1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/dma-direct.h> /* for bus_dma_region */ 17 18 #include "of_private.h" 19 20 /* Max address size we deal with */ 21 #define OF_MAX_ADDR_CELLS 4 22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 24 25 /* Debug utility */ 26 #ifdef DEBUG 27 static void of_dump_addr(const char *s, const __be32 *addr, int na) 28 { 29 pr_debug("%s", s); 30 while (na--) 31 pr_cont(" %08x", be32_to_cpu(*(addr++))); 32 pr_cont("\n"); 33 } 34 #else 35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 36 #endif 37 38 /* Callbacks for bus specific translators */ 39 struct of_bus { 40 const char *name; 41 const char *addresses; 42 int (*match)(struct device_node *parent); 43 void (*count_cells)(struct device_node *child, 44 int *addrc, int *sizec); 45 u64 (*map)(__be32 *addr, const __be32 *range, 46 int na, int ns, int pna); 47 int (*translate)(__be32 *addr, u64 offset, int na); 48 bool has_flags; 49 unsigned int (*get_flags)(const __be32 *addr); 50 }; 51 52 /* 53 * Default translator (generic bus) 54 */ 55 56 static void of_bus_default_count_cells(struct device_node *dev, 57 int *addrc, int *sizec) 58 { 59 if (addrc) 60 *addrc = of_n_addr_cells(dev); 61 if (sizec) 62 *sizec = of_n_size_cells(dev); 63 } 64 65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 66 int na, int ns, int pna) 67 { 68 u64 cp, s, da; 69 70 cp = of_read_number(range, na); 71 s = of_read_number(range + na + pna, ns); 72 da = of_read_number(addr, na); 73 74 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 75 76 if (da < cp || da >= (cp + s)) 77 return OF_BAD_ADDR; 78 return da - cp; 79 } 80 81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 82 { 83 u64 a = of_read_number(addr, na); 84 memset(addr, 0, na * 4); 85 a += offset; 86 if (na > 1) 87 addr[na - 2] = cpu_to_be32(a >> 32); 88 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 89 90 return 0; 91 } 92 93 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) 94 { 95 return of_read_number(addr, 1); 96 } 97 98 static unsigned int of_bus_default_get_flags(const __be32 *addr) 99 { 100 return IORESOURCE_MEM; 101 } 102 103 104 #ifdef CONFIG_PCI 105 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 106 { 107 unsigned int flags = 0; 108 u32 w = be32_to_cpup(addr); 109 110 if (!IS_ENABLED(CONFIG_PCI)) 111 return 0; 112 113 switch((w >> 24) & 0x03) { 114 case 0x01: 115 flags |= IORESOURCE_IO; 116 break; 117 case 0x02: /* 32 bits */ 118 flags |= IORESOURCE_MEM; 119 break; 120 121 case 0x03: /* 64 bits */ 122 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 123 break; 124 } 125 if (w & 0x40000000) 126 flags |= IORESOURCE_PREFETCH; 127 return flags; 128 } 129 130 /* 131 * PCI bus specific translator 132 */ 133 134 static bool of_node_is_pcie(struct device_node *np) 135 { 136 bool is_pcie = of_node_name_eq(np, "pcie"); 137 138 if (is_pcie) 139 pr_warn_once("%pOF: Missing device_type\n", np); 140 141 return is_pcie; 142 } 143 144 static int of_bus_pci_match(struct device_node *np) 145 { 146 /* 147 * "pciex" is PCI Express 148 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 149 * "ht" is hypertransport 150 * 151 * If none of the device_type match, and that the node name is 152 * "pcie", accept the device as PCI (with a warning). 153 */ 154 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 155 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 156 of_node_is_pcie(np); 157 } 158 159 static void of_bus_pci_count_cells(struct device_node *np, 160 int *addrc, int *sizec) 161 { 162 if (addrc) 163 *addrc = 3; 164 if (sizec) 165 *sizec = 2; 166 } 167 168 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 169 int pna) 170 { 171 u64 cp, s, da; 172 unsigned int af, rf; 173 174 af = of_bus_pci_get_flags(addr); 175 rf = of_bus_pci_get_flags(range); 176 177 /* Check address type match */ 178 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 179 return OF_BAD_ADDR; 180 181 /* Read address values, skipping high cell */ 182 cp = of_read_number(range + 1, na - 1); 183 s = of_read_number(range + na + pna, ns); 184 da = of_read_number(addr + 1, na - 1); 185 186 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 187 188 if (da < cp || da >= (cp + s)) 189 return OF_BAD_ADDR; 190 return da - cp; 191 } 192 193 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 194 { 195 return of_bus_default_translate(addr + 1, offset, na - 1); 196 } 197 #endif /* CONFIG_PCI */ 198 199 /* 200 * of_pci_range_to_resource - Create a resource from an of_pci_range 201 * @range: the PCI range that describes the resource 202 * @np: device node where the range belongs to 203 * @res: pointer to a valid resource that will be updated to 204 * reflect the values contained in the range. 205 * 206 * Returns -EINVAL if the range cannot be converted to resource. 207 * 208 * Note that if the range is an IO range, the resource will be converted 209 * using pci_address_to_pio() which can fail if it is called too early or 210 * if the range cannot be matched to any host bridge IO space (our case here). 211 * To guard against that we try to register the IO range first. 212 * If that fails we know that pci_address_to_pio() will do too. 213 */ 214 int of_pci_range_to_resource(struct of_pci_range *range, 215 struct device_node *np, struct resource *res) 216 { 217 int err; 218 res->flags = range->flags; 219 res->parent = res->child = res->sibling = NULL; 220 res->name = np->full_name; 221 222 if (res->flags & IORESOURCE_IO) { 223 unsigned long port; 224 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 225 range->size); 226 if (err) 227 goto invalid_range; 228 port = pci_address_to_pio(range->cpu_addr); 229 if (port == (unsigned long)-1) { 230 err = -EINVAL; 231 goto invalid_range; 232 } 233 res->start = port; 234 } else { 235 if ((sizeof(resource_size_t) < 8) && 236 upper_32_bits(range->cpu_addr)) { 237 err = -EINVAL; 238 goto invalid_range; 239 } 240 241 res->start = range->cpu_addr; 242 } 243 res->end = res->start + range->size - 1; 244 return 0; 245 246 invalid_range: 247 res->start = (resource_size_t)OF_BAD_ADDR; 248 res->end = (resource_size_t)OF_BAD_ADDR; 249 return err; 250 } 251 EXPORT_SYMBOL(of_pci_range_to_resource); 252 253 /* 254 * of_range_to_resource - Create a resource from a ranges entry 255 * @np: device node where the range belongs to 256 * @index: the 'ranges' index to convert to a resource 257 * @res: pointer to a valid resource that will be updated to 258 * reflect the values contained in the range. 259 * 260 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be 261 * converted to resource. 262 */ 263 int of_range_to_resource(struct device_node *np, int index, struct resource *res) 264 { 265 int ret, i = 0; 266 struct of_range_parser parser; 267 struct of_range range; 268 269 ret = of_range_parser_init(&parser, np); 270 if (ret) 271 return ret; 272 273 for_each_of_range(&parser, &range) 274 if (i++ == index) 275 return of_pci_range_to_resource(&range, np, res); 276 277 return -ENOENT; 278 } 279 EXPORT_SYMBOL(of_range_to_resource); 280 281 /* 282 * ISA bus specific translator 283 */ 284 285 static int of_bus_isa_match(struct device_node *np) 286 { 287 return of_node_name_eq(np, "isa"); 288 } 289 290 static void of_bus_isa_count_cells(struct device_node *child, 291 int *addrc, int *sizec) 292 { 293 if (addrc) 294 *addrc = 2; 295 if (sizec) 296 *sizec = 1; 297 } 298 299 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 300 int pna) 301 { 302 u64 cp, s, da; 303 304 /* Check address type match */ 305 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 306 return OF_BAD_ADDR; 307 308 /* Read address values, skipping high cell */ 309 cp = of_read_number(range + 1, na - 1); 310 s = of_read_number(range + na + pna, ns); 311 da = of_read_number(addr + 1, na - 1); 312 313 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 314 315 if (da < cp || da >= (cp + s)) 316 return OF_BAD_ADDR; 317 return da - cp; 318 } 319 320 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 321 { 322 return of_bus_default_translate(addr + 1, offset, na - 1); 323 } 324 325 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 326 { 327 unsigned int flags = 0; 328 u32 w = be32_to_cpup(addr); 329 330 if (w & 1) 331 flags |= IORESOURCE_IO; 332 else 333 flags |= IORESOURCE_MEM; 334 return flags; 335 } 336 337 static int of_bus_default_flags_match(struct device_node *np) 338 { 339 return of_bus_n_addr_cells(np) == 3; 340 } 341 342 /* 343 * Array of bus specific translators 344 */ 345 346 static struct of_bus of_busses[] = { 347 #ifdef CONFIG_PCI 348 /* PCI */ 349 { 350 .name = "pci", 351 .addresses = "assigned-addresses", 352 .match = of_bus_pci_match, 353 .count_cells = of_bus_pci_count_cells, 354 .map = of_bus_pci_map, 355 .translate = of_bus_pci_translate, 356 .has_flags = true, 357 .get_flags = of_bus_pci_get_flags, 358 }, 359 #endif /* CONFIG_PCI */ 360 /* ISA */ 361 { 362 .name = "isa", 363 .addresses = "reg", 364 .match = of_bus_isa_match, 365 .count_cells = of_bus_isa_count_cells, 366 .map = of_bus_isa_map, 367 .translate = of_bus_isa_translate, 368 .has_flags = true, 369 .get_flags = of_bus_isa_get_flags, 370 }, 371 /* Default with flags cell */ 372 { 373 .name = "default-flags", 374 .addresses = "reg", 375 .match = of_bus_default_flags_match, 376 .count_cells = of_bus_default_count_cells, 377 .map = of_bus_default_map, 378 .translate = of_bus_default_translate, 379 .has_flags = true, 380 .get_flags = of_bus_default_flags_get_flags, 381 }, 382 /* Default */ 383 { 384 .name = "default", 385 .addresses = "reg", 386 .match = NULL, 387 .count_cells = of_bus_default_count_cells, 388 .map = of_bus_default_map, 389 .translate = of_bus_default_translate, 390 .get_flags = of_bus_default_get_flags, 391 }, 392 }; 393 394 static struct of_bus *of_match_bus(struct device_node *np) 395 { 396 int i; 397 398 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 399 if (!of_busses[i].match || of_busses[i].match(np)) 400 return &of_busses[i]; 401 BUG(); 402 return NULL; 403 } 404 405 static int of_empty_ranges_quirk(struct device_node *np) 406 { 407 if (IS_ENABLED(CONFIG_PPC)) { 408 /* To save cycles, we cache the result for global "Mac" setting */ 409 static int quirk_state = -1; 410 411 /* PA-SEMI sdc DT bug */ 412 if (of_device_is_compatible(np, "1682m-sdc")) 413 return true; 414 415 /* Make quirk cached */ 416 if (quirk_state < 0) 417 quirk_state = 418 of_machine_is_compatible("Power Macintosh") || 419 of_machine_is_compatible("MacRISC"); 420 return quirk_state; 421 } 422 return false; 423 } 424 425 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 426 struct of_bus *pbus, __be32 *addr, 427 int na, int ns, int pna, const char *rprop) 428 { 429 const __be32 *ranges; 430 unsigned int rlen; 431 int rone; 432 u64 offset = OF_BAD_ADDR; 433 434 /* 435 * Normally, an absence of a "ranges" property means we are 436 * crossing a non-translatable boundary, and thus the addresses 437 * below the current cannot be converted to CPU physical ones. 438 * Unfortunately, while this is very clear in the spec, it's not 439 * what Apple understood, and they do have things like /uni-n or 440 * /ht nodes with no "ranges" property and a lot of perfectly 441 * useable mapped devices below them. Thus we treat the absence of 442 * "ranges" as equivalent to an empty "ranges" property which means 443 * a 1:1 translation at that level. It's up to the caller not to try 444 * to translate addresses that aren't supposed to be translated in 445 * the first place. --BenH. 446 * 447 * As far as we know, this damage only exists on Apple machines, so 448 * This code is only enabled on powerpc. --gcl 449 * 450 * This quirk also applies for 'dma-ranges' which frequently exist in 451 * child nodes without 'dma-ranges' in the parent nodes. --RobH 452 */ 453 ranges = of_get_property(parent, rprop, &rlen); 454 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 455 strcmp(rprop, "dma-ranges")) { 456 pr_debug("no ranges; cannot translate\n"); 457 return 1; 458 } 459 if (ranges == NULL || rlen == 0) { 460 offset = of_read_number(addr, na); 461 memset(addr, 0, pna * 4); 462 pr_debug("empty ranges; 1:1 translation\n"); 463 goto finish; 464 } 465 466 pr_debug("walking ranges...\n"); 467 468 /* Now walk through the ranges */ 469 rlen /= 4; 470 rone = na + pna + ns; 471 for (; rlen >= rone; rlen -= rone, ranges += rone) { 472 offset = bus->map(addr, ranges, na, ns, pna); 473 if (offset != OF_BAD_ADDR) 474 break; 475 } 476 if (offset == OF_BAD_ADDR) { 477 pr_debug("not found !\n"); 478 return 1; 479 } 480 memcpy(addr, ranges + na, 4 * pna); 481 482 finish: 483 of_dump_addr("parent translation for:", addr, pna); 484 pr_debug("with offset: %llx\n", offset); 485 486 /* Translate it into parent bus space */ 487 return pbus->translate(addr, offset, pna); 488 } 489 490 /* 491 * Translate an address from the device-tree into a CPU physical address, 492 * this walks up the tree and applies the various bus mappings on the 493 * way. 494 * 495 * Note: We consider that crossing any level with #size-cells == 0 to mean 496 * that translation is impossible (that is we are not dealing with a value 497 * that can be mapped to a cpu physical address). This is not really specified 498 * that way, but this is traditionally the way IBM at least do things 499 * 500 * Whenever the translation fails, the *host pointer will be set to the 501 * device that had registered logical PIO mapping, and the return code is 502 * relative to that node. 503 */ 504 static u64 __of_translate_address(struct device_node *dev, 505 struct device_node *(*get_parent)(const struct device_node *), 506 const __be32 *in_addr, const char *rprop, 507 struct device_node **host) 508 { 509 struct device_node *parent = NULL; 510 struct of_bus *bus, *pbus; 511 __be32 addr[OF_MAX_ADDR_CELLS]; 512 int na, ns, pna, pns; 513 u64 result = OF_BAD_ADDR; 514 515 pr_debug("** translation for device %pOF **\n", dev); 516 517 /* Increase refcount at current level */ 518 of_node_get(dev); 519 520 *host = NULL; 521 /* Get parent & match bus type */ 522 parent = get_parent(dev); 523 if (parent == NULL) 524 goto bail; 525 bus = of_match_bus(parent); 526 527 /* Count address cells & copy address locally */ 528 bus->count_cells(dev, &na, &ns); 529 if (!OF_CHECK_COUNTS(na, ns)) { 530 pr_debug("Bad cell count for %pOF\n", dev); 531 goto bail; 532 } 533 memcpy(addr, in_addr, na * 4); 534 535 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 536 bus->name, na, ns, parent); 537 of_dump_addr("translating address:", addr, na); 538 539 /* Translate */ 540 for (;;) { 541 struct logic_pio_hwaddr *iorange; 542 543 /* Switch to parent bus */ 544 of_node_put(dev); 545 dev = parent; 546 parent = get_parent(dev); 547 548 /* If root, we have finished */ 549 if (parent == NULL) { 550 pr_debug("reached root node\n"); 551 result = of_read_number(addr, na); 552 break; 553 } 554 555 /* 556 * For indirectIO device which has no ranges property, get 557 * the address from reg directly. 558 */ 559 iorange = find_io_range_by_fwnode(&dev->fwnode); 560 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 561 result = of_read_number(addr + 1, na - 1); 562 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 563 dev, result); 564 *host = of_node_get(dev); 565 break; 566 } 567 568 /* Get new parent bus and counts */ 569 pbus = of_match_bus(parent); 570 pbus->count_cells(dev, &pna, &pns); 571 if (!OF_CHECK_COUNTS(pna, pns)) { 572 pr_err("Bad cell count for %pOF\n", dev); 573 break; 574 } 575 576 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 577 pbus->name, pna, pns, parent); 578 579 /* Apply bus translation */ 580 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 581 break; 582 583 /* Complete the move up one level */ 584 na = pna; 585 ns = pns; 586 bus = pbus; 587 588 of_dump_addr("one level translation:", addr, na); 589 } 590 bail: 591 of_node_put(parent); 592 of_node_put(dev); 593 594 return result; 595 } 596 597 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 598 { 599 struct device_node *host; 600 u64 ret; 601 602 ret = __of_translate_address(dev, of_get_parent, 603 in_addr, "ranges", &host); 604 if (host) { 605 of_node_put(host); 606 return OF_BAD_ADDR; 607 } 608 609 return ret; 610 } 611 EXPORT_SYMBOL(of_translate_address); 612 613 #ifdef CONFIG_HAS_DMA 614 struct device_node *__of_get_dma_parent(const struct device_node *np) 615 { 616 struct of_phandle_args args; 617 int ret, index; 618 619 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 620 if (index < 0) 621 return of_get_parent(np); 622 623 ret = of_parse_phandle_with_args(np, "interconnects", 624 "#interconnect-cells", 625 index, &args); 626 if (ret < 0) 627 return of_get_parent(np); 628 629 return of_node_get(args.np); 630 } 631 #endif 632 633 static struct device_node *of_get_next_dma_parent(struct device_node *np) 634 { 635 struct device_node *parent; 636 637 parent = __of_get_dma_parent(np); 638 of_node_put(np); 639 640 return parent; 641 } 642 643 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 644 { 645 struct device_node *host; 646 u64 ret; 647 648 ret = __of_translate_address(dev, __of_get_dma_parent, 649 in_addr, "dma-ranges", &host); 650 651 if (host) { 652 of_node_put(host); 653 return OF_BAD_ADDR; 654 } 655 656 return ret; 657 } 658 EXPORT_SYMBOL(of_translate_dma_address); 659 660 /** 661 * of_translate_dma_region - Translate device tree address and size tuple 662 * @dev: device tree node for which to translate 663 * @prop: pointer into array of cells 664 * @start: return value for the start of the DMA range 665 * @length: return value for the length of the DMA range 666 * 667 * Returns a pointer to the cell immediately following the translated DMA region. 668 */ 669 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 670 phys_addr_t *start, size_t *length) 671 { 672 struct device_node *parent; 673 u64 address, size; 674 int na, ns; 675 676 parent = __of_get_dma_parent(dev); 677 if (!parent) 678 return NULL; 679 680 na = of_bus_n_addr_cells(parent); 681 ns = of_bus_n_size_cells(parent); 682 683 of_node_put(parent); 684 685 address = of_translate_dma_address(dev, prop); 686 if (address == OF_BAD_ADDR) 687 return NULL; 688 689 size = of_read_number(prop + na, ns); 690 691 if (start) 692 *start = address; 693 694 if (length) 695 *length = size; 696 697 return prop + na + ns; 698 } 699 EXPORT_SYMBOL(of_translate_dma_region); 700 701 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 702 u64 *size, unsigned int *flags) 703 { 704 const __be32 *prop; 705 unsigned int psize; 706 struct device_node *parent; 707 struct of_bus *bus; 708 int onesize, i, na, ns; 709 710 /* Get parent & match bus type */ 711 parent = of_get_parent(dev); 712 if (parent == NULL) 713 return NULL; 714 bus = of_match_bus(parent); 715 if (strcmp(bus->name, "pci") && (bar_no >= 0)) { 716 of_node_put(parent); 717 return NULL; 718 } 719 bus->count_cells(dev, &na, &ns); 720 of_node_put(parent); 721 if (!OF_CHECK_ADDR_COUNT(na)) 722 return NULL; 723 724 /* Get "reg" or "assigned-addresses" property */ 725 prop = of_get_property(dev, bus->addresses, &psize); 726 if (prop == NULL) 727 return NULL; 728 psize /= 4; 729 730 onesize = na + ns; 731 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 732 u32 val = be32_to_cpu(prop[0]); 733 /* PCI bus matches on BAR number instead of index */ 734 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 735 ((index >= 0) && (i == index))) { 736 if (size) 737 *size = of_read_number(prop + na, ns); 738 if (flags) 739 *flags = bus->get_flags(prop); 740 return prop; 741 } 742 } 743 return NULL; 744 } 745 EXPORT_SYMBOL(__of_get_address); 746 747 /** 748 * of_property_read_reg - Retrieve the specified "reg" entry index without translating 749 * @np: device tree node for which to retrieve "reg" from 750 * @idx: "reg" entry index to read 751 * @addr: return value for the untranslated address 752 * @size: return value for the entry size 753 * 754 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and 755 * size values filled in. 756 */ 757 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) 758 { 759 const __be32 *prop = of_get_address(np, idx, size, NULL); 760 761 if (!prop) 762 return -EINVAL; 763 764 *addr = of_read_number(prop, of_n_addr_cells(np)); 765 766 return 0; 767 } 768 EXPORT_SYMBOL(of_property_read_reg); 769 770 static int parser_init(struct of_pci_range_parser *parser, 771 struct device_node *node, const char *name) 772 { 773 int rlen; 774 775 parser->node = node; 776 parser->pna = of_n_addr_cells(node); 777 parser->na = of_bus_n_addr_cells(node); 778 parser->ns = of_bus_n_size_cells(node); 779 parser->dma = !strcmp(name, "dma-ranges"); 780 parser->bus = of_match_bus(node); 781 782 parser->range = of_get_property(node, name, &rlen); 783 if (parser->range == NULL) 784 return -ENOENT; 785 786 parser->end = parser->range + rlen / sizeof(__be32); 787 788 return 0; 789 } 790 791 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 792 struct device_node *node) 793 { 794 return parser_init(parser, node, "ranges"); 795 } 796 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 797 798 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 799 struct device_node *node) 800 { 801 return parser_init(parser, node, "dma-ranges"); 802 } 803 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 804 #define of_dma_range_parser_init of_pci_dma_range_parser_init 805 806 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 807 struct of_pci_range *range) 808 { 809 int na = parser->na; 810 int ns = parser->ns; 811 int np = parser->pna + na + ns; 812 int busflag_na = 0; 813 814 if (!range) 815 return NULL; 816 817 if (!parser->range || parser->range + np > parser->end) 818 return NULL; 819 820 range->flags = parser->bus->get_flags(parser->range); 821 822 /* A extra cell for resource flags */ 823 if (parser->bus->has_flags) 824 busflag_na = 1; 825 826 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 827 828 if (parser->dma) 829 range->cpu_addr = of_translate_dma_address(parser->node, 830 parser->range + na); 831 else 832 range->cpu_addr = of_translate_address(parser->node, 833 parser->range + na); 834 range->size = of_read_number(parser->range + parser->pna + na, ns); 835 836 parser->range += np; 837 838 /* Now consume following elements while they are contiguous */ 839 while (parser->range + np <= parser->end) { 840 u32 flags = 0; 841 u64 bus_addr, cpu_addr, size; 842 843 flags = parser->bus->get_flags(parser->range); 844 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 845 if (parser->dma) 846 cpu_addr = of_translate_dma_address(parser->node, 847 parser->range + na); 848 else 849 cpu_addr = of_translate_address(parser->node, 850 parser->range + na); 851 size = of_read_number(parser->range + parser->pna + na, ns); 852 853 if (flags != range->flags) 854 break; 855 if (bus_addr != range->bus_addr + range->size || 856 cpu_addr != range->cpu_addr + range->size) 857 break; 858 859 range->size += size; 860 parser->range += np; 861 } 862 863 return range; 864 } 865 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 866 867 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 868 u64 size) 869 { 870 u64 taddr; 871 unsigned long port; 872 struct device_node *host; 873 874 taddr = __of_translate_address(dev, of_get_parent, 875 in_addr, "ranges", &host); 876 if (host) { 877 /* host-specific port access */ 878 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 879 of_node_put(host); 880 } else { 881 /* memory-mapped I/O range */ 882 port = pci_address_to_pio(taddr); 883 } 884 885 if (port == (unsigned long)-1) 886 return OF_BAD_ADDR; 887 888 return port; 889 } 890 891 #ifdef CONFIG_HAS_DMA 892 /** 893 * of_dma_get_range - Get DMA range info and put it into a map array 894 * @np: device node to get DMA range info 895 * @map: dma range structure to return 896 * 897 * Look in bottom up direction for the first "dma-ranges" property 898 * and parse it. Put the information into a DMA offset map array. 899 * 900 * dma-ranges format: 901 * DMA addr (dma_addr) : naddr cells 902 * CPU addr (phys_addr_t) : pna cells 903 * size : nsize cells 904 * 905 * It returns -ENODEV if "dma-ranges" property was not found for this 906 * device in the DT. 907 */ 908 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 909 { 910 struct device_node *node = of_node_get(np); 911 const __be32 *ranges = NULL; 912 bool found_dma_ranges = false; 913 struct of_range_parser parser; 914 struct of_range range; 915 struct bus_dma_region *r; 916 int len, num_ranges = 0; 917 int ret = 0; 918 919 while (node) { 920 ranges = of_get_property(node, "dma-ranges", &len); 921 922 /* Ignore empty ranges, they imply no translation required */ 923 if (ranges && len > 0) 924 break; 925 926 /* Once we find 'dma-ranges', then a missing one is an error */ 927 if (found_dma_ranges && !ranges) { 928 ret = -ENODEV; 929 goto out; 930 } 931 found_dma_ranges = true; 932 933 node = of_get_next_dma_parent(node); 934 } 935 936 if (!node || !ranges) { 937 pr_debug("no dma-ranges found for node(%pOF)\n", np); 938 ret = -ENODEV; 939 goto out; 940 } 941 942 of_dma_range_parser_init(&parser, node); 943 for_each_of_range(&parser, &range) { 944 if (range.cpu_addr == OF_BAD_ADDR) { 945 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 946 range.bus_addr, node); 947 continue; 948 } 949 num_ranges++; 950 } 951 952 if (!num_ranges) { 953 ret = -EINVAL; 954 goto out; 955 } 956 957 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 958 if (!r) { 959 ret = -ENOMEM; 960 goto out; 961 } 962 963 /* 964 * Record all info in the generic DMA ranges array for struct device, 965 * returning an error if we don't find any parsable ranges. 966 */ 967 *map = r; 968 of_dma_range_parser_init(&parser, node); 969 for_each_of_range(&parser, &range) { 970 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 971 range.bus_addr, range.cpu_addr, range.size); 972 if (range.cpu_addr == OF_BAD_ADDR) 973 continue; 974 r->cpu_start = range.cpu_addr; 975 r->dma_start = range.bus_addr; 976 r->size = range.size; 977 r->offset = range.cpu_addr - range.bus_addr; 978 r++; 979 } 980 out: 981 of_node_put(node); 982 return ret; 983 } 984 #endif /* CONFIG_HAS_DMA */ 985 986 /** 987 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 988 * @np: The node to start searching from or NULL to start from the root 989 * 990 * Gets the highest CPU physical address that is addressable by all DMA masters 991 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 992 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 993 */ 994 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 995 { 996 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 997 struct of_range_parser parser; 998 phys_addr_t subtree_max_addr; 999 struct device_node *child; 1000 struct of_range range; 1001 const __be32 *ranges; 1002 u64 cpu_end = 0; 1003 int len; 1004 1005 if (!np) 1006 np = of_root; 1007 1008 ranges = of_get_property(np, "dma-ranges", &len); 1009 if (ranges && len) { 1010 of_dma_range_parser_init(&parser, np); 1011 for_each_of_range(&parser, &range) 1012 if (range.cpu_addr + range.size > cpu_end) 1013 cpu_end = range.cpu_addr + range.size - 1; 1014 1015 if (max_cpu_addr > cpu_end) 1016 max_cpu_addr = cpu_end; 1017 } 1018 1019 for_each_available_child_of_node(np, child) { 1020 subtree_max_addr = of_dma_get_max_cpu_address(child); 1021 if (max_cpu_addr > subtree_max_addr) 1022 max_cpu_addr = subtree_max_addr; 1023 } 1024 1025 return max_cpu_addr; 1026 } 1027 1028 /** 1029 * of_dma_is_coherent - Check if device is coherent 1030 * @np: device node 1031 * 1032 * It returns true if "dma-coherent" property was found 1033 * for this device in the DT, or if DMA is coherent by 1034 * default for OF devices on the current platform and no 1035 * "dma-noncoherent" property was found for this device. 1036 */ 1037 bool of_dma_is_coherent(struct device_node *np) 1038 { 1039 struct device_node *node; 1040 bool is_coherent = dma_default_coherent; 1041 1042 node = of_node_get(np); 1043 1044 while (node) { 1045 if (of_property_read_bool(node, "dma-coherent")) { 1046 is_coherent = true; 1047 break; 1048 } 1049 if (of_property_read_bool(node, "dma-noncoherent")) { 1050 is_coherent = false; 1051 break; 1052 } 1053 node = of_get_next_dma_parent(node); 1054 } 1055 of_node_put(node); 1056 return is_coherent; 1057 } 1058 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1059 1060 /** 1061 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1062 * @np: device node 1063 * 1064 * Returns true if the "nonposted-mmio" property was found for 1065 * the device's bus. 1066 * 1067 * This is currently only enabled on builds that support Apple ARM devices, as 1068 * an optimization. 1069 */ 1070 static bool of_mmio_is_nonposted(struct device_node *np) 1071 { 1072 struct device_node *parent; 1073 bool nonposted; 1074 1075 if (!IS_ENABLED(CONFIG_ARCH_APPLE)) 1076 return false; 1077 1078 parent = of_get_parent(np); 1079 if (!parent) 1080 return false; 1081 1082 nonposted = of_property_read_bool(parent, "nonposted-mmio"); 1083 1084 of_node_put(parent); 1085 return nonposted; 1086 } 1087 1088 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1089 struct resource *r) 1090 { 1091 u64 taddr; 1092 const __be32 *addrp; 1093 u64 size; 1094 unsigned int flags; 1095 const char *name = NULL; 1096 1097 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1098 if (addrp == NULL) 1099 return -EINVAL; 1100 1101 /* Get optional "reg-names" property to add a name to a resource */ 1102 if (index >= 0) 1103 of_property_read_string_index(dev, "reg-names", index, &name); 1104 1105 if (flags & IORESOURCE_MEM) 1106 taddr = of_translate_address(dev, addrp); 1107 else if (flags & IORESOURCE_IO) 1108 taddr = of_translate_ioport(dev, addrp, size); 1109 else 1110 return -EINVAL; 1111 1112 if (taddr == OF_BAD_ADDR) 1113 return -EINVAL; 1114 memset(r, 0, sizeof(struct resource)); 1115 1116 if (of_mmio_is_nonposted(dev)) 1117 flags |= IORESOURCE_MEM_NONPOSTED; 1118 1119 r->start = taddr; 1120 r->end = taddr + size - 1; 1121 r->flags = flags; 1122 r->name = name ? name : dev->full_name; 1123 1124 return 0; 1125 } 1126 1127 /** 1128 * of_address_to_resource - Translate device tree address and return as resource 1129 * @dev: Caller's Device Node 1130 * @index: Index into the array 1131 * @r: Pointer to resource array 1132 * 1133 * Returns -EINVAL if the range cannot be converted to resource. 1134 * 1135 * Note that if your address is a PIO address, the conversion will fail if 1136 * the physical address can't be internally converted to an IO token with 1137 * pci_address_to_pio(), that is because it's either called too early or it 1138 * can't be matched to any host bridge IO space 1139 */ 1140 int of_address_to_resource(struct device_node *dev, int index, 1141 struct resource *r) 1142 { 1143 return __of_address_to_resource(dev, index, -1, r); 1144 } 1145 EXPORT_SYMBOL_GPL(of_address_to_resource); 1146 1147 int of_pci_address_to_resource(struct device_node *dev, int bar, 1148 struct resource *r) 1149 { 1150 1151 if (!IS_ENABLED(CONFIG_PCI)) 1152 return -ENOSYS; 1153 1154 return __of_address_to_resource(dev, -1, bar, r); 1155 } 1156 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1157 1158 /** 1159 * of_iomap - Maps the memory mapped IO for a given device_node 1160 * @np: the device whose io range will be mapped 1161 * @index: index of the io range 1162 * 1163 * Returns a pointer to the mapped memory 1164 */ 1165 void __iomem *of_iomap(struct device_node *np, int index) 1166 { 1167 struct resource res; 1168 1169 if (of_address_to_resource(np, index, &res)) 1170 return NULL; 1171 1172 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1173 return ioremap_np(res.start, resource_size(&res)); 1174 else 1175 return ioremap(res.start, resource_size(&res)); 1176 } 1177 EXPORT_SYMBOL(of_iomap); 1178 1179 /* 1180 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1181 * for a given device_node 1182 * @device: the device whose io range will be mapped 1183 * @index: index of the io range 1184 * @name: name "override" for the memory region request or NULL 1185 * 1186 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1187 * error code on failure. Usage example: 1188 * 1189 * base = of_io_request_and_map(node, 0, "foo"); 1190 * if (IS_ERR(base)) 1191 * return PTR_ERR(base); 1192 */ 1193 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1194 const char *name) 1195 { 1196 struct resource res; 1197 void __iomem *mem; 1198 1199 if (of_address_to_resource(np, index, &res)) 1200 return IOMEM_ERR_PTR(-EINVAL); 1201 1202 if (!name) 1203 name = res.name; 1204 if (!request_mem_region(res.start, resource_size(&res), name)) 1205 return IOMEM_ERR_PTR(-EBUSY); 1206 1207 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1208 mem = ioremap_np(res.start, resource_size(&res)); 1209 else 1210 mem = ioremap(res.start, resource_size(&res)); 1211 1212 if (!mem) { 1213 release_mem_region(res.start, resource_size(&res)); 1214 return IOMEM_ERR_PTR(-ENOMEM); 1215 } 1216 1217 return mem; 1218 } 1219 EXPORT_SYMBOL(of_io_request_and_map); 1220