xref: /linux/drivers/of/address.c (revision 1cbfb828e05171ca2dd77b5988d068e6872480fe)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/overflow.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/dma-direct.h> /* for bus_dma_region */
18 
19 #include "of_private.h"
20 
21 /* Max address size we deal with */
22 #define OF_MAX_ADDR_CELLS	4
23 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
25 
26 /* Debug utility */
27 #ifdef DEBUG
28 static void of_dump_addr(const char *s, const __be32 *addr, int na)
29 {
30 	pr_debug("%s", s);
31 	while (na--)
32 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 	pr_cont("\n");
34 }
35 #else
36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37 #endif
38 
39 /* Callbacks for bus specific translators */
40 struct of_bus {
41 	const char	*name;
42 	const char	*addresses;
43 	int		(*match)(struct device_node *parent);
44 	void		(*count_cells)(struct device_node *child,
45 				       int *addrc, int *sizec);
46 	u64		(*map)(__be32 *addr, const __be32 *range,
47 				int na, int ns, int pna, int fna);
48 	int		(*translate)(__be32 *addr, u64 offset, int na);
49 	int		flag_cells;
50 	unsigned int	(*get_flags)(const __be32 *addr);
51 };
52 
53 /*
54  * Default translator (generic bus)
55  */
56 
57 static void of_bus_default_count_cells(struct device_node *dev,
58 				       int *addrc, int *sizec)
59 {
60 	if (addrc)
61 		*addrc = of_n_addr_cells(dev);
62 	if (sizec)
63 		*sizec = of_n_size_cells(dev);
64 }
65 
66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 		int na, int ns, int pna, int fna)
68 {
69 	u64 cp, s, da;
70 
71 	cp = of_read_number(range + fna, na - fna);
72 	s  = of_read_number(range + na + pna, ns);
73 	da = of_read_number(addr + fna, na - fna);
74 
75 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
76 
77 	if (da < cp || da >= (cp + s))
78 		return OF_BAD_ADDR;
79 	return da - cp;
80 }
81 
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 	u64 a = of_read_number(addr, na);
85 	memset(addr, 0, na * 4);
86 	a += offset;
87 	if (na > 1)
88 		addr[na - 2] = cpu_to_be32(a >> 32);
89 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90 
91 	return 0;
92 }
93 
94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
95 {
96 	return of_read_number(addr, 1);
97 }
98 
99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 {
101 	return IORESOURCE_MEM;
102 }
103 
104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 				    int ns, int pna, int fna)
106 {
107 	/* Check that flags match */
108 	if (*addr != *range)
109 		return OF_BAD_ADDR;
110 
111 	return of_bus_default_map(addr, range, na, ns, pna, fna);
112 }
113 
114 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
115 {
116 	/* Keep "flags" part (high cell) in translated address */
117 	return of_bus_default_translate(addr + 1, offset, na - 1);
118 }
119 
120 #ifdef CONFIG_PCI
121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 	unsigned int flags = 0;
124 	u32 w = be32_to_cpup(addr);
125 
126 	if (!IS_ENABLED(CONFIG_PCI))
127 		return 0;
128 
129 	switch((w >> 24) & 0x03) {
130 	case 0x01:
131 		flags |= IORESOURCE_IO;
132 		break;
133 	case 0x02: /* 32 bits */
134 		flags |= IORESOURCE_MEM;
135 		break;
136 
137 	case 0x03: /* 64 bits */
138 		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
139 		break;
140 	}
141 	if (w & 0x40000000)
142 		flags |= IORESOURCE_PREFETCH;
143 	return flags;
144 }
145 
146 /*
147  * PCI bus specific translator
148  */
149 
150 static bool of_node_is_pcie(const struct device_node *np)
151 {
152 	bool is_pcie = of_node_name_eq(np, "pcie");
153 
154 	if (is_pcie)
155 		pr_warn_once("%pOF: Missing device_type\n", np);
156 
157 	return is_pcie;
158 }
159 
160 static int of_bus_pci_match(struct device_node *np)
161 {
162 	/*
163  	 * "pciex" is PCI Express
164 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
165 	 * "ht" is hypertransport
166 	 *
167 	 * If none of the device_type match, and that the node name is
168 	 * "pcie", accept the device as PCI (with a warning).
169 	 */
170 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
171 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
172 		of_node_is_pcie(np);
173 }
174 
175 static void of_bus_pci_count_cells(struct device_node *np,
176 				   int *addrc, int *sizec)
177 {
178 	if (addrc)
179 		*addrc = 3;
180 	if (sizec)
181 		*sizec = 2;
182 }
183 
184 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
185 		int pna, int fna)
186 {
187 	unsigned int af, rf;
188 
189 	af = of_bus_pci_get_flags(addr);
190 	rf = of_bus_pci_get_flags(range);
191 
192 	/* Check address type match */
193 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
194 		return OF_BAD_ADDR;
195 
196 	return of_bus_default_map(addr, range, na, ns, pna, fna);
197 }
198 
199 #endif /* CONFIG_PCI */
200 
201 static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
202 {
203 	u64 end = start;
204 
205 	if (overflows_type(start, r->start))
206 		return -EOVERFLOW;
207 	if (size && check_add_overflow(end, size - 1, &end))
208 		return -EOVERFLOW;
209 	if (overflows_type(end, r->end))
210 		return -EOVERFLOW;
211 
212 	r->start = start;
213 	r->end = end;
214 
215 	return 0;
216 }
217 
218 /*
219  * of_pci_range_to_resource - Create a resource from an of_pci_range
220  * @range:	the PCI range that describes the resource
221  * @np:		device node where the range belongs to
222  * @res:	pointer to a valid resource that will be updated to
223  *              reflect the values contained in the range.
224  *
225  * Returns -EINVAL if the range cannot be converted to resource.
226  *
227  * Note that if the range is an IO range, the resource will be converted
228  * using pci_address_to_pio() which can fail if it is called too early or
229  * if the range cannot be matched to any host bridge IO space (our case here).
230  * To guard against that we try to register the IO range first.
231  * If that fails we know that pci_address_to_pio() will do too.
232  */
233 int of_pci_range_to_resource(const struct of_pci_range *range,
234 			     const struct device_node *np, struct resource *res)
235 {
236 	u64 start;
237 	int err;
238 	res->flags = range->flags;
239 	res->parent = res->child = res->sibling = NULL;
240 	res->name = np->full_name;
241 
242 	if (res->flags & IORESOURCE_IO) {
243 		unsigned long port;
244 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
245 				range->size);
246 		if (err)
247 			goto invalid_range;
248 		port = pci_address_to_pio(range->cpu_addr);
249 		if (port == (unsigned long)-1) {
250 			err = -EINVAL;
251 			goto invalid_range;
252 		}
253 		start = port;
254 	} else {
255 		start = range->cpu_addr;
256 	}
257 	return __of_address_resource_bounds(res, start, range->size);
258 
259 invalid_range:
260 	res->start = (resource_size_t)OF_BAD_ADDR;
261 	res->end = (resource_size_t)OF_BAD_ADDR;
262 	return err;
263 }
264 EXPORT_SYMBOL(of_pci_range_to_resource);
265 
266 /*
267  * of_range_to_resource - Create a resource from a ranges entry
268  * @np:		device node where the range belongs to
269  * @index:	the 'ranges' index to convert to a resource
270  * @res:	pointer to a valid resource that will be updated to
271  *              reflect the values contained in the range.
272  *
273  * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
274  * cannot be converted to resource.
275  */
276 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
277 {
278 	int ret, i = 0;
279 	struct of_range_parser parser;
280 	struct of_range range;
281 
282 	ret = of_range_parser_init(&parser, np);
283 	if (ret)
284 		return ret;
285 
286 	for_each_of_range(&parser, &range)
287 		if (i++ == index)
288 			return of_pci_range_to_resource(&range, np, res);
289 
290 	return -ENOENT;
291 }
292 EXPORT_SYMBOL(of_range_to_resource);
293 
294 /*
295  * ISA bus specific translator
296  */
297 
298 static int of_bus_isa_match(struct device_node *np)
299 {
300 	return of_node_name_eq(np, "isa");
301 }
302 
303 static void of_bus_isa_count_cells(struct device_node *child,
304 				   int *addrc, int *sizec)
305 {
306 	if (addrc)
307 		*addrc = 2;
308 	if (sizec)
309 		*sizec = 1;
310 }
311 
312 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
313 		int pna, int fna)
314 {
315 	/* Check address type match */
316 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
317 		return OF_BAD_ADDR;
318 
319 	return of_bus_default_map(addr, range, na, ns, pna, fna);
320 }
321 
322 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
323 {
324 	unsigned int flags = 0;
325 	u32 w = be32_to_cpup(addr);
326 
327 	if (w & 1)
328 		flags |= IORESOURCE_IO;
329 	else
330 		flags |= IORESOURCE_MEM;
331 	return flags;
332 }
333 
334 static int of_bus_default_flags_match(struct device_node *np)
335 {
336 	/*
337 	 * Check for presence first since of_bus_n_addr_cells() will warn when
338 	 * walking parent nodes.
339 	 */
340 	return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
341 }
342 
343 static int of_bus_default_match(struct device_node *np)
344 {
345 	/*
346 	 * Check for presence first since of_bus_n_addr_cells() will warn when
347 	 * walking parent nodes.
348 	 */
349 	return of_property_present(np, "#address-cells");
350 }
351 
352 /*
353  * Array of bus specific translators
354  */
355 
356 static const struct of_bus of_busses[] = {
357 #ifdef CONFIG_PCI
358 	/* PCI */
359 	{
360 		.name = "pci",
361 		.addresses = "assigned-addresses",
362 		.match = of_bus_pci_match,
363 		.count_cells = of_bus_pci_count_cells,
364 		.map = of_bus_pci_map,
365 		.translate = of_bus_default_flags_translate,
366 		.flag_cells = 1,
367 		.get_flags = of_bus_pci_get_flags,
368 	},
369 #endif /* CONFIG_PCI */
370 	/* ISA */
371 	{
372 		.name = "isa",
373 		.addresses = "reg",
374 		.match = of_bus_isa_match,
375 		.count_cells = of_bus_isa_count_cells,
376 		.map = of_bus_isa_map,
377 		.translate = of_bus_default_flags_translate,
378 		.flag_cells = 1,
379 		.get_flags = of_bus_isa_get_flags,
380 	},
381 	/* Default with flags cell */
382 	{
383 		.name = "default-flags",
384 		.addresses = "reg",
385 		.match = of_bus_default_flags_match,
386 		.count_cells = of_bus_default_count_cells,
387 		.map = of_bus_default_flags_map,
388 		.translate = of_bus_default_flags_translate,
389 		.flag_cells = 1,
390 		.get_flags = of_bus_default_flags_get_flags,
391 	},
392 	/* Default */
393 	{
394 		.name = "default",
395 		.addresses = "reg",
396 		.match = of_bus_default_match,
397 		.count_cells = of_bus_default_count_cells,
398 		.map = of_bus_default_map,
399 		.translate = of_bus_default_translate,
400 		.get_flags = of_bus_default_get_flags,
401 	},
402 };
403 
404 static const struct of_bus *of_match_bus(struct device_node *np)
405 {
406 	int i;
407 
408 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
409 		if (!of_busses[i].match || of_busses[i].match(np))
410 			return &of_busses[i];
411 	return NULL;
412 }
413 
414 static int of_empty_ranges_quirk(const struct device_node *np)
415 {
416 	if (IS_ENABLED(CONFIG_PPC)) {
417 		/* To save cycles, we cache the result for global "Mac" setting */
418 		static int quirk_state = -1;
419 
420 		/* PA-SEMI sdc DT bug */
421 		if (of_device_is_compatible(np, "1682m-sdc"))
422 			return true;
423 
424 		/* Make quirk cached */
425 		if (quirk_state < 0)
426 			quirk_state =
427 				of_machine_is_compatible("Power Macintosh") ||
428 				of_machine_is_compatible("MacRISC");
429 		return quirk_state;
430 	}
431 	return false;
432 }
433 
434 static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
435 			    const struct of_bus *pbus, __be32 *addr,
436 			    int na, int ns, int pna, const char *rprop)
437 {
438 	const __be32 *ranges;
439 	unsigned int rlen;
440 	int rone;
441 	u64 offset = OF_BAD_ADDR;
442 
443 	/*
444 	 * Normally, an absence of a "ranges" property means we are
445 	 * crossing a non-translatable boundary, and thus the addresses
446 	 * below the current cannot be converted to CPU physical ones.
447 	 * Unfortunately, while this is very clear in the spec, it's not
448 	 * what Apple understood, and they do have things like /uni-n or
449 	 * /ht nodes with no "ranges" property and a lot of perfectly
450 	 * useable mapped devices below them. Thus we treat the absence of
451 	 * "ranges" as equivalent to an empty "ranges" property which means
452 	 * a 1:1 translation at that level. It's up to the caller not to try
453 	 * to translate addresses that aren't supposed to be translated in
454 	 * the first place. --BenH.
455 	 *
456 	 * As far as we know, this damage only exists on Apple machines, so
457 	 * This code is only enabled on powerpc. --gcl
458 	 *
459 	 * This quirk also applies for 'dma-ranges' which frequently exist in
460 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
461 	 */
462 	ranges = of_get_property(parent, rprop, &rlen);
463 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
464 	    strcmp(rprop, "dma-ranges")) {
465 		pr_debug("no ranges; cannot translate\n");
466 		return 1;
467 	}
468 	if (ranges == NULL || rlen == 0) {
469 		offset = of_read_number(addr, na);
470 		/* set address to zero, pass flags through */
471 		memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
472 		pr_debug("empty ranges; 1:1 translation\n");
473 		goto finish;
474 	}
475 
476 	pr_debug("walking ranges...\n");
477 
478 	/* Now walk through the ranges */
479 	rlen /= 4;
480 	rone = na + pna + ns;
481 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
482 		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
483 		if (offset != OF_BAD_ADDR)
484 			break;
485 	}
486 	if (offset == OF_BAD_ADDR) {
487 		pr_debug("not found !\n");
488 		return 1;
489 	}
490 	memcpy(addr, ranges + na, 4 * pna);
491 
492  finish:
493 	of_dump_addr("parent translation for:", addr, pna);
494 	pr_debug("with offset: %llx\n", offset);
495 
496 	/* Translate it into parent bus space */
497 	return pbus->translate(addr, offset, pna);
498 }
499 
500 /*
501  * Translate an address from the device-tree into a CPU physical address,
502  * this walks up the tree and applies the various bus mappings on the
503  * way.
504  *
505  * Note: We consider that crossing any level with #size-cells == 0 to mean
506  * that translation is impossible (that is we are not dealing with a value
507  * that can be mapped to a cpu physical address). This is not really specified
508  * that way, but this is traditionally the way IBM at least do things
509  *
510  * Whenever the translation fails, the *host pointer will be set to the
511  * device that had registered logical PIO mapping, and the return code is
512  * relative to that node.
513  */
514 static u64 __of_translate_address(struct device_node *node,
515 				  struct device_node *(*get_parent)(const struct device_node *),
516 				  const __be32 *in_addr, const char *rprop,
517 				  struct device_node **host)
518 {
519 	struct device_node *dev __free(device_node) = of_node_get(node);
520 	struct device_node *parent __free(device_node) = get_parent(dev);
521 	const struct of_bus *bus, *pbus;
522 	__be32 addr[OF_MAX_ADDR_CELLS];
523 	int na, ns, pna, pns;
524 
525 	pr_debug("** translation for device %pOF **\n", dev);
526 
527 	*host = NULL;
528 
529 	if (parent == NULL)
530 		return OF_BAD_ADDR;
531 	bus = of_match_bus(parent);
532 	if (!bus)
533 		return OF_BAD_ADDR;
534 
535 	/* Count address cells & copy address locally */
536 	bus->count_cells(dev, &na, &ns);
537 	if (!OF_CHECK_COUNTS(na, ns)) {
538 		pr_debug("Bad cell count for %pOF\n", dev);
539 		return OF_BAD_ADDR;
540 	}
541 	memcpy(addr, in_addr, na * 4);
542 
543 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
544 	    bus->name, na, ns, parent);
545 	of_dump_addr("translating address:", addr, na);
546 
547 	/* Translate */
548 	for (;;) {
549 		struct logic_pio_hwaddr *iorange;
550 
551 		/* Switch to parent bus */
552 		of_node_put(dev);
553 		dev = parent;
554 		parent = get_parent(dev);
555 
556 		/* If root, we have finished */
557 		if (parent == NULL) {
558 			pr_debug("reached root node\n");
559 			return of_read_number(addr, na);
560 		}
561 
562 		/*
563 		 * For indirectIO device which has no ranges property, get
564 		 * the address from reg directly.
565 		 */
566 		iorange = find_io_range_by_fwnode(&dev->fwnode);
567 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
568 			u64 result = of_read_number(addr + 1, na - 1);
569 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
570 				 dev, result);
571 			*host = no_free_ptr(dev);
572 			return result;
573 		}
574 
575 		/* Get new parent bus and counts */
576 		pbus = of_match_bus(parent);
577 		if (!pbus)
578 			return OF_BAD_ADDR;
579 		pbus->count_cells(dev, &pna, &pns);
580 		if (!OF_CHECK_COUNTS(pna, pns)) {
581 			pr_err("Bad cell count for %pOF\n", dev);
582 			return OF_BAD_ADDR;
583 		}
584 
585 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
586 		    pbus->name, pna, pns, parent);
587 
588 		/* Apply bus translation */
589 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
590 			return OF_BAD_ADDR;
591 
592 		/* Complete the move up one level */
593 		na = pna;
594 		ns = pns;
595 		bus = pbus;
596 
597 		of_dump_addr("one level translation:", addr, na);
598 	}
599 
600 	unreachable();
601 }
602 
603 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
604 {
605 	struct device_node *host;
606 	u64 ret;
607 
608 	ret = __of_translate_address(dev, of_get_parent,
609 				     in_addr, "ranges", &host);
610 	if (host) {
611 		of_node_put(host);
612 		return OF_BAD_ADDR;
613 	}
614 
615 	return ret;
616 }
617 EXPORT_SYMBOL(of_translate_address);
618 
619 #ifdef CONFIG_HAS_DMA
620 struct device_node *__of_get_dma_parent(const struct device_node *np)
621 {
622 	struct of_phandle_args args;
623 	int ret, index;
624 
625 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
626 	if (index < 0)
627 		return of_get_parent(np);
628 
629 	ret = of_parse_phandle_with_args(np, "interconnects",
630 					 "#interconnect-cells",
631 					 index, &args);
632 	if (ret < 0)
633 		return of_get_parent(np);
634 
635 	return args.np;
636 }
637 #endif
638 
639 static struct device_node *of_get_next_dma_parent(struct device_node *np)
640 {
641 	struct device_node *parent;
642 
643 	parent = __of_get_dma_parent(np);
644 	of_node_put(np);
645 
646 	return parent;
647 }
648 
649 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
650 {
651 	struct device_node *host;
652 	u64 ret;
653 
654 	ret = __of_translate_address(dev, __of_get_dma_parent,
655 				     in_addr, "dma-ranges", &host);
656 
657 	if (host) {
658 		of_node_put(host);
659 		return OF_BAD_ADDR;
660 	}
661 
662 	return ret;
663 }
664 EXPORT_SYMBOL(of_translate_dma_address);
665 
666 /**
667  * of_translate_dma_region - Translate device tree address and size tuple
668  * @dev: device tree node for which to translate
669  * @prop: pointer into array of cells
670  * @start: return value for the start of the DMA range
671  * @length: return value for the length of the DMA range
672  *
673  * Returns a pointer to the cell immediately following the translated DMA region.
674  */
675 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
676 				      phys_addr_t *start, size_t *length)
677 {
678 	struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
679 	u64 address, size;
680 	int na, ns;
681 
682 	if (!parent)
683 		return NULL;
684 
685 	na = of_bus_n_addr_cells(parent);
686 	ns = of_bus_n_size_cells(parent);
687 
688 	address = of_translate_dma_address(dev, prop);
689 	if (address == OF_BAD_ADDR)
690 		return NULL;
691 
692 	size = of_read_number(prop + na, ns);
693 
694 	if (start)
695 		*start = address;
696 
697 	if (length)
698 		*length = size;
699 
700 	return prop + na + ns;
701 }
702 EXPORT_SYMBOL(of_translate_dma_region);
703 
704 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
705 			       u64 *size, unsigned int *flags)
706 {
707 	const __be32 *prop;
708 	unsigned int psize;
709 	struct device_node *parent __free(device_node) = of_get_parent(dev);
710 	const struct of_bus *bus;
711 	int onesize, i, na, ns;
712 
713 	if (parent == NULL)
714 		return NULL;
715 
716 	/* match the parent's bus type */
717 	bus = of_match_bus(parent);
718 	if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0)))
719 		return NULL;
720 
721 	/* Get "reg" or "assigned-addresses" property */
722 	prop = of_get_property(dev, bus->addresses, &psize);
723 	if (prop == NULL)
724 		return NULL;
725 	psize /= 4;
726 
727 	bus->count_cells(dev, &na, &ns);
728 	if (!OF_CHECK_ADDR_COUNT(na))
729 		return NULL;
730 
731 	onesize = na + ns;
732 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
733 		u32 val = be32_to_cpu(prop[0]);
734 		/* PCI bus matches on BAR number instead of index */
735 		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
736 		    ((index >= 0) && (i == index))) {
737 			if (size)
738 				*size = of_read_number(prop + na, ns);
739 			if (flags)
740 				*flags = bus->get_flags(prop);
741 			return prop;
742 		}
743 	}
744 	return NULL;
745 }
746 EXPORT_SYMBOL(__of_get_address);
747 
748 /**
749  * of_property_read_reg - Retrieve the specified "reg" entry index without translating
750  * @np: device tree node for which to retrieve "reg" from
751  * @idx: "reg" entry index to read
752  * @addr: return value for the untranslated address
753  * @size: return value for the entry size
754  *
755  * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
756  * size values filled in.
757  */
758 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
759 {
760 	const __be32 *prop = of_get_address(np, idx, size, NULL);
761 
762 	if (!prop)
763 		return -EINVAL;
764 
765 	*addr = of_read_number(prop, of_n_addr_cells(np));
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL(of_property_read_reg);
770 
771 static int parser_init(struct of_pci_range_parser *parser,
772 			struct device_node *node, const char *name)
773 {
774 	int rlen;
775 
776 	parser->node = node;
777 	parser->pna = of_n_addr_cells(node);
778 	parser->na = of_bus_n_addr_cells(node);
779 	parser->ns = of_bus_n_size_cells(node);
780 	parser->dma = !strcmp(name, "dma-ranges");
781 	parser->bus = of_match_bus(node);
782 
783 	parser->range = of_get_property(node, name, &rlen);
784 	if (parser->range == NULL)
785 		return -ENOENT;
786 
787 	parser->end = parser->range + rlen / sizeof(__be32);
788 
789 	return 0;
790 }
791 
792 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
793 				struct device_node *node)
794 {
795 	return parser_init(parser, node, "ranges");
796 }
797 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
798 
799 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
800 				struct device_node *node)
801 {
802 	return parser_init(parser, node, "dma-ranges");
803 }
804 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
805 #define of_dma_range_parser_init of_pci_dma_range_parser_init
806 
807 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
808 						struct of_pci_range *range)
809 {
810 	int na = parser->na;
811 	int ns = parser->ns;
812 	int np = parser->pna + na + ns;
813 	int busflag_na = parser->bus->flag_cells;
814 
815 	if (!range)
816 		return NULL;
817 
818 	if (!parser->range || parser->range + np > parser->end)
819 		return NULL;
820 
821 	range->flags = parser->bus->get_flags(parser->range);
822 
823 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
824 
825 	if (parser->dma)
826 		range->cpu_addr = of_translate_dma_address(parser->node,
827 				parser->range + na);
828 	else
829 		range->cpu_addr = of_translate_address(parser->node,
830 				parser->range + na);
831 	range->size = of_read_number(parser->range + parser->pna + na, ns);
832 
833 	parser->range += np;
834 
835 	/* Now consume following elements while they are contiguous */
836 	while (parser->range + np <= parser->end) {
837 		u32 flags = 0;
838 		u64 bus_addr, cpu_addr, size;
839 
840 		flags = parser->bus->get_flags(parser->range);
841 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
842 		if (parser->dma)
843 			cpu_addr = of_translate_dma_address(parser->node,
844 					parser->range + na);
845 		else
846 			cpu_addr = of_translate_address(parser->node,
847 					parser->range + na);
848 		size = of_read_number(parser->range + parser->pna + na, ns);
849 
850 		if (flags != range->flags)
851 			break;
852 		if (bus_addr != range->bus_addr + range->size ||
853 		    cpu_addr != range->cpu_addr + range->size)
854 			break;
855 
856 		range->size += size;
857 		parser->range += np;
858 	}
859 
860 	return range;
861 }
862 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
863 
864 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
865 			u64 size)
866 {
867 	u64 taddr;
868 	unsigned long port;
869 	struct device_node *host;
870 
871 	taddr = __of_translate_address(dev, of_get_parent,
872 				       in_addr, "ranges", &host);
873 	if (host) {
874 		/* host-specific port access */
875 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
876 		of_node_put(host);
877 	} else {
878 		/* memory-mapped I/O range */
879 		port = pci_address_to_pio(taddr);
880 	}
881 
882 	if (port == (unsigned long)-1)
883 		return OF_BAD_ADDR;
884 
885 	return port;
886 }
887 
888 #ifdef CONFIG_HAS_DMA
889 /**
890  * of_dma_get_range - Get DMA range info and put it into a map array
891  * @np:		device node to get DMA range info
892  * @map:	dma range structure to return
893  *
894  * Look in bottom up direction for the first "dma-ranges" property
895  * and parse it.  Put the information into a DMA offset map array.
896  *
897  * dma-ranges format:
898  *	DMA addr (dma_addr)	: naddr cells
899  *	CPU addr (phys_addr_t)	: pna cells
900  *	size			: nsize cells
901  *
902  * It returns -ENODEV if "dma-ranges" property was not found for this
903  * device in the DT.
904  */
905 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
906 {
907 	struct device_node *node __free(device_node) = of_node_get(np);
908 	const __be32 *ranges = NULL;
909 	bool found_dma_ranges = false;
910 	struct of_range_parser parser;
911 	struct of_range range;
912 	struct bus_dma_region *r;
913 	int len, num_ranges = 0;
914 
915 	while (node) {
916 		ranges = of_get_property(node, "dma-ranges", &len);
917 
918 		/* Ignore empty ranges, they imply no translation required */
919 		if (ranges && len > 0)
920 			break;
921 
922 		/* Once we find 'dma-ranges', then a missing one is an error */
923 		if (found_dma_ranges && !ranges)
924 			return -ENODEV;
925 
926 		found_dma_ranges = true;
927 
928 		node = of_get_next_dma_parent(node);
929 	}
930 
931 	if (!node || !ranges) {
932 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
933 		return -ENODEV;
934 	}
935 	of_dma_range_parser_init(&parser, node);
936 	for_each_of_range(&parser, &range) {
937 		if (range.cpu_addr == OF_BAD_ADDR) {
938 			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
939 			       range.bus_addr, node);
940 			continue;
941 		}
942 		num_ranges++;
943 	}
944 
945 	if (!num_ranges)
946 		return -EINVAL;
947 
948 	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
949 	if (!r)
950 		return -ENOMEM;
951 
952 	/*
953 	 * Record all info in the generic DMA ranges array for struct device,
954 	 * returning an error if we don't find any parsable ranges.
955 	 */
956 	*map = r;
957 	of_dma_range_parser_init(&parser, node);
958 	for_each_of_range(&parser, &range) {
959 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
960 			 range.bus_addr, range.cpu_addr, range.size);
961 		if (range.cpu_addr == OF_BAD_ADDR)
962 			continue;
963 		r->cpu_start = range.cpu_addr;
964 		r->dma_start = range.bus_addr;
965 		r->size = range.size;
966 		r++;
967 	}
968 	return 0;
969 }
970 #endif /* CONFIG_HAS_DMA */
971 
972 /**
973  * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
974  * @np: The node to start searching from or NULL to start from the root
975  *
976  * Gets the highest CPU physical address that is addressable by all DMA masters
977  * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
978  * DMA constrained device is found, it returns PHYS_ADDR_MAX.
979  */
980 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
981 {
982 	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
983 	struct of_range_parser parser;
984 	phys_addr_t subtree_max_addr;
985 	struct device_node *child;
986 	struct of_range range;
987 	const __be32 *ranges;
988 	u64 cpu_end = 0;
989 	int len;
990 
991 	if (!np)
992 		np = of_root;
993 
994 	ranges = of_get_property(np, "dma-ranges", &len);
995 	if (ranges && len) {
996 		of_dma_range_parser_init(&parser, np);
997 		for_each_of_range(&parser, &range)
998 			if (range.cpu_addr + range.size > cpu_end)
999 				cpu_end = range.cpu_addr + range.size - 1;
1000 
1001 		if (max_cpu_addr > cpu_end)
1002 			max_cpu_addr = cpu_end;
1003 	}
1004 
1005 	for_each_available_child_of_node(np, child) {
1006 		subtree_max_addr = of_dma_get_max_cpu_address(child);
1007 		if (max_cpu_addr > subtree_max_addr)
1008 			max_cpu_addr = subtree_max_addr;
1009 	}
1010 
1011 	return max_cpu_addr;
1012 }
1013 
1014 /**
1015  * of_dma_is_coherent - Check if device is coherent
1016  * @np:	device node
1017  *
1018  * It returns true if "dma-coherent" property was found
1019  * for this device in the DT, or if DMA is coherent by
1020  * default for OF devices on the current platform and no
1021  * "dma-noncoherent" property was found for this device.
1022  */
1023 bool of_dma_is_coherent(struct device_node *np)
1024 {
1025 	struct device_node *node __free(device_node) = of_node_get(np);
1026 
1027 	while (node) {
1028 		if (of_property_read_bool(node, "dma-coherent"))
1029 			return true;
1030 
1031 		if (of_property_read_bool(node, "dma-noncoherent"))
1032 			return false;
1033 
1034 		node = of_get_next_dma_parent(node);
1035 	}
1036 	return dma_default_coherent;
1037 }
1038 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1039 
1040 /**
1041  * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1042  * @np:	device node
1043  *
1044  * Returns true if the "nonposted-mmio" property was found for
1045  * the device's bus.
1046  *
1047  * This is currently only enabled on builds that support Apple ARM devices, as
1048  * an optimization.
1049  */
1050 static bool of_mmio_is_nonposted(const struct device_node *np)
1051 {
1052 	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1053 		return false;
1054 
1055 	struct device_node *parent __free(device_node) = of_get_parent(np);
1056 	if (!parent)
1057 		return false;
1058 
1059 	return of_property_read_bool(parent, "nonposted-mmio");
1060 }
1061 
1062 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1063 		struct resource *r)
1064 {
1065 	u64 taddr;
1066 	const __be32	*addrp;
1067 	u64		size;
1068 	unsigned int	flags;
1069 	const char	*name = NULL;
1070 
1071 	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1072 	if (addrp == NULL)
1073 		return -EINVAL;
1074 
1075 	/* Get optional "reg-names" property to add a name to a resource */
1076 	if (index >= 0)
1077 		of_property_read_string_index(dev, "reg-names",	index, &name);
1078 
1079 	if (flags & IORESOURCE_MEM)
1080 		taddr = of_translate_address(dev, addrp);
1081 	else if (flags & IORESOURCE_IO)
1082 		taddr = of_translate_ioport(dev, addrp, size);
1083 	else
1084 		return -EINVAL;
1085 
1086 	if (taddr == OF_BAD_ADDR)
1087 		return -EINVAL;
1088 	memset(r, 0, sizeof(struct resource));
1089 
1090 	if (of_mmio_is_nonposted(dev))
1091 		flags |= IORESOURCE_MEM_NONPOSTED;
1092 
1093 	r->flags = flags;
1094 	r->name = name ? name : dev->full_name;
1095 
1096 	return __of_address_resource_bounds(r, taddr, size);
1097 }
1098 
1099 /**
1100  * of_address_to_resource - Translate device tree address and return as resource
1101  * @dev:	Caller's Device Node
1102  * @index:	Index into the array
1103  * @r:		Pointer to resource array
1104  *
1105  * Returns -EINVAL if the range cannot be converted to resource.
1106  *
1107  * Note that if your address is a PIO address, the conversion will fail if
1108  * the physical address can't be internally converted to an IO token with
1109  * pci_address_to_pio(), that is because it's either called too early or it
1110  * can't be matched to any host bridge IO space
1111  */
1112 int of_address_to_resource(struct device_node *dev, int index,
1113 			   struct resource *r)
1114 {
1115 	return __of_address_to_resource(dev, index, -1, r);
1116 }
1117 EXPORT_SYMBOL_GPL(of_address_to_resource);
1118 
1119 int of_pci_address_to_resource(struct device_node *dev, int bar,
1120 			       struct resource *r)
1121 {
1122 
1123 	if (!IS_ENABLED(CONFIG_PCI))
1124 		return -ENOSYS;
1125 
1126 	return __of_address_to_resource(dev, -1, bar, r);
1127 }
1128 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1129 
1130 /**
1131  * of_iomap - Maps the memory mapped IO for a given device_node
1132  * @np:		the device whose io range will be mapped
1133  * @index:	index of the io range
1134  *
1135  * Returns a pointer to the mapped memory
1136  */
1137 void __iomem *of_iomap(struct device_node *np, int index)
1138 {
1139 	struct resource res;
1140 
1141 	if (of_address_to_resource(np, index, &res))
1142 		return NULL;
1143 
1144 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1145 		return ioremap_np(res.start, resource_size(&res));
1146 	else
1147 		return ioremap(res.start, resource_size(&res));
1148 }
1149 EXPORT_SYMBOL(of_iomap);
1150 
1151 /*
1152  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1153  *			   for a given device_node
1154  * @device:	the device whose io range will be mapped
1155  * @index:	index of the io range
1156  * @name:	name "override" for the memory region request or NULL
1157  *
1158  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1159  * error code on failure. Usage example:
1160  *
1161  *	base = of_io_request_and_map(node, 0, "foo");
1162  *	if (IS_ERR(base))
1163  *		return PTR_ERR(base);
1164  */
1165 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1166 				    const char *name)
1167 {
1168 	struct resource res;
1169 	void __iomem *mem;
1170 
1171 	if (of_address_to_resource(np, index, &res))
1172 		return IOMEM_ERR_PTR(-EINVAL);
1173 
1174 	if (!name)
1175 		name = res.name;
1176 	if (!request_mem_region(res.start, resource_size(&res), name))
1177 		return IOMEM_ERR_PTR(-EBUSY);
1178 
1179 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1180 		mem = ioremap_np(res.start, resource_size(&res));
1181 	else
1182 		mem = ioremap(res.start, resource_size(&res));
1183 
1184 	if (!mem) {
1185 		release_mem_region(res.start, resource_size(&res));
1186 		return IOMEM_ERR_PTR(-ENOMEM);
1187 	}
1188 
1189 	return mem;
1190 }
1191 EXPORT_SYMBOL(of_io_request_and_map);
1192