xref: /linux/drivers/nvmem/rave-sp-eeprom.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * EEPROM driver for RAVE SP
5  *
6  * Copyright (C) 2018 Zodiac Inflight Innovations
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/mfd/rave-sp.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/sizes.h>
16 
17 /**
18  * enum rave_sp_eeprom_access_type - Supported types of EEPROM access
19  *
20  * @RAVE_SP_EEPROM_WRITE:	EEPROM write
21  * @RAVE_SP_EEPROM_READ:	EEPROM read
22  */
23 enum rave_sp_eeprom_access_type {
24 	RAVE_SP_EEPROM_WRITE = 0,
25 	RAVE_SP_EEPROM_READ  = 1,
26 };
27 
28 /**
29  * enum rave_sp_eeprom_header_size - EEPROM command header sizes
30  *
31  * @RAVE_SP_EEPROM_HEADER_SMALL: EEPROM header size for "small" devices (< 8K)
32  * @RAVE_SP_EEPROM_HEADER_BIG:	 EEPROM header size for "big" devices (> 8K)
33  */
34 enum rave_sp_eeprom_header_size {
35 	RAVE_SP_EEPROM_HEADER_SMALL = 4U,
36 	RAVE_SP_EEPROM_HEADER_BIG   = 5U,
37 };
38 
39 #define	RAVE_SP_EEPROM_PAGE_SIZE	32U
40 
41 /**
42  * struct rave_sp_eeprom_page - RAVE SP EEPROM page
43  *
44  * @type:	Access type (see enum rave_sp_eeprom_access_type)
45  * @success:	Success flag (Success = 1, Failure = 0)
46  * @data:	Read data
47 
48  * Note this structure corresponds to RSP_*_EEPROM payload from RAVE
49  * SP ICD
50  */
51 struct rave_sp_eeprom_page {
52 	u8  type;
53 	u8  success;
54 	u8  data[RAVE_SP_EEPROM_PAGE_SIZE];
55 } __packed;
56 
57 /**
58  * struct rave_sp_eeprom - RAVE SP EEPROM device
59  *
60  * @sp:			Pointer to parent RAVE SP device
61  * @mutex:		Lock protecting access to EEPROM
62  * @address:		EEPROM device address
63  * @header_size:	Size of EEPROM command header for this device
64  * @dev:		Pointer to corresponding struct device used for logging
65  */
66 struct rave_sp_eeprom {
67 	struct rave_sp *sp;
68 	struct mutex mutex;
69 	u8 address;
70 	unsigned int header_size;
71 	struct device *dev;
72 };
73 
74 /**
75  * rave_sp_eeprom_io - Low-level part of EEPROM page access
76  *
77  * @eeprom:	EEPROM device to write to
78  * @type:	EEPROM access type (read or write)
79  * @idx:	number of the EEPROM page
80  * @page:	Data to write or buffer to store result (via page->data)
81  *
82  * This function does all of the low-level work required to perform a
83  * EEPROM access. This includes formatting correct command payload,
84  * sending it and checking received results.
85  *
86  * Returns zero in case of success or negative error code in
87  * case of failure.
88  */
89 static int rave_sp_eeprom_io(struct rave_sp_eeprom *eeprom,
90 			     enum rave_sp_eeprom_access_type type,
91 			     u16 idx,
92 			     struct rave_sp_eeprom_page *page)
93 {
94 	const bool is_write = type == RAVE_SP_EEPROM_WRITE;
95 	const unsigned int data_size = is_write ? sizeof(page->data) : 0;
96 	const unsigned int cmd_size = eeprom->header_size + data_size;
97 	const unsigned int rsp_size =
98 		is_write ? sizeof(*page) - sizeof(page->data) : sizeof(*page);
99 	unsigned int offset = 0;
100 	u8 cmd[cmd_size];
101 	int ret;
102 
103 	cmd[offset++] = eeprom->address;
104 	cmd[offset++] = 0;
105 	cmd[offset++] = type;
106 	cmd[offset++] = idx;
107 
108 	/*
109 	 * If there's still room in this command's header it means we
110 	 * are talkin to EEPROM that uses 16-bit page numbers and we
111 	 * have to specify index's MSB in payload as well.
112 	 */
113 	if (offset < eeprom->header_size)
114 		cmd[offset++] = idx >> 8;
115 	/*
116 	 * Copy our data to write to command buffer first. In case of
117 	 * a read data_size should be zero and memcpy would become a
118 	 * no-op
119 	 */
120 	memcpy(&cmd[offset], page->data, data_size);
121 
122 	ret = rave_sp_exec(eeprom->sp, cmd, cmd_size, page, rsp_size);
123 	if (ret)
124 		return ret;
125 
126 	if (page->type != type)
127 		return -EPROTO;
128 
129 	if (!page->success)
130 		return -EIO;
131 
132 	return 0;
133 }
134 
135 /**
136  * rave_sp_eeprom_page_access - Access single EEPROM page
137  *
138  * @eeprom:	EEPROM device to access
139  * @type:	Access type to perform (read or write)
140  * @offset:	Offset within EEPROM to access
141  * @data:	Data buffer
142  * @data_len:	Size of the data buffer
143  *
144  * This function performs a generic access to a single page or a
145  * portion thereof. Requested access MUST NOT cross the EEPROM page
146  * boundary.
147  *
148  * Returns zero in case of success or negative error code in
149  * case of failure.
150  */
151 static int
152 rave_sp_eeprom_page_access(struct rave_sp_eeprom *eeprom,
153 			   enum rave_sp_eeprom_access_type type,
154 			   unsigned int offset, u8 *data,
155 			   size_t data_len)
156 {
157 	const unsigned int page_offset = offset % RAVE_SP_EEPROM_PAGE_SIZE;
158 	const unsigned int page_nr     = offset / RAVE_SP_EEPROM_PAGE_SIZE;
159 	struct rave_sp_eeprom_page page;
160 	int ret;
161 
162 	/*
163 	 * This function will not work if data access we've been asked
164 	 * to do is crossing EEPROM page boundary. Normally this
165 	 * should never happen and getting here would indicate a bug
166 	 * in the code.
167 	 */
168 	if (WARN_ON(data_len > sizeof(page.data) - page_offset))
169 		return -EINVAL;
170 
171 	if (type == RAVE_SP_EEPROM_WRITE) {
172 		/*
173 		 * If doing a partial write we need to do a read first
174 		 * to fill the rest of the page with correct data.
175 		 */
176 		if (data_len < RAVE_SP_EEPROM_PAGE_SIZE) {
177 			ret = rave_sp_eeprom_io(eeprom, RAVE_SP_EEPROM_READ,
178 						page_nr, &page);
179 			if (ret)
180 				return ret;
181 		}
182 
183 		memcpy(&page.data[page_offset], data, data_len);
184 	}
185 
186 	ret = rave_sp_eeprom_io(eeprom, type, page_nr, &page);
187 	if (ret)
188 		return ret;
189 
190 	/*
191 	 * Since we receive the result of the read via 'page.data'
192 	 * buffer we need to copy that to 'data'
193 	 */
194 	if (type == RAVE_SP_EEPROM_READ)
195 		memcpy(data, &page.data[page_offset], data_len);
196 
197 	return 0;
198 }
199 
200 /**
201  * rave_sp_eeprom_access - Access EEPROM data
202  *
203  * @eeprom:	EEPROM device to access
204  * @type:	Access type to perform (read or write)
205  * @offset:	Offset within EEPROM to access
206  * @data:	Data buffer
207  * @data_len:	Size of the data buffer
208  *
209  * This function performs a generic access (either read or write) at
210  * arbitrary offset (not necessary page aligned) of arbitrary length
211  * (is not constrained by EEPROM page size).
212  *
213  * Returns zero in case of success or negative error code in case of
214  * failure.
215  */
216 static int rave_sp_eeprom_access(struct rave_sp_eeprom *eeprom,
217 				 enum rave_sp_eeprom_access_type type,
218 				 unsigned int offset, u8 *data,
219 				 unsigned int data_len)
220 {
221 	unsigned int residue;
222 	unsigned int chunk;
223 	unsigned int head;
224 	int ret;
225 
226 	mutex_lock(&eeprom->mutex);
227 
228 	head    = offset % RAVE_SP_EEPROM_PAGE_SIZE;
229 	residue = data_len;
230 
231 	do {
232 		/*
233 		 * First iteration, if we are doing an access that is
234 		 * not 32-byte aligned, we need to access only data up
235 		 * to a page boundary to avoid corssing it in
236 		 * rave_sp_eeprom_page_access()
237 		 */
238 		if (unlikely(head)) {
239 			chunk = RAVE_SP_EEPROM_PAGE_SIZE - head;
240 			/*
241 			 * This can only happen once per
242 			 * rave_sp_eeprom_access() call, so we set
243 			 * head to zero to process all the other
244 			 * iterations normally.
245 			 */
246 			head  = 0;
247 		} else {
248 			chunk = RAVE_SP_EEPROM_PAGE_SIZE;
249 		}
250 
251 		/*
252 		 * We should never read more that 'residue' bytes
253 		 */
254 		chunk = min(chunk, residue);
255 		ret = rave_sp_eeprom_page_access(eeprom, type, offset,
256 						 data, chunk);
257 		if (ret)
258 			goto out;
259 
260 		residue -= chunk;
261 		offset  += chunk;
262 		data    += chunk;
263 	} while (residue);
264 out:
265 	mutex_unlock(&eeprom->mutex);
266 	return ret;
267 }
268 
269 static int rave_sp_eeprom_reg_read(void *eeprom, unsigned int offset,
270 				   void *val, size_t bytes)
271 {
272 	return rave_sp_eeprom_access(eeprom, RAVE_SP_EEPROM_READ,
273 				     offset, val, bytes);
274 }
275 
276 static int rave_sp_eeprom_reg_write(void *eeprom, unsigned int offset,
277 				    void *val, size_t bytes)
278 {
279 	return rave_sp_eeprom_access(eeprom, RAVE_SP_EEPROM_WRITE,
280 				     offset, val, bytes);
281 }
282 
283 static int rave_sp_eeprom_probe(struct platform_device *pdev)
284 {
285 	struct device *dev = &pdev->dev;
286 	struct rave_sp *sp = dev_get_drvdata(dev->parent);
287 	struct device_node *np = dev->of_node;
288 	struct nvmem_config config = { 0 };
289 	struct rave_sp_eeprom *eeprom;
290 	struct nvmem_device *nvmem;
291 	u32 reg[2], size;
292 
293 	if (of_property_read_u32_array(np, "reg", reg, ARRAY_SIZE(reg))) {
294 		dev_err(dev, "Failed to parse \"reg\" property\n");
295 		return -EINVAL;
296 	}
297 
298 	size = reg[1];
299 	/*
300 	 * Per ICD, we have no more than 2 bytes to specify EEPROM
301 	 * page.
302 	 */
303 	if (size > U16_MAX * RAVE_SP_EEPROM_PAGE_SIZE) {
304 		dev_err(dev, "Specified size is too big\n");
305 		return -EINVAL;
306 	}
307 
308 	eeprom = devm_kzalloc(dev, sizeof(*eeprom), GFP_KERNEL);
309 	if (!eeprom)
310 		return -ENOMEM;
311 
312 	eeprom->address = reg[0];
313 	eeprom->sp      = sp;
314 	eeprom->dev     = dev;
315 
316 	if (size > SZ_8K)
317 		eeprom->header_size = RAVE_SP_EEPROM_HEADER_BIG;
318 	else
319 		eeprom->header_size = RAVE_SP_EEPROM_HEADER_SMALL;
320 
321 	mutex_init(&eeprom->mutex);
322 
323 	config.id		= -1;
324 	of_property_read_string(np, "zii,eeprom-name", &config.name);
325 	config.priv		= eeprom;
326 	config.dev		= dev;
327 	config.size		= size;
328 	config.reg_read		= rave_sp_eeprom_reg_read;
329 	config.reg_write	= rave_sp_eeprom_reg_write;
330 	config.word_size	= 1;
331 	config.stride		= 1;
332 
333 	nvmem = devm_nvmem_register(dev, &config);
334 
335 	return PTR_ERR_OR_ZERO(nvmem);
336 }
337 
338 static const struct of_device_id rave_sp_eeprom_of_match[] = {
339 	{ .compatible = "zii,rave-sp-eeprom" },
340 	{}
341 };
342 MODULE_DEVICE_TABLE(of, rave_sp_eeprom_of_match);
343 
344 static struct platform_driver rave_sp_eeprom_driver = {
345 	.probe = rave_sp_eeprom_probe,
346 	.driver	= {
347 		.name = KBUILD_MODNAME,
348 		.of_match_table = rave_sp_eeprom_of_match,
349 	},
350 };
351 module_platform_driver(rave_sp_eeprom_driver);
352 
353 MODULE_LICENSE("GPL");
354 MODULE_AUTHOR("Andrey Vostrikov <andrey.vostrikov@cogentembedded.com>");
355 MODULE_AUTHOR("Nikita Yushchenko <nikita.yoush@cogentembedded.com>");
356 MODULE_AUTHOR("Andrey Smirnov <andrew.smirnov@gmail.com>");
357 MODULE_DESCRIPTION("RAVE SP EEPROM driver");
358