 
319 	/* Check address type match */
320 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
321 		return OF_BAD_ADDR;
322 
323 	/* Read address values, skipping high cell */
324 	cp = of_read_number(range + 1, na - 1);
325 	s  = of_read_number(range + na + pna, ns);
326 	da = of_read_number(addr + 1, na - 1);
327 
328 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
329 		 (unsigned long long)cp, (unsigned long long)s,
330 		 (unsigned long long)da);
331 
332 	if (da < cp || da >= (cp + s))
333 		return OF_BAD_ADDR;
334 	return da - cp;
335 }
336 
337 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
338 {
339 	return of_bus_default_translate(addr + 1, offset, na - 1);
340 }
341 
342 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
343 {
344 	unsigned int flags = 0;
345 	u32 w = be32_to_cpup(addr);
346 
347 	if (w & 1)
348 		flags |= IORESOURCE_IO;
349 	else
350 		flags |= IORESOURCE_MEM;
351 	return flags;
352 }
353 
354 /*
355  * Array of bus specific translators
356  */
357 
358 static struct of_bus of_busses[] = {
359 #ifdef CONFIG_PCI
360 	/* PCI */
361 	{
362 		.name = "pci",
363 		.addresses = "assigned-addresses",
364 		.match = of_bus_pci_match,
365 		.count_cells = of_bus_pci_count_cells,
366 		.map = of_bus_pci_map,
367 		.translate = of_bus_pci_translate,
368 		.has_flags = true,
369 		.get_flags = of_bus_pci_get_flags,
370 	},
371 #endif /* CONFIG_PCI */
372 	/* ISA */
373 	{
374 		.name = "isa",
375 		.addresses = "reg",
376 		.match = of_bus_isa_match,
377 		.count_cells = of_bus_isa_count_cells,
378 		.map = of_bus_isa_map,
379 		.translate = of_bus_isa_translate,
380 		.has_flags = true,
381 		.get_flags = of_bus_isa_get_flags,
382 	},
383 	/* Default */
384 	{
385 		.name = "default",
386 		.addresses = "reg",
387 		.match = NULL,
388 		.count_cells = of_bus_default_count_cells,
389 		.map = of_bus_default_map,
390 		.translate = of_bus_default_translate,
391 		.get_flags = of_bus_default_get_flags,
392 	},
393 };
394 
395 static struct of_bus *of_match_bus(struct device_node *np)
396 {
397 	int i;
398 
399 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
400 		if (!of_busses[i].match || of_busses[i].match(np))
401 			return &of_busses[i];
402 	BUG();
403 	return NULL;
404 }
405 
406 static int of_empty_ranges_quirk(struct device_node *np)
407 {
408 	if (IS_ENABLED(CONFIG_PPC)) {
409 		/* To save cycles, we cache the result for global "Mac" setting */
410 		static int quirk_state = -1;
411 
412 		/* PA-SEMI sdc DT bug */
413 		if (of_device_is_compatible(np, "1682m-sdc"))
414 			return true;
415 
416 		/* Make quirk cached */
417 		if (quirk_state < 0)
418 			quirk_state =
419 				of_machine_is_compatible("Power Macintosh") ||
420 				of_machine_is_compatible("MacRISC");
421 		return quirk_state;
422 	}
423 	return false;
424 }
425 
426 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
427 			    struct of_bus *pbus, __be32 *addr,
428 			    int na, int ns, int pna, const char *rprop)
429 {
430 	const __be32 *ranges;
431 	unsigned int rlen;
432 	int rone;
433 	u64 offset = OF_BAD_ADDR;
434 
435 	/*
436 	 * Normally, an absence of a "ranges" property means we are
437 	 * crossing a non-translatable boundary, and thus the addresses
438 	 * below the current cannot be converted to CPU physical ones.
439 	 * Unfortunately, while this is very clear in the spec, it's not
440 	 * what Apple understood, and they do have things like /uni-n or
441 	 * /ht nodes with no "ranges" property and a lot of perfectly
442 	 * useable mapped devices below them. Thus we treat the absence of
443 	 * "ranges" as equivalent to an empty "ranges" property which means
444 	 * a 1:1 translation at that level. It's up to the caller not to try
445 	 * to translate addresses that aren't supposed to be translated in
446 	 * the first place. --BenH.
447 	 *
448 	 * As far as we know, this damage only exists on Apple machines, so
449 	 * This code is only enabled on powerpc. --gcl
450 	 *
451 	 * This quirk also applies for 'dma-ranges' which frequently exist in
452 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
453 	 */
454 	ranges = of_get_property(parent, rprop, &rlen);
455 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
456 	    strcmp(rprop, "dma-ranges")) {
457 		pr_debug("no ranges; cannot translate\n");
458 		return 1;
459 	}
460 	if (ranges == NULL || rlen == 0) {
461 		offset = of_read_number(addr, na);
462 		memset(addr, 0, pna * 4);
463 		pr_debug("empty ranges; 1:1 translation\n");
464 		goto finish;
465 	}
466 
467 	pr_debug("walking ranges...\n");
468 
469 	/* Now walk through the ranges */
470 	rlen /= 4;
471 	rone = na + pna + ns;
472 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
473 		offset = bus->map(addr, ranges, na, ns, pna);
474 		if (offset != OF_BAD_ADDR)
475 			break;
476 	}
477 	if (offset == OF_BAD_ADDR) {
478 		pr_debug("not found !\n");
479 		return 1;
480 	}
481 	memcpy(addr, ranges + na, 4 * pna);
482 
483  finish:
484 	of_dump_addr("parent translation for:", addr, pna);
485 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
486 
487 	/* Translate it into parent bus space */
488 	return pbus->translate(addr, offset, pna);
489 }
490 
491 /*
492  * Translate an address from the device-tree into a CPU physical address,
493  * this walks up the tree and applies the various bus mappings on the
494  * way.
495  *
496  * Note: We consider that crossing any level with #size-cells == 0 to mean
497  * that translation is impossible (that is we are not dealing with a value
498  * that can be mapped to a cpu physical address). This is not really specified
499  * that way, but this is traditionally the way IBM at least do things
500  *
501  * Whenever the translation fails, the *host pointer will be set to the
502  * device that had registered logical PIO mapping, and the return code is
503  * relative to that node.
504  */
505 static u64 __of_translate_address(struct device_node *dev,
506 				  struct device_node *(*get_parent)(const struct device_node *),
507 				  const __be32 *in_addr, const char *rprop,
508 				  struct device_node **host)
509 {
510 	struct device_node *parent = NULL;
511 	struct of_bus *bus, *pbus;
512 	__be32 addr[OF_MAX_ADDR_CELLS];
513 	int na, ns, pna, pns;
514 	u64 result = OF_BAD_ADDR;
515 
516 	pr_debug("** translation for device %pOF **\n", dev);
517 
518 	/* Increase refcount at current level */
519 	of_node_get(dev);
520 
521 	*host = NULL;
522 	/* Get parent & match bus type */
523 	parent = get_parent(dev);
524 	if (parent == NULL)
525 		goto bail;
526 	bus = of_match_bus(parent);
527 
528 	/* Count address cells & copy address locally */
529 	bus->count_cells(dev, &na, &ns);
530 	if (!OF_CHECK_COUNTS(na, ns)) {
531 		pr_debug("Bad cell count for %pOF\n", dev);
532 		goto bail;
533 	}
534 	memcpy(addr, in_addr, na * 4);
535 
536 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
537 	    bus->name, na, ns, parent);
538 	of_dump_addr("translating address:", addr, na);
539 
540 	/* Translate */
541 	for (;;) {
542 		struct logic_pio_hwaddr *iorange;
543 
544 		/* Switch to parent bus */
545 		of_node_put(dev);
546 		dev = parent;
547 		parent = get_parent(dev);
548 
549 		/* If root, we have finished */
550 		if (parent == NULL) {
551 			pr_debug("reached root node\n");
552 			result = of_read_number(addr, na);
553 			break;
554 		}
555 
556 		/*
557 		 * For indirectIO device which has no ranges property, get
558 		 * the address from reg directly.
559 		 */
560 		iorange = find_io_range_by_fwnode(&dev->fwnode);
561 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
562 			result = of_read_number(addr + 1, na - 1);
563 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
564 				 dev, result);
565 			*host = of_node_get(dev);
566 			break;
567 		}
568 
569 		/* Get new parent bus and counts */
570 		pbus = of_match_bus(parent);
571 		pbus->count_cells(dev, &pna, &pns);
572 		if (!OF_CHECK_COUNTS(pna, pns)) {
573 			pr_err("Bad cell count for %pOF\n", dev);
574 			break;
575 		}
576 
577 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
578 		    pbus->name, pna, pns, parent);
579 
580 		/* Apply bus translation */
581 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
582 			break;
583 
584 		/* Complete the move up one level */
585 		na = pna;
586 		ns = pns;
587 		bus = pbus;
588 
589 		of_dump_addr("one level translation:", addr, na);
590 	}
591  bail:
592 	of_node_put(parent);
593 	of_node_put(dev);
594 
595 	return result;
596 }
597 
598 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
599 {
600 	struct device_node *host;
601 	u64 ret;
602 
603 	ret = __of_translate_address(dev, of_get_parent,
604 				     in_addr, "ranges", &host);
605 	if (host) {
606 		of_node_put(host);
607 		return OF_BAD_ADDR;
608 	}
609 
610 	return ret;
611 }
612 EXPORT_SYMBOL(of_translate_address);
613 
614 static struct device_node *__of_get_dma_parent(const struct device_node *np)
615 {
616 	struct of_phandle_args args;
617 	int ret, index;
618 
619 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
620 	if (index < 0)
621 		return of_get_parent(np);
622 
623 	ret = of_parse_phandle_with_args(np, "interconnects",
624 					 "#interconnect-cells",
625 					 index, &args);
626 	if (ret < 0)
627 		return of_get_parent(np);
628 
629 	return of_node_get(args.np);
630 }
631 
632 static struct device_node *of_get_next_dma_parent(struct device_node *np)
633 {
634 	struct device_node *parent;
635 
636 	parent = __of_get_dma_parent(np);
637 	of_node_put(np);
638 
639 	return parent;
640 }
641 
642 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
643 {
644 	struct device_node *host;
645 	u64 ret;
646 
647 	ret = __of_translate_address(dev, __of_get_dma_parent,
648 				     in_addr, "dma-ranges", &host);
649 
650 	if (host) {
651 		of_node_put(host);
652 		return OF_BAD_ADDR;
653 	}
654 
655 	return ret;
656 }
657 EXPORT_SYMBOL(of_translate_dma_address);
658 
659 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
660 		    unsigned int *flags)
661 {
662 	const __be32 *prop;
663 	unsigned int psize;
664 	struct device_node *parent;
665 	struct of_bus *bus;
666 	int onesize, i, na, ns;
667 
668 	/* Get parent & match bus type */
669 	parent = of_get_parent(dev);
670 	if (parent == NULL)
671 		return NULL;
672 	bus = of_match_bus(parent);
673 	bus->count_cells(dev, &na, &ns);
674 	of_node_put(parent);
675 	if (!OF_CHECK_ADDR_COUNT(na))
676 		return NULL;
677 
678 	/* Get "reg" or "assigned-addresses" property */
679 	prop = of_get_property(dev, bus->addresses, &psize);
680 	if (prop == NULL)
681 		return NULL;
682 	psize /= 4;
683 
684 	onesize = na + ns;
685 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
686 		if (i == index) {
687 			if (size)
688 				*size = of_read_number(prop + na, ns);
689 			if (flags)
690 				*flags = bus->get_flags(prop);
691 			return prop;
692 		}
693 	return NULL;
694 }
695 EXPORT_SYMBOL(of_get_address);
696 
697 static int parser_init(struct of_pci_range_parser *parser,
698 			struct device_node *node, const char *name)
699 {
700 	int rlen;
701 
702 	parser->node = node;
703 	parser->pna = of_n_addr_cells(node);
704 	parser->na = of_bus_n_addr_cells(node);
705 	parser->ns = of_bus_n_size_cells(node);
706 	parser->dma = !strcmp(name, "dma-ranges");
707 	parser->bus = of_match_bus(node);
708 
709 	parser->range = of_get_property(node, name, &rlen);
710 	if (parser->range == NULL)
711 		return -ENOENT;
712 
713 	parser->end = parser->range + rlen / sizeof(__be32);
714 
715 	return 0;
716 }
717 
718 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
719 				struct device_node *node)
720 {
721 	return parser_init(parser, node, "ranges");
722 }
723 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
724 
725 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
726 				struct device_node *node)
727 {
728 	return parser_init(parser, node, "dma-ranges");
729 }
730 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
731 #define of_dma_range_parser_init of_pci_dma_range_parser_init
732 
733 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
734 						struct of_pci_range *range)
735 {
736 	int na = parser->na;
737 	int ns = parser->ns;
738 	int np = parser->pna + na + ns;
739 	int busflag_na = 0;
740 
741 	if (!range)
742 		return NULL;
743 
744 	if (!parser->range || parser->range + np > parser->end)
745 		return NULL;
746 
747 	range->flags = parser->bus->get_flags(parser->range);
748 
749 	/* A extra cell for resource flags */
750 	if (parser->bus->has_flags)
751 		busflag_na = 1;
752 
753 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
754 
755 	if (parser->dma)
756 		range->cpu_addr = of_translate_dma_address(parser->node,
757 				parser->range + na);
758 	else
759 		range->cpu_addr = of_translate_address(parser->node,
760 				parser->range + na);
761 	range->size = of_read_number(parser->range + parser->pna + na, ns);
762 
763 	parser->range += np;
764 
765 	/* Now consume following elements while they are contiguous */
766 	while (parser->range + np <= parser->end) {
767 		u32 flags = 0;
768 		u64 bus_addr, cpu_addr, size;
769 
770 		flags = parser->bus->get_flags(parser->range);
771 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
772 		if (parser->dma)
773 			cpu_addr = of_translate_dma_address(parser->node,
774 					parser->range + na);
775 		else
776 			cpu_addr = of_translate_address(parser->node,
777 					parser->range + na);
778 		size = of_read_number(parser->range + parser->pna + na, ns);
779 
780 		if (flags != range->flags)
781 			break;
782 		if (bus_addr != range->bus_addr + range->size ||
783 		    cpu_addr != range->cpu_addr + range->size)
784 			break;
785 
786 		range->size += size;
787 		parser->range += np;
788 	}
789 
790 	return range;
791 }
792 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
793 
794 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
795 			u64 size)
796 {
797 	u64 taddr;
798 	unsigned long port;
799 	struct device_node *host;
800 
801 	taddr = __of_translate_address(dev, of_get_parent,
802 				       in_addr, "ranges", &host);
803 	if (host) {
804 		/* host-specific port access */
805 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
806 		of_node_put(host);
807 	} else {
808 		/* memory-mapped I/O range */
809 		port = pci_address_to_pio(taddr);
810 	}
811 
812 	if (port == (unsigned long)-1)
813 		return OF_BAD_ADDR;
814 
815 	return port;
816 }
817 
818 static int __of_address_to_resource(struct device_node *dev,
819 		const __be32 *addrp, u64 size, unsigned int flags,
820 		const char *name, struct resource *r)
821 {
822 	u64 taddr;
823 
824 	if (flags & IORESOURCE_MEM)
825 		taddr = of_translate_address(dev, addrp);
826 	else if (flags & IORESOURCE_IO)
827 		taddr = of_translate_ioport(dev, addrp, size);
828 	else
829 		return -EINVAL;
830 
831 	if (taddr == OF_BAD_ADDR)
832 		return -EINVAL;
833 	memset(r, 0, sizeof(struct resource));
834 
835 	r->start = taddr;
836 	r->end = taddr + size - 1;
837 	r->flags = flags;
838 	r->name = name ? name : dev->full_name;
839 
840 	return 0;
841 }
842 
843 /**
844  * of_address_to_resource - Translate device tree address and return as resource
845  *
846  * Note that if your address is a PIO address, the conversion will fail if
847  * the physical address can't be internally converted to an IO token with
848  * pci_address_to_pio(), that is because it's either called too early or it
849  * can't be matched to any host bridge IO space
850  */
851 int of_address_to_resource(struct device_node *dev, int index,
852 			   struct resource *r)
853 {
854 	const __be32	*addrp;
855 	u64		size;
856 	unsigned int	flags;
857 	const char	*name = NULL;
858 
859 	addrp = of_get_address(dev, index, &size, &flags);
860 	if (addrp == NULL)
861 		return -EINVAL;
862 
863 	/* Get optional "reg-names" property to add a name to a resource */
864 	of_property_read_string_index(dev, "reg-names",	index, &name);
865 
866 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
867 }
868 EXPORT_SYMBOL_GPL(of_address_to_resource);
869 
870 /**
871  * of_iomap - Maps the memory mapped IO for a given device_node
872  * @np:		the device whose io range will be mapped
873  * @index:	index of the io range
874  *
875  * Returns a pointer to the mapped memory
876  */
877 void __iomem *of_iomap(struct device_node *np, int index)
878 {
879 	struct resource res;
880 
881 	if (of_address_to_resource(np, index, &res))
882 		return NULL;
883 
884 	return ioremap(res.start, resource_size(&res));
885 }
886 EXPORT_SYMBOL(of_iomap);
887 
888 /*
889  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
890  *			   for a given device_node
891  * @device:	the device whose io range will be mapped
892  * @index:	index of the io range
893  * @name:	name "override" for the memory region request or NULL
894  *
895  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
896  * error code on failure. Usage example:
897  *
898  *	base = of_io_request_and_map(node, 0, "foo");
899  *	if (IS_ERR(base))
900  *		return PTR_ERR(base);
901  */
902 void __iomem *of_io_request_and_map(struct device_node *np, int index,
903 				    const char *name)
904 {
905 	struct resource res;
906 	void __iomem *mem;
907 
908 	if (of_address_to_resource(np, index, &res))
909 		return IOMEM_ERR_PTR(-EINVAL);
910 
911 	if (!name)
912 		name = res.name;
913 	if (!request_mem_region(res.start, resource_size(&res), name))
914 		return IOMEM_ERR_PTR(-EBUSY);
915 
916 	mem = ioremap(res.start, resource_size(&res));
917 	if (!mem) {
918 		release_mem_region(res.start, resource_size(&res));
919 		return IOMEM_ERR_PTR(-ENOMEM);
920 	}
921 
922 	return mem;
923 }
924 EXPORT_SYMBOL(of_io_request_and_map);
925 
926 /**
927  * of_dma_get_range - Get DMA range info
928  * @np:		device node to get DMA range info
929  * @dma_addr:	pointer to store initial DMA address of DMA range
930  * @paddr:	pointer to store initial CPU address of DMA range
931  * @size:	pointer to store size of DMA range
932  *
933  * Look in bottom up direction for the first "dma-ranges" property
934  * and parse it.
935  *  dma-ranges format:
936  *	DMA addr (dma_addr)	: naddr cells
937  *	CPU addr (phys_addr_t)	: pna cells
938  *	size			: nsize cells
939  *
940  * It returns -ENODEV if "dma-ranges" property was not found
941  * for this device in DT.
942  */
943 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
944 {
945 	struct device_node *node = of_node_get(np);
946 	const __be32 *ranges = NULL;
947 	int len;
948 	int ret = 0;
949 	bool found_dma_ranges = false;
950 	struct of_range_parser parser;
951 	struct of_range range;
952 	u64 dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
953 
954 	while (node) {
955 		ranges = of_get_property(node, "dma-ranges", &len);
956 
957 		/* Ignore empty ranges, they imply no translation required */
958 		if (ranges && len > 0)
959 			break;
960 
961 		/* Once we find 'dma-ranges', then a missing one is an error */
962 		if (found_dma_ranges && !ranges) {
963 			ret = -ENODEV;
964 			goto out;
965 		}
966 		found_dma_ranges = true;
967 
968 		node = of_get_next_dma_parent(node);
969 	}
970 
971 	if (!node || !ranges) {
972 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
973 		ret = -ENODEV;
974 		goto out;
975 	}
976 
977 	of_dma_range_parser_init(&parser, node);
978 
979 	for_each_of_range(&parser, &range) {
980 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
981 			 range.bus_addr, range.cpu_addr, range.size);
982 
983 		if (dma_offset && range.cpu_addr - range.bus_addr != dma_offset) {
984 			pr_warn("Can't handle multiple dma-ranges with different offsets on node(%pOF)\n", node);
985 			/* Don't error out as we'd break some existing DTs */
986 			continue;
987 		}
988 		dma_offset = range.cpu_addr - range.bus_addr;
989 
990 		/* Take lower and upper limits */
991 		if (range.bus_addr < dma_start)
992 			dma_start = range.bus_addr;
993 		if (range.bus_addr + range.size > dma_end)
994 			dma_end = range.bus_addr + range.size;
995 	}
996 
997 	if (dma_start >= dma_end) {
998 		ret = -EINVAL;
999 		pr_debug("Invalid DMA ranges configuration on node(%pOF)\n",
1000 			 node);
1001 		goto out;
1002 	}
1003 
1004 	*dma_addr = dma_start;
1005 	*size = dma_end - dma_start;
1006 	*paddr = dma_start + dma_offset;
1007 
1008 	pr_debug("final: dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
1009 		 *dma_addr, *paddr, *size);
1010 
1011 out:
1012 	of_node_put(node);
1013 
1014 	return ret;
1015 }
1016 
1017 /**
1018  * of_dma_is_coherent - Check if device is coherent
1019  * @np:	device node
1020  *
1021  * It returns true if "dma-coherent" property was found
1022  * for this device in the DT, or if DMA is coherent by
1023  * default for OF devices on the current platform.
1024  */
1025 bool of_dma_is_coherent(struct device_node *np)
1026 {
1027 	struct device_node *node = of_node_get(np);
1028 
1029 	if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1030 		return true;
1031 
1032 	while (node) {
1033 		if (of_property_read_bool(node, "dma-coherent")) {
1034 			of_node_put(node);
1035 			return true;
1036 		}
1037 		node = of_get_next_dma_parent(node);
1038 	}
1039 	of_node_put(node);
1040 	return false;
1041 }
1042 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1043