1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/overflow.h> 12 #include <linux/pci.h> 13 #include <linux/pci_regs.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/dma-direct.h> /* for bus_dma_region */ 18 19 #include "of_private.h" 20 21 /* Max address size we deal with */ 22 #define OF_MAX_ADDR_CELLS 4 23 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 24 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 25 26 /* Debug utility */ 27 #ifdef DEBUG 28 static void of_dump_addr(const char *s, const __be32 *addr, int na) 29 { 30 pr_debug("%s", s); 31 while (na--) 32 pr_cont(" %08x", be32_to_cpu(*(addr++))); 33 pr_cont("\n"); 34 } 35 #else 36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 37 #endif 38 39 /* Callbacks for bus specific translators */ 40 struct of_bus { 41 const char *name; 42 const char *addresses; 43 int (*match)(struct device_node *parent); 44 void (*count_cells)(struct device_node *child, 45 int *addrc, int *sizec); 46 u64 (*map)(__be32 *addr, const __be32 *range, 47 int na, int ns, int pna, int fna); 48 int (*translate)(__be32 *addr, u64 offset, int na); 49 int flag_cells; 50 unsigned int (*get_flags)(const __be32 *addr); 51 }; 52 53 /* 54 * Default translator (generic bus) 55 */ 56 57 static void of_bus_default_count_cells(struct device_node *dev, 58 int *addrc, int *sizec) 59 { 60 if (addrc) 61 *addrc = of_n_addr_cells(dev); 62 if (sizec) 63 *sizec = of_n_size_cells(dev); 64 } 65 66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 67 int na, int ns, int pna, int fna) 68 { 69 u64 cp, s, da; 70 71 cp = of_read_number(range + fna, na - fna); 72 s = of_read_number(range + na + pna, ns); 73 da = of_read_number(addr + fna, na - fna); 74 75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 76 77 if (da < cp || da >= (cp + s)) 78 return OF_BAD_ADDR; 79 return da - cp; 80 } 81 82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 83 { 84 u64 a = of_read_number(addr, na); 85 memset(addr, 0, na * 4); 86 a += offset; 87 if (na > 1) 88 addr[na - 2] = cpu_to_be32(a >> 32); 89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 90 91 return 0; 92 } 93 94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) 95 { 96 return of_read_number(addr, 1); 97 } 98 99 static unsigned int of_bus_default_get_flags(const __be32 *addr) 100 { 101 return IORESOURCE_MEM; 102 } 103 104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na, 105 int ns, int pna, int fna) 106 { 107 /* Check that flags match */ 108 if (*addr != *range) 109 return OF_BAD_ADDR; 110 111 return of_bus_default_map(addr, range, na, ns, pna, fna); 112 } 113 114 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na) 115 { 116 /* Keep "flags" part (high cell) in translated address */ 117 return of_bus_default_translate(addr + 1, offset, na - 1); 118 } 119 120 #ifdef CONFIG_PCI 121 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 122 { 123 unsigned int flags = 0; 124 u32 w = be32_to_cpup(addr); 125 126 if (!IS_ENABLED(CONFIG_PCI)) 127 return 0; 128 129 switch((w >> 24) & 0x03) { 130 case 0x01: 131 flags |= IORESOURCE_IO; 132 break; 133 case 0x02: /* 32 bits */ 134 flags |= IORESOURCE_MEM; 135 break; 136 137 case 0x03: /* 64 bits */ 138 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 139 break; 140 } 141 if (w & 0x40000000) 142 flags |= IORESOURCE_PREFETCH; 143 return flags; 144 } 145 146 /* 147 * PCI bus specific translator 148 */ 149 150 static bool of_node_is_pcie(struct device_node *np) 151 { 152 bool is_pcie = of_node_name_eq(np, "pcie"); 153 154 if (is_pcie) 155 pr_warn_once("%pOF: Missing device_type\n", np); 156 157 return is_pcie; 158 } 159 160 static int of_bus_pci_match(struct device_node *np) 161 { 162 /* 163 * "pciex" is PCI Express 164 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 165 * "ht" is hypertransport 166 * 167 * If none of the device_type match, and that the node name is 168 * "pcie", accept the device as PCI (with a warning). 169 */ 170 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 171 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 172 of_node_is_pcie(np); 173 } 174 175 static void of_bus_pci_count_cells(struct device_node *np, 176 int *addrc, int *sizec) 177 { 178 if (addrc) 179 *addrc = 3; 180 if (sizec) 181 *sizec = 2; 182 } 183 184 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 185 int pna, int fna) 186 { 187 unsigned int af, rf; 188 189 af = of_bus_pci_get_flags(addr); 190 rf = of_bus_pci_get_flags(range); 191 192 /* Check address type match */ 193 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 194 return OF_BAD_ADDR; 195 196 return of_bus_default_map(addr, range, na, ns, pna, fna); 197 } 198 199 #endif /* CONFIG_PCI */ 200 201 static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size) 202 { 203 u64 end = start; 204 205 if (overflows_type(start, r->start)) 206 return -EOVERFLOW; 207 if (size && check_add_overflow(end, size - 1, &end)) 208 return -EOVERFLOW; 209 if (overflows_type(end, r->end)) 210 return -EOVERFLOW; 211 212 r->start = start; 213 r->end = end; 214 215 return 0; 216 } 217 218 /* 219 * of_pci_range_to_resource - Create a resource from an of_pci_range 220 * @range: the PCI range that describes the resource 221 * @np: device node where the range belongs to 222 * @res: pointer to a valid resource that will be updated to 223 * reflect the values contained in the range. 224 * 225 * Returns -EINVAL if the range cannot be converted to resource. 226 * 227 * Note that if the range is an IO range, the resource will be converted 228 * using pci_address_to_pio() which can fail if it is called too early or 229 * if the range cannot be matched to any host bridge IO space (our case here). 230 * To guard against that we try to register the IO range first. 231 * If that fails we know that pci_address_to_pio() will do too. 232 */ 233 int of_pci_range_to_resource(struct of_pci_range *range, 234 struct device_node *np, struct resource *res) 235 { 236 u64 start; 237 int err; 238 res->flags = range->flags; 239 res->parent = res->child = res->sibling = NULL; 240 res->name = np->full_name; 241 242 if (res->flags & IORESOURCE_IO) { 243 unsigned long port; 244 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 245 range->size); 246 if (err) 247 goto invalid_range; 248 port = pci_address_to_pio(range->cpu_addr); 249 if (port == (unsigned long)-1) { 250 err = -EINVAL; 251 goto invalid_range; 252 } 253 start = port; 254 } else { 255 start = range->cpu_addr; 256 } 257 return __of_address_resource_bounds(res, start, range->size); 258 259 invalid_range: 260 res->start = (resource_size_t)OF_BAD_ADDR; 261 res->end = (resource_size_t)OF_BAD_ADDR; 262 return err; 263 } 264 EXPORT_SYMBOL(of_pci_range_to_resource); 265 266 /* 267 * of_range_to_resource - Create a resource from a ranges entry 268 * @np: device node where the range belongs to 269 * @index: the 'ranges' index to convert to a resource 270 * @res: pointer to a valid resource that will be updated to 271 * reflect the values contained in the range. 272 * 273 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range 274 * cannot be converted to resource. 275 */ 276 int of_range_to_resource(struct device_node *np, int index, struct resource *res) 277 { 278 int ret, i = 0; 279 struct of_range_parser parser; 280 struct of_range range; 281 282 ret = of_range_parser_init(&parser, np); 283 if (ret) 284 return ret; 285 286 for_each_of_range(&parser, &range) 287 if (i++ == index) 288 return of_pci_range_to_resource(&range, np, res); 289 290 return -ENOENT; 291 } 292 EXPORT_SYMBOL(of_range_to_resource); 293 294 /* 295 * ISA bus specific translator 296 */ 297 298 static int of_bus_isa_match(struct device_node *np) 299 { 300 return of_node_name_eq(np, "isa"); 301 } 302 303 static void of_bus_isa_count_cells(struct device_node *child, 304 int *addrc, int *sizec) 305 { 306 if (addrc) 307 *addrc = 2; 308 if (sizec) 309 *sizec = 1; 310 } 311 312 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 313 int pna, int fna) 314 { 315 /* Check address type match */ 316 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 317 return OF_BAD_ADDR; 318 319 return of_bus_default_map(addr, range, na, ns, pna, fna); 320 } 321 322 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 323 { 324 unsigned int flags = 0; 325 u32 w = be32_to_cpup(addr); 326 327 if (w & 1) 328 flags |= IORESOURCE_IO; 329 else 330 flags |= IORESOURCE_MEM; 331 return flags; 332 } 333 334 static int of_bus_default_flags_match(struct device_node *np) 335 { 336 return of_bus_n_addr_cells(np) == 3; 337 } 338 339 /* 340 * Array of bus specific translators 341 */ 342 343 static struct of_bus of_busses[] = { 344 #ifdef CONFIG_PCI 345 /* PCI */ 346 { 347 .name = "pci", 348 .addresses = "assigned-addresses", 349 .match = of_bus_pci_match, 350 .count_cells = of_bus_pci_count_cells, 351 .map = of_bus_pci_map, 352 .translate = of_bus_default_flags_translate, 353 .flag_cells = 1, 354 .get_flags = of_bus_pci_get_flags, 355 }, 356 #endif /* CONFIG_PCI */ 357 /* ISA */ 358 { 359 .name = "isa", 360 .addresses = "reg", 361 .match = of_bus_isa_match, 362 .count_cells = of_bus_isa_count_cells, 363 .map = of_bus_isa_map, 364 .translate = of_bus_default_flags_translate, 365 .flag_cells = 1, 366 .get_flags = of_bus_isa_get_flags, 367 }, 368 /* Default with flags cell */ 369 { 370 .name = "default-flags", 371 .addresses = "reg", 372 .match = of_bus_default_flags_match, 373 .count_cells = of_bus_default_count_cells, 374 .map = of_bus_default_flags_map, 375 .translate = of_bus_default_flags_translate, 376 .flag_cells = 1, 377 .get_flags = of_bus_default_flags_get_flags, 378 }, 379 /* Default */ 380 { 381 .name = "default", 382 .addresses = "reg", 383 .match = NULL, 384 .count_cells = of_bus_default_count_cells, 385 .map = of_bus_default_map, 386 .translate = of_bus_default_translate, 387 .get_flags = of_bus_default_get_flags, 388 }, 389 }; 390 391 static struct of_bus *of_match_bus(struct device_node *np) 392 { 393 int i; 394 395 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 396 if (!of_busses[i].match || of_busses[i].match(np)) 397 return &of_busses[i]; 398 BUG(); 399 return NULL; 400 } 401 402 static int of_empty_ranges_quirk(struct device_node *np) 403 { 404 if (IS_ENABLED(CONFIG_PPC)) { 405 /* To save cycles, we cache the result for global "Mac" setting */ 406 static int quirk_state = -1; 407 408 /* PA-SEMI sdc DT bug */ 409 if (of_device_is_compatible(np, "1682m-sdc")) 410 return true; 411 412 /* Make quirk cached */ 413 if (quirk_state < 0) 414 quirk_state = 415 of_machine_is_compatible("Power Macintosh") || 416 of_machine_is_compatible("MacRISC"); 417 return quirk_state; 418 } 419 return false; 420 } 421 422 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 423 struct of_bus *pbus, __be32 *addr, 424 int na, int ns, int pna, const char *rprop) 425 { 426 const __be32 *ranges; 427 unsigned int rlen; 428 int rone; 429 u64 offset = OF_BAD_ADDR; 430 431 /* 432 * Normally, an absence of a "ranges" property means we are 433 * crossing a non-translatable boundary, and thus the addresses 434 * below the current cannot be converted to CPU physical ones. 435 * Unfortunately, while this is very clear in the spec, it's not 436 * what Apple understood, and they do have things like /uni-n or 437 * /ht nodes with no "ranges" property and a lot of perfectly 438 * useable mapped devices below them. Thus we treat the absence of 439 * "ranges" as equivalent to an empty "ranges" property which means 440 * a 1:1 translation at that level. It's up to the caller not to try 441 * to translate addresses that aren't supposed to be translated in 442 * the first place. --BenH. 443 * 444 * As far as we know, this damage only exists on Apple machines, so 445 * This code is only enabled on powerpc. --gcl 446 * 447 * This quirk also applies for 'dma-ranges' which frequently exist in 448 * child nodes without 'dma-ranges' in the parent nodes. --RobH 449 */ 450 ranges = of_get_property(parent, rprop, &rlen); 451 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 452 strcmp(rprop, "dma-ranges")) { 453 pr_debug("no ranges; cannot translate\n"); 454 return 1; 455 } 456 if (ranges == NULL || rlen == 0) { 457 offset = of_read_number(addr, na); 458 memset(addr, 0, pna * 4); 459 pr_debug("empty ranges; 1:1 translation\n"); 460 goto finish; 461 } 462 463 pr_debug("walking ranges...\n"); 464 465 /* Now walk through the ranges */ 466 rlen /= 4; 467 rone = na + pna + ns; 468 for (; rlen >= rone; rlen -= rone, ranges += rone) { 469 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells); 470 if (offset != OF_BAD_ADDR) 471 break; 472 } 473 if (offset == OF_BAD_ADDR) { 474 pr_debug("not found !\n"); 475 return 1; 476 } 477 memcpy(addr, ranges + na, 4 * pna); 478 479 finish: 480 of_dump_addr("parent translation for:", addr, pna); 481 pr_debug("with offset: %llx\n", offset); 482 483 /* Translate it into parent bus space */ 484 return pbus->translate(addr, offset, pna); 485 } 486 487 /* 488 * Translate an address from the device-tree into a CPU physical address, 489 * this walks up the tree and applies the various bus mappings on the 490 * way. 491 * 492 * Note: We consider that crossing any level with #size-cells == 0 to mean 493 * that translation is impossible (that is we are not dealing with a value 494 * that can be mapped to a cpu physical address). This is not really specified 495 * that way, but this is traditionally the way IBM at least do things 496 * 497 * Whenever the translation fails, the *host pointer will be set to the 498 * device that had registered logical PIO mapping, and the return code is 499 * relative to that node. 500 */ 501 static u64 __of_translate_address(struct device_node *node, 502 struct device_node *(*get_parent)(const struct device_node *), 503 const __be32 *in_addr, const char *rprop, 504 struct device_node **host) 505 { 506 struct device_node *dev __free(device_node) = of_node_get(node); 507 struct device_node *parent __free(device_node) = get_parent(dev); 508 struct of_bus *bus, *pbus; 509 __be32 addr[OF_MAX_ADDR_CELLS]; 510 int na, ns, pna, pns; 511 512 pr_debug("** translation for device %pOF **\n", dev); 513 514 *host = NULL; 515 516 if (parent == NULL) 517 return OF_BAD_ADDR; 518 bus = of_match_bus(parent); 519 520 /* Count address cells & copy address locally */ 521 bus->count_cells(dev, &na, &ns); 522 if (!OF_CHECK_COUNTS(na, ns)) { 523 pr_debug("Bad cell count for %pOF\n", dev); 524 return OF_BAD_ADDR; 525 } 526 memcpy(addr, in_addr, na * 4); 527 528 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 529 bus->name, na, ns, parent); 530 of_dump_addr("translating address:", addr, na); 531 532 /* Translate */ 533 for (;;) { 534 struct logic_pio_hwaddr *iorange; 535 536 /* Switch to parent bus */ 537 of_node_put(dev); 538 dev = parent; 539 parent = get_parent(dev); 540 541 /* If root, we have finished */ 542 if (parent == NULL) { 543 pr_debug("reached root node\n"); 544 return of_read_number(addr, na); 545 } 546 547 /* 548 * For indirectIO device which has no ranges property, get 549 * the address from reg directly. 550 */ 551 iorange = find_io_range_by_fwnode(&dev->fwnode); 552 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 553 u64 result = of_read_number(addr + 1, na - 1); 554 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 555 dev, result); 556 *host = no_free_ptr(dev); 557 return result; 558 } 559 560 /* Get new parent bus and counts */ 561 pbus = of_match_bus(parent); 562 pbus->count_cells(dev, &pna, &pns); 563 if (!OF_CHECK_COUNTS(pna, pns)) { 564 pr_err("Bad cell count for %pOF\n", dev); 565 return OF_BAD_ADDR; 566 } 567 568 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 569 pbus->name, pna, pns, parent); 570 571 /* Apply bus translation */ 572 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 573 return OF_BAD_ADDR; 574 575 /* Complete the move up one level */ 576 na = pna; 577 ns = pns; 578 bus = pbus; 579 580 of_dump_addr("one level translation:", addr, na); 581 } 582 583 unreachable(); 584 } 585 586 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 587 { 588 struct device_node *host; 589 u64 ret; 590 591 ret = __of_translate_address(dev, of_get_parent, 592 in_addr, "ranges", &host); 593 if (host) { 594 of_node_put(host); 595 return OF_BAD_ADDR; 596 } 597 598 return ret; 599 } 600 EXPORT_SYMBOL(of_translate_address); 601 602 #ifdef CONFIG_HAS_DMA 603 struct device_node *__of_get_dma_parent(const struct device_node *np) 604 { 605 struct of_phandle_args args; 606 int ret, index; 607 608 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 609 if (index < 0) 610 return of_get_parent(np); 611 612 ret = of_parse_phandle_with_args(np, "interconnects", 613 "#interconnect-cells", 614 index, &args); 615 if (ret < 0) 616 return of_get_parent(np); 617 618 return of_node_get(args.np); 619 } 620 #endif 621 622 static struct device_node *of_get_next_dma_parent(struct device_node *np) 623 { 624 struct device_node *parent; 625 626 parent = __of_get_dma_parent(np); 627 of_node_put(np); 628 629 return parent; 630 } 631 632 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 633 { 634 struct device_node *host; 635 u64 ret; 636 637 ret = __of_translate_address(dev, __of_get_dma_parent, 638 in_addr, "dma-ranges", &host); 639 640 if (host) { 641 of_node_put(host); 642 return OF_BAD_ADDR; 643 } 644 645 return ret; 646 } 647 EXPORT_SYMBOL(of_translate_dma_address); 648 649 /** 650 * of_translate_dma_region - Translate device tree address and size tuple 651 * @dev: device tree node for which to translate 652 * @prop: pointer into array of cells 653 * @start: return value for the start of the DMA range 654 * @length: return value for the length of the DMA range 655 * 656 * Returns a pointer to the cell immediately following the translated DMA region. 657 */ 658 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 659 phys_addr_t *start, size_t *length) 660 { 661 struct device_node *parent __free(device_node) = __of_get_dma_parent(dev); 662 u64 address, size; 663 int na, ns; 664 665 if (!parent) 666 return NULL; 667 668 na = of_bus_n_addr_cells(parent); 669 ns = of_bus_n_size_cells(parent); 670 671 address = of_translate_dma_address(dev, prop); 672 if (address == OF_BAD_ADDR) 673 return NULL; 674 675 size = of_read_number(prop + na, ns); 676 677 if (start) 678 *start = address; 679 680 if (length) 681 *length = size; 682 683 return prop + na + ns; 684 } 685 EXPORT_SYMBOL(of_translate_dma_region); 686 687 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 688 u64 *size, unsigned int *flags) 689 { 690 const __be32 *prop; 691 unsigned int psize; 692 struct device_node *parent __free(device_node) = of_get_parent(dev); 693 struct of_bus *bus; 694 int onesize, i, na, ns; 695 696 if (parent == NULL) 697 return NULL; 698 699 /* match the parent's bus type */ 700 bus = of_match_bus(parent); 701 if (strcmp(bus->name, "pci") && (bar_no >= 0)) 702 return NULL; 703 704 bus->count_cells(dev, &na, &ns); 705 if (!OF_CHECK_ADDR_COUNT(na)) 706 return NULL; 707 708 /* Get "reg" or "assigned-addresses" property */ 709 prop = of_get_property(dev, bus->addresses, &psize); 710 if (prop == NULL) 711 return NULL; 712 psize /= 4; 713 714 onesize = na + ns; 715 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 716 u32 val = be32_to_cpu(prop[0]); 717 /* PCI bus matches on BAR number instead of index */ 718 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 719 ((index >= 0) && (i == index))) { 720 if (size) 721 *size = of_read_number(prop + na, ns); 722 if (flags) 723 *flags = bus->get_flags(prop); 724 return prop; 725 } 726 } 727 return NULL; 728 } 729 EXPORT_SYMBOL(__of_get_address); 730 731 /** 732 * of_property_read_reg - Retrieve the specified "reg" entry index without translating 733 * @np: device tree node for which to retrieve "reg" from 734 * @idx: "reg" entry index to read 735 * @addr: return value for the untranslated address 736 * @size: return value for the entry size 737 * 738 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and 739 * size values filled in. 740 */ 741 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) 742 { 743 const __be32 *prop = of_get_address(np, idx, size, NULL); 744 745 if (!prop) 746 return -EINVAL; 747 748 *addr = of_read_number(prop, of_n_addr_cells(np)); 749 750 return 0; 751 } 752 EXPORT_SYMBOL(of_property_read_reg); 753 754 static int parser_init(struct of_pci_range_parser *parser, 755 struct device_node *node, const char *name) 756 { 757 int rlen; 758 759 parser->node = node; 760 parser->pna = of_n_addr_cells(node); 761 parser->na = of_bus_n_addr_cells(node); 762 parser->ns = of_bus_n_size_cells(node); 763 parser->dma = !strcmp(name, "dma-ranges"); 764 parser->bus = of_match_bus(node); 765 766 parser->range = of_get_property(node, name, &rlen); 767 if (parser->range == NULL) 768 return -ENOENT; 769 770 parser->end = parser->range + rlen / sizeof(__be32); 771 772 return 0; 773 } 774 775 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 776 struct device_node *node) 777 { 778 return parser_init(parser, node, "ranges"); 779 } 780 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 781 782 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 783 struct device_node *node) 784 { 785 return parser_init(parser, node, "dma-ranges"); 786 } 787 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 788 #define of_dma_range_parser_init of_pci_dma_range_parser_init 789 790 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 791 struct of_pci_range *range) 792 { 793 int na = parser->na; 794 int ns = parser->ns; 795 int np = parser->pna + na + ns; 796 int busflag_na = parser->bus->flag_cells; 797 798 if (!range) 799 return NULL; 800 801 if (!parser->range || parser->range + np > parser->end) 802 return NULL; 803 804 range->flags = parser->bus->get_flags(parser->range); 805 806 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 807 808 if (parser->dma) 809 range->cpu_addr = of_translate_dma_address(parser->node, 810 parser->range + na); 811 else 812 range->cpu_addr = of_translate_address(parser->node, 813 parser->range + na); 814 range->size = of_read_number(parser->range + parser->pna + na, ns); 815 816 parser->range += np; 817 818 /* Now consume following elements while they are contiguous */ 819 while (parser->range + np <= parser->end) { 820 u32 flags = 0; 821 u64 bus_addr, cpu_addr, size; 822 823 flags = parser->bus->get_flags(parser->range); 824 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 825 if (parser->dma) 826 cpu_addr = of_translate_dma_address(parser->node, 827 parser->range + na); 828 else 829 cpu_addr = of_translate_address(parser->node, 830 parser->range + na); 831 size = of_read_number(parser->range + parser->pna + na, ns); 832 833 if (flags != range->flags) 834 break; 835 if (bus_addr != range->bus_addr + range->size || 836 cpu_addr != range->cpu_addr + range->size) 837 break; 838 839 range->size += size; 840 parser->range += np; 841 } 842 843 return range; 844 } 845 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 846 847 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 848 u64 size) 849 { 850 u64 taddr; 851 unsigned long port; 852 struct device_node *host; 853 854 taddr = __of_translate_address(dev, of_get_parent, 855 in_addr, "ranges", &host); 856 if (host) { 857 /* host-specific port access */ 858 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 859 of_node_put(host); 860 } else { 861 /* memory-mapped I/O range */ 862 port = pci_address_to_pio(taddr); 863 } 864 865 if (port == (unsigned long)-1) 866 return OF_BAD_ADDR; 867 868 return port; 869 } 870 871 #ifdef CONFIG_HAS_DMA 872 /** 873 * of_dma_get_range - Get DMA range info and put it into a map array 874 * @np: device node to get DMA range info 875 * @map: dma range structure to return 876 * 877 * Look in bottom up direction for the first "dma-ranges" property 878 * and parse it. Put the information into a DMA offset map array. 879 * 880 * dma-ranges format: 881 * DMA addr (dma_addr) : naddr cells 882 * CPU addr (phys_addr_t) : pna cells 883 * size : nsize cells 884 * 885 * It returns -ENODEV if "dma-ranges" property was not found for this 886 * device in the DT. 887 */ 888 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 889 { 890 struct device_node *node __free(device_node) = of_node_get(np); 891 const __be32 *ranges = NULL; 892 bool found_dma_ranges = false; 893 struct of_range_parser parser; 894 struct of_range range; 895 struct bus_dma_region *r; 896 int len, num_ranges = 0; 897 898 while (node) { 899 ranges = of_get_property(node, "dma-ranges", &len); 900 901 /* Ignore empty ranges, they imply no translation required */ 902 if (ranges && len > 0) 903 break; 904 905 /* Once we find 'dma-ranges', then a missing one is an error */ 906 if (found_dma_ranges && !ranges) 907 return -ENODEV; 908 909 found_dma_ranges = true; 910 911 node = of_get_next_dma_parent(node); 912 } 913 914 if (!node || !ranges) { 915 pr_debug("no dma-ranges found for node(%pOF)\n", np); 916 return -ENODEV; 917 } 918 of_dma_range_parser_init(&parser, node); 919 for_each_of_range(&parser, &range) { 920 if (range.cpu_addr == OF_BAD_ADDR) { 921 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 922 range.bus_addr, node); 923 continue; 924 } 925 num_ranges++; 926 } 927 928 if (!num_ranges) 929 return -EINVAL; 930 931 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 932 if (!r) 933 return -ENOMEM; 934 935 /* 936 * Record all info in the generic DMA ranges array for struct device, 937 * returning an error if we don't find any parsable ranges. 938 */ 939 *map = r; 940 of_dma_range_parser_init(&parser, node); 941 for_each_of_range(&parser, &range) { 942 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 943 range.bus_addr, range.cpu_addr, range.size); 944 if (range.cpu_addr == OF_BAD_ADDR) 945 continue; 946 r->cpu_start = range.cpu_addr; 947 r->dma_start = range.bus_addr; 948 r->size = range.size; 949 r++; 950 } 951 return 0; 952 } 953 #endif /* CONFIG_HAS_DMA */ 954 955 /** 956 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 957 * @np: The node to start searching from or NULL to start from the root 958 * 959 * Gets the highest CPU physical address that is addressable by all DMA masters 960 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 961 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 962 */ 963 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 964 { 965 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 966 struct of_range_parser parser; 967 phys_addr_t subtree_max_addr; 968 struct device_node *child; 969 struct of_range range; 970 const __be32 *ranges; 971 u64 cpu_end = 0; 972 int len; 973 974 if (!np) 975 np = of_root; 976 977 ranges = of_get_property(np, "dma-ranges", &len); 978 if (ranges && len) { 979 of_dma_range_parser_init(&parser, np); 980 for_each_of_range(&parser, &range) 981 if (range.cpu_addr + range.size > cpu_end) 982 cpu_end = range.cpu_addr + range.size - 1; 983 984 if (max_cpu_addr > cpu_end) 985 max_cpu_addr = cpu_end; 986 } 987 988 for_each_available_child_of_node(np, child) { 989 subtree_max_addr = of_dma_get_max_cpu_address(child); 990 if (max_cpu_addr > subtree_max_addr) 991 max_cpu_addr = subtree_max_addr; 992 } 993 994 return max_cpu_addr; 995 } 996 997 /** 998 * of_dma_is_coherent - Check if device is coherent 999 * @np: device node 1000 * 1001 * It returns true if "dma-coherent" property was found 1002 * for this device in the DT, or if DMA is coherent by 1003 * default for OF devices on the current platform and no 1004 * "dma-noncoherent" property was found for this device. 1005 */ 1006 bool of_dma_is_coherent(struct device_node *np) 1007 { 1008 struct device_node *node __free(device_node) = of_node_get(np); 1009 1010 while (node) { 1011 if (of_property_read_bool(node, "dma-coherent")) 1012 return true; 1013 1014 if (of_property_read_bool(node, "dma-noncoherent")) 1015 return false; 1016 1017 node = of_get_next_dma_parent(node); 1018 } 1019 return dma_default_coherent; 1020 } 1021 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1022 1023 /** 1024 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1025 * @np: device node 1026 * 1027 * Returns true if the "nonposted-mmio" property was found for 1028 * the device's bus. 1029 * 1030 * This is currently only enabled on builds that support Apple ARM devices, as 1031 * an optimization. 1032 */ 1033 static bool of_mmio_is_nonposted(struct device_node *np) 1034 { 1035 if (!IS_ENABLED(CONFIG_ARCH_APPLE)) 1036 return false; 1037 1038 struct device_node *parent __free(device_node) = of_get_parent(np); 1039 if (!parent) 1040 return false; 1041 1042 return of_property_read_bool(parent, "nonposted-mmio"); 1043 } 1044 1045 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1046 struct resource *r) 1047 { 1048 u64 taddr; 1049 const __be32 *addrp; 1050 u64 size; 1051 unsigned int flags; 1052 const char *name = NULL; 1053 1054 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1055 if (addrp == NULL) 1056 return -EINVAL; 1057 1058 /* Get optional "reg-names" property to add a name to a resource */ 1059 if (index >= 0) 1060 of_property_read_string_index(dev, "reg-names", index, &name); 1061 1062 if (flags & IORESOURCE_MEM) 1063 taddr = of_translate_address(dev, addrp); 1064 else if (flags & IORESOURCE_IO) 1065 taddr = of_translate_ioport(dev, addrp, size); 1066 else 1067 return -EINVAL; 1068 1069 if (taddr == OF_BAD_ADDR) 1070 return -EINVAL; 1071 memset(r, 0, sizeof(struct resource)); 1072 1073 if (of_mmio_is_nonposted(dev)) 1074 flags |= IORESOURCE_MEM_NONPOSTED; 1075 1076 r->flags = flags; 1077 r->name = name ? name : dev->full_name; 1078 1079 return __of_address_resource_bounds(r, taddr, size); 1080 } 1081 1082 /** 1083 * of_address_to_resource - Translate device tree address and return as resource 1084 * @dev: Caller's Device Node 1085 * @index: Index into the array 1086 * @r: Pointer to resource array 1087 * 1088 * Returns -EINVAL if the range cannot be converted to resource. 1089 * 1090 * Note that if your address is a PIO address, the conversion will fail if 1091 * the physical address can't be internally converted to an IO token with 1092 * pci_address_to_pio(), that is because it's either called too early or it 1093 * can't be matched to any host bridge IO space 1094 */ 1095 int of_address_to_resource(struct device_node *dev, int index, 1096 struct resource *r) 1097 { 1098 return __of_address_to_resource(dev, index, -1, r); 1099 } 1100 EXPORT_SYMBOL_GPL(of_address_to_resource); 1101 1102 int of_pci_address_to_resource(struct device_node *dev, int bar, 1103 struct resource *r) 1104 { 1105 1106 if (!IS_ENABLED(CONFIG_PCI)) 1107 return -ENOSYS; 1108 1109 return __of_address_to_resource(dev, -1, bar, r); 1110 } 1111 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1112 1113 /** 1114 * of_iomap - Maps the memory mapped IO for a given device_node 1115 * @np: the device whose io range will be mapped 1116 * @index: index of the io range 1117 * 1118 * Returns a pointer to the mapped memory 1119 */ 1120 void __iomem *of_iomap(struct device_node *np, int index) 1121 { 1122 struct resource res; 1123 1124 if (of_address_to_resource(np, index, &res)) 1125 return NULL; 1126 1127 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1128 return ioremap_np(res.start, resource_size(&res)); 1129 else 1130 return ioremap(res.start, resource_size(&res)); 1131 } 1132 EXPORT_SYMBOL(of_iomap); 1133 1134 /* 1135 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1136 * for a given device_node 1137 * @device: the device whose io range will be mapped 1138 * @index: index of the io range 1139 * @name: name "override" for the memory region request or NULL 1140 * 1141 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1142 * error code on failure. Usage example: 1143 * 1144 * base = of_io_request_and_map(node, 0, "foo"); 1145 * if (IS_ERR(base)) 1146 * return PTR_ERR(base); 1147 */ 1148 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1149 const char *name) 1150 { 1151 struct resource res; 1152 void __iomem *mem; 1153 1154 if (of_address_to_resource(np, index, &res)) 1155 return IOMEM_ERR_PTR(-EINVAL); 1156 1157 if (!name) 1158 name = res.name; 1159 if (!request_mem_region(res.start, resource_size(&res), name)) 1160 return IOMEM_ERR_PTR(-EBUSY); 1161 1162 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1163 mem = ioremap_np(res.start, resource_size(&res)); 1164 else 1165 mem = ioremap(res.start, resource_size(&res)); 1166 1167 if (!mem) { 1168 release_mem_region(res.start, resource_size(&res)); 1169 return IOMEM_ERR_PTR(-ENOMEM); 1170 } 1171 1172 return mem; 1173 } 1174 EXPORT_SYMBOL(of_io_request_and_map); 1175