xref: /linux/drivers/nvmem/core.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27 
28 struct nvmem_device {
29 	const char		*name;
30 	struct module		*owner;
31 	struct device		dev;
32 	int			stride;
33 	int			word_size;
34 	int			ncells;
35 	int			id;
36 	int			users;
37 	size_t			size;
38 	bool			read_only;
39 	int			flags;
40 	struct bin_attribute	eeprom;
41 	struct device		*base_dev;
42 	nvmem_reg_read_t	reg_read;
43 	nvmem_reg_write_t	reg_write;
44 	void *priv;
45 };
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct nvmem_device	*nvmem;
56 	struct list_head	node;
57 };
58 
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61 
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68 
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 			  void *val, size_t bytes)
72 {
73 	if (nvmem->reg_read)
74 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75 
76 	return -EINVAL;
77 }
78 
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 			   void *val, size_t bytes)
81 {
82 	if (nvmem->reg_write)
83 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84 
85 	return -EINVAL;
86 }
87 
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 				    struct bin_attribute *attr,
90 				    char *buf, loff_t pos, size_t count)
91 {
92 	struct device *dev;
93 	struct nvmem_device *nvmem;
94 	int rc;
95 
96 	if (attr->private)
97 		dev = attr->private;
98 	else
99 		dev = container_of(kobj, struct device, kobj);
100 	nvmem = to_nvmem_device(dev);
101 
102 	/* Stop the user from reading */
103 	if (pos >= nvmem->size)
104 		return 0;
105 
106 	if (count < nvmem->word_size)
107 		return -EINVAL;
108 
109 	if (pos + count > nvmem->size)
110 		count = nvmem->size - pos;
111 
112 	count = round_down(count, nvmem->word_size);
113 
114 	rc = nvmem_reg_read(nvmem, pos, buf, count);
115 
116 	if (rc)
117 		return rc;
118 
119 	return count;
120 }
121 
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 				     struct bin_attribute *attr,
124 				     char *buf, loff_t pos, size_t count)
125 {
126 	struct device *dev;
127 	struct nvmem_device *nvmem;
128 	int rc;
129 
130 	if (attr->private)
131 		dev = attr->private;
132 	else
133 		dev = container_of(kobj, struct device, kobj);
134 	nvmem = to_nvmem_device(dev);
135 
136 	/* Stop the user from writing */
137 	if (pos >= nvmem->size)
138 		return -EFBIG;
139 
140 	if (count < nvmem->word_size)
141 		return -EINVAL;
142 
143 	if (pos + count > nvmem->size)
144 		count = nvmem->size - pos;
145 
146 	count = round_down(count, nvmem->word_size);
147 
148 	rc = nvmem_reg_write(nvmem, pos, buf, count);
149 
150 	if (rc)
151 		return rc;
152 
153 	return count;
154 }
155 
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 	.attr	= {
159 		.name	= "nvmem",
160 		.mode	= S_IWUSR | S_IRUGO,
161 	},
162 	.read	= bin_attr_nvmem_read,
163 	.write	= bin_attr_nvmem_write,
164 };
165 
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 	&bin_attr_rw_nvmem,
168 	NULL,
169 };
170 
171 static const struct attribute_group nvmem_bin_rw_group = {
172 	.bin_attrs	= nvmem_bin_rw_attributes,
173 };
174 
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 	&nvmem_bin_rw_group,
177 	NULL,
178 };
179 
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 	.attr	= {
183 		.name	= "nvmem",
184 		.mode	= S_IRUGO,
185 	},
186 	.read	= bin_attr_nvmem_read,
187 };
188 
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 	&bin_attr_ro_nvmem,
191 	NULL,
192 };
193 
194 static const struct attribute_group nvmem_bin_ro_group = {
195 	.bin_attrs	= nvmem_bin_ro_attributes,
196 };
197 
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 	&nvmem_bin_ro_group,
200 	NULL,
201 };
202 
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 	.attr	= {
206 		.name	= "nvmem",
207 		.mode	= S_IWUSR | S_IRUSR,
208 	},
209 	.read	= bin_attr_nvmem_read,
210 	.write	= bin_attr_nvmem_write,
211 };
212 
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 	&bin_attr_rw_root_nvmem,
215 	NULL,
216 };
217 
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 	.bin_attrs	= nvmem_bin_rw_root_attributes,
220 };
221 
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 	&nvmem_bin_rw_root_group,
224 	NULL,
225 };
226 
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 	.attr	= {
230 		.name	= "nvmem",
231 		.mode	= S_IRUSR,
232 	},
233 	.read	= bin_attr_nvmem_read,
234 };
235 
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 	&bin_attr_ro_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 	.bin_attrs	= nvmem_bin_ro_root_attributes,
243 };
244 
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 	&nvmem_bin_ro_root_group,
247 	NULL,
248 };
249 
250 static void nvmem_release(struct device *dev)
251 {
252 	struct nvmem_device *nvmem = to_nvmem_device(dev);
253 
254 	ida_simple_remove(&nvmem_ida, nvmem->id);
255 	kfree(nvmem);
256 }
257 
258 static const struct device_type nvmem_provider_type = {
259 	.release	= nvmem_release,
260 };
261 
262 static struct bus_type nvmem_bus_type = {
263 	.name		= "nvmem",
264 };
265 
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 	return dev->of_node == nvmem_np;
269 }
270 
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 	struct device *d;
274 
275 	if (!nvmem_np)
276 		return NULL;
277 
278 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279 
280 	if (!d)
281 		return NULL;
282 
283 	return to_nvmem_device(d);
284 }
285 
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 	struct nvmem_cell *p;
289 
290 	mutex_lock(&nvmem_cells_mutex);
291 
292 	list_for_each_entry(p, &nvmem_cells, node)
293 		if (!strcmp(p->name, cell_id)) {
294 			mutex_unlock(&nvmem_cells_mutex);
295 			return p;
296 		}
297 
298 	mutex_unlock(&nvmem_cells_mutex);
299 
300 	return NULL;
301 }
302 
303 static void nvmem_cell_drop(struct nvmem_cell *cell)
304 {
305 	mutex_lock(&nvmem_cells_mutex);
306 	list_del(&cell->node);
307 	mutex_unlock(&nvmem_cells_mutex);
308 	kfree(cell);
309 }
310 
311 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
312 {
313 	struct nvmem_cell *cell;
314 	struct list_head *p, *n;
315 
316 	list_for_each_safe(p, n, &nvmem_cells) {
317 		cell = list_entry(p, struct nvmem_cell, node);
318 		if (cell->nvmem == nvmem)
319 			nvmem_cell_drop(cell);
320 	}
321 }
322 
323 static void nvmem_cell_add(struct nvmem_cell *cell)
324 {
325 	mutex_lock(&nvmem_cells_mutex);
326 	list_add_tail(&cell->node, &nvmem_cells);
327 	mutex_unlock(&nvmem_cells_mutex);
328 }
329 
330 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
331 				   const struct nvmem_cell_info *info,
332 				   struct nvmem_cell *cell)
333 {
334 	cell->nvmem = nvmem;
335 	cell->offset = info->offset;
336 	cell->bytes = info->bytes;
337 	cell->name = info->name;
338 
339 	cell->bit_offset = info->bit_offset;
340 	cell->nbits = info->nbits;
341 
342 	if (cell->nbits)
343 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
344 					   BITS_PER_BYTE);
345 
346 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
347 		dev_err(&nvmem->dev,
348 			"cell %s unaligned to nvmem stride %d\n",
349 			cell->name, nvmem->stride);
350 		return -EINVAL;
351 	}
352 
353 	return 0;
354 }
355 
356 static int nvmem_add_cells(struct nvmem_device *nvmem,
357 			   const struct nvmem_config *cfg)
358 {
359 	struct nvmem_cell **cells;
360 	const struct nvmem_cell_info *info = cfg->cells;
361 	int i, rval;
362 
363 	cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
364 	if (!cells)
365 		return -ENOMEM;
366 
367 	for (i = 0; i < cfg->ncells; i++) {
368 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
369 		if (!cells[i]) {
370 			rval = -ENOMEM;
371 			goto err;
372 		}
373 
374 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
375 		if (rval) {
376 			kfree(cells[i]);
377 			goto err;
378 		}
379 
380 		nvmem_cell_add(cells[i]);
381 	}
382 
383 	nvmem->ncells = cfg->ncells;
384 	/* remove tmp array */
385 	kfree(cells);
386 
387 	return 0;
388 err:
389 	while (i--)
390 		nvmem_cell_drop(cells[i]);
391 
392 	kfree(cells);
393 
394 	return rval;
395 }
396 
397 /*
398  * nvmem_setup_compat() - Create an additional binary entry in
399  * drivers sys directory, to be backwards compatible with the older
400  * drivers/misc/eeprom drivers.
401  */
402 static int nvmem_setup_compat(struct nvmem_device *nvmem,
403 			      const struct nvmem_config *config)
404 {
405 	int rval;
406 
407 	if (!config->base_dev)
408 		return -EINVAL;
409 
410 	if (nvmem->read_only)
411 		nvmem->eeprom = bin_attr_ro_root_nvmem;
412 	else
413 		nvmem->eeprom = bin_attr_rw_root_nvmem;
414 	nvmem->eeprom.attr.name = "eeprom";
415 	nvmem->eeprom.size = nvmem->size;
416 #ifdef CONFIG_DEBUG_LOCK_ALLOC
417 	nvmem->eeprom.attr.key = &eeprom_lock_key;
418 #endif
419 	nvmem->eeprom.private = &nvmem->dev;
420 	nvmem->base_dev = config->base_dev;
421 
422 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
423 	if (rval) {
424 		dev_err(&nvmem->dev,
425 			"Failed to create eeprom binary file %d\n", rval);
426 		return rval;
427 	}
428 
429 	nvmem->flags |= FLAG_COMPAT;
430 
431 	return 0;
432 }
433 
434 /**
435  * nvmem_register() - Register a nvmem device for given nvmem_config.
436  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
437  *
438  * @config: nvmem device configuration with which nvmem device is created.
439  *
440  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
441  * on success.
442  */
443 
444 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
445 {
446 	struct nvmem_device *nvmem;
447 	int rval;
448 
449 	if (!config->dev)
450 		return ERR_PTR(-EINVAL);
451 
452 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
453 	if (!nvmem)
454 		return ERR_PTR(-ENOMEM);
455 
456 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
457 	if (rval < 0) {
458 		kfree(nvmem);
459 		return ERR_PTR(rval);
460 	}
461 
462 	nvmem->id = rval;
463 	nvmem->owner = config->owner;
464 	if (!nvmem->owner && config->dev->driver)
465 		nvmem->owner = config->dev->driver->owner;
466 	nvmem->stride = config->stride ?: 1;
467 	nvmem->word_size = config->word_size ?: 1;
468 	nvmem->size = config->size;
469 	nvmem->dev.type = &nvmem_provider_type;
470 	nvmem->dev.bus = &nvmem_bus_type;
471 	nvmem->dev.parent = config->dev;
472 	nvmem->priv = config->priv;
473 	nvmem->reg_read = config->reg_read;
474 	nvmem->reg_write = config->reg_write;
475 	nvmem->dev.of_node = config->dev->of_node;
476 	dev_set_name(&nvmem->dev, "%s%d",
477 		     config->name ? : "nvmem",
478 		     config->name ? config->id : nvmem->id);
479 
480 	nvmem->read_only = device_property_present(config->dev, "read-only") |
481 			   config->read_only;
482 
483 	if (config->root_only)
484 		nvmem->dev.groups = nvmem->read_only ?
485 			nvmem_ro_root_dev_groups :
486 			nvmem_rw_root_dev_groups;
487 	else
488 		nvmem->dev.groups = nvmem->read_only ?
489 			nvmem_ro_dev_groups :
490 			nvmem_rw_dev_groups;
491 
492 	device_initialize(&nvmem->dev);
493 
494 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
495 
496 	rval = device_add(&nvmem->dev);
497 	if (rval)
498 		goto err_put_device;
499 
500 	if (config->compat) {
501 		rval = nvmem_setup_compat(nvmem, config);
502 		if (rval)
503 			goto err_device_del;
504 	}
505 
506 	if (config->cells)
507 		nvmem_add_cells(nvmem, config);
508 
509 	return nvmem;
510 
511 err_device_del:
512 	device_del(&nvmem->dev);
513 err_put_device:
514 	put_device(&nvmem->dev);
515 
516 	return ERR_PTR(rval);
517 }
518 EXPORT_SYMBOL_GPL(nvmem_register);
519 
520 /**
521  * nvmem_unregister() - Unregister previously registered nvmem device
522  *
523  * @nvmem: Pointer to previously registered nvmem device.
524  *
525  * Return: Will be an negative on error or a zero on success.
526  */
527 int nvmem_unregister(struct nvmem_device *nvmem)
528 {
529 	mutex_lock(&nvmem_mutex);
530 	if (nvmem->users) {
531 		mutex_unlock(&nvmem_mutex);
532 		return -EBUSY;
533 	}
534 	mutex_unlock(&nvmem_mutex);
535 
536 	if (nvmem->flags & FLAG_COMPAT)
537 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
538 
539 	nvmem_device_remove_all_cells(nvmem);
540 	device_del(&nvmem->dev);
541 	put_device(&nvmem->dev);
542 
543 	return 0;
544 }
545 EXPORT_SYMBOL_GPL(nvmem_unregister);
546 
547 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
548 					       struct nvmem_cell **cellp,
549 					       const char *cell_id)
550 {
551 	struct nvmem_device *nvmem = NULL;
552 
553 	mutex_lock(&nvmem_mutex);
554 
555 	if (np) {
556 		nvmem = of_nvmem_find(np);
557 		if (!nvmem) {
558 			mutex_unlock(&nvmem_mutex);
559 			return ERR_PTR(-EPROBE_DEFER);
560 		}
561 	} else {
562 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
563 
564 		if (cell) {
565 			nvmem = cell->nvmem;
566 			*cellp = cell;
567 		}
568 
569 		if (!nvmem) {
570 			mutex_unlock(&nvmem_mutex);
571 			return ERR_PTR(-ENOENT);
572 		}
573 	}
574 
575 	nvmem->users++;
576 	mutex_unlock(&nvmem_mutex);
577 
578 	if (!try_module_get(nvmem->owner)) {
579 		dev_err(&nvmem->dev,
580 			"could not increase module refcount for cell %s\n",
581 			nvmem->name);
582 
583 		mutex_lock(&nvmem_mutex);
584 		nvmem->users--;
585 		mutex_unlock(&nvmem_mutex);
586 
587 		return ERR_PTR(-EINVAL);
588 	}
589 
590 	return nvmem;
591 }
592 
593 static void __nvmem_device_put(struct nvmem_device *nvmem)
594 {
595 	module_put(nvmem->owner);
596 	mutex_lock(&nvmem_mutex);
597 	nvmem->users--;
598 	mutex_unlock(&nvmem_mutex);
599 }
600 
601 static struct nvmem_device *nvmem_find(const char *name)
602 {
603 	struct device *d;
604 
605 	d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
606 
607 	if (!d)
608 		return NULL;
609 
610 	return to_nvmem_device(d);
611 }
612 
613 #if IS_ENABLED(CONFIG_OF)
614 /**
615  * of_nvmem_device_get() - Get nvmem device from a given id
616  *
617  * @np: Device tree node that uses the nvmem device.
618  * @id: nvmem name from nvmem-names property.
619  *
620  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
621  * on success.
622  */
623 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
624 {
625 
626 	struct device_node *nvmem_np;
627 	int index;
628 
629 	index = of_property_match_string(np, "nvmem-names", id);
630 
631 	nvmem_np = of_parse_phandle(np, "nvmem", index);
632 	if (!nvmem_np)
633 		return ERR_PTR(-EINVAL);
634 
635 	return __nvmem_device_get(nvmem_np, NULL, NULL);
636 }
637 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
638 #endif
639 
640 /**
641  * nvmem_device_get() - Get nvmem device from a given id
642  *
643  * @dev: Device that uses the nvmem device.
644  * @dev_name: name of the requested nvmem device.
645  *
646  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
647  * on success.
648  */
649 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
650 {
651 	if (dev->of_node) { /* try dt first */
652 		struct nvmem_device *nvmem;
653 
654 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
655 
656 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
657 			return nvmem;
658 
659 	}
660 
661 	return nvmem_find(dev_name);
662 }
663 EXPORT_SYMBOL_GPL(nvmem_device_get);
664 
665 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
666 {
667 	struct nvmem_device **nvmem = res;
668 
669 	if (WARN_ON(!nvmem || !*nvmem))
670 		return 0;
671 
672 	return *nvmem == data;
673 }
674 
675 static void devm_nvmem_device_release(struct device *dev, void *res)
676 {
677 	nvmem_device_put(*(struct nvmem_device **)res);
678 }
679 
680 /**
681  * devm_nvmem_device_put() - put alredy got nvmem device
682  *
683  * @dev: Device that uses the nvmem device.
684  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
685  * that needs to be released.
686  */
687 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
688 {
689 	int ret;
690 
691 	ret = devres_release(dev, devm_nvmem_device_release,
692 			     devm_nvmem_device_match, nvmem);
693 
694 	WARN_ON(ret);
695 }
696 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
697 
698 /**
699  * nvmem_device_put() - put alredy got nvmem device
700  *
701  * @nvmem: pointer to nvmem device that needs to be released.
702  */
703 void nvmem_device_put(struct nvmem_device *nvmem)
704 {
705 	__nvmem_device_put(nvmem);
706 }
707 EXPORT_SYMBOL_GPL(nvmem_device_put);
708 
709 /**
710  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
711  *
712  * @dev: Device that requests the nvmem device.
713  * @id: name id for the requested nvmem device.
714  *
715  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
716  * on success.  The nvmem_cell will be freed by the automatically once the
717  * device is freed.
718  */
719 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
720 {
721 	struct nvmem_device **ptr, *nvmem;
722 
723 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
724 	if (!ptr)
725 		return ERR_PTR(-ENOMEM);
726 
727 	nvmem = nvmem_device_get(dev, id);
728 	if (!IS_ERR(nvmem)) {
729 		*ptr = nvmem;
730 		devres_add(dev, ptr);
731 	} else {
732 		devres_free(ptr);
733 	}
734 
735 	return nvmem;
736 }
737 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
738 
739 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
740 {
741 	struct nvmem_cell *cell = NULL;
742 	struct nvmem_device *nvmem;
743 
744 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
745 	if (IS_ERR(nvmem))
746 		return ERR_CAST(nvmem);
747 
748 	return cell;
749 }
750 
751 #if IS_ENABLED(CONFIG_OF)
752 /**
753  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
754  *
755  * @np: Device tree node that uses the nvmem cell.
756  * @name: nvmem cell name from nvmem-cell-names property, or NULL
757  *	  for the cell at index 0 (the lone cell with no accompanying
758  *	  nvmem-cell-names property).
759  *
760  * Return: Will be an ERR_PTR() on error or a valid pointer
761  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
762  * nvmem_cell_put().
763  */
764 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
765 					    const char *name)
766 {
767 	struct device_node *cell_np, *nvmem_np;
768 	struct nvmem_cell *cell;
769 	struct nvmem_device *nvmem;
770 	const __be32 *addr;
771 	int rval, len;
772 	int index = 0;
773 
774 	/* if cell name exists, find index to the name */
775 	if (name)
776 		index = of_property_match_string(np, "nvmem-cell-names", name);
777 
778 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
779 	if (!cell_np)
780 		return ERR_PTR(-EINVAL);
781 
782 	nvmem_np = of_get_next_parent(cell_np);
783 	if (!nvmem_np)
784 		return ERR_PTR(-EINVAL);
785 
786 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
787 	of_node_put(nvmem_np);
788 	if (IS_ERR(nvmem))
789 		return ERR_CAST(nvmem);
790 
791 	addr = of_get_property(cell_np, "reg", &len);
792 	if (!addr || (len < 2 * sizeof(u32))) {
793 		dev_err(&nvmem->dev, "nvmem: invalid reg on %pOF\n",
794 			cell_np);
795 		rval  = -EINVAL;
796 		goto err_mem;
797 	}
798 
799 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
800 	if (!cell) {
801 		rval = -ENOMEM;
802 		goto err_mem;
803 	}
804 
805 	cell->nvmem = nvmem;
806 	cell->offset = be32_to_cpup(addr++);
807 	cell->bytes = be32_to_cpup(addr);
808 	cell->name = cell_np->name;
809 
810 	addr = of_get_property(cell_np, "bits", &len);
811 	if (addr && len == (2 * sizeof(u32))) {
812 		cell->bit_offset = be32_to_cpup(addr++);
813 		cell->nbits = be32_to_cpup(addr);
814 	}
815 
816 	if (cell->nbits)
817 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
818 					   BITS_PER_BYTE);
819 
820 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
821 			dev_err(&nvmem->dev,
822 				"cell %s unaligned to nvmem stride %d\n",
823 				cell->name, nvmem->stride);
824 		rval  = -EINVAL;
825 		goto err_sanity;
826 	}
827 
828 	nvmem_cell_add(cell);
829 
830 	return cell;
831 
832 err_sanity:
833 	kfree(cell);
834 
835 err_mem:
836 	__nvmem_device_put(nvmem);
837 
838 	return ERR_PTR(rval);
839 }
840 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
841 #endif
842 
843 /**
844  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
845  *
846  * @dev: Device that requests the nvmem cell.
847  * @cell_id: nvmem cell name to get.
848  *
849  * Return: Will be an ERR_PTR() on error or a valid pointer
850  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
851  * nvmem_cell_put().
852  */
853 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
854 {
855 	struct nvmem_cell *cell;
856 
857 	if (dev->of_node) { /* try dt first */
858 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
859 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
860 			return cell;
861 	}
862 
863 	return nvmem_cell_get_from_list(cell_id);
864 }
865 EXPORT_SYMBOL_GPL(nvmem_cell_get);
866 
867 static void devm_nvmem_cell_release(struct device *dev, void *res)
868 {
869 	nvmem_cell_put(*(struct nvmem_cell **)res);
870 }
871 
872 /**
873  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
874  *
875  * @dev: Device that requests the nvmem cell.
876  * @id: nvmem cell name id to get.
877  *
878  * Return: Will be an ERR_PTR() on error or a valid pointer
879  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
880  * automatically once the device is freed.
881  */
882 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
883 {
884 	struct nvmem_cell **ptr, *cell;
885 
886 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
887 	if (!ptr)
888 		return ERR_PTR(-ENOMEM);
889 
890 	cell = nvmem_cell_get(dev, id);
891 	if (!IS_ERR(cell)) {
892 		*ptr = cell;
893 		devres_add(dev, ptr);
894 	} else {
895 		devres_free(ptr);
896 	}
897 
898 	return cell;
899 }
900 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
901 
902 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
903 {
904 	struct nvmem_cell **c = res;
905 
906 	if (WARN_ON(!c || !*c))
907 		return 0;
908 
909 	return *c == data;
910 }
911 
912 /**
913  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
914  * from devm_nvmem_cell_get.
915  *
916  * @dev: Device that requests the nvmem cell.
917  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
918  */
919 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
920 {
921 	int ret;
922 
923 	ret = devres_release(dev, devm_nvmem_cell_release,
924 				devm_nvmem_cell_match, cell);
925 
926 	WARN_ON(ret);
927 }
928 EXPORT_SYMBOL(devm_nvmem_cell_put);
929 
930 /**
931  * nvmem_cell_put() - Release previously allocated nvmem cell.
932  *
933  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
934  */
935 void nvmem_cell_put(struct nvmem_cell *cell)
936 {
937 	struct nvmem_device *nvmem = cell->nvmem;
938 
939 	__nvmem_device_put(nvmem);
940 	nvmem_cell_drop(cell);
941 }
942 EXPORT_SYMBOL_GPL(nvmem_cell_put);
943 
944 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
945 {
946 	u8 *p, *b;
947 	int i, bit_offset = cell->bit_offset;
948 
949 	p = b = buf;
950 	if (bit_offset) {
951 		/* First shift */
952 		*b++ >>= bit_offset;
953 
954 		/* setup rest of the bytes if any */
955 		for (i = 1; i < cell->bytes; i++) {
956 			/* Get bits from next byte and shift them towards msb */
957 			*p |= *b << (BITS_PER_BYTE - bit_offset);
958 
959 			p = b;
960 			*b++ >>= bit_offset;
961 		}
962 
963 		/* result fits in less bytes */
964 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
965 			*p-- = 0;
966 	}
967 	/* clear msb bits if any leftover in the last byte */
968 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
969 }
970 
971 static int __nvmem_cell_read(struct nvmem_device *nvmem,
972 		      struct nvmem_cell *cell,
973 		      void *buf, size_t *len)
974 {
975 	int rc;
976 
977 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
978 
979 	if (rc)
980 		return rc;
981 
982 	/* shift bits in-place */
983 	if (cell->bit_offset || cell->nbits)
984 		nvmem_shift_read_buffer_in_place(cell, buf);
985 
986 	if (len)
987 		*len = cell->bytes;
988 
989 	return 0;
990 }
991 
992 /**
993  * nvmem_cell_read() - Read a given nvmem cell
994  *
995  * @cell: nvmem cell to be read.
996  * @len: pointer to length of cell which will be populated on successful read;
997  *	 can be NULL.
998  *
999  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1000  * buffer should be freed by the consumer with a kfree().
1001  */
1002 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1003 {
1004 	struct nvmem_device *nvmem = cell->nvmem;
1005 	u8 *buf;
1006 	int rc;
1007 
1008 	if (!nvmem)
1009 		return ERR_PTR(-EINVAL);
1010 
1011 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1012 	if (!buf)
1013 		return ERR_PTR(-ENOMEM);
1014 
1015 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1016 	if (rc) {
1017 		kfree(buf);
1018 		return ERR_PTR(rc);
1019 	}
1020 
1021 	return buf;
1022 }
1023 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1024 
1025 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1026 					     u8 *_buf, int len)
1027 {
1028 	struct nvmem_device *nvmem = cell->nvmem;
1029 	int i, rc, nbits, bit_offset = cell->bit_offset;
1030 	u8 v, *p, *buf, *b, pbyte, pbits;
1031 
1032 	nbits = cell->nbits;
1033 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1034 	if (!buf)
1035 		return ERR_PTR(-ENOMEM);
1036 
1037 	memcpy(buf, _buf, len);
1038 	p = b = buf;
1039 
1040 	if (bit_offset) {
1041 		pbyte = *b;
1042 		*b <<= bit_offset;
1043 
1044 		/* setup the first byte with lsb bits from nvmem */
1045 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1046 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1047 
1048 		/* setup rest of the byte if any */
1049 		for (i = 1; i < cell->bytes; i++) {
1050 			/* Get last byte bits and shift them towards lsb */
1051 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1052 			pbyte = *b;
1053 			p = b;
1054 			*b <<= bit_offset;
1055 			*b++ |= pbits;
1056 		}
1057 	}
1058 
1059 	/* if it's not end on byte boundary */
1060 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1061 		/* setup the last byte with msb bits from nvmem */
1062 		rc = nvmem_reg_read(nvmem,
1063 				    cell->offset + cell->bytes - 1, &v, 1);
1064 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1065 
1066 	}
1067 
1068 	return buf;
1069 }
1070 
1071 /**
1072  * nvmem_cell_write() - Write to a given nvmem cell
1073  *
1074  * @cell: nvmem cell to be written.
1075  * @buf: Buffer to be written.
1076  * @len: length of buffer to be written to nvmem cell.
1077  *
1078  * Return: length of bytes written or negative on failure.
1079  */
1080 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1081 {
1082 	struct nvmem_device *nvmem = cell->nvmem;
1083 	int rc;
1084 
1085 	if (!nvmem || nvmem->read_only ||
1086 	    (cell->bit_offset == 0 && len != cell->bytes))
1087 		return -EINVAL;
1088 
1089 	if (cell->bit_offset || cell->nbits) {
1090 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1091 		if (IS_ERR(buf))
1092 			return PTR_ERR(buf);
1093 	}
1094 
1095 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1096 
1097 	/* free the tmp buffer */
1098 	if (cell->bit_offset || cell->nbits)
1099 		kfree(buf);
1100 
1101 	if (rc)
1102 		return rc;
1103 
1104 	return len;
1105 }
1106 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1107 
1108 /**
1109  * nvmem_cell_read_u32() - Read a cell value as an u32
1110  *
1111  * @dev: Device that requests the nvmem cell.
1112  * @cell_id: Name of nvmem cell to read.
1113  * @val: pointer to output value.
1114  *
1115  * Return: 0 on success or negative errno.
1116  */
1117 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1118 {
1119 	struct nvmem_cell *cell;
1120 	void *buf;
1121 	size_t len;
1122 
1123 	cell = nvmem_cell_get(dev, cell_id);
1124 	if (IS_ERR(cell))
1125 		return PTR_ERR(cell);
1126 
1127 	buf = nvmem_cell_read(cell, &len);
1128 	if (IS_ERR(buf)) {
1129 		nvmem_cell_put(cell);
1130 		return PTR_ERR(buf);
1131 	}
1132 	if (len != sizeof(*val)) {
1133 		kfree(buf);
1134 		nvmem_cell_put(cell);
1135 		return -EINVAL;
1136 	}
1137 	memcpy(val, buf, sizeof(*val));
1138 
1139 	kfree(buf);
1140 	nvmem_cell_put(cell);
1141 	return 0;
1142 }
1143 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1144 
1145 /**
1146  * nvmem_device_cell_read() - Read a given nvmem device and cell
1147  *
1148  * @nvmem: nvmem device to read from.
1149  * @info: nvmem cell info to be read.
1150  * @buf: buffer pointer which will be populated on successful read.
1151  *
1152  * Return: length of successful bytes read on success and negative
1153  * error code on error.
1154  */
1155 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1156 			   struct nvmem_cell_info *info, void *buf)
1157 {
1158 	struct nvmem_cell cell;
1159 	int rc;
1160 	ssize_t len;
1161 
1162 	if (!nvmem)
1163 		return -EINVAL;
1164 
1165 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1166 	if (rc)
1167 		return rc;
1168 
1169 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1170 	if (rc)
1171 		return rc;
1172 
1173 	return len;
1174 }
1175 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1176 
1177 /**
1178  * nvmem_device_cell_write() - Write cell to a given nvmem device
1179  *
1180  * @nvmem: nvmem device to be written to.
1181  * @info: nvmem cell info to be written.
1182  * @buf: buffer to be written to cell.
1183  *
1184  * Return: length of bytes written or negative error code on failure.
1185  * */
1186 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1187 			    struct nvmem_cell_info *info, void *buf)
1188 {
1189 	struct nvmem_cell cell;
1190 	int rc;
1191 
1192 	if (!nvmem)
1193 		return -EINVAL;
1194 
1195 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1196 	if (rc)
1197 		return rc;
1198 
1199 	return nvmem_cell_write(&cell, buf, cell.bytes);
1200 }
1201 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1202 
1203 /**
1204  * nvmem_device_read() - Read from a given nvmem device
1205  *
1206  * @nvmem: nvmem device to read from.
1207  * @offset: offset in nvmem device.
1208  * @bytes: number of bytes to read.
1209  * @buf: buffer pointer which will be populated on successful read.
1210  *
1211  * Return: length of successful bytes read on success and negative
1212  * error code on error.
1213  */
1214 int nvmem_device_read(struct nvmem_device *nvmem,
1215 		      unsigned int offset,
1216 		      size_t bytes, void *buf)
1217 {
1218 	int rc;
1219 
1220 	if (!nvmem)
1221 		return -EINVAL;
1222 
1223 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1224 
1225 	if (rc)
1226 		return rc;
1227 
1228 	return bytes;
1229 }
1230 EXPORT_SYMBOL_GPL(nvmem_device_read);
1231 
1232 /**
1233  * nvmem_device_write() - Write cell to a given nvmem device
1234  *
1235  * @nvmem: nvmem device to be written to.
1236  * @offset: offset in nvmem device.
1237  * @bytes: number of bytes to write.
1238  * @buf: buffer to be written.
1239  *
1240  * Return: length of bytes written or negative error code on failure.
1241  * */
1242 int nvmem_device_write(struct nvmem_device *nvmem,
1243 		       unsigned int offset,
1244 		       size_t bytes, void *buf)
1245 {
1246 	int rc;
1247 
1248 	if (!nvmem)
1249 		return -EINVAL;
1250 
1251 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1252 
1253 	if (rc)
1254 		return rc;
1255 
1256 
1257 	return bytes;
1258 }
1259 EXPORT_SYMBOL_GPL(nvmem_device_write);
1260 
1261 static int __init nvmem_init(void)
1262 {
1263 	return bus_register(&nvmem_bus_type);
1264 }
1265 
1266 static void __exit nvmem_exit(void)
1267 {
1268 	bus_unregister(&nvmem_bus_type);
1269 }
1270 
1271 subsys_initcall(nvmem_init);
1272 module_exit(nvmem_exit);
1273 
1274 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1275 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1276 MODULE_DESCRIPTION("nvmem Driver Core");
1277 MODULE_LICENSE("GPL v2");
1278