xref: /linux/drivers/of/address.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/dma-direct.h> /* for bus_dma_region */
17 
18 #include "of_private.h"
19 
20 /* Max address size we deal with */
21 #define OF_MAX_ADDR_CELLS	4
22 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24 
25 /* Debug utility */
26 #ifdef DEBUG
27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 	pr_debug("%s", s);
30 	while (na--)
31 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 	pr_cont("\n");
33 }
34 #else
35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37 
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 	const char	*name;
41 	const char	*addresses;
42 	int		(*match)(struct device_node *parent);
43 	void		(*count_cells)(struct device_node *child,
44 				       int *addrc, int *sizec);
45 	u64		(*map)(__be32 *addr, const __be32 *range,
46 				int na, int ns, int pna, int fna);
47 	int		(*translate)(__be32 *addr, u64 offset, int na);
48 	int		flag_cells;
49 	unsigned int	(*get_flags)(const __be32 *addr);
50 };
51 
52 /*
53  * Default translator (generic bus)
54  */
55 
56 static void of_bus_default_count_cells(struct device_node *dev,
57 				       int *addrc, int *sizec)
58 {
59 	if (addrc)
60 		*addrc = of_n_addr_cells(dev);
61 	if (sizec)
62 		*sizec = of_n_size_cells(dev);
63 }
64 
65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
66 		int na, int ns, int pna, int fna)
67 {
68 	u64 cp, s, da;
69 
70 	cp = of_read_number(range + fna, na - fna);
71 	s  = of_read_number(range + na + pna, ns);
72 	da = of_read_number(addr + fna, na - fna);
73 
74 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
75 
76 	if (da < cp || da >= (cp + s))
77 		return OF_BAD_ADDR;
78 	return da - cp;
79 }
80 
81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
82 {
83 	u64 a = of_read_number(addr, na);
84 	memset(addr, 0, na * 4);
85 	a += offset;
86 	if (na > 1)
87 		addr[na - 2] = cpu_to_be32(a >> 32);
88 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
89 
90 	return 0;
91 }
92 
93 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
94 {
95 	return of_read_number(addr, 1);
96 }
97 
98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
99 {
100 	return IORESOURCE_MEM;
101 }
102 
103 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
104 				    int ns, int pna, int fna)
105 {
106 	/* Check that flags match */
107 	if (*addr != *range)
108 		return OF_BAD_ADDR;
109 
110 	return of_bus_default_map(addr, range, na, ns, pna, fna);
111 }
112 
113 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
114 {
115 	/* Keep "flags" part (high cell) in translated address */
116 	return of_bus_default_translate(addr + 1, offset, na - 1);
117 }
118 
119 #ifdef CONFIG_PCI
120 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
121 {
122 	unsigned int flags = 0;
123 	u32 w = be32_to_cpup(addr);
124 
125 	if (!IS_ENABLED(CONFIG_PCI))
126 		return 0;
127 
128 	switch((w >> 24) & 0x03) {
129 	case 0x01:
130 		flags |= IORESOURCE_IO;
131 		break;
132 	case 0x02: /* 32 bits */
133 		flags |= IORESOURCE_MEM;
134 		break;
135 
136 	case 0x03: /* 64 bits */
137 		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
138 		break;
139 	}
140 	if (w & 0x40000000)
141 		flags |= IORESOURCE_PREFETCH;
142 	return flags;
143 }
144 
145 /*
146  * PCI bus specific translator
147  */
148 
149 static bool of_node_is_pcie(struct device_node *np)
150 {
151 	bool is_pcie = of_node_name_eq(np, "pcie");
152 
153 	if (is_pcie)
154 		pr_warn_once("%pOF: Missing device_type\n", np);
155 
156 	return is_pcie;
157 }
158 
159 static int of_bus_pci_match(struct device_node *np)
160 {
161 	/*
162  	 * "pciex" is PCI Express
163 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
164 	 * "ht" is hypertransport
165 	 *
166 	 * If none of the device_type match, and that the node name is
167 	 * "pcie", accept the device as PCI (with a warning).
168 	 */
169 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
170 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
171 		of_node_is_pcie(np);
172 }
173 
174 static void of_bus_pci_count_cells(struct device_node *np,
175 				   int *addrc, int *sizec)
176 {
177 	if (addrc)
178 		*addrc = 3;
179 	if (sizec)
180 		*sizec = 2;
181 }
182 
183 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
184 		int pna, int fna)
185 {
186 	unsigned int af, rf;
187 
188 	af = of_bus_pci_get_flags(addr);
189 	rf = of_bus_pci_get_flags(range);
190 
191 	/* Check address type match */
192 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
193 		return OF_BAD_ADDR;
194 
195 	return of_bus_default_map(addr, range, na, ns, pna, fna);
196 }
197 
198 #endif /* CONFIG_PCI */
199 
200 /*
201  * of_pci_range_to_resource - Create a resource from an of_pci_range
202  * @range:	the PCI range that describes the resource
203  * @np:		device node where the range belongs to
204  * @res:	pointer to a valid resource that will be updated to
205  *              reflect the values contained in the range.
206  *
207  * Returns -EINVAL if the range cannot be converted to resource.
208  *
209  * Note that if the range is an IO range, the resource will be converted
210  * using pci_address_to_pio() which can fail if it is called too early or
211  * if the range cannot be matched to any host bridge IO space (our case here).
212  * To guard against that we try to register the IO range first.
213  * If that fails we know that pci_address_to_pio() will do too.
214  */
215 int of_pci_range_to_resource(struct of_pci_range *range,
216 			     struct device_node *np, struct resource *res)
217 {
218 	int err;
219 	res->flags = range->flags;
220 	res->parent = res->child = res->sibling = NULL;
221 	res->name = np->full_name;
222 
223 	if (res->flags & IORESOURCE_IO) {
224 		unsigned long port;
225 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
226 				range->size);
227 		if (err)
228 			goto invalid_range;
229 		port = pci_address_to_pio(range->cpu_addr);
230 		if (port == (unsigned long)-1) {
231 			err = -EINVAL;
232 			goto invalid_range;
233 		}
234 		res->start = port;
235 	} else {
236 		if ((sizeof(resource_size_t) < 8) &&
237 		    upper_32_bits(range->cpu_addr)) {
238 			err = -EINVAL;
239 			goto invalid_range;
240 		}
241 
242 		res->start = range->cpu_addr;
243 	}
244 	res->end = res->start + range->size - 1;
245 	return 0;
246 
247 invalid_range:
248 	res->start = (resource_size_t)OF_BAD_ADDR;
249 	res->end = (resource_size_t)OF_BAD_ADDR;
250 	return err;
251 }
252 EXPORT_SYMBOL(of_pci_range_to_resource);
253 
254 /*
255  * of_range_to_resource - Create a resource from a ranges entry
256  * @np:		device node where the range belongs to
257  * @index:	the 'ranges' index to convert to a resource
258  * @res:	pointer to a valid resource that will be updated to
259  *              reflect the values contained in the range.
260  *
261  * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
262  * converted to resource.
263  */
264 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
265 {
266 	int ret, i = 0;
267 	struct of_range_parser parser;
268 	struct of_range range;
269 
270 	ret = of_range_parser_init(&parser, np);
271 	if (ret)
272 		return ret;
273 
274 	for_each_of_range(&parser, &range)
275 		if (i++ == index)
276 			return of_pci_range_to_resource(&range, np, res);
277 
278 	return -ENOENT;
279 }
280 EXPORT_SYMBOL(of_range_to_resource);
281 
282 /*
283  * ISA bus specific translator
284  */
285 
286 static int of_bus_isa_match(struct device_node *np)
287 {
288 	return of_node_name_eq(np, "isa");
289 }
290 
291 static void of_bus_isa_count_cells(struct device_node *child,
292 				   int *addrc, int *sizec)
293 {
294 	if (addrc)
295 		*addrc = 2;
296 	if (sizec)
297 		*sizec = 1;
298 }
299 
300 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
301 		int pna, int fna)
302 {
303 	/* Check address type match */
304 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
305 		return OF_BAD_ADDR;
306 
307 	return of_bus_default_map(addr, range, na, ns, pna, fna);
308 }
309 
310 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
311 {
312 	unsigned int flags = 0;
313 	u32 w = be32_to_cpup(addr);
314 
315 	if (w & 1)
316 		flags |= IORESOURCE_IO;
317 	else
318 		flags |= IORESOURCE_MEM;
319 	return flags;
320 }
321 
322 static int of_bus_default_flags_match(struct device_node *np)
323 {
324 	return of_bus_n_addr_cells(np) == 3;
325 }
326 
327 /*
328  * Array of bus specific translators
329  */
330 
331 static struct of_bus of_busses[] = {
332 #ifdef CONFIG_PCI
333 	/* PCI */
334 	{
335 		.name = "pci",
336 		.addresses = "assigned-addresses",
337 		.match = of_bus_pci_match,
338 		.count_cells = of_bus_pci_count_cells,
339 		.map = of_bus_pci_map,
340 		.translate = of_bus_default_flags_translate,
341 		.flag_cells = 1,
342 		.get_flags = of_bus_pci_get_flags,
343 	},
344 #endif /* CONFIG_PCI */
345 	/* ISA */
346 	{
347 		.name = "isa",
348 		.addresses = "reg",
349 		.match = of_bus_isa_match,
350 		.count_cells = of_bus_isa_count_cells,
351 		.map = of_bus_isa_map,
352 		.translate = of_bus_default_flags_translate,
353 		.flag_cells = 1,
354 		.get_flags = of_bus_isa_get_flags,
355 	},
356 	/* Default with flags cell */
357 	{
358 		.name = "default-flags",
359 		.addresses = "reg",
360 		.match = of_bus_default_flags_match,
361 		.count_cells = of_bus_default_count_cells,
362 		.map = of_bus_default_flags_map,
363 		.translate = of_bus_default_flags_translate,
364 		.flag_cells = 1,
365 		.get_flags = of_bus_default_flags_get_flags,
366 	},
367 	/* Default */
368 	{
369 		.name = "default",
370 		.addresses = "reg",
371 		.match = NULL,
372 		.count_cells = of_bus_default_count_cells,
373 		.map = of_bus_default_map,
374 		.translate = of_bus_default_translate,
375 		.get_flags = of_bus_default_get_flags,
376 	},
377 };
378 
379 static struct of_bus *of_match_bus(struct device_node *np)
380 {
381 	int i;
382 
383 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
384 		if (!of_busses[i].match || of_busses[i].match(np))
385 			return &of_busses[i];
386 	BUG();
387 	return NULL;
388 }
389 
390 static int of_empty_ranges_quirk(struct device_node *np)
391 {
392 	if (IS_ENABLED(CONFIG_PPC)) {
393 		/* To save cycles, we cache the result for global "Mac" setting */
394 		static int quirk_state = -1;
395 
396 		/* PA-SEMI sdc DT bug */
397 		if (of_device_is_compatible(np, "1682m-sdc"))
398 			return true;
399 
400 		/* Make quirk cached */
401 		if (quirk_state < 0)
402 			quirk_state =
403 				of_machine_is_compatible("Power Macintosh") ||
404 				of_machine_is_compatible("MacRISC");
405 		return quirk_state;
406 	}
407 	return false;
408 }
409 
410 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
411 			    struct of_bus *pbus, __be32 *addr,
412 			    int na, int ns, int pna, const char *rprop)
413 {
414 	const __be32 *ranges;
415 	unsigned int rlen;
416 	int rone;
417 	u64 offset = OF_BAD_ADDR;
418 
419 	/*
420 	 * Normally, an absence of a "ranges" property means we are
421 	 * crossing a non-translatable boundary, and thus the addresses
422 	 * below the current cannot be converted to CPU physical ones.
423 	 * Unfortunately, while this is very clear in the spec, it's not
424 	 * what Apple understood, and they do have things like /uni-n or
425 	 * /ht nodes with no "ranges" property and a lot of perfectly
426 	 * useable mapped devices below them. Thus we treat the absence of
427 	 * "ranges" as equivalent to an empty "ranges" property which means
428 	 * a 1:1 translation at that level. It's up to the caller not to try
429 	 * to translate addresses that aren't supposed to be translated in
430 	 * the first place. --BenH.
431 	 *
432 	 * As far as we know, this damage only exists on Apple machines, so
433 	 * This code is only enabled on powerpc. --gcl
434 	 *
435 	 * This quirk also applies for 'dma-ranges' which frequently exist in
436 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
437 	 */
438 	ranges = of_get_property(parent, rprop, &rlen);
439 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
440 	    strcmp(rprop, "dma-ranges")) {
441 		pr_debug("no ranges; cannot translate\n");
442 		return 1;
443 	}
444 	if (ranges == NULL || rlen == 0) {
445 		offset = of_read_number(addr, na);
446 		memset(addr, 0, pna * 4);
447 		pr_debug("empty ranges; 1:1 translation\n");
448 		goto finish;
449 	}
450 
451 	pr_debug("walking ranges...\n");
452 
453 	/* Now walk through the ranges */
454 	rlen /= 4;
455 	rone = na + pna + ns;
456 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
457 		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
458 		if (offset != OF_BAD_ADDR)
459 			break;
460 	}
461 	if (offset == OF_BAD_ADDR) {
462 		pr_debug("not found !\n");
463 		return 1;
464 	}
465 	memcpy(addr, ranges + na, 4 * pna);
466 
467  finish:
468 	of_dump_addr("parent translation for:", addr, pna);
469 	pr_debug("with offset: %llx\n", offset);
470 
471 	/* Translate it into parent bus space */
472 	return pbus->translate(addr, offset, pna);
473 }
474 
475 /*
476  * Translate an address from the device-tree into a CPU physical address,
477  * this walks up the tree and applies the various bus mappings on the
478  * way.
479  *
480  * Note: We consider that crossing any level with #size-cells == 0 to mean
481  * that translation is impossible (that is we are not dealing with a value
482  * that can be mapped to a cpu physical address). This is not really specified
483  * that way, but this is traditionally the way IBM at least do things
484  *
485  * Whenever the translation fails, the *host pointer will be set to the
486  * device that had registered logical PIO mapping, and the return code is
487  * relative to that node.
488  */
489 static u64 __of_translate_address(struct device_node *node,
490 				  struct device_node *(*get_parent)(const struct device_node *),
491 				  const __be32 *in_addr, const char *rprop,
492 				  struct device_node **host)
493 {
494 	struct device_node *dev __free(device_node) = of_node_get(node);
495 	struct device_node *parent __free(device_node) = get_parent(dev);
496 	struct of_bus *bus, *pbus;
497 	__be32 addr[OF_MAX_ADDR_CELLS];
498 	int na, ns, pna, pns;
499 
500 	pr_debug("** translation for device %pOF **\n", dev);
501 
502 	*host = NULL;
503 
504 	if (parent == NULL)
505 		return OF_BAD_ADDR;
506 	bus = of_match_bus(parent);
507 
508 	/* Count address cells & copy address locally */
509 	bus->count_cells(dev, &na, &ns);
510 	if (!OF_CHECK_COUNTS(na, ns)) {
511 		pr_debug("Bad cell count for %pOF\n", dev);
512 		return OF_BAD_ADDR;
513 	}
514 	memcpy(addr, in_addr, na * 4);
515 
516 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
517 	    bus->name, na, ns, parent);
518 	of_dump_addr("translating address:", addr, na);
519 
520 	/* Translate */
521 	for (;;) {
522 		struct logic_pio_hwaddr *iorange;
523 
524 		/* Switch to parent bus */
525 		of_node_put(dev);
526 		dev = parent;
527 		parent = get_parent(dev);
528 
529 		/* If root, we have finished */
530 		if (parent == NULL) {
531 			pr_debug("reached root node\n");
532 			return of_read_number(addr, na);
533 		}
534 
535 		/*
536 		 * For indirectIO device which has no ranges property, get
537 		 * the address from reg directly.
538 		 */
539 		iorange = find_io_range_by_fwnode(&dev->fwnode);
540 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
541 			u64 result = of_read_number(addr + 1, na - 1);
542 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
543 				 dev, result);
544 			*host = no_free_ptr(dev);
545 			return result;
546 		}
547 
548 		/* Get new parent bus and counts */
549 		pbus = of_match_bus(parent);
550 		pbus->count_cells(dev, &pna, &pns);
551 		if (!OF_CHECK_COUNTS(pna, pns)) {
552 			pr_err("Bad cell count for %pOF\n", dev);
553 			return OF_BAD_ADDR;
554 		}
555 
556 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
557 		    pbus->name, pna, pns, parent);
558 
559 		/* Apply bus translation */
560 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
561 			return OF_BAD_ADDR;
562 
563 		/* Complete the move up one level */
564 		na = pna;
565 		ns = pns;
566 		bus = pbus;
567 
568 		of_dump_addr("one level translation:", addr, na);
569 	}
570 
571 	unreachable();
572 }
573 
574 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
575 {
576 	struct device_node *host;
577 	u64 ret;
578 
579 	ret = __of_translate_address(dev, of_get_parent,
580 				     in_addr, "ranges", &host);
581 	if (host) {
582 		of_node_put(host);
583 		return OF_BAD_ADDR;
584 	}
585 
586 	return ret;
587 }
588 EXPORT_SYMBOL(of_translate_address);
589 
590 #ifdef CONFIG_HAS_DMA
591 struct device_node *__of_get_dma_parent(const struct device_node *np)
592 {
593 	struct of_phandle_args args;
594 	int ret, index;
595 
596 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
597 	if (index < 0)
598 		return of_get_parent(np);
599 
600 	ret = of_parse_phandle_with_args(np, "interconnects",
601 					 "#interconnect-cells",
602 					 index, &args);
603 	if (ret < 0)
604 		return of_get_parent(np);
605 
606 	return of_node_get(args.np);
607 }
608 #endif
609 
610 static struct device_node *of_get_next_dma_parent(struct device_node *np)
611 {
612 	struct device_node *parent;
613 
614 	parent = __of_get_dma_parent(np);
615 	of_node_put(np);
616 
617 	return parent;
618 }
619 
620 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
621 {
622 	struct device_node *host;
623 	u64 ret;
624 
625 	ret = __of_translate_address(dev, __of_get_dma_parent,
626 				     in_addr, "dma-ranges", &host);
627 
628 	if (host) {
629 		of_node_put(host);
630 		return OF_BAD_ADDR;
631 	}
632 
633 	return ret;
634 }
635 EXPORT_SYMBOL(of_translate_dma_address);
636 
637 /**
638  * of_translate_dma_region - Translate device tree address and size tuple
639  * @dev: device tree node for which to translate
640  * @prop: pointer into array of cells
641  * @start: return value for the start of the DMA range
642  * @length: return value for the length of the DMA range
643  *
644  * Returns a pointer to the cell immediately following the translated DMA region.
645  */
646 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
647 				      phys_addr_t *start, size_t *length)
648 {
649 	struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
650 	u64 address, size;
651 	int na, ns;
652 
653 	if (!parent)
654 		return NULL;
655 
656 	na = of_bus_n_addr_cells(parent);
657 	ns = of_bus_n_size_cells(parent);
658 
659 	address = of_translate_dma_address(dev, prop);
660 	if (address == OF_BAD_ADDR)
661 		return NULL;
662 
663 	size = of_read_number(prop + na, ns);
664 
665 	if (start)
666 		*start = address;
667 
668 	if (length)
669 		*length = size;
670 
671 	return prop + na + ns;
672 }
673 EXPORT_SYMBOL(of_translate_dma_region);
674 
675 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
676 			       u64 *size, unsigned int *flags)
677 {
678 	const __be32 *prop;
679 	unsigned int psize;
680 	struct device_node *parent __free(device_node) = of_get_parent(dev);
681 	struct of_bus *bus;
682 	int onesize, i, na, ns;
683 
684 	if (parent == NULL)
685 		return NULL;
686 
687 	/* match the parent's bus type */
688 	bus = of_match_bus(parent);
689 	if (strcmp(bus->name, "pci") && (bar_no >= 0))
690 		return NULL;
691 
692 	bus->count_cells(dev, &na, &ns);
693 	if (!OF_CHECK_ADDR_COUNT(na))
694 		return NULL;
695 
696 	/* Get "reg" or "assigned-addresses" property */
697 	prop = of_get_property(dev, bus->addresses, &psize);
698 	if (prop == NULL)
699 		return NULL;
700 	psize /= 4;
701 
702 	onesize = na + ns;
703 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
704 		u32 val = be32_to_cpu(prop[0]);
705 		/* PCI bus matches on BAR number instead of index */
706 		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
707 		    ((index >= 0) && (i == index))) {
708 			if (size)
709 				*size = of_read_number(prop + na, ns);
710 			if (flags)
711 				*flags = bus->get_flags(prop);
712 			return prop;
713 		}
714 	}
715 	return NULL;
716 }
717 EXPORT_SYMBOL(__of_get_address);
718 
719 /**
720  * of_property_read_reg - Retrieve the specified "reg" entry index without translating
721  * @np: device tree node for which to retrieve "reg" from
722  * @idx: "reg" entry index to read
723  * @addr: return value for the untranslated address
724  * @size: return value for the entry size
725  *
726  * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
727  * size values filled in.
728  */
729 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
730 {
731 	const __be32 *prop = of_get_address(np, idx, size, NULL);
732 
733 	if (!prop)
734 		return -EINVAL;
735 
736 	*addr = of_read_number(prop, of_n_addr_cells(np));
737 
738 	return 0;
739 }
740 EXPORT_SYMBOL(of_property_read_reg);
741 
742 static int parser_init(struct of_pci_range_parser *parser,
743 			struct device_node *node, const char *name)
744 {
745 	int rlen;
746 
747 	parser->node = node;
748 	parser->pna = of_n_addr_cells(node);
749 	parser->na = of_bus_n_addr_cells(node);
750 	parser->ns = of_bus_n_size_cells(node);
751 	parser->dma = !strcmp(name, "dma-ranges");
752 	parser->bus = of_match_bus(node);
753 
754 	parser->range = of_get_property(node, name, &rlen);
755 	if (parser->range == NULL)
756 		return -ENOENT;
757 
758 	parser->end = parser->range + rlen / sizeof(__be32);
759 
760 	return 0;
761 }
762 
763 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
764 				struct device_node *node)
765 {
766 	return parser_init(parser, node, "ranges");
767 }
768 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
769 
770 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
771 				struct device_node *node)
772 {
773 	return parser_init(parser, node, "dma-ranges");
774 }
775 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
776 #define of_dma_range_parser_init of_pci_dma_range_parser_init
777 
778 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
779 						struct of_pci_range *range)
780 {
781 	int na = parser->na;
782 	int ns = parser->ns;
783 	int np = parser->pna + na + ns;
784 	int busflag_na = parser->bus->flag_cells;
785 
786 	if (!range)
787 		return NULL;
788 
789 	if (!parser->range || parser->range + np > parser->end)
790 		return NULL;
791 
792 	range->flags = parser->bus->get_flags(parser->range);
793 
794 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
795 
796 	if (parser->dma)
797 		range->cpu_addr = of_translate_dma_address(parser->node,
798 				parser->range + na);
799 	else
800 		range->cpu_addr = of_translate_address(parser->node,
801 				parser->range + na);
802 	range->size = of_read_number(parser->range + parser->pna + na, ns);
803 
804 	parser->range += np;
805 
806 	/* Now consume following elements while they are contiguous */
807 	while (parser->range + np <= parser->end) {
808 		u32 flags = 0;
809 		u64 bus_addr, cpu_addr, size;
810 
811 		flags = parser->bus->get_flags(parser->range);
812 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
813 		if (parser->dma)
814 			cpu_addr = of_translate_dma_address(parser->node,
815 					parser->range + na);
816 		else
817 			cpu_addr = of_translate_address(parser->node,
818 					parser->range + na);
819 		size = of_read_number(parser->range + parser->pna + na, ns);
820 
821 		if (flags != range->flags)
822 			break;
823 		if (bus_addr != range->bus_addr + range->size ||
824 		    cpu_addr != range->cpu_addr + range->size)
825 			break;
826 
827 		range->size += size;
828 		parser->range += np;
829 	}
830 
831 	return range;
832 }
833 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
834 
835 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
836 			u64 size)
837 {
838 	u64 taddr;
839 	unsigned long port;
840 	struct device_node *host;
841 
842 	taddr = __of_translate_address(dev, of_get_parent,
843 				       in_addr, "ranges", &host);
844 	if (host) {
845 		/* host-specific port access */
846 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
847 		of_node_put(host);
848 	} else {
849 		/* memory-mapped I/O range */
850 		port = pci_address_to_pio(taddr);
851 	}
852 
853 	if (port == (unsigned long)-1)
854 		return OF_BAD_ADDR;
855 
856 	return port;
857 }
858 
859 #ifdef CONFIG_HAS_DMA
860 /**
861  * of_dma_get_range - Get DMA range info and put it into a map array
862  * @np:		device node to get DMA range info
863  * @map:	dma range structure to return
864  *
865  * Look in bottom up direction for the first "dma-ranges" property
866  * and parse it.  Put the information into a DMA offset map array.
867  *
868  * dma-ranges format:
869  *	DMA addr (dma_addr)	: naddr cells
870  *	CPU addr (phys_addr_t)	: pna cells
871  *	size			: nsize cells
872  *
873  * It returns -ENODEV if "dma-ranges" property was not found for this
874  * device in the DT.
875  */
876 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
877 {
878 	struct device_node *node __free(device_node) = of_node_get(np);
879 	const __be32 *ranges = NULL;
880 	bool found_dma_ranges = false;
881 	struct of_range_parser parser;
882 	struct of_range range;
883 	struct bus_dma_region *r;
884 	int len, num_ranges = 0;
885 
886 	while (node) {
887 		ranges = of_get_property(node, "dma-ranges", &len);
888 
889 		/* Ignore empty ranges, they imply no translation required */
890 		if (ranges && len > 0)
891 			break;
892 
893 		/* Once we find 'dma-ranges', then a missing one is an error */
894 		if (found_dma_ranges && !ranges)
895 			return -ENODEV;
896 
897 		found_dma_ranges = true;
898 
899 		node = of_get_next_dma_parent(node);
900 	}
901 
902 	if (!node || !ranges) {
903 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
904 		return -ENODEV;
905 	}
906 	of_dma_range_parser_init(&parser, node);
907 	for_each_of_range(&parser, &range) {
908 		if (range.cpu_addr == OF_BAD_ADDR) {
909 			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
910 			       range.bus_addr, node);
911 			continue;
912 		}
913 		num_ranges++;
914 	}
915 
916 	if (!num_ranges)
917 		return -EINVAL;
918 
919 	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
920 	if (!r)
921 		return -ENOMEM;
922 
923 	/*
924 	 * Record all info in the generic DMA ranges array for struct device,
925 	 * returning an error if we don't find any parsable ranges.
926 	 */
927 	*map = r;
928 	of_dma_range_parser_init(&parser, node);
929 	for_each_of_range(&parser, &range) {
930 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
931 			 range.bus_addr, range.cpu_addr, range.size);
932 		if (range.cpu_addr == OF_BAD_ADDR)
933 			continue;
934 		r->cpu_start = range.cpu_addr;
935 		r->dma_start = range.bus_addr;
936 		r->size = range.size;
937 		r++;
938 	}
939 	return 0;
940 }
941 #endif /* CONFIG_HAS_DMA */
942 
943 /**
944  * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
945  * @np: The node to start searching from or NULL to start from the root
946  *
947  * Gets the highest CPU physical address that is addressable by all DMA masters
948  * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
949  * DMA constrained device is found, it returns PHYS_ADDR_MAX.
950  */
951 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
952 {
953 	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
954 	struct of_range_parser parser;
955 	phys_addr_t subtree_max_addr;
956 	struct device_node *child;
957 	struct of_range range;
958 	const __be32 *ranges;
959 	u64 cpu_end = 0;
960 	int len;
961 
962 	if (!np)
963 		np = of_root;
964 
965 	ranges = of_get_property(np, "dma-ranges", &len);
966 	if (ranges && len) {
967 		of_dma_range_parser_init(&parser, np);
968 		for_each_of_range(&parser, &range)
969 			if (range.cpu_addr + range.size > cpu_end)
970 				cpu_end = range.cpu_addr + range.size - 1;
971 
972 		if (max_cpu_addr > cpu_end)
973 			max_cpu_addr = cpu_end;
974 	}
975 
976 	for_each_available_child_of_node(np, child) {
977 		subtree_max_addr = of_dma_get_max_cpu_address(child);
978 		if (max_cpu_addr > subtree_max_addr)
979 			max_cpu_addr = subtree_max_addr;
980 	}
981 
982 	return max_cpu_addr;
983 }
984 
985 /**
986  * of_dma_is_coherent - Check if device is coherent
987  * @np:	device node
988  *
989  * It returns true if "dma-coherent" property was found
990  * for this device in the DT, or if DMA is coherent by
991  * default for OF devices on the current platform and no
992  * "dma-noncoherent" property was found for this device.
993  */
994 bool of_dma_is_coherent(struct device_node *np)
995 {
996 	struct device_node *node __free(device_node) = of_node_get(np);
997 
998 	while (node) {
999 		if (of_property_read_bool(node, "dma-coherent"))
1000 			return true;
1001 
1002 		if (of_property_read_bool(node, "dma-noncoherent"))
1003 			return false;
1004 
1005 		node = of_get_next_dma_parent(node);
1006 	}
1007 	return dma_default_coherent;
1008 }
1009 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1010 
1011 /**
1012  * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1013  * @np:	device node
1014  *
1015  * Returns true if the "nonposted-mmio" property was found for
1016  * the device's bus.
1017  *
1018  * This is currently only enabled on builds that support Apple ARM devices, as
1019  * an optimization.
1020  */
1021 static bool of_mmio_is_nonposted(struct device_node *np)
1022 {
1023 	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1024 		return false;
1025 
1026 	struct device_node *parent __free(device_node) = of_get_parent(np);
1027 	if (!parent)
1028 		return false;
1029 
1030 	return of_property_read_bool(parent, "nonposted-mmio");
1031 }
1032 
1033 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1034 		struct resource *r)
1035 {
1036 	u64 taddr;
1037 	const __be32	*addrp;
1038 	u64		size;
1039 	unsigned int	flags;
1040 	const char	*name = NULL;
1041 
1042 	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1043 	if (addrp == NULL)
1044 		return -EINVAL;
1045 
1046 	/* Get optional "reg-names" property to add a name to a resource */
1047 	if (index >= 0)
1048 		of_property_read_string_index(dev, "reg-names",	index, &name);
1049 
1050 	if (flags & IORESOURCE_MEM)
1051 		taddr = of_translate_address(dev, addrp);
1052 	else if (flags & IORESOURCE_IO)
1053 		taddr = of_translate_ioport(dev, addrp, size);
1054 	else
1055 		return -EINVAL;
1056 
1057 	if (taddr == OF_BAD_ADDR)
1058 		return -EINVAL;
1059 	memset(r, 0, sizeof(struct resource));
1060 
1061 	if (of_mmio_is_nonposted(dev))
1062 		flags |= IORESOURCE_MEM_NONPOSTED;
1063 
1064 	r->start = taddr;
1065 	r->end = taddr + size - 1;
1066 	r->flags = flags;
1067 	r->name = name ? name : dev->full_name;
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  * of_address_to_resource - Translate device tree address and return as resource
1074  * @dev:	Caller's Device Node
1075  * @index:	Index into the array
1076  * @r:		Pointer to resource array
1077  *
1078  * Returns -EINVAL if the range cannot be converted to resource.
1079  *
1080  * Note that if your address is a PIO address, the conversion will fail if
1081  * the physical address can't be internally converted to an IO token with
1082  * pci_address_to_pio(), that is because it's either called too early or it
1083  * can't be matched to any host bridge IO space
1084  */
1085 int of_address_to_resource(struct device_node *dev, int index,
1086 			   struct resource *r)
1087 {
1088 	return __of_address_to_resource(dev, index, -1, r);
1089 }
1090 EXPORT_SYMBOL_GPL(of_address_to_resource);
1091 
1092 int of_pci_address_to_resource(struct device_node *dev, int bar,
1093 			       struct resource *r)
1094 {
1095 
1096 	if (!IS_ENABLED(CONFIG_PCI))
1097 		return -ENOSYS;
1098 
1099 	return __of_address_to_resource(dev, -1, bar, r);
1100 }
1101 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1102 
1103 /**
1104  * of_iomap - Maps the memory mapped IO for a given device_node
1105  * @np:		the device whose io range will be mapped
1106  * @index:	index of the io range
1107  *
1108  * Returns a pointer to the mapped memory
1109  */
1110 void __iomem *of_iomap(struct device_node *np, int index)
1111 {
1112 	struct resource res;
1113 
1114 	if (of_address_to_resource(np, index, &res))
1115 		return NULL;
1116 
1117 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1118 		return ioremap_np(res.start, resource_size(&res));
1119 	else
1120 		return ioremap(res.start, resource_size(&res));
1121 }
1122 EXPORT_SYMBOL(of_iomap);
1123 
1124 /*
1125  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1126  *			   for a given device_node
1127  * @device:	the device whose io range will be mapped
1128  * @index:	index of the io range
1129  * @name:	name "override" for the memory region request or NULL
1130  *
1131  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1132  * error code on failure. Usage example:
1133  *
1134  *	base = of_io_request_and_map(node, 0, "foo");
1135  *	if (IS_ERR(base))
1136  *		return PTR_ERR(base);
1137  */
1138 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1139 				    const char *name)
1140 {
1141 	struct resource res;
1142 	void __iomem *mem;
1143 
1144 	if (of_address_to_resource(np, index, &res))
1145 		return IOMEM_ERR_PTR(-EINVAL);
1146 
1147 	if (!name)
1148 		name = res.name;
1149 	if (!request_mem_region(res.start, resource_size(&res), name))
1150 		return IOMEM_ERR_PTR(-EBUSY);
1151 
1152 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1153 		mem = ioremap_np(res.start, resource_size(&res));
1154 	else
1155 		mem = ioremap(res.start, resource_size(&res));
1156 
1157 	if (!mem) {
1158 		release_mem_region(res.start, resource_size(&res));
1159 		return IOMEM_ERR_PTR(-ENOMEM);
1160 	}
1161 
1162 	return mem;
1163 }
1164 EXPORT_SYMBOL(of_io_request_and_map);
1165