1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * nvmem framework core. 4 * 5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/idr.h> 13 #include <linux/init.h> 14 #include <linux/kref.h> 15 #include <linux/module.h> 16 #include <linux/nvmem-consumer.h> 17 #include <linux/nvmem-provider.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/of.h> 20 #include <linux/slab.h> 21 22 #include "internals.h" 23 24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 25 26 #define FLAG_COMPAT BIT(0) 27 struct nvmem_cell_entry { 28 const char *name; 29 int offset; 30 size_t raw_len; 31 int bytes; 32 int bit_offset; 33 int nbits; 34 nvmem_cell_post_process_t read_post_process; 35 void *priv; 36 struct device_node *np; 37 struct nvmem_device *nvmem; 38 struct list_head node; 39 }; 40 41 struct nvmem_cell { 42 struct nvmem_cell_entry *entry; 43 const char *id; 44 int index; 45 }; 46 47 static DEFINE_MUTEX(nvmem_mutex); 48 static DEFINE_IDA(nvmem_ida); 49 50 static DEFINE_MUTEX(nvmem_cell_mutex); 51 static LIST_HEAD(nvmem_cell_tables); 52 53 static DEFINE_MUTEX(nvmem_lookup_mutex); 54 static LIST_HEAD(nvmem_lookup_list); 55 56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier); 57 58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 59 void *val, size_t bytes) 60 { 61 if (nvmem->reg_read) 62 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 63 64 return -EINVAL; 65 } 66 67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 68 void *val, size_t bytes) 69 { 70 int ret; 71 72 if (nvmem->reg_write) { 73 gpiod_set_value_cansleep(nvmem->wp_gpio, 0); 74 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes); 75 gpiod_set_value_cansleep(nvmem->wp_gpio, 1); 76 return ret; 77 } 78 79 return -EINVAL; 80 } 81 82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem, 83 unsigned int offset, void *val, 84 size_t bytes, int write) 85 { 86 87 unsigned int end = offset + bytes; 88 unsigned int kend, ksize; 89 const struct nvmem_keepout *keepout = nvmem->keepout; 90 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 91 int rc; 92 93 /* 94 * Skip all keepouts before the range being accessed. 95 * Keepouts are sorted. 96 */ 97 while ((keepout < keepoutend) && (keepout->end <= offset)) 98 keepout++; 99 100 while ((offset < end) && (keepout < keepoutend)) { 101 /* Access the valid portion before the keepout. */ 102 if (offset < keepout->start) { 103 kend = min(end, keepout->start); 104 ksize = kend - offset; 105 if (write) 106 rc = __nvmem_reg_write(nvmem, offset, val, ksize); 107 else 108 rc = __nvmem_reg_read(nvmem, offset, val, ksize); 109 110 if (rc) 111 return rc; 112 113 offset += ksize; 114 val += ksize; 115 } 116 117 /* 118 * Now we're aligned to the start of this keepout zone. Go 119 * through it. 120 */ 121 kend = min(end, keepout->end); 122 ksize = kend - offset; 123 if (!write) 124 memset(val, keepout->value, ksize); 125 126 val += ksize; 127 offset += ksize; 128 keepout++; 129 } 130 131 /* 132 * If we ran out of keepouts but there's still stuff to do, send it 133 * down directly 134 */ 135 if (offset < end) { 136 ksize = end - offset; 137 if (write) 138 return __nvmem_reg_write(nvmem, offset, val, ksize); 139 else 140 return __nvmem_reg_read(nvmem, offset, val, ksize); 141 } 142 143 return 0; 144 } 145 146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 147 void *val, size_t bytes) 148 { 149 if (!nvmem->nkeepout) 150 return __nvmem_reg_read(nvmem, offset, val, bytes); 151 152 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false); 153 } 154 155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 156 void *val, size_t bytes) 157 { 158 if (!nvmem->nkeepout) 159 return __nvmem_reg_write(nvmem, offset, val, bytes); 160 161 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true); 162 } 163 164 #ifdef CONFIG_NVMEM_SYSFS 165 static const char * const nvmem_type_str[] = { 166 [NVMEM_TYPE_UNKNOWN] = "Unknown", 167 [NVMEM_TYPE_EEPROM] = "EEPROM", 168 [NVMEM_TYPE_OTP] = "OTP", 169 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed", 170 [NVMEM_TYPE_FRAM] = "FRAM", 171 }; 172 173 #ifdef CONFIG_DEBUG_LOCK_ALLOC 174 static struct lock_class_key eeprom_lock_key; 175 #endif 176 177 static ssize_t type_show(struct device *dev, 178 struct device_attribute *attr, char *buf) 179 { 180 struct nvmem_device *nvmem = to_nvmem_device(dev); 181 182 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]); 183 } 184 185 static DEVICE_ATTR_RO(type); 186 187 static struct attribute *nvmem_attrs[] = { 188 &dev_attr_type.attr, 189 NULL, 190 }; 191 192 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 193 struct bin_attribute *attr, char *buf, 194 loff_t pos, size_t count) 195 { 196 struct device *dev; 197 struct nvmem_device *nvmem; 198 int rc; 199 200 if (attr->private) 201 dev = attr->private; 202 else 203 dev = kobj_to_dev(kobj); 204 nvmem = to_nvmem_device(dev); 205 206 /* Stop the user from reading */ 207 if (pos >= nvmem->size) 208 return 0; 209 210 if (!IS_ALIGNED(pos, nvmem->stride)) 211 return -EINVAL; 212 213 if (count < nvmem->word_size) 214 return -EINVAL; 215 216 if (pos + count > nvmem->size) 217 count = nvmem->size - pos; 218 219 count = round_down(count, nvmem->word_size); 220 221 if (!nvmem->reg_read) 222 return -EPERM; 223 224 rc = nvmem_reg_read(nvmem, pos, buf, count); 225 226 if (rc) 227 return rc; 228 229 return count; 230 } 231 232 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 233 struct bin_attribute *attr, char *buf, 234 loff_t pos, size_t count) 235 { 236 struct device *dev; 237 struct nvmem_device *nvmem; 238 int rc; 239 240 if (attr->private) 241 dev = attr->private; 242 else 243 dev = kobj_to_dev(kobj); 244 nvmem = to_nvmem_device(dev); 245 246 /* Stop the user from writing */ 247 if (pos >= nvmem->size) 248 return -EFBIG; 249 250 if (!IS_ALIGNED(pos, nvmem->stride)) 251 return -EINVAL; 252 253 if (count < nvmem->word_size) 254 return -EINVAL; 255 256 if (pos + count > nvmem->size) 257 count = nvmem->size - pos; 258 259 count = round_down(count, nvmem->word_size); 260 261 if (!nvmem->reg_write) 262 return -EPERM; 263 264 rc = nvmem_reg_write(nvmem, pos, buf, count); 265 266 if (rc) 267 return rc; 268 269 return count; 270 } 271 272 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem) 273 { 274 umode_t mode = 0400; 275 276 if (!nvmem->root_only) 277 mode |= 0044; 278 279 if (!nvmem->read_only) 280 mode |= 0200; 281 282 if (!nvmem->reg_write) 283 mode &= ~0200; 284 285 if (!nvmem->reg_read) 286 mode &= ~0444; 287 288 return mode; 289 } 290 291 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj, 292 struct bin_attribute *attr, int i) 293 { 294 struct device *dev = kobj_to_dev(kobj); 295 struct nvmem_device *nvmem = to_nvmem_device(dev); 296 297 attr->size = nvmem->size; 298 299 return nvmem_bin_attr_get_umode(nvmem); 300 } 301 302 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, 303 const char *id, int index); 304 305 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj, 306 struct bin_attribute *attr, char *buf, 307 loff_t pos, size_t count) 308 { 309 struct nvmem_cell_entry *entry; 310 struct nvmem_cell *cell = NULL; 311 size_t cell_sz, read_len; 312 void *content; 313 314 entry = attr->private; 315 cell = nvmem_create_cell(entry, entry->name, 0); 316 if (IS_ERR(cell)) 317 return PTR_ERR(cell); 318 319 if (!cell) 320 return -EINVAL; 321 322 content = nvmem_cell_read(cell, &cell_sz); 323 if (IS_ERR(content)) { 324 read_len = PTR_ERR(content); 325 goto destroy_cell; 326 } 327 328 read_len = min_t(unsigned int, cell_sz - pos, count); 329 memcpy(buf, content + pos, read_len); 330 kfree(content); 331 332 destroy_cell: 333 kfree_const(cell->id); 334 kfree(cell); 335 336 return read_len; 337 } 338 339 /* default read/write permissions */ 340 static struct bin_attribute bin_attr_rw_nvmem = { 341 .attr = { 342 .name = "nvmem", 343 .mode = 0644, 344 }, 345 .read = bin_attr_nvmem_read, 346 .write = bin_attr_nvmem_write, 347 }; 348 349 static struct bin_attribute *nvmem_bin_attributes[] = { 350 &bin_attr_rw_nvmem, 351 NULL, 352 }; 353 354 static const struct attribute_group nvmem_bin_group = { 355 .bin_attrs = nvmem_bin_attributes, 356 .attrs = nvmem_attrs, 357 .is_bin_visible = nvmem_bin_attr_is_visible, 358 }; 359 360 /* Cell attributes will be dynamically allocated */ 361 static struct attribute_group nvmem_cells_group = { 362 .name = "cells", 363 }; 364 365 static const struct attribute_group *nvmem_dev_groups[] = { 366 &nvmem_bin_group, 367 NULL, 368 }; 369 370 static const struct attribute_group *nvmem_cells_groups[] = { 371 &nvmem_cells_group, 372 NULL, 373 }; 374 375 static struct bin_attribute bin_attr_nvmem_eeprom_compat = { 376 .attr = { 377 .name = "eeprom", 378 }, 379 .read = bin_attr_nvmem_read, 380 .write = bin_attr_nvmem_write, 381 }; 382 383 /* 384 * nvmem_setup_compat() - Create an additional binary entry in 385 * drivers sys directory, to be backwards compatible with the older 386 * drivers/misc/eeprom drivers. 387 */ 388 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 389 const struct nvmem_config *config) 390 { 391 int rval; 392 393 if (!config->compat) 394 return 0; 395 396 if (!config->base_dev) 397 return -EINVAL; 398 399 if (config->type == NVMEM_TYPE_FRAM) 400 bin_attr_nvmem_eeprom_compat.attr.name = "fram"; 401 402 nvmem->eeprom = bin_attr_nvmem_eeprom_compat; 403 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem); 404 nvmem->eeprom.size = nvmem->size; 405 #ifdef CONFIG_DEBUG_LOCK_ALLOC 406 nvmem->eeprom.attr.key = &eeprom_lock_key; 407 #endif 408 nvmem->eeprom.private = &nvmem->dev; 409 nvmem->base_dev = config->base_dev; 410 411 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 412 if (rval) { 413 dev_err(&nvmem->dev, 414 "Failed to create eeprom binary file %d\n", rval); 415 return rval; 416 } 417 418 nvmem->flags |= FLAG_COMPAT; 419 420 return 0; 421 } 422 423 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 424 const struct nvmem_config *config) 425 { 426 if (config->compat) 427 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 428 } 429 430 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem) 431 { 432 struct bin_attribute **cells_attrs, *attrs; 433 struct nvmem_cell_entry *entry; 434 unsigned int ncells = 0, i = 0; 435 int ret = 0; 436 437 mutex_lock(&nvmem_mutex); 438 439 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) { 440 nvmem_cells_group.bin_attrs = NULL; 441 goto unlock_mutex; 442 } 443 444 /* Allocate an array of attributes with a sentinel */ 445 ncells = list_count_nodes(&nvmem->cells); 446 cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1, 447 sizeof(struct bin_attribute *), GFP_KERNEL); 448 if (!cells_attrs) { 449 ret = -ENOMEM; 450 goto unlock_mutex; 451 } 452 453 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL); 454 if (!attrs) { 455 ret = -ENOMEM; 456 goto unlock_mutex; 457 } 458 459 /* Initialize each attribute to take the name and size of the cell */ 460 list_for_each_entry(entry, &nvmem->cells, node) { 461 sysfs_bin_attr_init(&attrs[i]); 462 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL, 463 "%s@%x,%x", entry->name, 464 entry->offset, 465 entry->bit_offset); 466 attrs[i].attr.mode = 0444; 467 attrs[i].size = entry->bytes; 468 attrs[i].read = &nvmem_cell_attr_read; 469 attrs[i].private = entry; 470 if (!attrs[i].attr.name) { 471 ret = -ENOMEM; 472 goto unlock_mutex; 473 } 474 475 cells_attrs[i] = &attrs[i]; 476 i++; 477 } 478 479 nvmem_cells_group.bin_attrs = cells_attrs; 480 481 ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups); 482 if (ret) 483 goto unlock_mutex; 484 485 nvmem->sysfs_cells_populated = true; 486 487 unlock_mutex: 488 mutex_unlock(&nvmem_mutex); 489 490 return ret; 491 } 492 493 #else /* CONFIG_NVMEM_SYSFS */ 494 495 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 496 const struct nvmem_config *config) 497 { 498 return -ENOSYS; 499 } 500 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 501 const struct nvmem_config *config) 502 { 503 } 504 505 #endif /* CONFIG_NVMEM_SYSFS */ 506 507 static void nvmem_release(struct device *dev) 508 { 509 struct nvmem_device *nvmem = to_nvmem_device(dev); 510 511 ida_free(&nvmem_ida, nvmem->id); 512 gpiod_put(nvmem->wp_gpio); 513 kfree(nvmem); 514 } 515 516 static const struct device_type nvmem_provider_type = { 517 .release = nvmem_release, 518 }; 519 520 static struct bus_type nvmem_bus_type = { 521 .name = "nvmem", 522 }; 523 524 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell) 525 { 526 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell); 527 mutex_lock(&nvmem_mutex); 528 list_del(&cell->node); 529 mutex_unlock(&nvmem_mutex); 530 of_node_put(cell->np); 531 kfree_const(cell->name); 532 kfree(cell); 533 } 534 535 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 536 { 537 struct nvmem_cell_entry *cell, *p; 538 539 list_for_each_entry_safe(cell, p, &nvmem->cells, node) 540 nvmem_cell_entry_drop(cell); 541 } 542 543 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell) 544 { 545 mutex_lock(&nvmem_mutex); 546 list_add_tail(&cell->node, &cell->nvmem->cells); 547 mutex_unlock(&nvmem_mutex); 548 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell); 549 } 550 551 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem, 552 const struct nvmem_cell_info *info, 553 struct nvmem_cell_entry *cell) 554 { 555 cell->nvmem = nvmem; 556 cell->offset = info->offset; 557 cell->raw_len = info->raw_len ?: info->bytes; 558 cell->bytes = info->bytes; 559 cell->name = info->name; 560 cell->read_post_process = info->read_post_process; 561 cell->priv = info->priv; 562 563 cell->bit_offset = info->bit_offset; 564 cell->nbits = info->nbits; 565 cell->np = info->np; 566 567 if (cell->nbits) 568 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 569 BITS_PER_BYTE); 570 571 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 572 dev_err(&nvmem->dev, 573 "cell %s unaligned to nvmem stride %d\n", 574 cell->name ?: "<unknown>", nvmem->stride); 575 return -EINVAL; 576 } 577 578 return 0; 579 } 580 581 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem, 582 const struct nvmem_cell_info *info, 583 struct nvmem_cell_entry *cell) 584 { 585 int err; 586 587 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell); 588 if (err) 589 return err; 590 591 cell->name = kstrdup_const(info->name, GFP_KERNEL); 592 if (!cell->name) 593 return -ENOMEM; 594 595 return 0; 596 } 597 598 /** 599 * nvmem_add_one_cell() - Add one cell information to an nvmem device 600 * 601 * @nvmem: nvmem device to add cells to. 602 * @info: nvmem cell info to add to the device 603 * 604 * Return: 0 or negative error code on failure. 605 */ 606 int nvmem_add_one_cell(struct nvmem_device *nvmem, 607 const struct nvmem_cell_info *info) 608 { 609 struct nvmem_cell_entry *cell; 610 int rval; 611 612 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 613 if (!cell) 614 return -ENOMEM; 615 616 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 617 if (rval) { 618 kfree(cell); 619 return rval; 620 } 621 622 nvmem_cell_entry_add(cell); 623 624 return 0; 625 } 626 EXPORT_SYMBOL_GPL(nvmem_add_one_cell); 627 628 /** 629 * nvmem_add_cells() - Add cell information to an nvmem device 630 * 631 * @nvmem: nvmem device to add cells to. 632 * @info: nvmem cell info to add to the device 633 * @ncells: number of cells in info 634 * 635 * Return: 0 or negative error code on failure. 636 */ 637 static int nvmem_add_cells(struct nvmem_device *nvmem, 638 const struct nvmem_cell_info *info, 639 int ncells) 640 { 641 int i, rval; 642 643 for (i = 0; i < ncells; i++) { 644 rval = nvmem_add_one_cell(nvmem, &info[i]); 645 if (rval) 646 return rval; 647 } 648 649 return 0; 650 } 651 652 /** 653 * nvmem_register_notifier() - Register a notifier block for nvmem events. 654 * 655 * @nb: notifier block to be called on nvmem events. 656 * 657 * Return: 0 on success, negative error number on failure. 658 */ 659 int nvmem_register_notifier(struct notifier_block *nb) 660 { 661 return blocking_notifier_chain_register(&nvmem_notifier, nb); 662 } 663 EXPORT_SYMBOL_GPL(nvmem_register_notifier); 664 665 /** 666 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events. 667 * 668 * @nb: notifier block to be unregistered. 669 * 670 * Return: 0 on success, negative error number on failure. 671 */ 672 int nvmem_unregister_notifier(struct notifier_block *nb) 673 { 674 return blocking_notifier_chain_unregister(&nvmem_notifier, nb); 675 } 676 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier); 677 678 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem) 679 { 680 const struct nvmem_cell_info *info; 681 struct nvmem_cell_table *table; 682 struct nvmem_cell_entry *cell; 683 int rval = 0, i; 684 685 mutex_lock(&nvmem_cell_mutex); 686 list_for_each_entry(table, &nvmem_cell_tables, node) { 687 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) { 688 for (i = 0; i < table->ncells; i++) { 689 info = &table->cells[i]; 690 691 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 692 if (!cell) { 693 rval = -ENOMEM; 694 goto out; 695 } 696 697 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 698 if (rval) { 699 kfree(cell); 700 goto out; 701 } 702 703 nvmem_cell_entry_add(cell); 704 } 705 } 706 } 707 708 out: 709 mutex_unlock(&nvmem_cell_mutex); 710 return rval; 711 } 712 713 static struct nvmem_cell_entry * 714 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id) 715 { 716 struct nvmem_cell_entry *iter, *cell = NULL; 717 718 mutex_lock(&nvmem_mutex); 719 list_for_each_entry(iter, &nvmem->cells, node) { 720 if (strcmp(cell_id, iter->name) == 0) { 721 cell = iter; 722 break; 723 } 724 } 725 mutex_unlock(&nvmem_mutex); 726 727 return cell; 728 } 729 730 static int nvmem_validate_keepouts(struct nvmem_device *nvmem) 731 { 732 unsigned int cur = 0; 733 const struct nvmem_keepout *keepout = nvmem->keepout; 734 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 735 736 while (keepout < keepoutend) { 737 /* Ensure keepouts are sorted and don't overlap. */ 738 if (keepout->start < cur) { 739 dev_err(&nvmem->dev, 740 "Keepout regions aren't sorted or overlap.\n"); 741 742 return -ERANGE; 743 } 744 745 if (keepout->end < keepout->start) { 746 dev_err(&nvmem->dev, 747 "Invalid keepout region.\n"); 748 749 return -EINVAL; 750 } 751 752 /* 753 * Validate keepouts (and holes between) don't violate 754 * word_size constraints. 755 */ 756 if ((keepout->end - keepout->start < nvmem->word_size) || 757 ((keepout->start != cur) && 758 (keepout->start - cur < nvmem->word_size))) { 759 760 dev_err(&nvmem->dev, 761 "Keepout regions violate word_size constraints.\n"); 762 763 return -ERANGE; 764 } 765 766 /* Validate keepouts don't violate stride (alignment). */ 767 if (!IS_ALIGNED(keepout->start, nvmem->stride) || 768 !IS_ALIGNED(keepout->end, nvmem->stride)) { 769 770 dev_err(&nvmem->dev, 771 "Keepout regions violate stride.\n"); 772 773 return -EINVAL; 774 } 775 776 cur = keepout->end; 777 keepout++; 778 } 779 780 return 0; 781 } 782 783 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np) 784 { 785 struct device *dev = &nvmem->dev; 786 struct device_node *child; 787 const __be32 *addr; 788 int len, ret; 789 790 for_each_child_of_node(np, child) { 791 struct nvmem_cell_info info = {0}; 792 793 addr = of_get_property(child, "reg", &len); 794 if (!addr) 795 continue; 796 if (len < 2 * sizeof(u32)) { 797 dev_err(dev, "nvmem: invalid reg on %pOF\n", child); 798 of_node_put(child); 799 return -EINVAL; 800 } 801 802 info.offset = be32_to_cpup(addr++); 803 info.bytes = be32_to_cpup(addr); 804 info.name = kasprintf(GFP_KERNEL, "%pOFn", child); 805 806 addr = of_get_property(child, "bits", &len); 807 if (addr && len == (2 * sizeof(u32))) { 808 info.bit_offset = be32_to_cpup(addr++); 809 info.nbits = be32_to_cpup(addr); 810 } 811 812 info.np = of_node_get(child); 813 814 if (nvmem->fixup_dt_cell_info) 815 nvmem->fixup_dt_cell_info(nvmem, &info); 816 817 ret = nvmem_add_one_cell(nvmem, &info); 818 kfree(info.name); 819 if (ret) { 820 of_node_put(child); 821 return ret; 822 } 823 } 824 825 return 0; 826 } 827 828 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem) 829 { 830 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node); 831 } 832 833 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem) 834 { 835 struct device_node *layout_np; 836 int err = 0; 837 838 layout_np = of_nvmem_layout_get_container(nvmem); 839 if (!layout_np) 840 return 0; 841 842 if (of_device_is_compatible(layout_np, "fixed-layout")) 843 err = nvmem_add_cells_from_dt(nvmem, layout_np); 844 845 of_node_put(layout_np); 846 847 return err; 848 } 849 850 int nvmem_layout_register(struct nvmem_layout *layout) 851 { 852 int ret; 853 854 if (!layout->add_cells) 855 return -EINVAL; 856 857 /* Populate the cells */ 858 ret = layout->add_cells(layout); 859 if (ret) 860 return ret; 861 862 #ifdef CONFIG_NVMEM_SYSFS 863 ret = nvmem_populate_sysfs_cells(layout->nvmem); 864 if (ret) { 865 nvmem_device_remove_all_cells(layout->nvmem); 866 return ret; 867 } 868 #endif 869 870 return 0; 871 } 872 EXPORT_SYMBOL_GPL(nvmem_layout_register); 873 874 void nvmem_layout_unregister(struct nvmem_layout *layout) 875 { 876 /* Keep the API even with an empty stub in case we need it later */ 877 } 878 EXPORT_SYMBOL_GPL(nvmem_layout_unregister); 879 880 /** 881 * nvmem_register() - Register a nvmem device for given nvmem_config. 882 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 883 * 884 * @config: nvmem device configuration with which nvmem device is created. 885 * 886 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 887 * on success. 888 */ 889 890 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 891 { 892 struct nvmem_device *nvmem; 893 int rval; 894 895 if (!config->dev) 896 return ERR_PTR(-EINVAL); 897 898 if (!config->reg_read && !config->reg_write) 899 return ERR_PTR(-EINVAL); 900 901 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 902 if (!nvmem) 903 return ERR_PTR(-ENOMEM); 904 905 rval = ida_alloc(&nvmem_ida, GFP_KERNEL); 906 if (rval < 0) { 907 kfree(nvmem); 908 return ERR_PTR(rval); 909 } 910 911 nvmem->id = rval; 912 913 nvmem->dev.type = &nvmem_provider_type; 914 nvmem->dev.bus = &nvmem_bus_type; 915 nvmem->dev.parent = config->dev; 916 917 device_initialize(&nvmem->dev); 918 919 if (!config->ignore_wp) 920 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp", 921 GPIOD_OUT_HIGH); 922 if (IS_ERR(nvmem->wp_gpio)) { 923 rval = PTR_ERR(nvmem->wp_gpio); 924 nvmem->wp_gpio = NULL; 925 goto err_put_device; 926 } 927 928 kref_init(&nvmem->refcnt); 929 INIT_LIST_HEAD(&nvmem->cells); 930 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info; 931 932 nvmem->owner = config->owner; 933 if (!nvmem->owner && config->dev->driver) 934 nvmem->owner = config->dev->driver->owner; 935 nvmem->stride = config->stride ?: 1; 936 nvmem->word_size = config->word_size ?: 1; 937 nvmem->size = config->size; 938 nvmem->root_only = config->root_only; 939 nvmem->priv = config->priv; 940 nvmem->type = config->type; 941 nvmem->reg_read = config->reg_read; 942 nvmem->reg_write = config->reg_write; 943 nvmem->keepout = config->keepout; 944 nvmem->nkeepout = config->nkeepout; 945 if (config->of_node) 946 nvmem->dev.of_node = config->of_node; 947 else 948 nvmem->dev.of_node = config->dev->of_node; 949 950 switch (config->id) { 951 case NVMEM_DEVID_NONE: 952 rval = dev_set_name(&nvmem->dev, "%s", config->name); 953 break; 954 case NVMEM_DEVID_AUTO: 955 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id); 956 break; 957 default: 958 rval = dev_set_name(&nvmem->dev, "%s%d", 959 config->name ? : "nvmem", 960 config->name ? config->id : nvmem->id); 961 break; 962 } 963 964 if (rval) 965 goto err_put_device; 966 967 nvmem->read_only = device_property_present(config->dev, "read-only") || 968 config->read_only || !nvmem->reg_write; 969 970 #ifdef CONFIG_NVMEM_SYSFS 971 nvmem->dev.groups = nvmem_dev_groups; 972 #endif 973 974 if (nvmem->nkeepout) { 975 rval = nvmem_validate_keepouts(nvmem); 976 if (rval) 977 goto err_put_device; 978 } 979 980 if (config->compat) { 981 rval = nvmem_sysfs_setup_compat(nvmem, config); 982 if (rval) 983 goto err_put_device; 984 } 985 986 if (config->cells) { 987 rval = nvmem_add_cells(nvmem, config->cells, config->ncells); 988 if (rval) 989 goto err_remove_cells; 990 } 991 992 rval = nvmem_add_cells_from_table(nvmem); 993 if (rval) 994 goto err_remove_cells; 995 996 if (config->add_legacy_fixed_of_cells) { 997 rval = nvmem_add_cells_from_legacy_of(nvmem); 998 if (rval) 999 goto err_remove_cells; 1000 } 1001 1002 rval = nvmem_add_cells_from_fixed_layout(nvmem); 1003 if (rval) 1004 goto err_remove_cells; 1005 1006 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 1007 1008 rval = device_add(&nvmem->dev); 1009 if (rval) 1010 goto err_remove_cells; 1011 1012 rval = nvmem_populate_layout(nvmem); 1013 if (rval) 1014 goto err_remove_dev; 1015 1016 #ifdef CONFIG_NVMEM_SYSFS 1017 rval = nvmem_populate_sysfs_cells(nvmem); 1018 if (rval) 1019 goto err_destroy_layout; 1020 #endif 1021 1022 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem); 1023 1024 return nvmem; 1025 1026 #ifdef CONFIG_NVMEM_SYSFS 1027 err_destroy_layout: 1028 nvmem_destroy_layout(nvmem); 1029 #endif 1030 err_remove_dev: 1031 device_del(&nvmem->dev); 1032 err_remove_cells: 1033 nvmem_device_remove_all_cells(nvmem); 1034 if (config->compat) 1035 nvmem_sysfs_remove_compat(nvmem, config); 1036 err_put_device: 1037 put_device(&nvmem->dev); 1038 1039 return ERR_PTR(rval); 1040 } 1041 EXPORT_SYMBOL_GPL(nvmem_register); 1042 1043 static void nvmem_device_release(struct kref *kref) 1044 { 1045 struct nvmem_device *nvmem; 1046 1047 nvmem = container_of(kref, struct nvmem_device, refcnt); 1048 1049 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem); 1050 1051 if (nvmem->flags & FLAG_COMPAT) 1052 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 1053 1054 nvmem_device_remove_all_cells(nvmem); 1055 nvmem_destroy_layout(nvmem); 1056 device_unregister(&nvmem->dev); 1057 } 1058 1059 /** 1060 * nvmem_unregister() - Unregister previously registered nvmem device 1061 * 1062 * @nvmem: Pointer to previously registered nvmem device. 1063 */ 1064 void nvmem_unregister(struct nvmem_device *nvmem) 1065 { 1066 if (nvmem) 1067 kref_put(&nvmem->refcnt, nvmem_device_release); 1068 } 1069 EXPORT_SYMBOL_GPL(nvmem_unregister); 1070 1071 static void devm_nvmem_unregister(void *nvmem) 1072 { 1073 nvmem_unregister(nvmem); 1074 } 1075 1076 /** 1077 * devm_nvmem_register() - Register a managed nvmem device for given 1078 * nvmem_config. 1079 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 1080 * 1081 * @dev: Device that uses the nvmem device. 1082 * @config: nvmem device configuration with which nvmem device is created. 1083 * 1084 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 1085 * on success. 1086 */ 1087 struct nvmem_device *devm_nvmem_register(struct device *dev, 1088 const struct nvmem_config *config) 1089 { 1090 struct nvmem_device *nvmem; 1091 int ret; 1092 1093 nvmem = nvmem_register(config); 1094 if (IS_ERR(nvmem)) 1095 return nvmem; 1096 1097 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem); 1098 if (ret) 1099 return ERR_PTR(ret); 1100 1101 return nvmem; 1102 } 1103 EXPORT_SYMBOL_GPL(devm_nvmem_register); 1104 1105 static struct nvmem_device *__nvmem_device_get(void *data, 1106 int (*match)(struct device *dev, const void *data)) 1107 { 1108 struct nvmem_device *nvmem = NULL; 1109 struct device *dev; 1110 1111 mutex_lock(&nvmem_mutex); 1112 dev = bus_find_device(&nvmem_bus_type, NULL, data, match); 1113 if (dev) 1114 nvmem = to_nvmem_device(dev); 1115 mutex_unlock(&nvmem_mutex); 1116 if (!nvmem) 1117 return ERR_PTR(-EPROBE_DEFER); 1118 1119 if (!try_module_get(nvmem->owner)) { 1120 dev_err(&nvmem->dev, 1121 "could not increase module refcount for cell %s\n", 1122 nvmem_dev_name(nvmem)); 1123 1124 put_device(&nvmem->dev); 1125 return ERR_PTR(-EINVAL); 1126 } 1127 1128 kref_get(&nvmem->refcnt); 1129 1130 return nvmem; 1131 } 1132 1133 static void __nvmem_device_put(struct nvmem_device *nvmem) 1134 { 1135 put_device(&nvmem->dev); 1136 module_put(nvmem->owner); 1137 kref_put(&nvmem->refcnt, nvmem_device_release); 1138 } 1139 1140 #if IS_ENABLED(CONFIG_OF) 1141 /** 1142 * of_nvmem_device_get() - Get nvmem device from a given id 1143 * 1144 * @np: Device tree node that uses the nvmem device. 1145 * @id: nvmem name from nvmem-names property. 1146 * 1147 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1148 * on success. 1149 */ 1150 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 1151 { 1152 1153 struct device_node *nvmem_np; 1154 struct nvmem_device *nvmem; 1155 int index = 0; 1156 1157 if (id) 1158 index = of_property_match_string(np, "nvmem-names", id); 1159 1160 nvmem_np = of_parse_phandle(np, "nvmem", index); 1161 if (!nvmem_np) 1162 return ERR_PTR(-ENOENT); 1163 1164 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1165 of_node_put(nvmem_np); 1166 return nvmem; 1167 } 1168 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 1169 #endif 1170 1171 /** 1172 * nvmem_device_get() - Get nvmem device from a given id 1173 * 1174 * @dev: Device that uses the nvmem device. 1175 * @dev_name: name of the requested nvmem device. 1176 * 1177 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1178 * on success. 1179 */ 1180 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 1181 { 1182 if (dev->of_node) { /* try dt first */ 1183 struct nvmem_device *nvmem; 1184 1185 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 1186 1187 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 1188 return nvmem; 1189 1190 } 1191 1192 return __nvmem_device_get((void *)dev_name, device_match_name); 1193 } 1194 EXPORT_SYMBOL_GPL(nvmem_device_get); 1195 1196 /** 1197 * nvmem_device_find() - Find nvmem device with matching function 1198 * 1199 * @data: Data to pass to match function 1200 * @match: Callback function to check device 1201 * 1202 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1203 * on success. 1204 */ 1205 struct nvmem_device *nvmem_device_find(void *data, 1206 int (*match)(struct device *dev, const void *data)) 1207 { 1208 return __nvmem_device_get(data, match); 1209 } 1210 EXPORT_SYMBOL_GPL(nvmem_device_find); 1211 1212 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 1213 { 1214 struct nvmem_device **nvmem = res; 1215 1216 if (WARN_ON(!nvmem || !*nvmem)) 1217 return 0; 1218 1219 return *nvmem == data; 1220 } 1221 1222 static void devm_nvmem_device_release(struct device *dev, void *res) 1223 { 1224 nvmem_device_put(*(struct nvmem_device **)res); 1225 } 1226 1227 /** 1228 * devm_nvmem_device_put() - put alredy got nvmem device 1229 * 1230 * @dev: Device that uses the nvmem device. 1231 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 1232 * that needs to be released. 1233 */ 1234 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 1235 { 1236 int ret; 1237 1238 ret = devres_release(dev, devm_nvmem_device_release, 1239 devm_nvmem_device_match, nvmem); 1240 1241 WARN_ON(ret); 1242 } 1243 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 1244 1245 /** 1246 * nvmem_device_put() - put alredy got nvmem device 1247 * 1248 * @nvmem: pointer to nvmem device that needs to be released. 1249 */ 1250 void nvmem_device_put(struct nvmem_device *nvmem) 1251 { 1252 __nvmem_device_put(nvmem); 1253 } 1254 EXPORT_SYMBOL_GPL(nvmem_device_put); 1255 1256 /** 1257 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 1258 * 1259 * @dev: Device that requests the nvmem device. 1260 * @id: name id for the requested nvmem device. 1261 * 1262 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 1263 * on success. The nvmem_cell will be freed by the automatically once the 1264 * device is freed. 1265 */ 1266 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 1267 { 1268 struct nvmem_device **ptr, *nvmem; 1269 1270 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 1271 if (!ptr) 1272 return ERR_PTR(-ENOMEM); 1273 1274 nvmem = nvmem_device_get(dev, id); 1275 if (!IS_ERR(nvmem)) { 1276 *ptr = nvmem; 1277 devres_add(dev, ptr); 1278 } else { 1279 devres_free(ptr); 1280 } 1281 1282 return nvmem; 1283 } 1284 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 1285 1286 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, 1287 const char *id, int index) 1288 { 1289 struct nvmem_cell *cell; 1290 const char *name = NULL; 1291 1292 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 1293 if (!cell) 1294 return ERR_PTR(-ENOMEM); 1295 1296 if (id) { 1297 name = kstrdup_const(id, GFP_KERNEL); 1298 if (!name) { 1299 kfree(cell); 1300 return ERR_PTR(-ENOMEM); 1301 } 1302 } 1303 1304 cell->id = name; 1305 cell->entry = entry; 1306 cell->index = index; 1307 1308 return cell; 1309 } 1310 1311 static struct nvmem_cell * 1312 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id) 1313 { 1314 struct nvmem_cell_entry *cell_entry; 1315 struct nvmem_cell *cell = ERR_PTR(-ENOENT); 1316 struct nvmem_cell_lookup *lookup; 1317 struct nvmem_device *nvmem; 1318 const char *dev_id; 1319 1320 if (!dev) 1321 return ERR_PTR(-EINVAL); 1322 1323 dev_id = dev_name(dev); 1324 1325 mutex_lock(&nvmem_lookup_mutex); 1326 1327 list_for_each_entry(lookup, &nvmem_lookup_list, node) { 1328 if ((strcmp(lookup->dev_id, dev_id) == 0) && 1329 (strcmp(lookup->con_id, con_id) == 0)) { 1330 /* This is the right entry. */ 1331 nvmem = __nvmem_device_get((void *)lookup->nvmem_name, 1332 device_match_name); 1333 if (IS_ERR(nvmem)) { 1334 /* Provider may not be registered yet. */ 1335 cell = ERR_CAST(nvmem); 1336 break; 1337 } 1338 1339 cell_entry = nvmem_find_cell_entry_by_name(nvmem, 1340 lookup->cell_name); 1341 if (!cell_entry) { 1342 __nvmem_device_put(nvmem); 1343 cell = ERR_PTR(-ENOENT); 1344 } else { 1345 cell = nvmem_create_cell(cell_entry, con_id, 0); 1346 if (IS_ERR(cell)) 1347 __nvmem_device_put(nvmem); 1348 } 1349 break; 1350 } 1351 } 1352 1353 mutex_unlock(&nvmem_lookup_mutex); 1354 return cell; 1355 } 1356 1357 static void nvmem_layout_module_put(struct nvmem_device *nvmem) 1358 { 1359 if (nvmem->layout && nvmem->layout->dev.driver) 1360 module_put(nvmem->layout->dev.driver->owner); 1361 } 1362 1363 #if IS_ENABLED(CONFIG_OF) 1364 static struct nvmem_cell_entry * 1365 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np) 1366 { 1367 struct nvmem_cell_entry *iter, *cell = NULL; 1368 1369 mutex_lock(&nvmem_mutex); 1370 list_for_each_entry(iter, &nvmem->cells, node) { 1371 if (np == iter->np) { 1372 cell = iter; 1373 break; 1374 } 1375 } 1376 mutex_unlock(&nvmem_mutex); 1377 1378 return cell; 1379 } 1380 1381 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem) 1382 { 1383 if (!nvmem->layout) 1384 return 0; 1385 1386 if (!nvmem->layout->dev.driver || 1387 !try_module_get(nvmem->layout->dev.driver->owner)) 1388 return -EPROBE_DEFER; 1389 1390 return 0; 1391 } 1392 1393 /** 1394 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 1395 * 1396 * @np: Device tree node that uses the nvmem cell. 1397 * @id: nvmem cell name from nvmem-cell-names property, or NULL 1398 * for the cell at index 0 (the lone cell with no accompanying 1399 * nvmem-cell-names property). 1400 * 1401 * Return: Will be an ERR_PTR() on error or a valid pointer 1402 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1403 * nvmem_cell_put(). 1404 */ 1405 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id) 1406 { 1407 struct device_node *cell_np, *nvmem_np; 1408 struct nvmem_device *nvmem; 1409 struct nvmem_cell_entry *cell_entry; 1410 struct nvmem_cell *cell; 1411 struct of_phandle_args cell_spec; 1412 int index = 0; 1413 int cell_index = 0; 1414 int ret; 1415 1416 /* if cell name exists, find index to the name */ 1417 if (id) 1418 index = of_property_match_string(np, "nvmem-cell-names", id); 1419 1420 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells", 1421 "#nvmem-cell-cells", 1422 index, &cell_spec); 1423 if (ret) 1424 return ERR_PTR(-ENOENT); 1425 1426 if (cell_spec.args_count > 1) 1427 return ERR_PTR(-EINVAL); 1428 1429 cell_np = cell_spec.np; 1430 if (cell_spec.args_count) 1431 cell_index = cell_spec.args[0]; 1432 1433 nvmem_np = of_get_parent(cell_np); 1434 if (!nvmem_np) { 1435 of_node_put(cell_np); 1436 return ERR_PTR(-EINVAL); 1437 } 1438 1439 /* nvmem layouts produce cells within the nvmem-layout container */ 1440 if (of_node_name_eq(nvmem_np, "nvmem-layout")) { 1441 nvmem_np = of_get_next_parent(nvmem_np); 1442 if (!nvmem_np) { 1443 of_node_put(cell_np); 1444 return ERR_PTR(-EINVAL); 1445 } 1446 } 1447 1448 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1449 of_node_put(nvmem_np); 1450 if (IS_ERR(nvmem)) { 1451 of_node_put(cell_np); 1452 return ERR_CAST(nvmem); 1453 } 1454 1455 ret = nvmem_layout_module_get_optional(nvmem); 1456 if (ret) { 1457 of_node_put(cell_np); 1458 __nvmem_device_put(nvmem); 1459 return ERR_PTR(ret); 1460 } 1461 1462 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np); 1463 of_node_put(cell_np); 1464 if (!cell_entry) { 1465 __nvmem_device_put(nvmem); 1466 nvmem_layout_module_put(nvmem); 1467 if (nvmem->layout) 1468 return ERR_PTR(-EPROBE_DEFER); 1469 else 1470 return ERR_PTR(-ENOENT); 1471 } 1472 1473 cell = nvmem_create_cell(cell_entry, id, cell_index); 1474 if (IS_ERR(cell)) { 1475 __nvmem_device_put(nvmem); 1476 nvmem_layout_module_put(nvmem); 1477 } 1478 1479 return cell; 1480 } 1481 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 1482 #endif 1483 1484 /** 1485 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 1486 * 1487 * @dev: Device that requests the nvmem cell. 1488 * @id: nvmem cell name to get (this corresponds with the name from the 1489 * nvmem-cell-names property for DT systems and with the con_id from 1490 * the lookup entry for non-DT systems). 1491 * 1492 * Return: Will be an ERR_PTR() on error or a valid pointer 1493 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1494 * nvmem_cell_put(). 1495 */ 1496 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id) 1497 { 1498 struct nvmem_cell *cell; 1499 1500 if (dev->of_node) { /* try dt first */ 1501 cell = of_nvmem_cell_get(dev->of_node, id); 1502 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 1503 return cell; 1504 } 1505 1506 /* NULL cell id only allowed for device tree; invalid otherwise */ 1507 if (!id) 1508 return ERR_PTR(-EINVAL); 1509 1510 return nvmem_cell_get_from_lookup(dev, id); 1511 } 1512 EXPORT_SYMBOL_GPL(nvmem_cell_get); 1513 1514 static void devm_nvmem_cell_release(struct device *dev, void *res) 1515 { 1516 nvmem_cell_put(*(struct nvmem_cell **)res); 1517 } 1518 1519 /** 1520 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 1521 * 1522 * @dev: Device that requests the nvmem cell. 1523 * @id: nvmem cell name id to get. 1524 * 1525 * Return: Will be an ERR_PTR() on error or a valid pointer 1526 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1527 * automatically once the device is freed. 1528 */ 1529 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 1530 { 1531 struct nvmem_cell **ptr, *cell; 1532 1533 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 1534 if (!ptr) 1535 return ERR_PTR(-ENOMEM); 1536 1537 cell = nvmem_cell_get(dev, id); 1538 if (!IS_ERR(cell)) { 1539 *ptr = cell; 1540 devres_add(dev, ptr); 1541 } else { 1542 devres_free(ptr); 1543 } 1544 1545 return cell; 1546 } 1547 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 1548 1549 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 1550 { 1551 struct nvmem_cell **c = res; 1552 1553 if (WARN_ON(!c || !*c)) 1554 return 0; 1555 1556 return *c == data; 1557 } 1558 1559 /** 1560 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 1561 * from devm_nvmem_cell_get. 1562 * 1563 * @dev: Device that requests the nvmem cell. 1564 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 1565 */ 1566 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 1567 { 1568 int ret; 1569 1570 ret = devres_release(dev, devm_nvmem_cell_release, 1571 devm_nvmem_cell_match, cell); 1572 1573 WARN_ON(ret); 1574 } 1575 EXPORT_SYMBOL(devm_nvmem_cell_put); 1576 1577 /** 1578 * nvmem_cell_put() - Release previously allocated nvmem cell. 1579 * 1580 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 1581 */ 1582 void nvmem_cell_put(struct nvmem_cell *cell) 1583 { 1584 struct nvmem_device *nvmem = cell->entry->nvmem; 1585 1586 if (cell->id) 1587 kfree_const(cell->id); 1588 1589 kfree(cell); 1590 __nvmem_device_put(nvmem); 1591 nvmem_layout_module_put(nvmem); 1592 } 1593 EXPORT_SYMBOL_GPL(nvmem_cell_put); 1594 1595 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf) 1596 { 1597 u8 *p, *b; 1598 int i, extra, bit_offset = cell->bit_offset; 1599 1600 p = b = buf; 1601 if (bit_offset) { 1602 /* First shift */ 1603 *b++ >>= bit_offset; 1604 1605 /* setup rest of the bytes if any */ 1606 for (i = 1; i < cell->bytes; i++) { 1607 /* Get bits from next byte and shift them towards msb */ 1608 *p |= *b << (BITS_PER_BYTE - bit_offset); 1609 1610 p = b; 1611 *b++ >>= bit_offset; 1612 } 1613 } else { 1614 /* point to the msb */ 1615 p += cell->bytes - 1; 1616 } 1617 1618 /* result fits in less bytes */ 1619 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE); 1620 while (--extra >= 0) 1621 *p-- = 0; 1622 1623 /* clear msb bits if any leftover in the last byte */ 1624 if (cell->nbits % BITS_PER_BYTE) 1625 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0); 1626 } 1627 1628 static int __nvmem_cell_read(struct nvmem_device *nvmem, 1629 struct nvmem_cell_entry *cell, 1630 void *buf, size_t *len, const char *id, int index) 1631 { 1632 int rc; 1633 1634 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len); 1635 1636 if (rc) 1637 return rc; 1638 1639 /* shift bits in-place */ 1640 if (cell->bit_offset || cell->nbits) 1641 nvmem_shift_read_buffer_in_place(cell, buf); 1642 1643 if (cell->read_post_process) { 1644 rc = cell->read_post_process(cell->priv, id, index, 1645 cell->offset, buf, cell->raw_len); 1646 if (rc) 1647 return rc; 1648 } 1649 1650 if (len) 1651 *len = cell->bytes; 1652 1653 return 0; 1654 } 1655 1656 /** 1657 * nvmem_cell_read() - Read a given nvmem cell 1658 * 1659 * @cell: nvmem cell to be read. 1660 * @len: pointer to length of cell which will be populated on successful read; 1661 * can be NULL. 1662 * 1663 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 1664 * buffer should be freed by the consumer with a kfree(). 1665 */ 1666 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 1667 { 1668 struct nvmem_cell_entry *entry = cell->entry; 1669 struct nvmem_device *nvmem = entry->nvmem; 1670 u8 *buf; 1671 int rc; 1672 1673 if (!nvmem) 1674 return ERR_PTR(-EINVAL); 1675 1676 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL); 1677 if (!buf) 1678 return ERR_PTR(-ENOMEM); 1679 1680 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index); 1681 if (rc) { 1682 kfree(buf); 1683 return ERR_PTR(rc); 1684 } 1685 1686 return buf; 1687 } 1688 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1689 1690 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell, 1691 u8 *_buf, int len) 1692 { 1693 struct nvmem_device *nvmem = cell->nvmem; 1694 int i, rc, nbits, bit_offset = cell->bit_offset; 1695 u8 v, *p, *buf, *b, pbyte, pbits; 1696 1697 nbits = cell->nbits; 1698 buf = kzalloc(cell->bytes, GFP_KERNEL); 1699 if (!buf) 1700 return ERR_PTR(-ENOMEM); 1701 1702 memcpy(buf, _buf, len); 1703 p = b = buf; 1704 1705 if (bit_offset) { 1706 pbyte = *b; 1707 *b <<= bit_offset; 1708 1709 /* setup the first byte with lsb bits from nvmem */ 1710 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1711 if (rc) 1712 goto err; 1713 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1714 1715 /* setup rest of the byte if any */ 1716 for (i = 1; i < cell->bytes; i++) { 1717 /* Get last byte bits and shift them towards lsb */ 1718 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1719 pbyte = *b; 1720 p = b; 1721 *b <<= bit_offset; 1722 *b++ |= pbits; 1723 } 1724 } 1725 1726 /* if it's not end on byte boundary */ 1727 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1728 /* setup the last byte with msb bits from nvmem */ 1729 rc = nvmem_reg_read(nvmem, 1730 cell->offset + cell->bytes - 1, &v, 1); 1731 if (rc) 1732 goto err; 1733 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1734 1735 } 1736 1737 return buf; 1738 err: 1739 kfree(buf); 1740 return ERR_PTR(rc); 1741 } 1742 1743 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len) 1744 { 1745 struct nvmem_device *nvmem = cell->nvmem; 1746 int rc; 1747 1748 if (!nvmem || nvmem->read_only || 1749 (cell->bit_offset == 0 && len != cell->bytes)) 1750 return -EINVAL; 1751 1752 /* 1753 * Any cells which have a read_post_process hook are read-only because 1754 * we cannot reverse the operation and it might affect other cells, 1755 * too. 1756 */ 1757 if (cell->read_post_process) 1758 return -EINVAL; 1759 1760 if (cell->bit_offset || cell->nbits) { 1761 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1762 if (IS_ERR(buf)) 1763 return PTR_ERR(buf); 1764 } 1765 1766 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1767 1768 /* free the tmp buffer */ 1769 if (cell->bit_offset || cell->nbits) 1770 kfree(buf); 1771 1772 if (rc) 1773 return rc; 1774 1775 return len; 1776 } 1777 1778 /** 1779 * nvmem_cell_write() - Write to a given nvmem cell 1780 * 1781 * @cell: nvmem cell to be written. 1782 * @buf: Buffer to be written. 1783 * @len: length of buffer to be written to nvmem cell. 1784 * 1785 * Return: length of bytes written or negative on failure. 1786 */ 1787 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1788 { 1789 return __nvmem_cell_entry_write(cell->entry, buf, len); 1790 } 1791 1792 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1793 1794 static int nvmem_cell_read_common(struct device *dev, const char *cell_id, 1795 void *val, size_t count) 1796 { 1797 struct nvmem_cell *cell; 1798 void *buf; 1799 size_t len; 1800 1801 cell = nvmem_cell_get(dev, cell_id); 1802 if (IS_ERR(cell)) 1803 return PTR_ERR(cell); 1804 1805 buf = nvmem_cell_read(cell, &len); 1806 if (IS_ERR(buf)) { 1807 nvmem_cell_put(cell); 1808 return PTR_ERR(buf); 1809 } 1810 if (len != count) { 1811 kfree(buf); 1812 nvmem_cell_put(cell); 1813 return -EINVAL; 1814 } 1815 memcpy(val, buf, count); 1816 kfree(buf); 1817 nvmem_cell_put(cell); 1818 1819 return 0; 1820 } 1821 1822 /** 1823 * nvmem_cell_read_u8() - Read a cell value as a u8 1824 * 1825 * @dev: Device that requests the nvmem cell. 1826 * @cell_id: Name of nvmem cell to read. 1827 * @val: pointer to output value. 1828 * 1829 * Return: 0 on success or negative errno. 1830 */ 1831 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val) 1832 { 1833 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1834 } 1835 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8); 1836 1837 /** 1838 * nvmem_cell_read_u16() - Read a cell value as a u16 1839 * 1840 * @dev: Device that requests the nvmem cell. 1841 * @cell_id: Name of nvmem cell to read. 1842 * @val: pointer to output value. 1843 * 1844 * Return: 0 on success or negative errno. 1845 */ 1846 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val) 1847 { 1848 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1849 } 1850 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16); 1851 1852 /** 1853 * nvmem_cell_read_u32() - Read a cell value as a u32 1854 * 1855 * @dev: Device that requests the nvmem cell. 1856 * @cell_id: Name of nvmem cell to read. 1857 * @val: pointer to output value. 1858 * 1859 * Return: 0 on success or negative errno. 1860 */ 1861 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val) 1862 { 1863 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1864 } 1865 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32); 1866 1867 /** 1868 * nvmem_cell_read_u64() - Read a cell value as a u64 1869 * 1870 * @dev: Device that requests the nvmem cell. 1871 * @cell_id: Name of nvmem cell to read. 1872 * @val: pointer to output value. 1873 * 1874 * Return: 0 on success or negative errno. 1875 */ 1876 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val) 1877 { 1878 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1879 } 1880 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64); 1881 1882 static const void *nvmem_cell_read_variable_common(struct device *dev, 1883 const char *cell_id, 1884 size_t max_len, size_t *len) 1885 { 1886 struct nvmem_cell *cell; 1887 int nbits; 1888 void *buf; 1889 1890 cell = nvmem_cell_get(dev, cell_id); 1891 if (IS_ERR(cell)) 1892 return cell; 1893 1894 nbits = cell->entry->nbits; 1895 buf = nvmem_cell_read(cell, len); 1896 nvmem_cell_put(cell); 1897 if (IS_ERR(buf)) 1898 return buf; 1899 1900 /* 1901 * If nbits is set then nvmem_cell_read() can significantly exaggerate 1902 * the length of the real data. Throw away the extra junk. 1903 */ 1904 if (nbits) 1905 *len = DIV_ROUND_UP(nbits, 8); 1906 1907 if (*len > max_len) { 1908 kfree(buf); 1909 return ERR_PTR(-ERANGE); 1910 } 1911 1912 return buf; 1913 } 1914 1915 /** 1916 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number. 1917 * 1918 * @dev: Device that requests the nvmem cell. 1919 * @cell_id: Name of nvmem cell to read. 1920 * @val: pointer to output value. 1921 * 1922 * Return: 0 on success or negative errno. 1923 */ 1924 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id, 1925 u32 *val) 1926 { 1927 size_t len; 1928 const u8 *buf; 1929 int i; 1930 1931 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1932 if (IS_ERR(buf)) 1933 return PTR_ERR(buf); 1934 1935 /* Copy w/ implicit endian conversion */ 1936 *val = 0; 1937 for (i = 0; i < len; i++) 1938 *val |= buf[i] << (8 * i); 1939 1940 kfree(buf); 1941 1942 return 0; 1943 } 1944 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32); 1945 1946 /** 1947 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number. 1948 * 1949 * @dev: Device that requests the nvmem cell. 1950 * @cell_id: Name of nvmem cell to read. 1951 * @val: pointer to output value. 1952 * 1953 * Return: 0 on success or negative errno. 1954 */ 1955 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id, 1956 u64 *val) 1957 { 1958 size_t len; 1959 const u8 *buf; 1960 int i; 1961 1962 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1963 if (IS_ERR(buf)) 1964 return PTR_ERR(buf); 1965 1966 /* Copy w/ implicit endian conversion */ 1967 *val = 0; 1968 for (i = 0; i < len; i++) 1969 *val |= (uint64_t)buf[i] << (8 * i); 1970 1971 kfree(buf); 1972 1973 return 0; 1974 } 1975 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64); 1976 1977 /** 1978 * nvmem_device_cell_read() - Read a given nvmem device and cell 1979 * 1980 * @nvmem: nvmem device to read from. 1981 * @info: nvmem cell info to be read. 1982 * @buf: buffer pointer which will be populated on successful read. 1983 * 1984 * Return: length of successful bytes read on success and negative 1985 * error code on error. 1986 */ 1987 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1988 struct nvmem_cell_info *info, void *buf) 1989 { 1990 struct nvmem_cell_entry cell; 1991 int rc; 1992 ssize_t len; 1993 1994 if (!nvmem) 1995 return -EINVAL; 1996 1997 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1998 if (rc) 1999 return rc; 2000 2001 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0); 2002 if (rc) 2003 return rc; 2004 2005 return len; 2006 } 2007 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 2008 2009 /** 2010 * nvmem_device_cell_write() - Write cell to a given nvmem device 2011 * 2012 * @nvmem: nvmem device to be written to. 2013 * @info: nvmem cell info to be written. 2014 * @buf: buffer to be written to cell. 2015 * 2016 * Return: length of bytes written or negative error code on failure. 2017 */ 2018 int nvmem_device_cell_write(struct nvmem_device *nvmem, 2019 struct nvmem_cell_info *info, void *buf) 2020 { 2021 struct nvmem_cell_entry cell; 2022 int rc; 2023 2024 if (!nvmem) 2025 return -EINVAL; 2026 2027 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 2028 if (rc) 2029 return rc; 2030 2031 return __nvmem_cell_entry_write(&cell, buf, cell.bytes); 2032 } 2033 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 2034 2035 /** 2036 * nvmem_device_read() - Read from a given nvmem device 2037 * 2038 * @nvmem: nvmem device to read from. 2039 * @offset: offset in nvmem device. 2040 * @bytes: number of bytes to read. 2041 * @buf: buffer pointer which will be populated on successful read. 2042 * 2043 * Return: length of successful bytes read on success and negative 2044 * error code on error. 2045 */ 2046 int nvmem_device_read(struct nvmem_device *nvmem, 2047 unsigned int offset, 2048 size_t bytes, void *buf) 2049 { 2050 int rc; 2051 2052 if (!nvmem) 2053 return -EINVAL; 2054 2055 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 2056 2057 if (rc) 2058 return rc; 2059 2060 return bytes; 2061 } 2062 EXPORT_SYMBOL_GPL(nvmem_device_read); 2063 2064 /** 2065 * nvmem_device_write() - Write cell to a given nvmem device 2066 * 2067 * @nvmem: nvmem device to be written to. 2068 * @offset: offset in nvmem device. 2069 * @bytes: number of bytes to write. 2070 * @buf: buffer to be written. 2071 * 2072 * Return: length of bytes written or negative error code on failure. 2073 */ 2074 int nvmem_device_write(struct nvmem_device *nvmem, 2075 unsigned int offset, 2076 size_t bytes, void *buf) 2077 { 2078 int rc; 2079 2080 if (!nvmem) 2081 return -EINVAL; 2082 2083 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 2084 2085 if (rc) 2086 return rc; 2087 2088 2089 return bytes; 2090 } 2091 EXPORT_SYMBOL_GPL(nvmem_device_write); 2092 2093 /** 2094 * nvmem_add_cell_table() - register a table of cell info entries 2095 * 2096 * @table: table of cell info entries 2097 */ 2098 void nvmem_add_cell_table(struct nvmem_cell_table *table) 2099 { 2100 mutex_lock(&nvmem_cell_mutex); 2101 list_add_tail(&table->node, &nvmem_cell_tables); 2102 mutex_unlock(&nvmem_cell_mutex); 2103 } 2104 EXPORT_SYMBOL_GPL(nvmem_add_cell_table); 2105 2106 /** 2107 * nvmem_del_cell_table() - remove a previously registered cell info table 2108 * 2109 * @table: table of cell info entries 2110 */ 2111 void nvmem_del_cell_table(struct nvmem_cell_table *table) 2112 { 2113 mutex_lock(&nvmem_cell_mutex); 2114 list_del(&table->node); 2115 mutex_unlock(&nvmem_cell_mutex); 2116 } 2117 EXPORT_SYMBOL_GPL(nvmem_del_cell_table); 2118 2119 /** 2120 * nvmem_add_cell_lookups() - register a list of cell lookup entries 2121 * 2122 * @entries: array of cell lookup entries 2123 * @nentries: number of cell lookup entries in the array 2124 */ 2125 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 2126 { 2127 int i; 2128 2129 mutex_lock(&nvmem_lookup_mutex); 2130 for (i = 0; i < nentries; i++) 2131 list_add_tail(&entries[i].node, &nvmem_lookup_list); 2132 mutex_unlock(&nvmem_lookup_mutex); 2133 } 2134 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups); 2135 2136 /** 2137 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup 2138 * entries 2139 * 2140 * @entries: array of cell lookup entries 2141 * @nentries: number of cell lookup entries in the array 2142 */ 2143 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 2144 { 2145 int i; 2146 2147 mutex_lock(&nvmem_lookup_mutex); 2148 for (i = 0; i < nentries; i++) 2149 list_del(&entries[i].node); 2150 mutex_unlock(&nvmem_lookup_mutex); 2151 } 2152 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups); 2153 2154 /** 2155 * nvmem_dev_name() - Get the name of a given nvmem device. 2156 * 2157 * @nvmem: nvmem device. 2158 * 2159 * Return: name of the nvmem device. 2160 */ 2161 const char *nvmem_dev_name(struct nvmem_device *nvmem) 2162 { 2163 return dev_name(&nvmem->dev); 2164 } 2165 EXPORT_SYMBOL_GPL(nvmem_dev_name); 2166 2167 /** 2168 * nvmem_dev_size() - Get the size of a given nvmem device. 2169 * 2170 * @nvmem: nvmem device. 2171 * 2172 * Return: size of the nvmem device. 2173 */ 2174 size_t nvmem_dev_size(struct nvmem_device *nvmem) 2175 { 2176 return nvmem->size; 2177 } 2178 EXPORT_SYMBOL_GPL(nvmem_dev_size); 2179 2180 static int __init nvmem_init(void) 2181 { 2182 int ret; 2183 2184 ret = bus_register(&nvmem_bus_type); 2185 if (ret) 2186 return ret; 2187 2188 ret = nvmem_layout_bus_register(); 2189 if (ret) 2190 bus_unregister(&nvmem_bus_type); 2191 2192 return ret; 2193 } 2194 2195 static void __exit nvmem_exit(void) 2196 { 2197 nvmem_layout_bus_unregister(); 2198 bus_unregister(&nvmem_bus_type); 2199 } 2200 2201 subsys_initcall(nvmem_init); 2202 module_exit(nvmem_exit); 2203 2204 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 2205 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 2206 MODULE_DESCRIPTION("nvmem Driver Core"); 2207