xref: /linux/drivers/nvmem/core.c (revision fd7d598270724cc787982ea48bbe17ad383a8b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	struct nvmem_layout	*layout;
43 	void *priv;
44 };
45 
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47 
48 #define FLAG_COMPAT		BIT(0)
49 struct nvmem_cell_entry {
50 	const char		*name;
51 	int			offset;
52 	size_t			raw_len;
53 	int			bytes;
54 	int			bit_offset;
55 	int			nbits;
56 	nvmem_cell_post_process_t read_post_process;
57 	void			*priv;
58 	struct device_node	*np;
59 	struct nvmem_device	*nvmem;
60 	struct list_head	node;
61 };
62 
63 struct nvmem_cell {
64 	struct nvmem_cell_entry *entry;
65 	const char		*id;
66 	int			index;
67 };
68 
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71 
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74 
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77 
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79 
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82 
83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84 			    void *val, size_t bytes)
85 {
86 	if (nvmem->reg_read)
87 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88 
89 	return -EINVAL;
90 }
91 
92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93 			     void *val, size_t bytes)
94 {
95 	int ret;
96 
97 	if (nvmem->reg_write) {
98 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101 		return ret;
102 	}
103 
104 	return -EINVAL;
105 }
106 
107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108 				      unsigned int offset, void *val,
109 				      size_t bytes, int write)
110 {
111 
112 	unsigned int end = offset + bytes;
113 	unsigned int kend, ksize;
114 	const struct nvmem_keepout *keepout = nvmem->keepout;
115 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116 	int rc;
117 
118 	/*
119 	 * Skip all keepouts before the range being accessed.
120 	 * Keepouts are sorted.
121 	 */
122 	while ((keepout < keepoutend) && (keepout->end <= offset))
123 		keepout++;
124 
125 	while ((offset < end) && (keepout < keepoutend)) {
126 		/* Access the valid portion before the keepout. */
127 		if (offset < keepout->start) {
128 			kend = min(end, keepout->start);
129 			ksize = kend - offset;
130 			if (write)
131 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132 			else
133 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134 
135 			if (rc)
136 				return rc;
137 
138 			offset += ksize;
139 			val += ksize;
140 		}
141 
142 		/*
143 		 * Now we're aligned to the start of this keepout zone. Go
144 		 * through it.
145 		 */
146 		kend = min(end, keepout->end);
147 		ksize = kend - offset;
148 		if (!write)
149 			memset(val, keepout->value, ksize);
150 
151 		val += ksize;
152 		offset += ksize;
153 		keepout++;
154 	}
155 
156 	/*
157 	 * If we ran out of keepouts but there's still stuff to do, send it
158 	 * down directly
159 	 */
160 	if (offset < end) {
161 		ksize = end - offset;
162 		if (write)
163 			return __nvmem_reg_write(nvmem, offset, val, ksize);
164 		else
165 			return __nvmem_reg_read(nvmem, offset, val, ksize);
166 	}
167 
168 	return 0;
169 }
170 
171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172 			  void *val, size_t bytes)
173 {
174 	if (!nvmem->nkeepout)
175 		return __nvmem_reg_read(nvmem, offset, val, bytes);
176 
177 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179 
180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181 			   void *val, size_t bytes)
182 {
183 	if (!nvmem->nkeepout)
184 		return __nvmem_reg_write(nvmem, offset, val, bytes);
185 
186 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188 
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
192 	[NVMEM_TYPE_EEPROM] = "EEPROM",
193 	[NVMEM_TYPE_OTP] = "OTP",
194 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195 	[NVMEM_TYPE_FRAM] = "FRAM",
196 };
197 
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201 
202 static ssize_t type_show(struct device *dev,
203 			 struct device_attribute *attr, char *buf)
204 {
205 	struct nvmem_device *nvmem = to_nvmem_device(dev);
206 
207 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209 
210 static DEVICE_ATTR_RO(type);
211 
212 static struct attribute *nvmem_attrs[] = {
213 	&dev_attr_type.attr,
214 	NULL,
215 };
216 
217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218 				   struct bin_attribute *attr, char *buf,
219 				   loff_t pos, size_t count)
220 {
221 	struct device *dev;
222 	struct nvmem_device *nvmem;
223 	int rc;
224 
225 	if (attr->private)
226 		dev = attr->private;
227 	else
228 		dev = kobj_to_dev(kobj);
229 	nvmem = to_nvmem_device(dev);
230 
231 	/* Stop the user from reading */
232 	if (pos >= nvmem->size)
233 		return 0;
234 
235 	if (!IS_ALIGNED(pos, nvmem->stride))
236 		return -EINVAL;
237 
238 	if (count < nvmem->word_size)
239 		return -EINVAL;
240 
241 	if (pos + count > nvmem->size)
242 		count = nvmem->size - pos;
243 
244 	count = round_down(count, nvmem->word_size);
245 
246 	if (!nvmem->reg_read)
247 		return -EPERM;
248 
249 	rc = nvmem_reg_read(nvmem, pos, buf, count);
250 
251 	if (rc)
252 		return rc;
253 
254 	return count;
255 }
256 
257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258 				    struct bin_attribute *attr, char *buf,
259 				    loff_t pos, size_t count)
260 {
261 	struct device *dev;
262 	struct nvmem_device *nvmem;
263 	int rc;
264 
265 	if (attr->private)
266 		dev = attr->private;
267 	else
268 		dev = kobj_to_dev(kobj);
269 	nvmem = to_nvmem_device(dev);
270 
271 	/* Stop the user from writing */
272 	if (pos >= nvmem->size)
273 		return -EFBIG;
274 
275 	if (!IS_ALIGNED(pos, nvmem->stride))
276 		return -EINVAL;
277 
278 	if (count < nvmem->word_size)
279 		return -EINVAL;
280 
281 	if (pos + count > nvmem->size)
282 		count = nvmem->size - pos;
283 
284 	count = round_down(count, nvmem->word_size);
285 
286 	if (!nvmem->reg_write)
287 		return -EPERM;
288 
289 	rc = nvmem_reg_write(nvmem, pos, buf, count);
290 
291 	if (rc)
292 		return rc;
293 
294 	return count;
295 }
296 
297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299 	umode_t mode = 0400;
300 
301 	if (!nvmem->root_only)
302 		mode |= 0044;
303 
304 	if (!nvmem->read_only)
305 		mode |= 0200;
306 
307 	if (!nvmem->reg_write)
308 		mode &= ~0200;
309 
310 	if (!nvmem->reg_read)
311 		mode &= ~0444;
312 
313 	return mode;
314 }
315 
316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317 					 struct bin_attribute *attr, int i)
318 {
319 	struct device *dev = kobj_to_dev(kobj);
320 	struct nvmem_device *nvmem = to_nvmem_device(dev);
321 
322 	attr->size = nvmem->size;
323 
324 	return nvmem_bin_attr_get_umode(nvmem);
325 }
326 
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329 	.attr	= {
330 		.name	= "nvmem",
331 		.mode	= 0644,
332 	},
333 	.read	= bin_attr_nvmem_read,
334 	.write	= bin_attr_nvmem_write,
335 };
336 
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338 	&bin_attr_rw_nvmem,
339 	NULL,
340 };
341 
342 static const struct attribute_group nvmem_bin_group = {
343 	.bin_attrs	= nvmem_bin_attributes,
344 	.attrs		= nvmem_attrs,
345 	.is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347 
348 static const struct attribute_group *nvmem_dev_groups[] = {
349 	&nvmem_bin_group,
350 	NULL,
351 };
352 
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354 	.attr	= {
355 		.name	= "eeprom",
356 	},
357 	.read	= bin_attr_nvmem_read,
358 	.write	= bin_attr_nvmem_write,
359 };
360 
361 /*
362  * nvmem_setup_compat() - Create an additional binary entry in
363  * drivers sys directory, to be backwards compatible with the older
364  * drivers/misc/eeprom drivers.
365  */
366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367 				    const struct nvmem_config *config)
368 {
369 	int rval;
370 
371 	if (!config->compat)
372 		return 0;
373 
374 	if (!config->base_dev)
375 		return -EINVAL;
376 
377 	if (config->type == NVMEM_TYPE_FRAM)
378 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
379 
380 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
381 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
382 	nvmem->eeprom.size = nvmem->size;
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384 	nvmem->eeprom.attr.key = &eeprom_lock_key;
385 #endif
386 	nvmem->eeprom.private = &nvmem->dev;
387 	nvmem->base_dev = config->base_dev;
388 
389 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
390 	if (rval) {
391 		dev_err(&nvmem->dev,
392 			"Failed to create eeprom binary file %d\n", rval);
393 		return rval;
394 	}
395 
396 	nvmem->flags |= FLAG_COMPAT;
397 
398 	return 0;
399 }
400 
401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 			      const struct nvmem_config *config)
403 {
404 	if (config->compat)
405 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
406 }
407 
408 #else /* CONFIG_NVMEM_SYSFS */
409 
410 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
411 				    const struct nvmem_config *config)
412 {
413 	return -ENOSYS;
414 }
415 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
416 				      const struct nvmem_config *config)
417 {
418 }
419 
420 #endif /* CONFIG_NVMEM_SYSFS */
421 
422 static void nvmem_release(struct device *dev)
423 {
424 	struct nvmem_device *nvmem = to_nvmem_device(dev);
425 
426 	ida_free(&nvmem_ida, nvmem->id);
427 	gpiod_put(nvmem->wp_gpio);
428 	kfree(nvmem);
429 }
430 
431 static const struct device_type nvmem_provider_type = {
432 	.release	= nvmem_release,
433 };
434 
435 static struct bus_type nvmem_bus_type = {
436 	.name		= "nvmem",
437 };
438 
439 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
440 {
441 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
442 	mutex_lock(&nvmem_mutex);
443 	list_del(&cell->node);
444 	mutex_unlock(&nvmem_mutex);
445 	of_node_put(cell->np);
446 	kfree_const(cell->name);
447 	kfree(cell);
448 }
449 
450 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
451 {
452 	struct nvmem_cell_entry *cell, *p;
453 
454 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
455 		nvmem_cell_entry_drop(cell);
456 }
457 
458 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
459 {
460 	mutex_lock(&nvmem_mutex);
461 	list_add_tail(&cell->node, &cell->nvmem->cells);
462 	mutex_unlock(&nvmem_mutex);
463 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
464 }
465 
466 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
467 						     const struct nvmem_cell_info *info,
468 						     struct nvmem_cell_entry *cell)
469 {
470 	cell->nvmem = nvmem;
471 	cell->offset = info->offset;
472 	cell->raw_len = info->raw_len ?: info->bytes;
473 	cell->bytes = info->bytes;
474 	cell->name = info->name;
475 	cell->read_post_process = info->read_post_process;
476 	cell->priv = info->priv;
477 
478 	cell->bit_offset = info->bit_offset;
479 	cell->nbits = info->nbits;
480 	cell->np = info->np;
481 
482 	if (cell->nbits)
483 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
484 					   BITS_PER_BYTE);
485 
486 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
487 		dev_err(&nvmem->dev,
488 			"cell %s unaligned to nvmem stride %d\n",
489 			cell->name ?: "<unknown>", nvmem->stride);
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
497 					       const struct nvmem_cell_info *info,
498 					       struct nvmem_cell_entry *cell)
499 {
500 	int err;
501 
502 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
503 	if (err)
504 		return err;
505 
506 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
507 	if (!cell->name)
508 		return -ENOMEM;
509 
510 	return 0;
511 }
512 
513 /**
514  * nvmem_add_one_cell() - Add one cell information to an nvmem device
515  *
516  * @nvmem: nvmem device to add cells to.
517  * @info: nvmem cell info to add to the device
518  *
519  * Return: 0 or negative error code on failure.
520  */
521 int nvmem_add_one_cell(struct nvmem_device *nvmem,
522 		       const struct nvmem_cell_info *info)
523 {
524 	struct nvmem_cell_entry *cell;
525 	int rval;
526 
527 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
528 	if (!cell)
529 		return -ENOMEM;
530 
531 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
532 	if (rval) {
533 		kfree(cell);
534 		return rval;
535 	}
536 
537 	nvmem_cell_entry_add(cell);
538 
539 	return 0;
540 }
541 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
542 
543 /**
544  * nvmem_add_cells() - Add cell information to an nvmem device
545  *
546  * @nvmem: nvmem device to add cells to.
547  * @info: nvmem cell info to add to the device
548  * @ncells: number of cells in info
549  *
550  * Return: 0 or negative error code on failure.
551  */
552 static int nvmem_add_cells(struct nvmem_device *nvmem,
553 		    const struct nvmem_cell_info *info,
554 		    int ncells)
555 {
556 	int i, rval;
557 
558 	for (i = 0; i < ncells; i++) {
559 		rval = nvmem_add_one_cell(nvmem, &info[i]);
560 		if (rval)
561 			return rval;
562 	}
563 
564 	return 0;
565 }
566 
567 /**
568  * nvmem_register_notifier() - Register a notifier block for nvmem events.
569  *
570  * @nb: notifier block to be called on nvmem events.
571  *
572  * Return: 0 on success, negative error number on failure.
573  */
574 int nvmem_register_notifier(struct notifier_block *nb)
575 {
576 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
577 }
578 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
579 
580 /**
581  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
582  *
583  * @nb: notifier block to be unregistered.
584  *
585  * Return: 0 on success, negative error number on failure.
586  */
587 int nvmem_unregister_notifier(struct notifier_block *nb)
588 {
589 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
590 }
591 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
592 
593 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
594 {
595 	const struct nvmem_cell_info *info;
596 	struct nvmem_cell_table *table;
597 	struct nvmem_cell_entry *cell;
598 	int rval = 0, i;
599 
600 	mutex_lock(&nvmem_cell_mutex);
601 	list_for_each_entry(table, &nvmem_cell_tables, node) {
602 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
603 			for (i = 0; i < table->ncells; i++) {
604 				info = &table->cells[i];
605 
606 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
607 				if (!cell) {
608 					rval = -ENOMEM;
609 					goto out;
610 				}
611 
612 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
613 				if (rval) {
614 					kfree(cell);
615 					goto out;
616 				}
617 
618 				nvmem_cell_entry_add(cell);
619 			}
620 		}
621 	}
622 
623 out:
624 	mutex_unlock(&nvmem_cell_mutex);
625 	return rval;
626 }
627 
628 static struct nvmem_cell_entry *
629 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
630 {
631 	struct nvmem_cell_entry *iter, *cell = NULL;
632 
633 	mutex_lock(&nvmem_mutex);
634 	list_for_each_entry(iter, &nvmem->cells, node) {
635 		if (strcmp(cell_id, iter->name) == 0) {
636 			cell = iter;
637 			break;
638 		}
639 	}
640 	mutex_unlock(&nvmem_mutex);
641 
642 	return cell;
643 }
644 
645 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
646 {
647 	unsigned int cur = 0;
648 	const struct nvmem_keepout *keepout = nvmem->keepout;
649 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
650 
651 	while (keepout < keepoutend) {
652 		/* Ensure keepouts are sorted and don't overlap. */
653 		if (keepout->start < cur) {
654 			dev_err(&nvmem->dev,
655 				"Keepout regions aren't sorted or overlap.\n");
656 
657 			return -ERANGE;
658 		}
659 
660 		if (keepout->end < keepout->start) {
661 			dev_err(&nvmem->dev,
662 				"Invalid keepout region.\n");
663 
664 			return -EINVAL;
665 		}
666 
667 		/*
668 		 * Validate keepouts (and holes between) don't violate
669 		 * word_size constraints.
670 		 */
671 		if ((keepout->end - keepout->start < nvmem->word_size) ||
672 		    ((keepout->start != cur) &&
673 		     (keepout->start - cur < nvmem->word_size))) {
674 
675 			dev_err(&nvmem->dev,
676 				"Keepout regions violate word_size constraints.\n");
677 
678 			return -ERANGE;
679 		}
680 
681 		/* Validate keepouts don't violate stride (alignment). */
682 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
683 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
684 
685 			dev_err(&nvmem->dev,
686 				"Keepout regions violate stride.\n");
687 
688 			return -EINVAL;
689 		}
690 
691 		cur = keepout->end;
692 		keepout++;
693 	}
694 
695 	return 0;
696 }
697 
698 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
699 {
700 	struct nvmem_layout *layout = nvmem->layout;
701 	struct device *dev = &nvmem->dev;
702 	struct device_node *child;
703 	const __be32 *addr;
704 	int len, ret;
705 
706 	for_each_child_of_node(np, child) {
707 		struct nvmem_cell_info info = {0};
708 
709 		addr = of_get_property(child, "reg", &len);
710 		if (!addr)
711 			continue;
712 		if (len < 2 * sizeof(u32)) {
713 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
714 			of_node_put(child);
715 			return -EINVAL;
716 		}
717 
718 		info.offset = be32_to_cpup(addr++);
719 		info.bytes = be32_to_cpup(addr);
720 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
721 
722 		addr = of_get_property(child, "bits", &len);
723 		if (addr && len == (2 * sizeof(u32))) {
724 			info.bit_offset = be32_to_cpup(addr++);
725 			info.nbits = be32_to_cpup(addr);
726 		}
727 
728 		info.np = of_node_get(child);
729 
730 		if (layout && layout->fixup_cell_info)
731 			layout->fixup_cell_info(nvmem, layout, &info);
732 
733 		ret = nvmem_add_one_cell(nvmem, &info);
734 		kfree(info.name);
735 		if (ret) {
736 			of_node_put(child);
737 			return ret;
738 		}
739 	}
740 
741 	return 0;
742 }
743 
744 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
745 {
746 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
747 }
748 
749 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
750 {
751 	struct device_node *layout_np;
752 	int err = 0;
753 
754 	layout_np = of_nvmem_layout_get_container(nvmem);
755 	if (!layout_np)
756 		return 0;
757 
758 	if (of_device_is_compatible(layout_np, "fixed-layout"))
759 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
760 
761 	of_node_put(layout_np);
762 
763 	return err;
764 }
765 
766 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
767 {
768 	layout->owner = owner;
769 
770 	spin_lock(&nvmem_layout_lock);
771 	list_add(&layout->node, &nvmem_layouts);
772 	spin_unlock(&nvmem_layout_lock);
773 
774 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
775 
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
779 
780 void nvmem_layout_unregister(struct nvmem_layout *layout)
781 {
782 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
783 
784 	spin_lock(&nvmem_layout_lock);
785 	list_del(&layout->node);
786 	spin_unlock(&nvmem_layout_lock);
787 }
788 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
789 
790 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
791 {
792 	struct device_node *layout_np;
793 	struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
794 
795 	layout_np = of_nvmem_layout_get_container(nvmem);
796 	if (!layout_np)
797 		return NULL;
798 
799 	/*
800 	 * In case the nvmem device was built-in while the layout was built as a
801 	 * module, we shall manually request the layout driver loading otherwise
802 	 * we'll never have any match.
803 	 */
804 	of_request_module(layout_np);
805 
806 	spin_lock(&nvmem_layout_lock);
807 
808 	list_for_each_entry(l, &nvmem_layouts, node) {
809 		if (of_match_node(l->of_match_table, layout_np)) {
810 			if (try_module_get(l->owner))
811 				layout = l;
812 
813 			break;
814 		}
815 	}
816 
817 	spin_unlock(&nvmem_layout_lock);
818 	of_node_put(layout_np);
819 
820 	return layout;
821 }
822 
823 static void nvmem_layout_put(struct nvmem_layout *layout)
824 {
825 	if (layout)
826 		module_put(layout->owner);
827 }
828 
829 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
830 {
831 	struct nvmem_layout *layout = nvmem->layout;
832 	int ret;
833 
834 	if (layout && layout->add_cells) {
835 		ret = layout->add_cells(&nvmem->dev, nvmem, layout);
836 		if (ret)
837 			return ret;
838 	}
839 
840 	return 0;
841 }
842 
843 #if IS_ENABLED(CONFIG_OF)
844 /**
845  * of_nvmem_layout_get_container() - Get OF node to layout container.
846  *
847  * @nvmem: nvmem device.
848  *
849  * Return: a node pointer with refcount incremented or NULL if no
850  * container exists. Use of_node_put() on it when done.
851  */
852 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
853 {
854 	return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
855 }
856 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
857 #endif
858 
859 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
860 					struct nvmem_layout *layout)
861 {
862 	struct device_node __maybe_unused *layout_np;
863 	const struct of_device_id *match;
864 
865 	layout_np = of_nvmem_layout_get_container(nvmem);
866 	match = of_match_node(layout->of_match_table, layout_np);
867 
868 	return match ? match->data : NULL;
869 }
870 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
871 
872 /**
873  * nvmem_register() - Register a nvmem device for given nvmem_config.
874  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
875  *
876  * @config: nvmem device configuration with which nvmem device is created.
877  *
878  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
879  * on success.
880  */
881 
882 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
883 {
884 	struct nvmem_device *nvmem;
885 	int rval;
886 
887 	if (!config->dev)
888 		return ERR_PTR(-EINVAL);
889 
890 	if (!config->reg_read && !config->reg_write)
891 		return ERR_PTR(-EINVAL);
892 
893 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
894 	if (!nvmem)
895 		return ERR_PTR(-ENOMEM);
896 
897 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
898 	if (rval < 0) {
899 		kfree(nvmem);
900 		return ERR_PTR(rval);
901 	}
902 
903 	nvmem->id = rval;
904 
905 	nvmem->dev.type = &nvmem_provider_type;
906 	nvmem->dev.bus = &nvmem_bus_type;
907 	nvmem->dev.parent = config->dev;
908 
909 	device_initialize(&nvmem->dev);
910 
911 	if (!config->ignore_wp)
912 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
913 						    GPIOD_OUT_HIGH);
914 	if (IS_ERR(nvmem->wp_gpio)) {
915 		rval = PTR_ERR(nvmem->wp_gpio);
916 		nvmem->wp_gpio = NULL;
917 		goto err_put_device;
918 	}
919 
920 	kref_init(&nvmem->refcnt);
921 	INIT_LIST_HEAD(&nvmem->cells);
922 
923 	nvmem->owner = config->owner;
924 	if (!nvmem->owner && config->dev->driver)
925 		nvmem->owner = config->dev->driver->owner;
926 	nvmem->stride = config->stride ?: 1;
927 	nvmem->word_size = config->word_size ?: 1;
928 	nvmem->size = config->size;
929 	nvmem->root_only = config->root_only;
930 	nvmem->priv = config->priv;
931 	nvmem->type = config->type;
932 	nvmem->reg_read = config->reg_read;
933 	nvmem->reg_write = config->reg_write;
934 	nvmem->keepout = config->keepout;
935 	nvmem->nkeepout = config->nkeepout;
936 	if (config->of_node)
937 		nvmem->dev.of_node = config->of_node;
938 	else if (!config->no_of_node)
939 		nvmem->dev.of_node = config->dev->of_node;
940 
941 	switch (config->id) {
942 	case NVMEM_DEVID_NONE:
943 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
944 		break;
945 	case NVMEM_DEVID_AUTO:
946 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
947 		break;
948 	default:
949 		rval = dev_set_name(&nvmem->dev, "%s%d",
950 			     config->name ? : "nvmem",
951 			     config->name ? config->id : nvmem->id);
952 		break;
953 	}
954 
955 	if (rval)
956 		goto err_put_device;
957 
958 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
959 			   config->read_only || !nvmem->reg_write;
960 
961 #ifdef CONFIG_NVMEM_SYSFS
962 	nvmem->dev.groups = nvmem_dev_groups;
963 #endif
964 
965 	if (nvmem->nkeepout) {
966 		rval = nvmem_validate_keepouts(nvmem);
967 		if (rval)
968 			goto err_put_device;
969 	}
970 
971 	if (config->compat) {
972 		rval = nvmem_sysfs_setup_compat(nvmem, config);
973 		if (rval)
974 			goto err_put_device;
975 	}
976 
977 	/*
978 	 * If the driver supplied a layout by config->layout, the module
979 	 * pointer will be NULL and nvmem_layout_put() will be a noop.
980 	 */
981 	nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
982 	if (IS_ERR(nvmem->layout)) {
983 		rval = PTR_ERR(nvmem->layout);
984 		nvmem->layout = NULL;
985 
986 		if (rval == -EPROBE_DEFER)
987 			goto err_teardown_compat;
988 	}
989 
990 	if (config->cells) {
991 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
992 		if (rval)
993 			goto err_remove_cells;
994 	}
995 
996 	rval = nvmem_add_cells_from_table(nvmem);
997 	if (rval)
998 		goto err_remove_cells;
999 
1000 	rval = nvmem_add_cells_from_legacy_of(nvmem);
1001 	if (rval)
1002 		goto err_remove_cells;
1003 
1004 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1005 	if (rval)
1006 		goto err_remove_cells;
1007 
1008 	rval = nvmem_add_cells_from_layout(nvmem);
1009 	if (rval)
1010 		goto err_remove_cells;
1011 
1012 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1013 
1014 	rval = device_add(&nvmem->dev);
1015 	if (rval)
1016 		goto err_remove_cells;
1017 
1018 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1019 
1020 	return nvmem;
1021 
1022 err_remove_cells:
1023 	nvmem_device_remove_all_cells(nvmem);
1024 	nvmem_layout_put(nvmem->layout);
1025 err_teardown_compat:
1026 	if (config->compat)
1027 		nvmem_sysfs_remove_compat(nvmem, config);
1028 err_put_device:
1029 	put_device(&nvmem->dev);
1030 
1031 	return ERR_PTR(rval);
1032 }
1033 EXPORT_SYMBOL_GPL(nvmem_register);
1034 
1035 static void nvmem_device_release(struct kref *kref)
1036 {
1037 	struct nvmem_device *nvmem;
1038 
1039 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1040 
1041 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1042 
1043 	if (nvmem->flags & FLAG_COMPAT)
1044 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1045 
1046 	nvmem_device_remove_all_cells(nvmem);
1047 	nvmem_layout_put(nvmem->layout);
1048 	device_unregister(&nvmem->dev);
1049 }
1050 
1051 /**
1052  * nvmem_unregister() - Unregister previously registered nvmem device
1053  *
1054  * @nvmem: Pointer to previously registered nvmem device.
1055  */
1056 void nvmem_unregister(struct nvmem_device *nvmem)
1057 {
1058 	if (nvmem)
1059 		kref_put(&nvmem->refcnt, nvmem_device_release);
1060 }
1061 EXPORT_SYMBOL_GPL(nvmem_unregister);
1062 
1063 static void devm_nvmem_unregister(void *nvmem)
1064 {
1065 	nvmem_unregister(nvmem);
1066 }
1067 
1068 /**
1069  * devm_nvmem_register() - Register a managed nvmem device for given
1070  * nvmem_config.
1071  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1072  *
1073  * @dev: Device that uses the nvmem device.
1074  * @config: nvmem device configuration with which nvmem device is created.
1075  *
1076  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1077  * on success.
1078  */
1079 struct nvmem_device *devm_nvmem_register(struct device *dev,
1080 					 const struct nvmem_config *config)
1081 {
1082 	struct nvmem_device *nvmem;
1083 	int ret;
1084 
1085 	nvmem = nvmem_register(config);
1086 	if (IS_ERR(nvmem))
1087 		return nvmem;
1088 
1089 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1090 	if (ret)
1091 		return ERR_PTR(ret);
1092 
1093 	return nvmem;
1094 }
1095 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1096 
1097 static struct nvmem_device *__nvmem_device_get(void *data,
1098 			int (*match)(struct device *dev, const void *data))
1099 {
1100 	struct nvmem_device *nvmem = NULL;
1101 	struct device *dev;
1102 
1103 	mutex_lock(&nvmem_mutex);
1104 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1105 	if (dev)
1106 		nvmem = to_nvmem_device(dev);
1107 	mutex_unlock(&nvmem_mutex);
1108 	if (!nvmem)
1109 		return ERR_PTR(-EPROBE_DEFER);
1110 
1111 	if (!try_module_get(nvmem->owner)) {
1112 		dev_err(&nvmem->dev,
1113 			"could not increase module refcount for cell %s\n",
1114 			nvmem_dev_name(nvmem));
1115 
1116 		put_device(&nvmem->dev);
1117 		return ERR_PTR(-EINVAL);
1118 	}
1119 
1120 	kref_get(&nvmem->refcnt);
1121 
1122 	return nvmem;
1123 }
1124 
1125 static void __nvmem_device_put(struct nvmem_device *nvmem)
1126 {
1127 	put_device(&nvmem->dev);
1128 	module_put(nvmem->owner);
1129 	kref_put(&nvmem->refcnt, nvmem_device_release);
1130 }
1131 
1132 #if IS_ENABLED(CONFIG_OF)
1133 /**
1134  * of_nvmem_device_get() - Get nvmem device from a given id
1135  *
1136  * @np: Device tree node that uses the nvmem device.
1137  * @id: nvmem name from nvmem-names property.
1138  *
1139  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1140  * on success.
1141  */
1142 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1143 {
1144 
1145 	struct device_node *nvmem_np;
1146 	struct nvmem_device *nvmem;
1147 	int index = 0;
1148 
1149 	if (id)
1150 		index = of_property_match_string(np, "nvmem-names", id);
1151 
1152 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1153 	if (!nvmem_np)
1154 		return ERR_PTR(-ENOENT);
1155 
1156 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1157 	of_node_put(nvmem_np);
1158 	return nvmem;
1159 }
1160 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1161 #endif
1162 
1163 /**
1164  * nvmem_device_get() - Get nvmem device from a given id
1165  *
1166  * @dev: Device that uses the nvmem device.
1167  * @dev_name: name of the requested nvmem device.
1168  *
1169  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1170  * on success.
1171  */
1172 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1173 {
1174 	if (dev->of_node) { /* try dt first */
1175 		struct nvmem_device *nvmem;
1176 
1177 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1178 
1179 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1180 			return nvmem;
1181 
1182 	}
1183 
1184 	return __nvmem_device_get((void *)dev_name, device_match_name);
1185 }
1186 EXPORT_SYMBOL_GPL(nvmem_device_get);
1187 
1188 /**
1189  * nvmem_device_find() - Find nvmem device with matching function
1190  *
1191  * @data: Data to pass to match function
1192  * @match: Callback function to check device
1193  *
1194  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1195  * on success.
1196  */
1197 struct nvmem_device *nvmem_device_find(void *data,
1198 			int (*match)(struct device *dev, const void *data))
1199 {
1200 	return __nvmem_device_get(data, match);
1201 }
1202 EXPORT_SYMBOL_GPL(nvmem_device_find);
1203 
1204 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1205 {
1206 	struct nvmem_device **nvmem = res;
1207 
1208 	if (WARN_ON(!nvmem || !*nvmem))
1209 		return 0;
1210 
1211 	return *nvmem == data;
1212 }
1213 
1214 static void devm_nvmem_device_release(struct device *dev, void *res)
1215 {
1216 	nvmem_device_put(*(struct nvmem_device **)res);
1217 }
1218 
1219 /**
1220  * devm_nvmem_device_put() - put alredy got nvmem device
1221  *
1222  * @dev: Device that uses the nvmem device.
1223  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1224  * that needs to be released.
1225  */
1226 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1227 {
1228 	int ret;
1229 
1230 	ret = devres_release(dev, devm_nvmem_device_release,
1231 			     devm_nvmem_device_match, nvmem);
1232 
1233 	WARN_ON(ret);
1234 }
1235 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1236 
1237 /**
1238  * nvmem_device_put() - put alredy got nvmem device
1239  *
1240  * @nvmem: pointer to nvmem device that needs to be released.
1241  */
1242 void nvmem_device_put(struct nvmem_device *nvmem)
1243 {
1244 	__nvmem_device_put(nvmem);
1245 }
1246 EXPORT_SYMBOL_GPL(nvmem_device_put);
1247 
1248 /**
1249  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1250  *
1251  * @dev: Device that requests the nvmem device.
1252  * @id: name id for the requested nvmem device.
1253  *
1254  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1255  * on success.  The nvmem_cell will be freed by the automatically once the
1256  * device is freed.
1257  */
1258 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1259 {
1260 	struct nvmem_device **ptr, *nvmem;
1261 
1262 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1263 	if (!ptr)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	nvmem = nvmem_device_get(dev, id);
1267 	if (!IS_ERR(nvmem)) {
1268 		*ptr = nvmem;
1269 		devres_add(dev, ptr);
1270 	} else {
1271 		devres_free(ptr);
1272 	}
1273 
1274 	return nvmem;
1275 }
1276 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1277 
1278 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1279 					    const char *id, int index)
1280 {
1281 	struct nvmem_cell *cell;
1282 	const char *name = NULL;
1283 
1284 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1285 	if (!cell)
1286 		return ERR_PTR(-ENOMEM);
1287 
1288 	if (id) {
1289 		name = kstrdup_const(id, GFP_KERNEL);
1290 		if (!name) {
1291 			kfree(cell);
1292 			return ERR_PTR(-ENOMEM);
1293 		}
1294 	}
1295 
1296 	cell->id = name;
1297 	cell->entry = entry;
1298 	cell->index = index;
1299 
1300 	return cell;
1301 }
1302 
1303 static struct nvmem_cell *
1304 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1305 {
1306 	struct nvmem_cell_entry *cell_entry;
1307 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1308 	struct nvmem_cell_lookup *lookup;
1309 	struct nvmem_device *nvmem;
1310 	const char *dev_id;
1311 
1312 	if (!dev)
1313 		return ERR_PTR(-EINVAL);
1314 
1315 	dev_id = dev_name(dev);
1316 
1317 	mutex_lock(&nvmem_lookup_mutex);
1318 
1319 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1320 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1321 		    (strcmp(lookup->con_id, con_id) == 0)) {
1322 			/* This is the right entry. */
1323 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1324 						   device_match_name);
1325 			if (IS_ERR(nvmem)) {
1326 				/* Provider may not be registered yet. */
1327 				cell = ERR_CAST(nvmem);
1328 				break;
1329 			}
1330 
1331 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1332 								   lookup->cell_name);
1333 			if (!cell_entry) {
1334 				__nvmem_device_put(nvmem);
1335 				cell = ERR_PTR(-ENOENT);
1336 			} else {
1337 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1338 				if (IS_ERR(cell))
1339 					__nvmem_device_put(nvmem);
1340 			}
1341 			break;
1342 		}
1343 	}
1344 
1345 	mutex_unlock(&nvmem_lookup_mutex);
1346 	return cell;
1347 }
1348 
1349 #if IS_ENABLED(CONFIG_OF)
1350 static struct nvmem_cell_entry *
1351 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1352 {
1353 	struct nvmem_cell_entry *iter, *cell = NULL;
1354 
1355 	mutex_lock(&nvmem_mutex);
1356 	list_for_each_entry(iter, &nvmem->cells, node) {
1357 		if (np == iter->np) {
1358 			cell = iter;
1359 			break;
1360 		}
1361 	}
1362 	mutex_unlock(&nvmem_mutex);
1363 
1364 	return cell;
1365 }
1366 
1367 /**
1368  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1369  *
1370  * @np: Device tree node that uses the nvmem cell.
1371  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1372  *      for the cell at index 0 (the lone cell with no accompanying
1373  *      nvmem-cell-names property).
1374  *
1375  * Return: Will be an ERR_PTR() on error or a valid pointer
1376  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1377  * nvmem_cell_put().
1378  */
1379 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1380 {
1381 	struct device_node *cell_np, *nvmem_np;
1382 	struct nvmem_device *nvmem;
1383 	struct nvmem_cell_entry *cell_entry;
1384 	struct nvmem_cell *cell;
1385 	struct of_phandle_args cell_spec;
1386 	int index = 0;
1387 	int cell_index = 0;
1388 	int ret;
1389 
1390 	/* if cell name exists, find index to the name */
1391 	if (id)
1392 		index = of_property_match_string(np, "nvmem-cell-names", id);
1393 
1394 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1395 						  "#nvmem-cell-cells",
1396 						  index, &cell_spec);
1397 	if (ret)
1398 		return ERR_PTR(-ENOENT);
1399 
1400 	if (cell_spec.args_count > 1)
1401 		return ERR_PTR(-EINVAL);
1402 
1403 	cell_np = cell_spec.np;
1404 	if (cell_spec.args_count)
1405 		cell_index = cell_spec.args[0];
1406 
1407 	nvmem_np = of_get_parent(cell_np);
1408 	if (!nvmem_np) {
1409 		of_node_put(cell_np);
1410 		return ERR_PTR(-EINVAL);
1411 	}
1412 
1413 	/* nvmem layouts produce cells within the nvmem-layout container */
1414 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1415 		nvmem_np = of_get_next_parent(nvmem_np);
1416 		if (!nvmem_np) {
1417 			of_node_put(cell_np);
1418 			return ERR_PTR(-EINVAL);
1419 		}
1420 	}
1421 
1422 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1423 	of_node_put(nvmem_np);
1424 	if (IS_ERR(nvmem)) {
1425 		of_node_put(cell_np);
1426 		return ERR_CAST(nvmem);
1427 	}
1428 
1429 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1430 	of_node_put(cell_np);
1431 	if (!cell_entry) {
1432 		__nvmem_device_put(nvmem);
1433 		return ERR_PTR(-ENOENT);
1434 	}
1435 
1436 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1437 	if (IS_ERR(cell))
1438 		__nvmem_device_put(nvmem);
1439 
1440 	return cell;
1441 }
1442 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1443 #endif
1444 
1445 /**
1446  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1447  *
1448  * @dev: Device that requests the nvmem cell.
1449  * @id: nvmem cell name to get (this corresponds with the name from the
1450  *      nvmem-cell-names property for DT systems and with the con_id from
1451  *      the lookup entry for non-DT systems).
1452  *
1453  * Return: Will be an ERR_PTR() on error or a valid pointer
1454  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1455  * nvmem_cell_put().
1456  */
1457 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1458 {
1459 	struct nvmem_cell *cell;
1460 
1461 	if (dev->of_node) { /* try dt first */
1462 		cell = of_nvmem_cell_get(dev->of_node, id);
1463 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1464 			return cell;
1465 	}
1466 
1467 	/* NULL cell id only allowed for device tree; invalid otherwise */
1468 	if (!id)
1469 		return ERR_PTR(-EINVAL);
1470 
1471 	return nvmem_cell_get_from_lookup(dev, id);
1472 }
1473 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1474 
1475 static void devm_nvmem_cell_release(struct device *dev, void *res)
1476 {
1477 	nvmem_cell_put(*(struct nvmem_cell **)res);
1478 }
1479 
1480 /**
1481  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1482  *
1483  * @dev: Device that requests the nvmem cell.
1484  * @id: nvmem cell name id to get.
1485  *
1486  * Return: Will be an ERR_PTR() on error or a valid pointer
1487  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1488  * automatically once the device is freed.
1489  */
1490 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1491 {
1492 	struct nvmem_cell **ptr, *cell;
1493 
1494 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1495 	if (!ptr)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	cell = nvmem_cell_get(dev, id);
1499 	if (!IS_ERR(cell)) {
1500 		*ptr = cell;
1501 		devres_add(dev, ptr);
1502 	} else {
1503 		devres_free(ptr);
1504 	}
1505 
1506 	return cell;
1507 }
1508 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1509 
1510 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1511 {
1512 	struct nvmem_cell **c = res;
1513 
1514 	if (WARN_ON(!c || !*c))
1515 		return 0;
1516 
1517 	return *c == data;
1518 }
1519 
1520 /**
1521  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1522  * from devm_nvmem_cell_get.
1523  *
1524  * @dev: Device that requests the nvmem cell.
1525  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1526  */
1527 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1528 {
1529 	int ret;
1530 
1531 	ret = devres_release(dev, devm_nvmem_cell_release,
1532 				devm_nvmem_cell_match, cell);
1533 
1534 	WARN_ON(ret);
1535 }
1536 EXPORT_SYMBOL(devm_nvmem_cell_put);
1537 
1538 /**
1539  * nvmem_cell_put() - Release previously allocated nvmem cell.
1540  *
1541  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1542  */
1543 void nvmem_cell_put(struct nvmem_cell *cell)
1544 {
1545 	struct nvmem_device *nvmem = cell->entry->nvmem;
1546 
1547 	if (cell->id)
1548 		kfree_const(cell->id);
1549 
1550 	kfree(cell);
1551 	__nvmem_device_put(nvmem);
1552 }
1553 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1554 
1555 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1556 {
1557 	u8 *p, *b;
1558 	int i, extra, bit_offset = cell->bit_offset;
1559 
1560 	p = b = buf;
1561 	if (bit_offset) {
1562 		/* First shift */
1563 		*b++ >>= bit_offset;
1564 
1565 		/* setup rest of the bytes if any */
1566 		for (i = 1; i < cell->bytes; i++) {
1567 			/* Get bits from next byte and shift them towards msb */
1568 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1569 
1570 			p = b;
1571 			*b++ >>= bit_offset;
1572 		}
1573 	} else {
1574 		/* point to the msb */
1575 		p += cell->bytes - 1;
1576 	}
1577 
1578 	/* result fits in less bytes */
1579 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1580 	while (--extra >= 0)
1581 		*p-- = 0;
1582 
1583 	/* clear msb bits if any leftover in the last byte */
1584 	if (cell->nbits % BITS_PER_BYTE)
1585 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1586 }
1587 
1588 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1589 			     struct nvmem_cell_entry *cell,
1590 			     void *buf, size_t *len, const char *id, int index)
1591 {
1592 	int rc;
1593 
1594 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1595 
1596 	if (rc)
1597 		return rc;
1598 
1599 	/* shift bits in-place */
1600 	if (cell->bit_offset || cell->nbits)
1601 		nvmem_shift_read_buffer_in_place(cell, buf);
1602 
1603 	if (cell->read_post_process) {
1604 		rc = cell->read_post_process(cell->priv, id, index,
1605 					     cell->offset, buf, cell->raw_len);
1606 		if (rc)
1607 			return rc;
1608 	}
1609 
1610 	if (len)
1611 		*len = cell->bytes;
1612 
1613 	return 0;
1614 }
1615 
1616 /**
1617  * nvmem_cell_read() - Read a given nvmem cell
1618  *
1619  * @cell: nvmem cell to be read.
1620  * @len: pointer to length of cell which will be populated on successful read;
1621  *	 can be NULL.
1622  *
1623  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1624  * buffer should be freed by the consumer with a kfree().
1625  */
1626 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1627 {
1628 	struct nvmem_cell_entry *entry = cell->entry;
1629 	struct nvmem_device *nvmem = entry->nvmem;
1630 	u8 *buf;
1631 	int rc;
1632 
1633 	if (!nvmem)
1634 		return ERR_PTR(-EINVAL);
1635 
1636 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1637 	if (!buf)
1638 		return ERR_PTR(-ENOMEM);
1639 
1640 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1641 	if (rc) {
1642 		kfree(buf);
1643 		return ERR_PTR(rc);
1644 	}
1645 
1646 	return buf;
1647 }
1648 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1649 
1650 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1651 					     u8 *_buf, int len)
1652 {
1653 	struct nvmem_device *nvmem = cell->nvmem;
1654 	int i, rc, nbits, bit_offset = cell->bit_offset;
1655 	u8 v, *p, *buf, *b, pbyte, pbits;
1656 
1657 	nbits = cell->nbits;
1658 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1659 	if (!buf)
1660 		return ERR_PTR(-ENOMEM);
1661 
1662 	memcpy(buf, _buf, len);
1663 	p = b = buf;
1664 
1665 	if (bit_offset) {
1666 		pbyte = *b;
1667 		*b <<= bit_offset;
1668 
1669 		/* setup the first byte with lsb bits from nvmem */
1670 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1671 		if (rc)
1672 			goto err;
1673 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1674 
1675 		/* setup rest of the byte if any */
1676 		for (i = 1; i < cell->bytes; i++) {
1677 			/* Get last byte bits and shift them towards lsb */
1678 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1679 			pbyte = *b;
1680 			p = b;
1681 			*b <<= bit_offset;
1682 			*b++ |= pbits;
1683 		}
1684 	}
1685 
1686 	/* if it's not end on byte boundary */
1687 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1688 		/* setup the last byte with msb bits from nvmem */
1689 		rc = nvmem_reg_read(nvmem,
1690 				    cell->offset + cell->bytes - 1, &v, 1);
1691 		if (rc)
1692 			goto err;
1693 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1694 
1695 	}
1696 
1697 	return buf;
1698 err:
1699 	kfree(buf);
1700 	return ERR_PTR(rc);
1701 }
1702 
1703 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1704 {
1705 	struct nvmem_device *nvmem = cell->nvmem;
1706 	int rc;
1707 
1708 	if (!nvmem || nvmem->read_only ||
1709 	    (cell->bit_offset == 0 && len != cell->bytes))
1710 		return -EINVAL;
1711 
1712 	/*
1713 	 * Any cells which have a read_post_process hook are read-only because
1714 	 * we cannot reverse the operation and it might affect other cells,
1715 	 * too.
1716 	 */
1717 	if (cell->read_post_process)
1718 		return -EINVAL;
1719 
1720 	if (cell->bit_offset || cell->nbits) {
1721 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1722 		if (IS_ERR(buf))
1723 			return PTR_ERR(buf);
1724 	}
1725 
1726 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1727 
1728 	/* free the tmp buffer */
1729 	if (cell->bit_offset || cell->nbits)
1730 		kfree(buf);
1731 
1732 	if (rc)
1733 		return rc;
1734 
1735 	return len;
1736 }
1737 
1738 /**
1739  * nvmem_cell_write() - Write to a given nvmem cell
1740  *
1741  * @cell: nvmem cell to be written.
1742  * @buf: Buffer to be written.
1743  * @len: length of buffer to be written to nvmem cell.
1744  *
1745  * Return: length of bytes written or negative on failure.
1746  */
1747 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1748 {
1749 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1750 }
1751 
1752 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1753 
1754 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1755 				  void *val, size_t count)
1756 {
1757 	struct nvmem_cell *cell;
1758 	void *buf;
1759 	size_t len;
1760 
1761 	cell = nvmem_cell_get(dev, cell_id);
1762 	if (IS_ERR(cell))
1763 		return PTR_ERR(cell);
1764 
1765 	buf = nvmem_cell_read(cell, &len);
1766 	if (IS_ERR(buf)) {
1767 		nvmem_cell_put(cell);
1768 		return PTR_ERR(buf);
1769 	}
1770 	if (len != count) {
1771 		kfree(buf);
1772 		nvmem_cell_put(cell);
1773 		return -EINVAL;
1774 	}
1775 	memcpy(val, buf, count);
1776 	kfree(buf);
1777 	nvmem_cell_put(cell);
1778 
1779 	return 0;
1780 }
1781 
1782 /**
1783  * nvmem_cell_read_u8() - Read a cell value as a u8
1784  *
1785  * @dev: Device that requests the nvmem cell.
1786  * @cell_id: Name of nvmem cell to read.
1787  * @val: pointer to output value.
1788  *
1789  * Return: 0 on success or negative errno.
1790  */
1791 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1792 {
1793 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1794 }
1795 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1796 
1797 /**
1798  * nvmem_cell_read_u16() - Read a cell value as a u16
1799  *
1800  * @dev: Device that requests the nvmem cell.
1801  * @cell_id: Name of nvmem cell to read.
1802  * @val: pointer to output value.
1803  *
1804  * Return: 0 on success or negative errno.
1805  */
1806 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1807 {
1808 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1809 }
1810 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1811 
1812 /**
1813  * nvmem_cell_read_u32() - Read a cell value as a u32
1814  *
1815  * @dev: Device that requests the nvmem cell.
1816  * @cell_id: Name of nvmem cell to read.
1817  * @val: pointer to output value.
1818  *
1819  * Return: 0 on success or negative errno.
1820  */
1821 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1822 {
1823 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1824 }
1825 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1826 
1827 /**
1828  * nvmem_cell_read_u64() - Read a cell value as a u64
1829  *
1830  * @dev: Device that requests the nvmem cell.
1831  * @cell_id: Name of nvmem cell to read.
1832  * @val: pointer to output value.
1833  *
1834  * Return: 0 on success or negative errno.
1835  */
1836 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1837 {
1838 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1839 }
1840 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1841 
1842 static const void *nvmem_cell_read_variable_common(struct device *dev,
1843 						   const char *cell_id,
1844 						   size_t max_len, size_t *len)
1845 {
1846 	struct nvmem_cell *cell;
1847 	int nbits;
1848 	void *buf;
1849 
1850 	cell = nvmem_cell_get(dev, cell_id);
1851 	if (IS_ERR(cell))
1852 		return cell;
1853 
1854 	nbits = cell->entry->nbits;
1855 	buf = nvmem_cell_read(cell, len);
1856 	nvmem_cell_put(cell);
1857 	if (IS_ERR(buf))
1858 		return buf;
1859 
1860 	/*
1861 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1862 	 * the length of the real data. Throw away the extra junk.
1863 	 */
1864 	if (nbits)
1865 		*len = DIV_ROUND_UP(nbits, 8);
1866 
1867 	if (*len > max_len) {
1868 		kfree(buf);
1869 		return ERR_PTR(-ERANGE);
1870 	}
1871 
1872 	return buf;
1873 }
1874 
1875 /**
1876  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1877  *
1878  * @dev: Device that requests the nvmem cell.
1879  * @cell_id: Name of nvmem cell to read.
1880  * @val: pointer to output value.
1881  *
1882  * Return: 0 on success or negative errno.
1883  */
1884 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1885 				    u32 *val)
1886 {
1887 	size_t len;
1888 	const u8 *buf;
1889 	int i;
1890 
1891 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1892 	if (IS_ERR(buf))
1893 		return PTR_ERR(buf);
1894 
1895 	/* Copy w/ implicit endian conversion */
1896 	*val = 0;
1897 	for (i = 0; i < len; i++)
1898 		*val |= buf[i] << (8 * i);
1899 
1900 	kfree(buf);
1901 
1902 	return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1905 
1906 /**
1907  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1908  *
1909  * @dev: Device that requests the nvmem cell.
1910  * @cell_id: Name of nvmem cell to read.
1911  * @val: pointer to output value.
1912  *
1913  * Return: 0 on success or negative errno.
1914  */
1915 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1916 				    u64 *val)
1917 {
1918 	size_t len;
1919 	const u8 *buf;
1920 	int i;
1921 
1922 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1923 	if (IS_ERR(buf))
1924 		return PTR_ERR(buf);
1925 
1926 	/* Copy w/ implicit endian conversion */
1927 	*val = 0;
1928 	for (i = 0; i < len; i++)
1929 		*val |= (uint64_t)buf[i] << (8 * i);
1930 
1931 	kfree(buf);
1932 
1933 	return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1936 
1937 /**
1938  * nvmem_device_cell_read() - Read a given nvmem device and cell
1939  *
1940  * @nvmem: nvmem device to read from.
1941  * @info: nvmem cell info to be read.
1942  * @buf: buffer pointer which will be populated on successful read.
1943  *
1944  * Return: length of successful bytes read on success and negative
1945  * error code on error.
1946  */
1947 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1948 			   struct nvmem_cell_info *info, void *buf)
1949 {
1950 	struct nvmem_cell_entry cell;
1951 	int rc;
1952 	ssize_t len;
1953 
1954 	if (!nvmem)
1955 		return -EINVAL;
1956 
1957 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1958 	if (rc)
1959 		return rc;
1960 
1961 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1962 	if (rc)
1963 		return rc;
1964 
1965 	return len;
1966 }
1967 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1968 
1969 /**
1970  * nvmem_device_cell_write() - Write cell to a given nvmem device
1971  *
1972  * @nvmem: nvmem device to be written to.
1973  * @info: nvmem cell info to be written.
1974  * @buf: buffer to be written to cell.
1975  *
1976  * Return: length of bytes written or negative error code on failure.
1977  */
1978 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1979 			    struct nvmem_cell_info *info, void *buf)
1980 {
1981 	struct nvmem_cell_entry cell;
1982 	int rc;
1983 
1984 	if (!nvmem)
1985 		return -EINVAL;
1986 
1987 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1988 	if (rc)
1989 		return rc;
1990 
1991 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1992 }
1993 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1994 
1995 /**
1996  * nvmem_device_read() - Read from a given nvmem device
1997  *
1998  * @nvmem: nvmem device to read from.
1999  * @offset: offset in nvmem device.
2000  * @bytes: number of bytes to read.
2001  * @buf: buffer pointer which will be populated on successful read.
2002  *
2003  * Return: length of successful bytes read on success and negative
2004  * error code on error.
2005  */
2006 int nvmem_device_read(struct nvmem_device *nvmem,
2007 		      unsigned int offset,
2008 		      size_t bytes, void *buf)
2009 {
2010 	int rc;
2011 
2012 	if (!nvmem)
2013 		return -EINVAL;
2014 
2015 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2016 
2017 	if (rc)
2018 		return rc;
2019 
2020 	return bytes;
2021 }
2022 EXPORT_SYMBOL_GPL(nvmem_device_read);
2023 
2024 /**
2025  * nvmem_device_write() - Write cell to a given nvmem device
2026  *
2027  * @nvmem: nvmem device to be written to.
2028  * @offset: offset in nvmem device.
2029  * @bytes: number of bytes to write.
2030  * @buf: buffer to be written.
2031  *
2032  * Return: length of bytes written or negative error code on failure.
2033  */
2034 int nvmem_device_write(struct nvmem_device *nvmem,
2035 		       unsigned int offset,
2036 		       size_t bytes, void *buf)
2037 {
2038 	int rc;
2039 
2040 	if (!nvmem)
2041 		return -EINVAL;
2042 
2043 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2044 
2045 	if (rc)
2046 		return rc;
2047 
2048 
2049 	return bytes;
2050 }
2051 EXPORT_SYMBOL_GPL(nvmem_device_write);
2052 
2053 /**
2054  * nvmem_add_cell_table() - register a table of cell info entries
2055  *
2056  * @table: table of cell info entries
2057  */
2058 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2059 {
2060 	mutex_lock(&nvmem_cell_mutex);
2061 	list_add_tail(&table->node, &nvmem_cell_tables);
2062 	mutex_unlock(&nvmem_cell_mutex);
2063 }
2064 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2065 
2066 /**
2067  * nvmem_del_cell_table() - remove a previously registered cell info table
2068  *
2069  * @table: table of cell info entries
2070  */
2071 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2072 {
2073 	mutex_lock(&nvmem_cell_mutex);
2074 	list_del(&table->node);
2075 	mutex_unlock(&nvmem_cell_mutex);
2076 }
2077 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2078 
2079 /**
2080  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2081  *
2082  * @entries: array of cell lookup entries
2083  * @nentries: number of cell lookup entries in the array
2084  */
2085 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2086 {
2087 	int i;
2088 
2089 	mutex_lock(&nvmem_lookup_mutex);
2090 	for (i = 0; i < nentries; i++)
2091 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2092 	mutex_unlock(&nvmem_lookup_mutex);
2093 }
2094 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2095 
2096 /**
2097  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2098  *                            entries
2099  *
2100  * @entries: array of cell lookup entries
2101  * @nentries: number of cell lookup entries in the array
2102  */
2103 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2104 {
2105 	int i;
2106 
2107 	mutex_lock(&nvmem_lookup_mutex);
2108 	for (i = 0; i < nentries; i++)
2109 		list_del(&entries[i].node);
2110 	mutex_unlock(&nvmem_lookup_mutex);
2111 }
2112 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2113 
2114 /**
2115  * nvmem_dev_name() - Get the name of a given nvmem device.
2116  *
2117  * @nvmem: nvmem device.
2118  *
2119  * Return: name of the nvmem device.
2120  */
2121 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2122 {
2123 	return dev_name(&nvmem->dev);
2124 }
2125 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2126 
2127 static int __init nvmem_init(void)
2128 {
2129 	return bus_register(&nvmem_bus_type);
2130 }
2131 
2132 static void __exit nvmem_exit(void)
2133 {
2134 	bus_unregister(&nvmem_bus_type);
2135 }
2136 
2137 subsys_initcall(nvmem_init);
2138 module_exit(nvmem_exit);
2139 
2140 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2141 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2142 MODULE_DESCRIPTION("nvmem Driver Core");
2143