xref: /linux/drivers/nvmem/core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
187 static struct attribute *nvmem_attrs[] = {
188 	&dev_attr_type.attr,
189 	NULL,
190 };
191 
192 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
193 				   struct bin_attribute *attr, char *buf,
194 				   loff_t pos, size_t count)
195 {
196 	struct device *dev;
197 	struct nvmem_device *nvmem;
198 	int rc;
199 
200 	if (attr->private)
201 		dev = attr->private;
202 	else
203 		dev = kobj_to_dev(kobj);
204 	nvmem = to_nvmem_device(dev);
205 
206 	/* Stop the user from reading */
207 	if (pos >= nvmem->size)
208 		return 0;
209 
210 	if (!IS_ALIGNED(pos, nvmem->stride))
211 		return -EINVAL;
212 
213 	if (count < nvmem->word_size)
214 		return -EINVAL;
215 
216 	if (pos + count > nvmem->size)
217 		count = nvmem->size - pos;
218 
219 	count = round_down(count, nvmem->word_size);
220 
221 	if (!nvmem->reg_read)
222 		return -EPERM;
223 
224 	rc = nvmem_reg_read(nvmem, pos, buf, count);
225 
226 	if (rc)
227 		return rc;
228 
229 	return count;
230 }
231 
232 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
233 				    struct bin_attribute *attr, char *buf,
234 				    loff_t pos, size_t count)
235 {
236 	struct device *dev;
237 	struct nvmem_device *nvmem;
238 	int rc;
239 
240 	if (attr->private)
241 		dev = attr->private;
242 	else
243 		dev = kobj_to_dev(kobj);
244 	nvmem = to_nvmem_device(dev);
245 
246 	/* Stop the user from writing */
247 	if (pos >= nvmem->size)
248 		return -EFBIG;
249 
250 	if (!IS_ALIGNED(pos, nvmem->stride))
251 		return -EINVAL;
252 
253 	if (count < nvmem->word_size)
254 		return -EINVAL;
255 
256 	if (pos + count > nvmem->size)
257 		count = nvmem->size - pos;
258 
259 	count = round_down(count, nvmem->word_size);
260 
261 	if (!nvmem->reg_write)
262 		return -EPERM;
263 
264 	rc = nvmem_reg_write(nvmem, pos, buf, count);
265 
266 	if (rc)
267 		return rc;
268 
269 	return count;
270 }
271 
272 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
273 {
274 	umode_t mode = 0400;
275 
276 	if (!nvmem->root_only)
277 		mode |= 0044;
278 
279 	if (!nvmem->read_only)
280 		mode |= 0200;
281 
282 	if (!nvmem->reg_write)
283 		mode &= ~0200;
284 
285 	if (!nvmem->reg_read)
286 		mode &= ~0444;
287 
288 	return mode;
289 }
290 
291 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
292 					 struct bin_attribute *attr, int i)
293 {
294 	struct device *dev = kobj_to_dev(kobj);
295 	struct nvmem_device *nvmem = to_nvmem_device(dev);
296 
297 	attr->size = nvmem->size;
298 
299 	return nvmem_bin_attr_get_umode(nvmem);
300 }
301 
302 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
303 					    const char *id, int index);
304 
305 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
306 				    struct bin_attribute *attr, char *buf,
307 				    loff_t pos, size_t count)
308 {
309 	struct nvmem_cell_entry *entry;
310 	struct nvmem_cell *cell = NULL;
311 	size_t cell_sz, read_len;
312 	void *content;
313 
314 	entry = attr->private;
315 	cell = nvmem_create_cell(entry, entry->name, 0);
316 	if (IS_ERR(cell))
317 		return PTR_ERR(cell);
318 
319 	if (!cell)
320 		return -EINVAL;
321 
322 	content = nvmem_cell_read(cell, &cell_sz);
323 	if (IS_ERR(content)) {
324 		read_len = PTR_ERR(content);
325 		goto destroy_cell;
326 	}
327 
328 	read_len = min_t(unsigned int, cell_sz - pos, count);
329 	memcpy(buf, content + pos, read_len);
330 	kfree(content);
331 
332 destroy_cell:
333 	kfree_const(cell->id);
334 	kfree(cell);
335 
336 	return read_len;
337 }
338 
339 /* default read/write permissions */
340 static struct bin_attribute bin_attr_rw_nvmem = {
341 	.attr	= {
342 		.name	= "nvmem",
343 		.mode	= 0644,
344 	},
345 	.read	= bin_attr_nvmem_read,
346 	.write	= bin_attr_nvmem_write,
347 };
348 
349 static struct bin_attribute *nvmem_bin_attributes[] = {
350 	&bin_attr_rw_nvmem,
351 	NULL,
352 };
353 
354 static const struct attribute_group nvmem_bin_group = {
355 	.bin_attrs	= nvmem_bin_attributes,
356 	.attrs		= nvmem_attrs,
357 	.is_bin_visible = nvmem_bin_attr_is_visible,
358 };
359 
360 /* Cell attributes will be dynamically allocated */
361 static struct attribute_group nvmem_cells_group = {
362 	.name		= "cells",
363 };
364 
365 static const struct attribute_group *nvmem_dev_groups[] = {
366 	&nvmem_bin_group,
367 	NULL,
368 };
369 
370 static const struct attribute_group *nvmem_cells_groups[] = {
371 	&nvmem_cells_group,
372 	NULL,
373 };
374 
375 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
376 	.attr	= {
377 		.name	= "eeprom",
378 	},
379 	.read	= bin_attr_nvmem_read,
380 	.write	= bin_attr_nvmem_write,
381 };
382 
383 /*
384  * nvmem_setup_compat() - Create an additional binary entry in
385  * drivers sys directory, to be backwards compatible with the older
386  * drivers/misc/eeprom drivers.
387  */
388 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
389 				    const struct nvmem_config *config)
390 {
391 	int rval;
392 
393 	if (!config->compat)
394 		return 0;
395 
396 	if (!config->base_dev)
397 		return -EINVAL;
398 
399 	if (config->type == NVMEM_TYPE_FRAM)
400 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
401 
402 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
403 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
404 	nvmem->eeprom.size = nvmem->size;
405 #ifdef CONFIG_DEBUG_LOCK_ALLOC
406 	nvmem->eeprom.attr.key = &eeprom_lock_key;
407 #endif
408 	nvmem->eeprom.private = &nvmem->dev;
409 	nvmem->base_dev = config->base_dev;
410 
411 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
412 	if (rval) {
413 		dev_err(&nvmem->dev,
414 			"Failed to create eeprom binary file %d\n", rval);
415 		return rval;
416 	}
417 
418 	nvmem->flags |= FLAG_COMPAT;
419 
420 	return 0;
421 }
422 
423 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
424 			      const struct nvmem_config *config)
425 {
426 	if (config->compat)
427 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
428 }
429 
430 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
431 {
432 	struct bin_attribute **cells_attrs, *attrs;
433 	struct nvmem_cell_entry *entry;
434 	unsigned int ncells = 0, i = 0;
435 	int ret = 0;
436 
437 	mutex_lock(&nvmem_mutex);
438 
439 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
440 		nvmem_cells_group.bin_attrs = NULL;
441 		goto unlock_mutex;
442 	}
443 
444 	/* Allocate an array of attributes with a sentinel */
445 	ncells = list_count_nodes(&nvmem->cells);
446 	cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
447 				   sizeof(struct bin_attribute *), GFP_KERNEL);
448 	if (!cells_attrs) {
449 		ret = -ENOMEM;
450 		goto unlock_mutex;
451 	}
452 
453 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
454 	if (!attrs) {
455 		ret = -ENOMEM;
456 		goto unlock_mutex;
457 	}
458 
459 	/* Initialize each attribute to take the name and size of the cell */
460 	list_for_each_entry(entry, &nvmem->cells, node) {
461 		sysfs_bin_attr_init(&attrs[i]);
462 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
463 						    "%s@%x,%x", entry->name,
464 						    entry->offset,
465 						    entry->bit_offset);
466 		attrs[i].attr.mode = 0444;
467 		attrs[i].size = entry->bytes;
468 		attrs[i].read = &nvmem_cell_attr_read;
469 		attrs[i].private = entry;
470 		if (!attrs[i].attr.name) {
471 			ret = -ENOMEM;
472 			goto unlock_mutex;
473 		}
474 
475 		cells_attrs[i] = &attrs[i];
476 		i++;
477 	}
478 
479 	nvmem_cells_group.bin_attrs = cells_attrs;
480 
481 	ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
482 	if (ret)
483 		goto unlock_mutex;
484 
485 	nvmem->sysfs_cells_populated = true;
486 
487 unlock_mutex:
488 	mutex_unlock(&nvmem_mutex);
489 
490 	return ret;
491 }
492 
493 #else /* CONFIG_NVMEM_SYSFS */
494 
495 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
496 				    const struct nvmem_config *config)
497 {
498 	return -ENOSYS;
499 }
500 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
501 				      const struct nvmem_config *config)
502 {
503 }
504 
505 #endif /* CONFIG_NVMEM_SYSFS */
506 
507 static void nvmem_release(struct device *dev)
508 {
509 	struct nvmem_device *nvmem = to_nvmem_device(dev);
510 
511 	ida_free(&nvmem_ida, nvmem->id);
512 	gpiod_put(nvmem->wp_gpio);
513 	kfree(nvmem);
514 }
515 
516 static const struct device_type nvmem_provider_type = {
517 	.release	= nvmem_release,
518 };
519 
520 static struct bus_type nvmem_bus_type = {
521 	.name		= "nvmem",
522 };
523 
524 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
525 {
526 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
527 	mutex_lock(&nvmem_mutex);
528 	list_del(&cell->node);
529 	mutex_unlock(&nvmem_mutex);
530 	of_node_put(cell->np);
531 	kfree_const(cell->name);
532 	kfree(cell);
533 }
534 
535 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
536 {
537 	struct nvmem_cell_entry *cell, *p;
538 
539 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
540 		nvmem_cell_entry_drop(cell);
541 }
542 
543 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
544 {
545 	mutex_lock(&nvmem_mutex);
546 	list_add_tail(&cell->node, &cell->nvmem->cells);
547 	mutex_unlock(&nvmem_mutex);
548 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
549 }
550 
551 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
552 						     const struct nvmem_cell_info *info,
553 						     struct nvmem_cell_entry *cell)
554 {
555 	cell->nvmem = nvmem;
556 	cell->offset = info->offset;
557 	cell->raw_len = info->raw_len ?: info->bytes;
558 	cell->bytes = info->bytes;
559 	cell->name = info->name;
560 	cell->read_post_process = info->read_post_process;
561 	cell->priv = info->priv;
562 
563 	cell->bit_offset = info->bit_offset;
564 	cell->nbits = info->nbits;
565 	cell->np = info->np;
566 
567 	if (cell->nbits)
568 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
569 					   BITS_PER_BYTE);
570 
571 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
572 		dev_err(&nvmem->dev,
573 			"cell %s unaligned to nvmem stride %d\n",
574 			cell->name ?: "<unknown>", nvmem->stride);
575 		return -EINVAL;
576 	}
577 
578 	return 0;
579 }
580 
581 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
582 					       const struct nvmem_cell_info *info,
583 					       struct nvmem_cell_entry *cell)
584 {
585 	int err;
586 
587 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
588 	if (err)
589 		return err;
590 
591 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
592 	if (!cell->name)
593 		return -ENOMEM;
594 
595 	return 0;
596 }
597 
598 /**
599  * nvmem_add_one_cell() - Add one cell information to an nvmem device
600  *
601  * @nvmem: nvmem device to add cells to.
602  * @info: nvmem cell info to add to the device
603  *
604  * Return: 0 or negative error code on failure.
605  */
606 int nvmem_add_one_cell(struct nvmem_device *nvmem,
607 		       const struct nvmem_cell_info *info)
608 {
609 	struct nvmem_cell_entry *cell;
610 	int rval;
611 
612 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
613 	if (!cell)
614 		return -ENOMEM;
615 
616 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
617 	if (rval) {
618 		kfree(cell);
619 		return rval;
620 	}
621 
622 	nvmem_cell_entry_add(cell);
623 
624 	return 0;
625 }
626 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
627 
628 /**
629  * nvmem_add_cells() - Add cell information to an nvmem device
630  *
631  * @nvmem: nvmem device to add cells to.
632  * @info: nvmem cell info to add to the device
633  * @ncells: number of cells in info
634  *
635  * Return: 0 or negative error code on failure.
636  */
637 static int nvmem_add_cells(struct nvmem_device *nvmem,
638 		    const struct nvmem_cell_info *info,
639 		    int ncells)
640 {
641 	int i, rval;
642 
643 	for (i = 0; i < ncells; i++) {
644 		rval = nvmem_add_one_cell(nvmem, &info[i]);
645 		if (rval)
646 			return rval;
647 	}
648 
649 	return 0;
650 }
651 
652 /**
653  * nvmem_register_notifier() - Register a notifier block for nvmem events.
654  *
655  * @nb: notifier block to be called on nvmem events.
656  *
657  * Return: 0 on success, negative error number on failure.
658  */
659 int nvmem_register_notifier(struct notifier_block *nb)
660 {
661 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
662 }
663 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
664 
665 /**
666  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
667  *
668  * @nb: notifier block to be unregistered.
669  *
670  * Return: 0 on success, negative error number on failure.
671  */
672 int nvmem_unregister_notifier(struct notifier_block *nb)
673 {
674 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
675 }
676 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
677 
678 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
679 {
680 	const struct nvmem_cell_info *info;
681 	struct nvmem_cell_table *table;
682 	struct nvmem_cell_entry *cell;
683 	int rval = 0, i;
684 
685 	mutex_lock(&nvmem_cell_mutex);
686 	list_for_each_entry(table, &nvmem_cell_tables, node) {
687 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
688 			for (i = 0; i < table->ncells; i++) {
689 				info = &table->cells[i];
690 
691 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
692 				if (!cell) {
693 					rval = -ENOMEM;
694 					goto out;
695 				}
696 
697 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
698 				if (rval) {
699 					kfree(cell);
700 					goto out;
701 				}
702 
703 				nvmem_cell_entry_add(cell);
704 			}
705 		}
706 	}
707 
708 out:
709 	mutex_unlock(&nvmem_cell_mutex);
710 	return rval;
711 }
712 
713 static struct nvmem_cell_entry *
714 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
715 {
716 	struct nvmem_cell_entry *iter, *cell = NULL;
717 
718 	mutex_lock(&nvmem_mutex);
719 	list_for_each_entry(iter, &nvmem->cells, node) {
720 		if (strcmp(cell_id, iter->name) == 0) {
721 			cell = iter;
722 			break;
723 		}
724 	}
725 	mutex_unlock(&nvmem_mutex);
726 
727 	return cell;
728 }
729 
730 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
731 {
732 	unsigned int cur = 0;
733 	const struct nvmem_keepout *keepout = nvmem->keepout;
734 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
735 
736 	while (keepout < keepoutend) {
737 		/* Ensure keepouts are sorted and don't overlap. */
738 		if (keepout->start < cur) {
739 			dev_err(&nvmem->dev,
740 				"Keepout regions aren't sorted or overlap.\n");
741 
742 			return -ERANGE;
743 		}
744 
745 		if (keepout->end < keepout->start) {
746 			dev_err(&nvmem->dev,
747 				"Invalid keepout region.\n");
748 
749 			return -EINVAL;
750 		}
751 
752 		/*
753 		 * Validate keepouts (and holes between) don't violate
754 		 * word_size constraints.
755 		 */
756 		if ((keepout->end - keepout->start < nvmem->word_size) ||
757 		    ((keepout->start != cur) &&
758 		     (keepout->start - cur < nvmem->word_size))) {
759 
760 			dev_err(&nvmem->dev,
761 				"Keepout regions violate word_size constraints.\n");
762 
763 			return -ERANGE;
764 		}
765 
766 		/* Validate keepouts don't violate stride (alignment). */
767 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
768 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
769 
770 			dev_err(&nvmem->dev,
771 				"Keepout regions violate stride.\n");
772 
773 			return -EINVAL;
774 		}
775 
776 		cur = keepout->end;
777 		keepout++;
778 	}
779 
780 	return 0;
781 }
782 
783 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
784 {
785 	struct device *dev = &nvmem->dev;
786 	struct device_node *child;
787 	const __be32 *addr;
788 	int len, ret;
789 
790 	for_each_child_of_node(np, child) {
791 		struct nvmem_cell_info info = {0};
792 
793 		addr = of_get_property(child, "reg", &len);
794 		if (!addr)
795 			continue;
796 		if (len < 2 * sizeof(u32)) {
797 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
798 			of_node_put(child);
799 			return -EINVAL;
800 		}
801 
802 		info.offset = be32_to_cpup(addr++);
803 		info.bytes = be32_to_cpup(addr);
804 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
805 
806 		addr = of_get_property(child, "bits", &len);
807 		if (addr && len == (2 * sizeof(u32))) {
808 			info.bit_offset = be32_to_cpup(addr++);
809 			info.nbits = be32_to_cpup(addr);
810 		}
811 
812 		info.np = of_node_get(child);
813 
814 		if (nvmem->fixup_dt_cell_info)
815 			nvmem->fixup_dt_cell_info(nvmem, &info);
816 
817 		ret = nvmem_add_one_cell(nvmem, &info);
818 		kfree(info.name);
819 		if (ret) {
820 			of_node_put(child);
821 			return ret;
822 		}
823 	}
824 
825 	return 0;
826 }
827 
828 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
829 {
830 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
831 }
832 
833 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
834 {
835 	struct device_node *layout_np;
836 	int err = 0;
837 
838 	layout_np = of_nvmem_layout_get_container(nvmem);
839 	if (!layout_np)
840 		return 0;
841 
842 	if (of_device_is_compatible(layout_np, "fixed-layout"))
843 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
844 
845 	of_node_put(layout_np);
846 
847 	return err;
848 }
849 
850 int nvmem_layout_register(struct nvmem_layout *layout)
851 {
852 	int ret;
853 
854 	if (!layout->add_cells)
855 		return -EINVAL;
856 
857 	/* Populate the cells */
858 	ret = layout->add_cells(layout);
859 	if (ret)
860 		return ret;
861 
862 #ifdef CONFIG_NVMEM_SYSFS
863 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
864 	if (ret) {
865 		nvmem_device_remove_all_cells(layout->nvmem);
866 		return ret;
867 	}
868 #endif
869 
870 	return 0;
871 }
872 EXPORT_SYMBOL_GPL(nvmem_layout_register);
873 
874 void nvmem_layout_unregister(struct nvmem_layout *layout)
875 {
876 	/* Keep the API even with an empty stub in case we need it later */
877 }
878 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
879 
880 /**
881  * nvmem_register() - Register a nvmem device for given nvmem_config.
882  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
883  *
884  * @config: nvmem device configuration with which nvmem device is created.
885  *
886  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
887  * on success.
888  */
889 
890 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
891 {
892 	struct nvmem_device *nvmem;
893 	int rval;
894 
895 	if (!config->dev)
896 		return ERR_PTR(-EINVAL);
897 
898 	if (!config->reg_read && !config->reg_write)
899 		return ERR_PTR(-EINVAL);
900 
901 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
902 	if (!nvmem)
903 		return ERR_PTR(-ENOMEM);
904 
905 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
906 	if (rval < 0) {
907 		kfree(nvmem);
908 		return ERR_PTR(rval);
909 	}
910 
911 	nvmem->id = rval;
912 
913 	nvmem->dev.type = &nvmem_provider_type;
914 	nvmem->dev.bus = &nvmem_bus_type;
915 	nvmem->dev.parent = config->dev;
916 
917 	device_initialize(&nvmem->dev);
918 
919 	if (!config->ignore_wp)
920 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
921 						    GPIOD_OUT_HIGH);
922 	if (IS_ERR(nvmem->wp_gpio)) {
923 		rval = PTR_ERR(nvmem->wp_gpio);
924 		nvmem->wp_gpio = NULL;
925 		goto err_put_device;
926 	}
927 
928 	kref_init(&nvmem->refcnt);
929 	INIT_LIST_HEAD(&nvmem->cells);
930 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
931 
932 	nvmem->owner = config->owner;
933 	if (!nvmem->owner && config->dev->driver)
934 		nvmem->owner = config->dev->driver->owner;
935 	nvmem->stride = config->stride ?: 1;
936 	nvmem->word_size = config->word_size ?: 1;
937 	nvmem->size = config->size;
938 	nvmem->root_only = config->root_only;
939 	nvmem->priv = config->priv;
940 	nvmem->type = config->type;
941 	nvmem->reg_read = config->reg_read;
942 	nvmem->reg_write = config->reg_write;
943 	nvmem->keepout = config->keepout;
944 	nvmem->nkeepout = config->nkeepout;
945 	if (config->of_node)
946 		nvmem->dev.of_node = config->of_node;
947 	else
948 		nvmem->dev.of_node = config->dev->of_node;
949 
950 	switch (config->id) {
951 	case NVMEM_DEVID_NONE:
952 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
953 		break;
954 	case NVMEM_DEVID_AUTO:
955 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
956 		break;
957 	default:
958 		rval = dev_set_name(&nvmem->dev, "%s%d",
959 			     config->name ? : "nvmem",
960 			     config->name ? config->id : nvmem->id);
961 		break;
962 	}
963 
964 	if (rval)
965 		goto err_put_device;
966 
967 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
968 			   config->read_only || !nvmem->reg_write;
969 
970 #ifdef CONFIG_NVMEM_SYSFS
971 	nvmem->dev.groups = nvmem_dev_groups;
972 #endif
973 
974 	if (nvmem->nkeepout) {
975 		rval = nvmem_validate_keepouts(nvmem);
976 		if (rval)
977 			goto err_put_device;
978 	}
979 
980 	if (config->compat) {
981 		rval = nvmem_sysfs_setup_compat(nvmem, config);
982 		if (rval)
983 			goto err_put_device;
984 	}
985 
986 	if (config->cells) {
987 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
988 		if (rval)
989 			goto err_remove_cells;
990 	}
991 
992 	rval = nvmem_add_cells_from_table(nvmem);
993 	if (rval)
994 		goto err_remove_cells;
995 
996 	if (config->add_legacy_fixed_of_cells) {
997 		rval = nvmem_add_cells_from_legacy_of(nvmem);
998 		if (rval)
999 			goto err_remove_cells;
1000 	}
1001 
1002 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1003 	if (rval)
1004 		goto err_remove_cells;
1005 
1006 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1007 
1008 	rval = device_add(&nvmem->dev);
1009 	if (rval)
1010 		goto err_remove_cells;
1011 
1012 	rval = nvmem_populate_layout(nvmem);
1013 	if (rval)
1014 		goto err_remove_dev;
1015 
1016 #ifdef CONFIG_NVMEM_SYSFS
1017 	rval = nvmem_populate_sysfs_cells(nvmem);
1018 	if (rval)
1019 		goto err_destroy_layout;
1020 #endif
1021 
1022 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1023 
1024 	return nvmem;
1025 
1026 #ifdef CONFIG_NVMEM_SYSFS
1027 err_destroy_layout:
1028 	nvmem_destroy_layout(nvmem);
1029 #endif
1030 err_remove_dev:
1031 	device_del(&nvmem->dev);
1032 err_remove_cells:
1033 	nvmem_device_remove_all_cells(nvmem);
1034 	if (config->compat)
1035 		nvmem_sysfs_remove_compat(nvmem, config);
1036 err_put_device:
1037 	put_device(&nvmem->dev);
1038 
1039 	return ERR_PTR(rval);
1040 }
1041 EXPORT_SYMBOL_GPL(nvmem_register);
1042 
1043 static void nvmem_device_release(struct kref *kref)
1044 {
1045 	struct nvmem_device *nvmem;
1046 
1047 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1048 
1049 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1050 
1051 	if (nvmem->flags & FLAG_COMPAT)
1052 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1053 
1054 	nvmem_device_remove_all_cells(nvmem);
1055 	nvmem_destroy_layout(nvmem);
1056 	device_unregister(&nvmem->dev);
1057 }
1058 
1059 /**
1060  * nvmem_unregister() - Unregister previously registered nvmem device
1061  *
1062  * @nvmem: Pointer to previously registered nvmem device.
1063  */
1064 void nvmem_unregister(struct nvmem_device *nvmem)
1065 {
1066 	if (nvmem)
1067 		kref_put(&nvmem->refcnt, nvmem_device_release);
1068 }
1069 EXPORT_SYMBOL_GPL(nvmem_unregister);
1070 
1071 static void devm_nvmem_unregister(void *nvmem)
1072 {
1073 	nvmem_unregister(nvmem);
1074 }
1075 
1076 /**
1077  * devm_nvmem_register() - Register a managed nvmem device for given
1078  * nvmem_config.
1079  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1080  *
1081  * @dev: Device that uses the nvmem device.
1082  * @config: nvmem device configuration with which nvmem device is created.
1083  *
1084  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1085  * on success.
1086  */
1087 struct nvmem_device *devm_nvmem_register(struct device *dev,
1088 					 const struct nvmem_config *config)
1089 {
1090 	struct nvmem_device *nvmem;
1091 	int ret;
1092 
1093 	nvmem = nvmem_register(config);
1094 	if (IS_ERR(nvmem))
1095 		return nvmem;
1096 
1097 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1098 	if (ret)
1099 		return ERR_PTR(ret);
1100 
1101 	return nvmem;
1102 }
1103 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1104 
1105 static struct nvmem_device *__nvmem_device_get(void *data,
1106 			int (*match)(struct device *dev, const void *data))
1107 {
1108 	struct nvmem_device *nvmem = NULL;
1109 	struct device *dev;
1110 
1111 	mutex_lock(&nvmem_mutex);
1112 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1113 	if (dev)
1114 		nvmem = to_nvmem_device(dev);
1115 	mutex_unlock(&nvmem_mutex);
1116 	if (!nvmem)
1117 		return ERR_PTR(-EPROBE_DEFER);
1118 
1119 	if (!try_module_get(nvmem->owner)) {
1120 		dev_err(&nvmem->dev,
1121 			"could not increase module refcount for cell %s\n",
1122 			nvmem_dev_name(nvmem));
1123 
1124 		put_device(&nvmem->dev);
1125 		return ERR_PTR(-EINVAL);
1126 	}
1127 
1128 	kref_get(&nvmem->refcnt);
1129 
1130 	return nvmem;
1131 }
1132 
1133 static void __nvmem_device_put(struct nvmem_device *nvmem)
1134 {
1135 	put_device(&nvmem->dev);
1136 	module_put(nvmem->owner);
1137 	kref_put(&nvmem->refcnt, nvmem_device_release);
1138 }
1139 
1140 #if IS_ENABLED(CONFIG_OF)
1141 /**
1142  * of_nvmem_device_get() - Get nvmem device from a given id
1143  *
1144  * @np: Device tree node that uses the nvmem device.
1145  * @id: nvmem name from nvmem-names property.
1146  *
1147  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1148  * on success.
1149  */
1150 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1151 {
1152 
1153 	struct device_node *nvmem_np;
1154 	struct nvmem_device *nvmem;
1155 	int index = 0;
1156 
1157 	if (id)
1158 		index = of_property_match_string(np, "nvmem-names", id);
1159 
1160 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1161 	if (!nvmem_np)
1162 		return ERR_PTR(-ENOENT);
1163 
1164 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1165 	of_node_put(nvmem_np);
1166 	return nvmem;
1167 }
1168 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1169 #endif
1170 
1171 /**
1172  * nvmem_device_get() - Get nvmem device from a given id
1173  *
1174  * @dev: Device that uses the nvmem device.
1175  * @dev_name: name of the requested nvmem device.
1176  *
1177  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1178  * on success.
1179  */
1180 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1181 {
1182 	if (dev->of_node) { /* try dt first */
1183 		struct nvmem_device *nvmem;
1184 
1185 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1186 
1187 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1188 			return nvmem;
1189 
1190 	}
1191 
1192 	return __nvmem_device_get((void *)dev_name, device_match_name);
1193 }
1194 EXPORT_SYMBOL_GPL(nvmem_device_get);
1195 
1196 /**
1197  * nvmem_device_find() - Find nvmem device with matching function
1198  *
1199  * @data: Data to pass to match function
1200  * @match: Callback function to check device
1201  *
1202  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1203  * on success.
1204  */
1205 struct nvmem_device *nvmem_device_find(void *data,
1206 			int (*match)(struct device *dev, const void *data))
1207 {
1208 	return __nvmem_device_get(data, match);
1209 }
1210 EXPORT_SYMBOL_GPL(nvmem_device_find);
1211 
1212 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1213 {
1214 	struct nvmem_device **nvmem = res;
1215 
1216 	if (WARN_ON(!nvmem || !*nvmem))
1217 		return 0;
1218 
1219 	return *nvmem == data;
1220 }
1221 
1222 static void devm_nvmem_device_release(struct device *dev, void *res)
1223 {
1224 	nvmem_device_put(*(struct nvmem_device **)res);
1225 }
1226 
1227 /**
1228  * devm_nvmem_device_put() - put alredy got nvmem device
1229  *
1230  * @dev: Device that uses the nvmem device.
1231  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1232  * that needs to be released.
1233  */
1234 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1235 {
1236 	int ret;
1237 
1238 	ret = devres_release(dev, devm_nvmem_device_release,
1239 			     devm_nvmem_device_match, nvmem);
1240 
1241 	WARN_ON(ret);
1242 }
1243 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1244 
1245 /**
1246  * nvmem_device_put() - put alredy got nvmem device
1247  *
1248  * @nvmem: pointer to nvmem device that needs to be released.
1249  */
1250 void nvmem_device_put(struct nvmem_device *nvmem)
1251 {
1252 	__nvmem_device_put(nvmem);
1253 }
1254 EXPORT_SYMBOL_GPL(nvmem_device_put);
1255 
1256 /**
1257  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1258  *
1259  * @dev: Device that requests the nvmem device.
1260  * @id: name id for the requested nvmem device.
1261  *
1262  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1263  * on success.  The nvmem_cell will be freed by the automatically once the
1264  * device is freed.
1265  */
1266 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1267 {
1268 	struct nvmem_device **ptr, *nvmem;
1269 
1270 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1271 	if (!ptr)
1272 		return ERR_PTR(-ENOMEM);
1273 
1274 	nvmem = nvmem_device_get(dev, id);
1275 	if (!IS_ERR(nvmem)) {
1276 		*ptr = nvmem;
1277 		devres_add(dev, ptr);
1278 	} else {
1279 		devres_free(ptr);
1280 	}
1281 
1282 	return nvmem;
1283 }
1284 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1285 
1286 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1287 					    const char *id, int index)
1288 {
1289 	struct nvmem_cell *cell;
1290 	const char *name = NULL;
1291 
1292 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1293 	if (!cell)
1294 		return ERR_PTR(-ENOMEM);
1295 
1296 	if (id) {
1297 		name = kstrdup_const(id, GFP_KERNEL);
1298 		if (!name) {
1299 			kfree(cell);
1300 			return ERR_PTR(-ENOMEM);
1301 		}
1302 	}
1303 
1304 	cell->id = name;
1305 	cell->entry = entry;
1306 	cell->index = index;
1307 
1308 	return cell;
1309 }
1310 
1311 static struct nvmem_cell *
1312 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1313 {
1314 	struct nvmem_cell_entry *cell_entry;
1315 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1316 	struct nvmem_cell_lookup *lookup;
1317 	struct nvmem_device *nvmem;
1318 	const char *dev_id;
1319 
1320 	if (!dev)
1321 		return ERR_PTR(-EINVAL);
1322 
1323 	dev_id = dev_name(dev);
1324 
1325 	mutex_lock(&nvmem_lookup_mutex);
1326 
1327 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1328 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1329 		    (strcmp(lookup->con_id, con_id) == 0)) {
1330 			/* This is the right entry. */
1331 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1332 						   device_match_name);
1333 			if (IS_ERR(nvmem)) {
1334 				/* Provider may not be registered yet. */
1335 				cell = ERR_CAST(nvmem);
1336 				break;
1337 			}
1338 
1339 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1340 								   lookup->cell_name);
1341 			if (!cell_entry) {
1342 				__nvmem_device_put(nvmem);
1343 				cell = ERR_PTR(-ENOENT);
1344 			} else {
1345 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1346 				if (IS_ERR(cell))
1347 					__nvmem_device_put(nvmem);
1348 			}
1349 			break;
1350 		}
1351 	}
1352 
1353 	mutex_unlock(&nvmem_lookup_mutex);
1354 	return cell;
1355 }
1356 
1357 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1358 {
1359 	if (nvmem->layout && nvmem->layout->dev.driver)
1360 		module_put(nvmem->layout->dev.driver->owner);
1361 }
1362 
1363 #if IS_ENABLED(CONFIG_OF)
1364 static struct nvmem_cell_entry *
1365 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1366 {
1367 	struct nvmem_cell_entry *iter, *cell = NULL;
1368 
1369 	mutex_lock(&nvmem_mutex);
1370 	list_for_each_entry(iter, &nvmem->cells, node) {
1371 		if (np == iter->np) {
1372 			cell = iter;
1373 			break;
1374 		}
1375 	}
1376 	mutex_unlock(&nvmem_mutex);
1377 
1378 	return cell;
1379 }
1380 
1381 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1382 {
1383 	if (!nvmem->layout)
1384 		return 0;
1385 
1386 	if (!nvmem->layout->dev.driver ||
1387 	    !try_module_get(nvmem->layout->dev.driver->owner))
1388 		return -EPROBE_DEFER;
1389 
1390 	return 0;
1391 }
1392 
1393 /**
1394  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1395  *
1396  * @np: Device tree node that uses the nvmem cell.
1397  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1398  *      for the cell at index 0 (the lone cell with no accompanying
1399  *      nvmem-cell-names property).
1400  *
1401  * Return: Will be an ERR_PTR() on error or a valid pointer
1402  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1403  * nvmem_cell_put().
1404  */
1405 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1406 {
1407 	struct device_node *cell_np, *nvmem_np;
1408 	struct nvmem_device *nvmem;
1409 	struct nvmem_cell_entry *cell_entry;
1410 	struct nvmem_cell *cell;
1411 	struct of_phandle_args cell_spec;
1412 	int index = 0;
1413 	int cell_index = 0;
1414 	int ret;
1415 
1416 	/* if cell name exists, find index to the name */
1417 	if (id)
1418 		index = of_property_match_string(np, "nvmem-cell-names", id);
1419 
1420 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1421 						  "#nvmem-cell-cells",
1422 						  index, &cell_spec);
1423 	if (ret)
1424 		return ERR_PTR(-ENOENT);
1425 
1426 	if (cell_spec.args_count > 1)
1427 		return ERR_PTR(-EINVAL);
1428 
1429 	cell_np = cell_spec.np;
1430 	if (cell_spec.args_count)
1431 		cell_index = cell_spec.args[0];
1432 
1433 	nvmem_np = of_get_parent(cell_np);
1434 	if (!nvmem_np) {
1435 		of_node_put(cell_np);
1436 		return ERR_PTR(-EINVAL);
1437 	}
1438 
1439 	/* nvmem layouts produce cells within the nvmem-layout container */
1440 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1441 		nvmem_np = of_get_next_parent(nvmem_np);
1442 		if (!nvmem_np) {
1443 			of_node_put(cell_np);
1444 			return ERR_PTR(-EINVAL);
1445 		}
1446 	}
1447 
1448 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1449 	of_node_put(nvmem_np);
1450 	if (IS_ERR(nvmem)) {
1451 		of_node_put(cell_np);
1452 		return ERR_CAST(nvmem);
1453 	}
1454 
1455 	ret = nvmem_layout_module_get_optional(nvmem);
1456 	if (ret) {
1457 		of_node_put(cell_np);
1458 		__nvmem_device_put(nvmem);
1459 		return ERR_PTR(ret);
1460 	}
1461 
1462 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1463 	of_node_put(cell_np);
1464 	if (!cell_entry) {
1465 		__nvmem_device_put(nvmem);
1466 		nvmem_layout_module_put(nvmem);
1467 		if (nvmem->layout)
1468 			return ERR_PTR(-EPROBE_DEFER);
1469 		else
1470 			return ERR_PTR(-ENOENT);
1471 	}
1472 
1473 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1474 	if (IS_ERR(cell)) {
1475 		__nvmem_device_put(nvmem);
1476 		nvmem_layout_module_put(nvmem);
1477 	}
1478 
1479 	return cell;
1480 }
1481 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1482 #endif
1483 
1484 /**
1485  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1486  *
1487  * @dev: Device that requests the nvmem cell.
1488  * @id: nvmem cell name to get (this corresponds with the name from the
1489  *      nvmem-cell-names property for DT systems and with the con_id from
1490  *      the lookup entry for non-DT systems).
1491  *
1492  * Return: Will be an ERR_PTR() on error or a valid pointer
1493  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1494  * nvmem_cell_put().
1495  */
1496 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1497 {
1498 	struct nvmem_cell *cell;
1499 
1500 	if (dev->of_node) { /* try dt first */
1501 		cell = of_nvmem_cell_get(dev->of_node, id);
1502 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1503 			return cell;
1504 	}
1505 
1506 	/* NULL cell id only allowed for device tree; invalid otherwise */
1507 	if (!id)
1508 		return ERR_PTR(-EINVAL);
1509 
1510 	return nvmem_cell_get_from_lookup(dev, id);
1511 }
1512 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1513 
1514 static void devm_nvmem_cell_release(struct device *dev, void *res)
1515 {
1516 	nvmem_cell_put(*(struct nvmem_cell **)res);
1517 }
1518 
1519 /**
1520  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1521  *
1522  * @dev: Device that requests the nvmem cell.
1523  * @id: nvmem cell name id to get.
1524  *
1525  * Return: Will be an ERR_PTR() on error or a valid pointer
1526  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1527  * automatically once the device is freed.
1528  */
1529 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1530 {
1531 	struct nvmem_cell **ptr, *cell;
1532 
1533 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1534 	if (!ptr)
1535 		return ERR_PTR(-ENOMEM);
1536 
1537 	cell = nvmem_cell_get(dev, id);
1538 	if (!IS_ERR(cell)) {
1539 		*ptr = cell;
1540 		devres_add(dev, ptr);
1541 	} else {
1542 		devres_free(ptr);
1543 	}
1544 
1545 	return cell;
1546 }
1547 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1548 
1549 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1550 {
1551 	struct nvmem_cell **c = res;
1552 
1553 	if (WARN_ON(!c || !*c))
1554 		return 0;
1555 
1556 	return *c == data;
1557 }
1558 
1559 /**
1560  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1561  * from devm_nvmem_cell_get.
1562  *
1563  * @dev: Device that requests the nvmem cell.
1564  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1565  */
1566 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1567 {
1568 	int ret;
1569 
1570 	ret = devres_release(dev, devm_nvmem_cell_release,
1571 				devm_nvmem_cell_match, cell);
1572 
1573 	WARN_ON(ret);
1574 }
1575 EXPORT_SYMBOL(devm_nvmem_cell_put);
1576 
1577 /**
1578  * nvmem_cell_put() - Release previously allocated nvmem cell.
1579  *
1580  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1581  */
1582 void nvmem_cell_put(struct nvmem_cell *cell)
1583 {
1584 	struct nvmem_device *nvmem = cell->entry->nvmem;
1585 
1586 	if (cell->id)
1587 		kfree_const(cell->id);
1588 
1589 	kfree(cell);
1590 	__nvmem_device_put(nvmem);
1591 	nvmem_layout_module_put(nvmem);
1592 }
1593 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1594 
1595 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1596 {
1597 	u8 *p, *b;
1598 	int i, extra, bit_offset = cell->bit_offset;
1599 
1600 	p = b = buf;
1601 	if (bit_offset) {
1602 		/* First shift */
1603 		*b++ >>= bit_offset;
1604 
1605 		/* setup rest of the bytes if any */
1606 		for (i = 1; i < cell->bytes; i++) {
1607 			/* Get bits from next byte and shift them towards msb */
1608 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1609 
1610 			p = b;
1611 			*b++ >>= bit_offset;
1612 		}
1613 	} else {
1614 		/* point to the msb */
1615 		p += cell->bytes - 1;
1616 	}
1617 
1618 	/* result fits in less bytes */
1619 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1620 	while (--extra >= 0)
1621 		*p-- = 0;
1622 
1623 	/* clear msb bits if any leftover in the last byte */
1624 	if (cell->nbits % BITS_PER_BYTE)
1625 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1626 }
1627 
1628 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1629 			     struct nvmem_cell_entry *cell,
1630 			     void *buf, size_t *len, const char *id, int index)
1631 {
1632 	int rc;
1633 
1634 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1635 
1636 	if (rc)
1637 		return rc;
1638 
1639 	/* shift bits in-place */
1640 	if (cell->bit_offset || cell->nbits)
1641 		nvmem_shift_read_buffer_in_place(cell, buf);
1642 
1643 	if (cell->read_post_process) {
1644 		rc = cell->read_post_process(cell->priv, id, index,
1645 					     cell->offset, buf, cell->raw_len);
1646 		if (rc)
1647 			return rc;
1648 	}
1649 
1650 	if (len)
1651 		*len = cell->bytes;
1652 
1653 	return 0;
1654 }
1655 
1656 /**
1657  * nvmem_cell_read() - Read a given nvmem cell
1658  *
1659  * @cell: nvmem cell to be read.
1660  * @len: pointer to length of cell which will be populated on successful read;
1661  *	 can be NULL.
1662  *
1663  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1664  * buffer should be freed by the consumer with a kfree().
1665  */
1666 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1667 {
1668 	struct nvmem_cell_entry *entry = cell->entry;
1669 	struct nvmem_device *nvmem = entry->nvmem;
1670 	u8 *buf;
1671 	int rc;
1672 
1673 	if (!nvmem)
1674 		return ERR_PTR(-EINVAL);
1675 
1676 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1677 	if (!buf)
1678 		return ERR_PTR(-ENOMEM);
1679 
1680 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1681 	if (rc) {
1682 		kfree(buf);
1683 		return ERR_PTR(rc);
1684 	}
1685 
1686 	return buf;
1687 }
1688 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1689 
1690 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1691 					     u8 *_buf, int len)
1692 {
1693 	struct nvmem_device *nvmem = cell->nvmem;
1694 	int i, rc, nbits, bit_offset = cell->bit_offset;
1695 	u8 v, *p, *buf, *b, pbyte, pbits;
1696 
1697 	nbits = cell->nbits;
1698 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1699 	if (!buf)
1700 		return ERR_PTR(-ENOMEM);
1701 
1702 	memcpy(buf, _buf, len);
1703 	p = b = buf;
1704 
1705 	if (bit_offset) {
1706 		pbyte = *b;
1707 		*b <<= bit_offset;
1708 
1709 		/* setup the first byte with lsb bits from nvmem */
1710 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1711 		if (rc)
1712 			goto err;
1713 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1714 
1715 		/* setup rest of the byte if any */
1716 		for (i = 1; i < cell->bytes; i++) {
1717 			/* Get last byte bits and shift them towards lsb */
1718 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1719 			pbyte = *b;
1720 			p = b;
1721 			*b <<= bit_offset;
1722 			*b++ |= pbits;
1723 		}
1724 	}
1725 
1726 	/* if it's not end on byte boundary */
1727 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1728 		/* setup the last byte with msb bits from nvmem */
1729 		rc = nvmem_reg_read(nvmem,
1730 				    cell->offset + cell->bytes - 1, &v, 1);
1731 		if (rc)
1732 			goto err;
1733 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1734 
1735 	}
1736 
1737 	return buf;
1738 err:
1739 	kfree(buf);
1740 	return ERR_PTR(rc);
1741 }
1742 
1743 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1744 {
1745 	struct nvmem_device *nvmem = cell->nvmem;
1746 	int rc;
1747 
1748 	if (!nvmem || nvmem->read_only ||
1749 	    (cell->bit_offset == 0 && len != cell->bytes))
1750 		return -EINVAL;
1751 
1752 	/*
1753 	 * Any cells which have a read_post_process hook are read-only because
1754 	 * we cannot reverse the operation and it might affect other cells,
1755 	 * too.
1756 	 */
1757 	if (cell->read_post_process)
1758 		return -EINVAL;
1759 
1760 	if (cell->bit_offset || cell->nbits) {
1761 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1762 		if (IS_ERR(buf))
1763 			return PTR_ERR(buf);
1764 	}
1765 
1766 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1767 
1768 	/* free the tmp buffer */
1769 	if (cell->bit_offset || cell->nbits)
1770 		kfree(buf);
1771 
1772 	if (rc)
1773 		return rc;
1774 
1775 	return len;
1776 }
1777 
1778 /**
1779  * nvmem_cell_write() - Write to a given nvmem cell
1780  *
1781  * @cell: nvmem cell to be written.
1782  * @buf: Buffer to be written.
1783  * @len: length of buffer to be written to nvmem cell.
1784  *
1785  * Return: length of bytes written or negative on failure.
1786  */
1787 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1788 {
1789 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1790 }
1791 
1792 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1793 
1794 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1795 				  void *val, size_t count)
1796 {
1797 	struct nvmem_cell *cell;
1798 	void *buf;
1799 	size_t len;
1800 
1801 	cell = nvmem_cell_get(dev, cell_id);
1802 	if (IS_ERR(cell))
1803 		return PTR_ERR(cell);
1804 
1805 	buf = nvmem_cell_read(cell, &len);
1806 	if (IS_ERR(buf)) {
1807 		nvmem_cell_put(cell);
1808 		return PTR_ERR(buf);
1809 	}
1810 	if (len != count) {
1811 		kfree(buf);
1812 		nvmem_cell_put(cell);
1813 		return -EINVAL;
1814 	}
1815 	memcpy(val, buf, count);
1816 	kfree(buf);
1817 	nvmem_cell_put(cell);
1818 
1819 	return 0;
1820 }
1821 
1822 /**
1823  * nvmem_cell_read_u8() - Read a cell value as a u8
1824  *
1825  * @dev: Device that requests the nvmem cell.
1826  * @cell_id: Name of nvmem cell to read.
1827  * @val: pointer to output value.
1828  *
1829  * Return: 0 on success or negative errno.
1830  */
1831 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1832 {
1833 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1834 }
1835 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1836 
1837 /**
1838  * nvmem_cell_read_u16() - Read a cell value as a u16
1839  *
1840  * @dev: Device that requests the nvmem cell.
1841  * @cell_id: Name of nvmem cell to read.
1842  * @val: pointer to output value.
1843  *
1844  * Return: 0 on success or negative errno.
1845  */
1846 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1847 {
1848 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1849 }
1850 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1851 
1852 /**
1853  * nvmem_cell_read_u32() - Read a cell value as a u32
1854  *
1855  * @dev: Device that requests the nvmem cell.
1856  * @cell_id: Name of nvmem cell to read.
1857  * @val: pointer to output value.
1858  *
1859  * Return: 0 on success or negative errno.
1860  */
1861 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1862 {
1863 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1864 }
1865 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1866 
1867 /**
1868  * nvmem_cell_read_u64() - Read a cell value as a u64
1869  *
1870  * @dev: Device that requests the nvmem cell.
1871  * @cell_id: Name of nvmem cell to read.
1872  * @val: pointer to output value.
1873  *
1874  * Return: 0 on success or negative errno.
1875  */
1876 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1877 {
1878 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1879 }
1880 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1881 
1882 static const void *nvmem_cell_read_variable_common(struct device *dev,
1883 						   const char *cell_id,
1884 						   size_t max_len, size_t *len)
1885 {
1886 	struct nvmem_cell *cell;
1887 	int nbits;
1888 	void *buf;
1889 
1890 	cell = nvmem_cell_get(dev, cell_id);
1891 	if (IS_ERR(cell))
1892 		return cell;
1893 
1894 	nbits = cell->entry->nbits;
1895 	buf = nvmem_cell_read(cell, len);
1896 	nvmem_cell_put(cell);
1897 	if (IS_ERR(buf))
1898 		return buf;
1899 
1900 	/*
1901 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1902 	 * the length of the real data. Throw away the extra junk.
1903 	 */
1904 	if (nbits)
1905 		*len = DIV_ROUND_UP(nbits, 8);
1906 
1907 	if (*len > max_len) {
1908 		kfree(buf);
1909 		return ERR_PTR(-ERANGE);
1910 	}
1911 
1912 	return buf;
1913 }
1914 
1915 /**
1916  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1917  *
1918  * @dev: Device that requests the nvmem cell.
1919  * @cell_id: Name of nvmem cell to read.
1920  * @val: pointer to output value.
1921  *
1922  * Return: 0 on success or negative errno.
1923  */
1924 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1925 				    u32 *val)
1926 {
1927 	size_t len;
1928 	const u8 *buf;
1929 	int i;
1930 
1931 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1932 	if (IS_ERR(buf))
1933 		return PTR_ERR(buf);
1934 
1935 	/* Copy w/ implicit endian conversion */
1936 	*val = 0;
1937 	for (i = 0; i < len; i++)
1938 		*val |= buf[i] << (8 * i);
1939 
1940 	kfree(buf);
1941 
1942 	return 0;
1943 }
1944 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1945 
1946 /**
1947  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1948  *
1949  * @dev: Device that requests the nvmem cell.
1950  * @cell_id: Name of nvmem cell to read.
1951  * @val: pointer to output value.
1952  *
1953  * Return: 0 on success or negative errno.
1954  */
1955 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1956 				    u64 *val)
1957 {
1958 	size_t len;
1959 	const u8 *buf;
1960 	int i;
1961 
1962 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1963 	if (IS_ERR(buf))
1964 		return PTR_ERR(buf);
1965 
1966 	/* Copy w/ implicit endian conversion */
1967 	*val = 0;
1968 	for (i = 0; i < len; i++)
1969 		*val |= (uint64_t)buf[i] << (8 * i);
1970 
1971 	kfree(buf);
1972 
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1976 
1977 /**
1978  * nvmem_device_cell_read() - Read a given nvmem device and cell
1979  *
1980  * @nvmem: nvmem device to read from.
1981  * @info: nvmem cell info to be read.
1982  * @buf: buffer pointer which will be populated on successful read.
1983  *
1984  * Return: length of successful bytes read on success and negative
1985  * error code on error.
1986  */
1987 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1988 			   struct nvmem_cell_info *info, void *buf)
1989 {
1990 	struct nvmem_cell_entry cell;
1991 	int rc;
1992 	ssize_t len;
1993 
1994 	if (!nvmem)
1995 		return -EINVAL;
1996 
1997 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1998 	if (rc)
1999 		return rc;
2000 
2001 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2002 	if (rc)
2003 		return rc;
2004 
2005 	return len;
2006 }
2007 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2008 
2009 /**
2010  * nvmem_device_cell_write() - Write cell to a given nvmem device
2011  *
2012  * @nvmem: nvmem device to be written to.
2013  * @info: nvmem cell info to be written.
2014  * @buf: buffer to be written to cell.
2015  *
2016  * Return: length of bytes written or negative error code on failure.
2017  */
2018 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2019 			    struct nvmem_cell_info *info, void *buf)
2020 {
2021 	struct nvmem_cell_entry cell;
2022 	int rc;
2023 
2024 	if (!nvmem)
2025 		return -EINVAL;
2026 
2027 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2028 	if (rc)
2029 		return rc;
2030 
2031 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2032 }
2033 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2034 
2035 /**
2036  * nvmem_device_read() - Read from a given nvmem device
2037  *
2038  * @nvmem: nvmem device to read from.
2039  * @offset: offset in nvmem device.
2040  * @bytes: number of bytes to read.
2041  * @buf: buffer pointer which will be populated on successful read.
2042  *
2043  * Return: length of successful bytes read on success and negative
2044  * error code on error.
2045  */
2046 int nvmem_device_read(struct nvmem_device *nvmem,
2047 		      unsigned int offset,
2048 		      size_t bytes, void *buf)
2049 {
2050 	int rc;
2051 
2052 	if (!nvmem)
2053 		return -EINVAL;
2054 
2055 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2056 
2057 	if (rc)
2058 		return rc;
2059 
2060 	return bytes;
2061 }
2062 EXPORT_SYMBOL_GPL(nvmem_device_read);
2063 
2064 /**
2065  * nvmem_device_write() - Write cell to a given nvmem device
2066  *
2067  * @nvmem: nvmem device to be written to.
2068  * @offset: offset in nvmem device.
2069  * @bytes: number of bytes to write.
2070  * @buf: buffer to be written.
2071  *
2072  * Return: length of bytes written or negative error code on failure.
2073  */
2074 int nvmem_device_write(struct nvmem_device *nvmem,
2075 		       unsigned int offset,
2076 		       size_t bytes, void *buf)
2077 {
2078 	int rc;
2079 
2080 	if (!nvmem)
2081 		return -EINVAL;
2082 
2083 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2084 
2085 	if (rc)
2086 		return rc;
2087 
2088 
2089 	return bytes;
2090 }
2091 EXPORT_SYMBOL_GPL(nvmem_device_write);
2092 
2093 /**
2094  * nvmem_add_cell_table() - register a table of cell info entries
2095  *
2096  * @table: table of cell info entries
2097  */
2098 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2099 {
2100 	mutex_lock(&nvmem_cell_mutex);
2101 	list_add_tail(&table->node, &nvmem_cell_tables);
2102 	mutex_unlock(&nvmem_cell_mutex);
2103 }
2104 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2105 
2106 /**
2107  * nvmem_del_cell_table() - remove a previously registered cell info table
2108  *
2109  * @table: table of cell info entries
2110  */
2111 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2112 {
2113 	mutex_lock(&nvmem_cell_mutex);
2114 	list_del(&table->node);
2115 	mutex_unlock(&nvmem_cell_mutex);
2116 }
2117 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2118 
2119 /**
2120  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2121  *
2122  * @entries: array of cell lookup entries
2123  * @nentries: number of cell lookup entries in the array
2124  */
2125 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2126 {
2127 	int i;
2128 
2129 	mutex_lock(&nvmem_lookup_mutex);
2130 	for (i = 0; i < nentries; i++)
2131 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2132 	mutex_unlock(&nvmem_lookup_mutex);
2133 }
2134 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2135 
2136 /**
2137  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2138  *                            entries
2139  *
2140  * @entries: array of cell lookup entries
2141  * @nentries: number of cell lookup entries in the array
2142  */
2143 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2144 {
2145 	int i;
2146 
2147 	mutex_lock(&nvmem_lookup_mutex);
2148 	for (i = 0; i < nentries; i++)
2149 		list_del(&entries[i].node);
2150 	mutex_unlock(&nvmem_lookup_mutex);
2151 }
2152 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2153 
2154 /**
2155  * nvmem_dev_name() - Get the name of a given nvmem device.
2156  *
2157  * @nvmem: nvmem device.
2158  *
2159  * Return: name of the nvmem device.
2160  */
2161 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2162 {
2163 	return dev_name(&nvmem->dev);
2164 }
2165 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2166 
2167 /**
2168  * nvmem_dev_size() - Get the size of a given nvmem device.
2169  *
2170  * @nvmem: nvmem device.
2171  *
2172  * Return: size of the nvmem device.
2173  */
2174 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2175 {
2176 	return nvmem->size;
2177 }
2178 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2179 
2180 static int __init nvmem_init(void)
2181 {
2182 	int ret;
2183 
2184 	ret = bus_register(&nvmem_bus_type);
2185 	if (ret)
2186 		return ret;
2187 
2188 	ret = nvmem_layout_bus_register();
2189 	if (ret)
2190 		bus_unregister(&nvmem_bus_type);
2191 
2192 	return ret;
2193 }
2194 
2195 static void __exit nvmem_exit(void)
2196 {
2197 	nvmem_layout_bus_unregister();
2198 	bus_unregister(&nvmem_bus_type);
2199 }
2200 
2201 subsys_initcall(nvmem_init);
2202 module_exit(nvmem_exit);
2203 
2204 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2205 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2206 MODULE_DESCRIPTION("nvmem Driver Core");
2207