xref: /linux/drivers/nvmem/core.c (revision c27dfca4555bf74dd7dd7161d8ef2790ec1c7283)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
187 static struct attribute *nvmem_attrs[] = {
188 	&dev_attr_type.attr,
189 	NULL,
190 };
191 
192 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
193 				   struct bin_attribute *attr, char *buf,
194 				   loff_t pos, size_t count)
195 {
196 	struct device *dev;
197 	struct nvmem_device *nvmem;
198 	int rc;
199 
200 	if (attr->private)
201 		dev = attr->private;
202 	else
203 		dev = kobj_to_dev(kobj);
204 	nvmem = to_nvmem_device(dev);
205 
206 	/* Stop the user from reading */
207 	if (pos >= nvmem->size)
208 		return 0;
209 
210 	if (!IS_ALIGNED(pos, nvmem->stride))
211 		return -EINVAL;
212 
213 	if (count < nvmem->word_size)
214 		return -EINVAL;
215 
216 	if (pos + count > nvmem->size)
217 		count = nvmem->size - pos;
218 
219 	count = round_down(count, nvmem->word_size);
220 
221 	if (!nvmem->reg_read)
222 		return -EPERM;
223 
224 	rc = nvmem_reg_read(nvmem, pos, buf, count);
225 
226 	if (rc)
227 		return rc;
228 
229 	return count;
230 }
231 
232 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
233 				    struct bin_attribute *attr, char *buf,
234 				    loff_t pos, size_t count)
235 {
236 	struct device *dev;
237 	struct nvmem_device *nvmem;
238 	int rc;
239 
240 	if (attr->private)
241 		dev = attr->private;
242 	else
243 		dev = kobj_to_dev(kobj);
244 	nvmem = to_nvmem_device(dev);
245 
246 	/* Stop the user from writing */
247 	if (pos >= nvmem->size)
248 		return -EFBIG;
249 
250 	if (!IS_ALIGNED(pos, nvmem->stride))
251 		return -EINVAL;
252 
253 	if (count < nvmem->word_size)
254 		return -EINVAL;
255 
256 	if (pos + count > nvmem->size)
257 		count = nvmem->size - pos;
258 
259 	count = round_down(count, nvmem->word_size);
260 
261 	if (!nvmem->reg_write)
262 		return -EPERM;
263 
264 	rc = nvmem_reg_write(nvmem, pos, buf, count);
265 
266 	if (rc)
267 		return rc;
268 
269 	return count;
270 }
271 
272 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
273 {
274 	umode_t mode = 0400;
275 
276 	if (!nvmem->root_only)
277 		mode |= 0044;
278 
279 	if (!nvmem->read_only)
280 		mode |= 0200;
281 
282 	if (!nvmem->reg_write)
283 		mode &= ~0200;
284 
285 	if (!nvmem->reg_read)
286 		mode &= ~0444;
287 
288 	return mode;
289 }
290 
291 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
292 					 struct bin_attribute *attr, int i)
293 {
294 	struct device *dev = kobj_to_dev(kobj);
295 	struct nvmem_device *nvmem = to_nvmem_device(dev);
296 
297 	attr->size = nvmem->size;
298 
299 	return nvmem_bin_attr_get_umode(nvmem);
300 }
301 
302 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
303 					    const char *id, int index);
304 
305 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
306 				    struct bin_attribute *attr, char *buf,
307 				    loff_t pos, size_t count)
308 {
309 	struct nvmem_cell_entry *entry;
310 	struct nvmem_cell *cell = NULL;
311 	size_t cell_sz, read_len;
312 	void *content;
313 
314 	entry = attr->private;
315 	cell = nvmem_create_cell(entry, entry->name, 0);
316 	if (IS_ERR(cell))
317 		return PTR_ERR(cell);
318 
319 	if (!cell)
320 		return -EINVAL;
321 
322 	content = nvmem_cell_read(cell, &cell_sz);
323 	if (IS_ERR(content)) {
324 		read_len = PTR_ERR(content);
325 		goto destroy_cell;
326 	}
327 
328 	read_len = min_t(unsigned int, cell_sz - pos, count);
329 	memcpy(buf, content + pos, read_len);
330 	kfree(content);
331 
332 destroy_cell:
333 	kfree_const(cell->id);
334 	kfree(cell);
335 
336 	return read_len;
337 }
338 
339 /* default read/write permissions */
340 static struct bin_attribute bin_attr_rw_nvmem = {
341 	.attr	= {
342 		.name	= "nvmem",
343 		.mode	= 0644,
344 	},
345 	.read	= bin_attr_nvmem_read,
346 	.write	= bin_attr_nvmem_write,
347 };
348 
349 static struct bin_attribute *nvmem_bin_attributes[] = {
350 	&bin_attr_rw_nvmem,
351 	NULL,
352 };
353 
354 static const struct attribute_group nvmem_bin_group = {
355 	.bin_attrs	= nvmem_bin_attributes,
356 	.attrs		= nvmem_attrs,
357 	.is_bin_visible = nvmem_bin_attr_is_visible,
358 };
359 
360 /* Cell attributes will be dynamically allocated */
361 static struct attribute_group nvmem_cells_group = {
362 	.name		= "cells",
363 };
364 
365 static const struct attribute_group *nvmem_dev_groups[] = {
366 	&nvmem_bin_group,
367 	NULL,
368 };
369 
370 static const struct attribute_group *nvmem_cells_groups[] = {
371 	&nvmem_cells_group,
372 	NULL,
373 };
374 
375 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
376 	.attr	= {
377 		.name	= "eeprom",
378 	},
379 	.read	= bin_attr_nvmem_read,
380 	.write	= bin_attr_nvmem_write,
381 };
382 
383 /*
384  * nvmem_setup_compat() - Create an additional binary entry in
385  * drivers sys directory, to be backwards compatible with the older
386  * drivers/misc/eeprom drivers.
387  */
388 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
389 				    const struct nvmem_config *config)
390 {
391 	int rval;
392 
393 	if (!config->compat)
394 		return 0;
395 
396 	if (!config->base_dev)
397 		return -EINVAL;
398 
399 	if (config->type == NVMEM_TYPE_FRAM)
400 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
401 
402 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
403 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
404 	nvmem->eeprom.size = nvmem->size;
405 #ifdef CONFIG_DEBUG_LOCK_ALLOC
406 	nvmem->eeprom.attr.key = &eeprom_lock_key;
407 #endif
408 	nvmem->eeprom.private = &nvmem->dev;
409 	nvmem->base_dev = config->base_dev;
410 
411 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
412 	if (rval) {
413 		dev_err(&nvmem->dev,
414 			"Failed to create eeprom binary file %d\n", rval);
415 		return rval;
416 	}
417 
418 	nvmem->flags |= FLAG_COMPAT;
419 
420 	return 0;
421 }
422 
423 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
424 			      const struct nvmem_config *config)
425 {
426 	if (config->compat)
427 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
428 }
429 
430 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
431 {
432 	struct bin_attribute **cells_attrs, *attrs;
433 	struct nvmem_cell_entry *entry;
434 	unsigned int ncells = 0, i = 0;
435 	int ret = 0;
436 
437 	mutex_lock(&nvmem_mutex);
438 
439 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
440 		nvmem_cells_group.bin_attrs = NULL;
441 		goto unlock_mutex;
442 	}
443 
444 	/* Allocate an array of attributes with a sentinel */
445 	ncells = list_count_nodes(&nvmem->cells);
446 	cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
447 				   sizeof(struct bin_attribute *), GFP_KERNEL);
448 	if (!cells_attrs) {
449 		ret = -ENOMEM;
450 		goto unlock_mutex;
451 	}
452 
453 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
454 	if (!attrs) {
455 		ret = -ENOMEM;
456 		goto unlock_mutex;
457 	}
458 
459 	/* Initialize each attribute to take the name and size of the cell */
460 	list_for_each_entry(entry, &nvmem->cells, node) {
461 		sysfs_bin_attr_init(&attrs[i]);
462 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
463 						    "%s@%x", entry->name,
464 						    entry->offset);
465 		attrs[i].attr.mode = 0444;
466 		attrs[i].size = entry->bytes;
467 		attrs[i].read = &nvmem_cell_attr_read;
468 		attrs[i].private = entry;
469 		if (!attrs[i].attr.name) {
470 			ret = -ENOMEM;
471 			goto unlock_mutex;
472 		}
473 
474 		cells_attrs[i] = &attrs[i];
475 		i++;
476 	}
477 
478 	nvmem_cells_group.bin_attrs = cells_attrs;
479 
480 	ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
481 	if (ret)
482 		goto unlock_mutex;
483 
484 	nvmem->sysfs_cells_populated = true;
485 
486 unlock_mutex:
487 	mutex_unlock(&nvmem_mutex);
488 
489 	return ret;
490 }
491 
492 #else /* CONFIG_NVMEM_SYSFS */
493 
494 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
495 				    const struct nvmem_config *config)
496 {
497 	return -ENOSYS;
498 }
499 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
500 				      const struct nvmem_config *config)
501 {
502 }
503 
504 #endif /* CONFIG_NVMEM_SYSFS */
505 
506 static void nvmem_release(struct device *dev)
507 {
508 	struct nvmem_device *nvmem = to_nvmem_device(dev);
509 
510 	ida_free(&nvmem_ida, nvmem->id);
511 	gpiod_put(nvmem->wp_gpio);
512 	kfree(nvmem);
513 }
514 
515 static const struct device_type nvmem_provider_type = {
516 	.release	= nvmem_release,
517 };
518 
519 static struct bus_type nvmem_bus_type = {
520 	.name		= "nvmem",
521 };
522 
523 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
524 {
525 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
526 	mutex_lock(&nvmem_mutex);
527 	list_del(&cell->node);
528 	mutex_unlock(&nvmem_mutex);
529 	of_node_put(cell->np);
530 	kfree_const(cell->name);
531 	kfree(cell);
532 }
533 
534 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
535 {
536 	struct nvmem_cell_entry *cell, *p;
537 
538 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
539 		nvmem_cell_entry_drop(cell);
540 }
541 
542 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
543 {
544 	mutex_lock(&nvmem_mutex);
545 	list_add_tail(&cell->node, &cell->nvmem->cells);
546 	mutex_unlock(&nvmem_mutex);
547 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
548 }
549 
550 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
551 						     const struct nvmem_cell_info *info,
552 						     struct nvmem_cell_entry *cell)
553 {
554 	cell->nvmem = nvmem;
555 	cell->offset = info->offset;
556 	cell->raw_len = info->raw_len ?: info->bytes;
557 	cell->bytes = info->bytes;
558 	cell->name = info->name;
559 	cell->read_post_process = info->read_post_process;
560 	cell->priv = info->priv;
561 
562 	cell->bit_offset = info->bit_offset;
563 	cell->nbits = info->nbits;
564 	cell->np = info->np;
565 
566 	if (cell->nbits)
567 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
568 					   BITS_PER_BYTE);
569 
570 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
571 		dev_err(&nvmem->dev,
572 			"cell %s unaligned to nvmem stride %d\n",
573 			cell->name ?: "<unknown>", nvmem->stride);
574 		return -EINVAL;
575 	}
576 
577 	return 0;
578 }
579 
580 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
581 					       const struct nvmem_cell_info *info,
582 					       struct nvmem_cell_entry *cell)
583 {
584 	int err;
585 
586 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
587 	if (err)
588 		return err;
589 
590 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
591 	if (!cell->name)
592 		return -ENOMEM;
593 
594 	return 0;
595 }
596 
597 /**
598  * nvmem_add_one_cell() - Add one cell information to an nvmem device
599  *
600  * @nvmem: nvmem device to add cells to.
601  * @info: nvmem cell info to add to the device
602  *
603  * Return: 0 or negative error code on failure.
604  */
605 int nvmem_add_one_cell(struct nvmem_device *nvmem,
606 		       const struct nvmem_cell_info *info)
607 {
608 	struct nvmem_cell_entry *cell;
609 	int rval;
610 
611 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
612 	if (!cell)
613 		return -ENOMEM;
614 
615 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
616 	if (rval) {
617 		kfree(cell);
618 		return rval;
619 	}
620 
621 	nvmem_cell_entry_add(cell);
622 
623 	return 0;
624 }
625 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
626 
627 /**
628  * nvmem_add_cells() - Add cell information to an nvmem device
629  *
630  * @nvmem: nvmem device to add cells to.
631  * @info: nvmem cell info to add to the device
632  * @ncells: number of cells in info
633  *
634  * Return: 0 or negative error code on failure.
635  */
636 static int nvmem_add_cells(struct nvmem_device *nvmem,
637 		    const struct nvmem_cell_info *info,
638 		    int ncells)
639 {
640 	int i, rval;
641 
642 	for (i = 0; i < ncells; i++) {
643 		rval = nvmem_add_one_cell(nvmem, &info[i]);
644 		if (rval)
645 			return rval;
646 	}
647 
648 	return 0;
649 }
650 
651 /**
652  * nvmem_register_notifier() - Register a notifier block for nvmem events.
653  *
654  * @nb: notifier block to be called on nvmem events.
655  *
656  * Return: 0 on success, negative error number on failure.
657  */
658 int nvmem_register_notifier(struct notifier_block *nb)
659 {
660 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
661 }
662 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
663 
664 /**
665  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
666  *
667  * @nb: notifier block to be unregistered.
668  *
669  * Return: 0 on success, negative error number on failure.
670  */
671 int nvmem_unregister_notifier(struct notifier_block *nb)
672 {
673 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
674 }
675 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
676 
677 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
678 {
679 	const struct nvmem_cell_info *info;
680 	struct nvmem_cell_table *table;
681 	struct nvmem_cell_entry *cell;
682 	int rval = 0, i;
683 
684 	mutex_lock(&nvmem_cell_mutex);
685 	list_for_each_entry(table, &nvmem_cell_tables, node) {
686 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
687 			for (i = 0; i < table->ncells; i++) {
688 				info = &table->cells[i];
689 
690 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
691 				if (!cell) {
692 					rval = -ENOMEM;
693 					goto out;
694 				}
695 
696 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
697 				if (rval) {
698 					kfree(cell);
699 					goto out;
700 				}
701 
702 				nvmem_cell_entry_add(cell);
703 			}
704 		}
705 	}
706 
707 out:
708 	mutex_unlock(&nvmem_cell_mutex);
709 	return rval;
710 }
711 
712 static struct nvmem_cell_entry *
713 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
714 {
715 	struct nvmem_cell_entry *iter, *cell = NULL;
716 
717 	mutex_lock(&nvmem_mutex);
718 	list_for_each_entry(iter, &nvmem->cells, node) {
719 		if (strcmp(cell_id, iter->name) == 0) {
720 			cell = iter;
721 			break;
722 		}
723 	}
724 	mutex_unlock(&nvmem_mutex);
725 
726 	return cell;
727 }
728 
729 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
730 {
731 	unsigned int cur = 0;
732 	const struct nvmem_keepout *keepout = nvmem->keepout;
733 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
734 
735 	while (keepout < keepoutend) {
736 		/* Ensure keepouts are sorted and don't overlap. */
737 		if (keepout->start < cur) {
738 			dev_err(&nvmem->dev,
739 				"Keepout regions aren't sorted or overlap.\n");
740 
741 			return -ERANGE;
742 		}
743 
744 		if (keepout->end < keepout->start) {
745 			dev_err(&nvmem->dev,
746 				"Invalid keepout region.\n");
747 
748 			return -EINVAL;
749 		}
750 
751 		/*
752 		 * Validate keepouts (and holes between) don't violate
753 		 * word_size constraints.
754 		 */
755 		if ((keepout->end - keepout->start < nvmem->word_size) ||
756 		    ((keepout->start != cur) &&
757 		     (keepout->start - cur < nvmem->word_size))) {
758 
759 			dev_err(&nvmem->dev,
760 				"Keepout regions violate word_size constraints.\n");
761 
762 			return -ERANGE;
763 		}
764 
765 		/* Validate keepouts don't violate stride (alignment). */
766 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
767 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
768 
769 			dev_err(&nvmem->dev,
770 				"Keepout regions violate stride.\n");
771 
772 			return -EINVAL;
773 		}
774 
775 		cur = keepout->end;
776 		keepout++;
777 	}
778 
779 	return 0;
780 }
781 
782 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
783 {
784 	struct device *dev = &nvmem->dev;
785 	struct device_node *child;
786 	const __be32 *addr;
787 	int len, ret;
788 
789 	for_each_child_of_node(np, child) {
790 		struct nvmem_cell_info info = {0};
791 
792 		addr = of_get_property(child, "reg", &len);
793 		if (!addr)
794 			continue;
795 		if (len < 2 * sizeof(u32)) {
796 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
797 			of_node_put(child);
798 			return -EINVAL;
799 		}
800 
801 		info.offset = be32_to_cpup(addr++);
802 		info.bytes = be32_to_cpup(addr);
803 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
804 
805 		addr = of_get_property(child, "bits", &len);
806 		if (addr && len == (2 * sizeof(u32))) {
807 			info.bit_offset = be32_to_cpup(addr++);
808 			info.nbits = be32_to_cpup(addr);
809 		}
810 
811 		info.np = of_node_get(child);
812 
813 		if (nvmem->fixup_dt_cell_info)
814 			nvmem->fixup_dt_cell_info(nvmem, &info);
815 
816 		ret = nvmem_add_one_cell(nvmem, &info);
817 		kfree(info.name);
818 		if (ret) {
819 			of_node_put(child);
820 			return ret;
821 		}
822 	}
823 
824 	return 0;
825 }
826 
827 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
828 {
829 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
830 }
831 
832 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
833 {
834 	struct device_node *layout_np;
835 	int err = 0;
836 
837 	layout_np = of_nvmem_layout_get_container(nvmem);
838 	if (!layout_np)
839 		return 0;
840 
841 	if (of_device_is_compatible(layout_np, "fixed-layout"))
842 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
843 
844 	of_node_put(layout_np);
845 
846 	return err;
847 }
848 
849 int nvmem_layout_register(struct nvmem_layout *layout)
850 {
851 	int ret;
852 
853 	if (!layout->add_cells)
854 		return -EINVAL;
855 
856 	/* Populate the cells */
857 	ret = layout->add_cells(&layout->nvmem->dev, layout->nvmem);
858 	if (ret)
859 		return ret;
860 
861 #ifdef CONFIG_NVMEM_SYSFS
862 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
863 	if (ret) {
864 		nvmem_device_remove_all_cells(layout->nvmem);
865 		return ret;
866 	}
867 #endif
868 
869 	return 0;
870 }
871 EXPORT_SYMBOL_GPL(nvmem_layout_register);
872 
873 void nvmem_layout_unregister(struct nvmem_layout *layout)
874 {
875 	/* Keep the API even with an empty stub in case we need it later */
876 }
877 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
878 
879 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
880 					struct nvmem_layout *layout)
881 {
882 	struct device_node __maybe_unused *layout_np;
883 	const struct of_device_id *match;
884 
885 	layout_np = of_nvmem_layout_get_container(nvmem);
886 	match = of_match_node(layout->dev.driver->of_match_table, layout_np);
887 
888 	return match ? match->data : NULL;
889 }
890 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
891 
892 /**
893  * nvmem_register() - Register a nvmem device for given nvmem_config.
894  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
895  *
896  * @config: nvmem device configuration with which nvmem device is created.
897  *
898  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
899  * on success.
900  */
901 
902 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
903 {
904 	struct nvmem_device *nvmem;
905 	int rval;
906 
907 	if (!config->dev)
908 		return ERR_PTR(-EINVAL);
909 
910 	if (!config->reg_read && !config->reg_write)
911 		return ERR_PTR(-EINVAL);
912 
913 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
914 	if (!nvmem)
915 		return ERR_PTR(-ENOMEM);
916 
917 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
918 	if (rval < 0) {
919 		kfree(nvmem);
920 		return ERR_PTR(rval);
921 	}
922 
923 	nvmem->id = rval;
924 
925 	nvmem->dev.type = &nvmem_provider_type;
926 	nvmem->dev.bus = &nvmem_bus_type;
927 	nvmem->dev.parent = config->dev;
928 
929 	device_initialize(&nvmem->dev);
930 
931 	if (!config->ignore_wp)
932 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
933 						    GPIOD_OUT_HIGH);
934 	if (IS_ERR(nvmem->wp_gpio)) {
935 		rval = PTR_ERR(nvmem->wp_gpio);
936 		nvmem->wp_gpio = NULL;
937 		goto err_put_device;
938 	}
939 
940 	kref_init(&nvmem->refcnt);
941 	INIT_LIST_HEAD(&nvmem->cells);
942 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
943 
944 	nvmem->owner = config->owner;
945 	if (!nvmem->owner && config->dev->driver)
946 		nvmem->owner = config->dev->driver->owner;
947 	nvmem->stride = config->stride ?: 1;
948 	nvmem->word_size = config->word_size ?: 1;
949 	nvmem->size = config->size;
950 	nvmem->root_only = config->root_only;
951 	nvmem->priv = config->priv;
952 	nvmem->type = config->type;
953 	nvmem->reg_read = config->reg_read;
954 	nvmem->reg_write = config->reg_write;
955 	nvmem->keepout = config->keepout;
956 	nvmem->nkeepout = config->nkeepout;
957 	if (config->of_node)
958 		nvmem->dev.of_node = config->of_node;
959 	else
960 		nvmem->dev.of_node = config->dev->of_node;
961 
962 	switch (config->id) {
963 	case NVMEM_DEVID_NONE:
964 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
965 		break;
966 	case NVMEM_DEVID_AUTO:
967 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
968 		break;
969 	default:
970 		rval = dev_set_name(&nvmem->dev, "%s%d",
971 			     config->name ? : "nvmem",
972 			     config->name ? config->id : nvmem->id);
973 		break;
974 	}
975 
976 	if (rval)
977 		goto err_put_device;
978 
979 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
980 			   config->read_only || !nvmem->reg_write;
981 
982 #ifdef CONFIG_NVMEM_SYSFS
983 	nvmem->dev.groups = nvmem_dev_groups;
984 #endif
985 
986 	if (nvmem->nkeepout) {
987 		rval = nvmem_validate_keepouts(nvmem);
988 		if (rval)
989 			goto err_put_device;
990 	}
991 
992 	if (config->compat) {
993 		rval = nvmem_sysfs_setup_compat(nvmem, config);
994 		if (rval)
995 			goto err_put_device;
996 	}
997 
998 	if (config->cells) {
999 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1000 		if (rval)
1001 			goto err_remove_cells;
1002 	}
1003 
1004 	rval = nvmem_add_cells_from_table(nvmem);
1005 	if (rval)
1006 		goto err_remove_cells;
1007 
1008 	if (config->add_legacy_fixed_of_cells) {
1009 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1010 		if (rval)
1011 			goto err_remove_cells;
1012 	}
1013 
1014 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1015 	if (rval)
1016 		goto err_remove_cells;
1017 
1018 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1019 
1020 	rval = device_add(&nvmem->dev);
1021 	if (rval)
1022 		goto err_remove_cells;
1023 
1024 	rval = nvmem_populate_layout(nvmem);
1025 	if (rval)
1026 		goto err_remove_dev;
1027 
1028 #ifdef CONFIG_NVMEM_SYSFS
1029 	rval = nvmem_populate_sysfs_cells(nvmem);
1030 	if (rval)
1031 		goto err_destroy_layout;
1032 #endif
1033 
1034 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1035 
1036 	return nvmem;
1037 
1038 #ifdef CONFIG_NVMEM_SYSFS
1039 err_destroy_layout:
1040 	nvmem_destroy_layout(nvmem);
1041 #endif
1042 err_remove_dev:
1043 	device_del(&nvmem->dev);
1044 err_remove_cells:
1045 	nvmem_device_remove_all_cells(nvmem);
1046 	if (config->compat)
1047 		nvmem_sysfs_remove_compat(nvmem, config);
1048 err_put_device:
1049 	put_device(&nvmem->dev);
1050 
1051 	return ERR_PTR(rval);
1052 }
1053 EXPORT_SYMBOL_GPL(nvmem_register);
1054 
1055 static void nvmem_device_release(struct kref *kref)
1056 {
1057 	struct nvmem_device *nvmem;
1058 
1059 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1060 
1061 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1062 
1063 	if (nvmem->flags & FLAG_COMPAT)
1064 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1065 
1066 	nvmem_device_remove_all_cells(nvmem);
1067 	nvmem_destroy_layout(nvmem);
1068 	device_unregister(&nvmem->dev);
1069 }
1070 
1071 /**
1072  * nvmem_unregister() - Unregister previously registered nvmem device
1073  *
1074  * @nvmem: Pointer to previously registered nvmem device.
1075  */
1076 void nvmem_unregister(struct nvmem_device *nvmem)
1077 {
1078 	if (nvmem)
1079 		kref_put(&nvmem->refcnt, nvmem_device_release);
1080 }
1081 EXPORT_SYMBOL_GPL(nvmem_unregister);
1082 
1083 static void devm_nvmem_unregister(void *nvmem)
1084 {
1085 	nvmem_unregister(nvmem);
1086 }
1087 
1088 /**
1089  * devm_nvmem_register() - Register a managed nvmem device for given
1090  * nvmem_config.
1091  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1092  *
1093  * @dev: Device that uses the nvmem device.
1094  * @config: nvmem device configuration with which nvmem device is created.
1095  *
1096  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1097  * on success.
1098  */
1099 struct nvmem_device *devm_nvmem_register(struct device *dev,
1100 					 const struct nvmem_config *config)
1101 {
1102 	struct nvmem_device *nvmem;
1103 	int ret;
1104 
1105 	nvmem = nvmem_register(config);
1106 	if (IS_ERR(nvmem))
1107 		return nvmem;
1108 
1109 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1110 	if (ret)
1111 		return ERR_PTR(ret);
1112 
1113 	return nvmem;
1114 }
1115 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1116 
1117 static struct nvmem_device *__nvmem_device_get(void *data,
1118 			int (*match)(struct device *dev, const void *data))
1119 {
1120 	struct nvmem_device *nvmem = NULL;
1121 	struct device *dev;
1122 
1123 	mutex_lock(&nvmem_mutex);
1124 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1125 	if (dev)
1126 		nvmem = to_nvmem_device(dev);
1127 	mutex_unlock(&nvmem_mutex);
1128 	if (!nvmem)
1129 		return ERR_PTR(-EPROBE_DEFER);
1130 
1131 	if (!try_module_get(nvmem->owner)) {
1132 		dev_err(&nvmem->dev,
1133 			"could not increase module refcount for cell %s\n",
1134 			nvmem_dev_name(nvmem));
1135 
1136 		put_device(&nvmem->dev);
1137 		return ERR_PTR(-EINVAL);
1138 	}
1139 
1140 	kref_get(&nvmem->refcnt);
1141 
1142 	return nvmem;
1143 }
1144 
1145 static void __nvmem_device_put(struct nvmem_device *nvmem)
1146 {
1147 	put_device(&nvmem->dev);
1148 	module_put(nvmem->owner);
1149 	kref_put(&nvmem->refcnt, nvmem_device_release);
1150 }
1151 
1152 #if IS_ENABLED(CONFIG_OF)
1153 /**
1154  * of_nvmem_device_get() - Get nvmem device from a given id
1155  *
1156  * @np: Device tree node that uses the nvmem device.
1157  * @id: nvmem name from nvmem-names property.
1158  *
1159  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1160  * on success.
1161  */
1162 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1163 {
1164 
1165 	struct device_node *nvmem_np;
1166 	struct nvmem_device *nvmem;
1167 	int index = 0;
1168 
1169 	if (id)
1170 		index = of_property_match_string(np, "nvmem-names", id);
1171 
1172 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1173 	if (!nvmem_np)
1174 		return ERR_PTR(-ENOENT);
1175 
1176 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1177 	of_node_put(nvmem_np);
1178 	return nvmem;
1179 }
1180 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1181 #endif
1182 
1183 /**
1184  * nvmem_device_get() - Get nvmem device from a given id
1185  *
1186  * @dev: Device that uses the nvmem device.
1187  * @dev_name: name of the requested nvmem device.
1188  *
1189  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1190  * on success.
1191  */
1192 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1193 {
1194 	if (dev->of_node) { /* try dt first */
1195 		struct nvmem_device *nvmem;
1196 
1197 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1198 
1199 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1200 			return nvmem;
1201 
1202 	}
1203 
1204 	return __nvmem_device_get((void *)dev_name, device_match_name);
1205 }
1206 EXPORT_SYMBOL_GPL(nvmem_device_get);
1207 
1208 /**
1209  * nvmem_device_find() - Find nvmem device with matching function
1210  *
1211  * @data: Data to pass to match function
1212  * @match: Callback function to check device
1213  *
1214  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1215  * on success.
1216  */
1217 struct nvmem_device *nvmem_device_find(void *data,
1218 			int (*match)(struct device *dev, const void *data))
1219 {
1220 	return __nvmem_device_get(data, match);
1221 }
1222 EXPORT_SYMBOL_GPL(nvmem_device_find);
1223 
1224 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1225 {
1226 	struct nvmem_device **nvmem = res;
1227 
1228 	if (WARN_ON(!nvmem || !*nvmem))
1229 		return 0;
1230 
1231 	return *nvmem == data;
1232 }
1233 
1234 static void devm_nvmem_device_release(struct device *dev, void *res)
1235 {
1236 	nvmem_device_put(*(struct nvmem_device **)res);
1237 }
1238 
1239 /**
1240  * devm_nvmem_device_put() - put alredy got nvmem device
1241  *
1242  * @dev: Device that uses the nvmem device.
1243  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1244  * that needs to be released.
1245  */
1246 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1247 {
1248 	int ret;
1249 
1250 	ret = devres_release(dev, devm_nvmem_device_release,
1251 			     devm_nvmem_device_match, nvmem);
1252 
1253 	WARN_ON(ret);
1254 }
1255 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1256 
1257 /**
1258  * nvmem_device_put() - put alredy got nvmem device
1259  *
1260  * @nvmem: pointer to nvmem device that needs to be released.
1261  */
1262 void nvmem_device_put(struct nvmem_device *nvmem)
1263 {
1264 	__nvmem_device_put(nvmem);
1265 }
1266 EXPORT_SYMBOL_GPL(nvmem_device_put);
1267 
1268 /**
1269  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1270  *
1271  * @dev: Device that requests the nvmem device.
1272  * @id: name id for the requested nvmem device.
1273  *
1274  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1275  * on success.  The nvmem_cell will be freed by the automatically once the
1276  * device is freed.
1277  */
1278 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1279 {
1280 	struct nvmem_device **ptr, *nvmem;
1281 
1282 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1283 	if (!ptr)
1284 		return ERR_PTR(-ENOMEM);
1285 
1286 	nvmem = nvmem_device_get(dev, id);
1287 	if (!IS_ERR(nvmem)) {
1288 		*ptr = nvmem;
1289 		devres_add(dev, ptr);
1290 	} else {
1291 		devres_free(ptr);
1292 	}
1293 
1294 	return nvmem;
1295 }
1296 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1297 
1298 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1299 					    const char *id, int index)
1300 {
1301 	struct nvmem_cell *cell;
1302 	const char *name = NULL;
1303 
1304 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1305 	if (!cell)
1306 		return ERR_PTR(-ENOMEM);
1307 
1308 	if (id) {
1309 		name = kstrdup_const(id, GFP_KERNEL);
1310 		if (!name) {
1311 			kfree(cell);
1312 			return ERR_PTR(-ENOMEM);
1313 		}
1314 	}
1315 
1316 	cell->id = name;
1317 	cell->entry = entry;
1318 	cell->index = index;
1319 
1320 	return cell;
1321 }
1322 
1323 static struct nvmem_cell *
1324 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1325 {
1326 	struct nvmem_cell_entry *cell_entry;
1327 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1328 	struct nvmem_cell_lookup *lookup;
1329 	struct nvmem_device *nvmem;
1330 	const char *dev_id;
1331 
1332 	if (!dev)
1333 		return ERR_PTR(-EINVAL);
1334 
1335 	dev_id = dev_name(dev);
1336 
1337 	mutex_lock(&nvmem_lookup_mutex);
1338 
1339 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1340 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1341 		    (strcmp(lookup->con_id, con_id) == 0)) {
1342 			/* This is the right entry. */
1343 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1344 						   device_match_name);
1345 			if (IS_ERR(nvmem)) {
1346 				/* Provider may not be registered yet. */
1347 				cell = ERR_CAST(nvmem);
1348 				break;
1349 			}
1350 
1351 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1352 								   lookup->cell_name);
1353 			if (!cell_entry) {
1354 				__nvmem_device_put(nvmem);
1355 				cell = ERR_PTR(-ENOENT);
1356 			} else {
1357 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1358 				if (IS_ERR(cell))
1359 					__nvmem_device_put(nvmem);
1360 			}
1361 			break;
1362 		}
1363 	}
1364 
1365 	mutex_unlock(&nvmem_lookup_mutex);
1366 	return cell;
1367 }
1368 
1369 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1370 {
1371 	if (nvmem->layout && nvmem->layout->dev.driver)
1372 		module_put(nvmem->layout->dev.driver->owner);
1373 }
1374 
1375 #if IS_ENABLED(CONFIG_OF)
1376 static struct nvmem_cell_entry *
1377 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1378 {
1379 	struct nvmem_cell_entry *iter, *cell = NULL;
1380 
1381 	mutex_lock(&nvmem_mutex);
1382 	list_for_each_entry(iter, &nvmem->cells, node) {
1383 		if (np == iter->np) {
1384 			cell = iter;
1385 			break;
1386 		}
1387 	}
1388 	mutex_unlock(&nvmem_mutex);
1389 
1390 	return cell;
1391 }
1392 
1393 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1394 {
1395 	if (!nvmem->layout)
1396 		return 0;
1397 
1398 	if (!nvmem->layout->dev.driver ||
1399 	    !try_module_get(nvmem->layout->dev.driver->owner))
1400 		return -EPROBE_DEFER;
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1407  *
1408  * @np: Device tree node that uses the nvmem cell.
1409  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1410  *      for the cell at index 0 (the lone cell with no accompanying
1411  *      nvmem-cell-names property).
1412  *
1413  * Return: Will be an ERR_PTR() on error or a valid pointer
1414  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1415  * nvmem_cell_put().
1416  */
1417 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1418 {
1419 	struct device_node *cell_np, *nvmem_np;
1420 	struct nvmem_device *nvmem;
1421 	struct nvmem_cell_entry *cell_entry;
1422 	struct nvmem_cell *cell;
1423 	struct of_phandle_args cell_spec;
1424 	int index = 0;
1425 	int cell_index = 0;
1426 	int ret;
1427 
1428 	/* if cell name exists, find index to the name */
1429 	if (id)
1430 		index = of_property_match_string(np, "nvmem-cell-names", id);
1431 
1432 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1433 						  "#nvmem-cell-cells",
1434 						  index, &cell_spec);
1435 	if (ret)
1436 		return ERR_PTR(-ENOENT);
1437 
1438 	if (cell_spec.args_count > 1)
1439 		return ERR_PTR(-EINVAL);
1440 
1441 	cell_np = cell_spec.np;
1442 	if (cell_spec.args_count)
1443 		cell_index = cell_spec.args[0];
1444 
1445 	nvmem_np = of_get_parent(cell_np);
1446 	if (!nvmem_np) {
1447 		of_node_put(cell_np);
1448 		return ERR_PTR(-EINVAL);
1449 	}
1450 
1451 	/* nvmem layouts produce cells within the nvmem-layout container */
1452 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1453 		nvmem_np = of_get_next_parent(nvmem_np);
1454 		if (!nvmem_np) {
1455 			of_node_put(cell_np);
1456 			return ERR_PTR(-EINVAL);
1457 		}
1458 	}
1459 
1460 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1461 	of_node_put(nvmem_np);
1462 	if (IS_ERR(nvmem)) {
1463 		of_node_put(cell_np);
1464 		return ERR_CAST(nvmem);
1465 	}
1466 
1467 	ret = nvmem_layout_module_get_optional(nvmem);
1468 	if (ret) {
1469 		of_node_put(cell_np);
1470 		__nvmem_device_put(nvmem);
1471 		return ERR_PTR(ret);
1472 	}
1473 
1474 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1475 	of_node_put(cell_np);
1476 	if (!cell_entry) {
1477 		__nvmem_device_put(nvmem);
1478 		nvmem_layout_module_put(nvmem);
1479 		if (nvmem->layout)
1480 			return ERR_PTR(-EPROBE_DEFER);
1481 		else
1482 			return ERR_PTR(-ENOENT);
1483 	}
1484 
1485 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1486 	if (IS_ERR(cell)) {
1487 		__nvmem_device_put(nvmem);
1488 		nvmem_layout_module_put(nvmem);
1489 	}
1490 
1491 	return cell;
1492 }
1493 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1494 #endif
1495 
1496 /**
1497  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1498  *
1499  * @dev: Device that requests the nvmem cell.
1500  * @id: nvmem cell name to get (this corresponds with the name from the
1501  *      nvmem-cell-names property for DT systems and with the con_id from
1502  *      the lookup entry for non-DT systems).
1503  *
1504  * Return: Will be an ERR_PTR() on error or a valid pointer
1505  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1506  * nvmem_cell_put().
1507  */
1508 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1509 {
1510 	struct nvmem_cell *cell;
1511 
1512 	if (dev->of_node) { /* try dt first */
1513 		cell = of_nvmem_cell_get(dev->of_node, id);
1514 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1515 			return cell;
1516 	}
1517 
1518 	/* NULL cell id only allowed for device tree; invalid otherwise */
1519 	if (!id)
1520 		return ERR_PTR(-EINVAL);
1521 
1522 	return nvmem_cell_get_from_lookup(dev, id);
1523 }
1524 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1525 
1526 static void devm_nvmem_cell_release(struct device *dev, void *res)
1527 {
1528 	nvmem_cell_put(*(struct nvmem_cell **)res);
1529 }
1530 
1531 /**
1532  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1533  *
1534  * @dev: Device that requests the nvmem cell.
1535  * @id: nvmem cell name id to get.
1536  *
1537  * Return: Will be an ERR_PTR() on error or a valid pointer
1538  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1539  * automatically once the device is freed.
1540  */
1541 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1542 {
1543 	struct nvmem_cell **ptr, *cell;
1544 
1545 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1546 	if (!ptr)
1547 		return ERR_PTR(-ENOMEM);
1548 
1549 	cell = nvmem_cell_get(dev, id);
1550 	if (!IS_ERR(cell)) {
1551 		*ptr = cell;
1552 		devres_add(dev, ptr);
1553 	} else {
1554 		devres_free(ptr);
1555 	}
1556 
1557 	return cell;
1558 }
1559 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1560 
1561 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1562 {
1563 	struct nvmem_cell **c = res;
1564 
1565 	if (WARN_ON(!c || !*c))
1566 		return 0;
1567 
1568 	return *c == data;
1569 }
1570 
1571 /**
1572  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1573  * from devm_nvmem_cell_get.
1574  *
1575  * @dev: Device that requests the nvmem cell.
1576  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1577  */
1578 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1579 {
1580 	int ret;
1581 
1582 	ret = devres_release(dev, devm_nvmem_cell_release,
1583 				devm_nvmem_cell_match, cell);
1584 
1585 	WARN_ON(ret);
1586 }
1587 EXPORT_SYMBOL(devm_nvmem_cell_put);
1588 
1589 /**
1590  * nvmem_cell_put() - Release previously allocated nvmem cell.
1591  *
1592  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1593  */
1594 void nvmem_cell_put(struct nvmem_cell *cell)
1595 {
1596 	struct nvmem_device *nvmem = cell->entry->nvmem;
1597 
1598 	if (cell->id)
1599 		kfree_const(cell->id);
1600 
1601 	kfree(cell);
1602 	__nvmem_device_put(nvmem);
1603 	nvmem_layout_module_put(nvmem);
1604 }
1605 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1606 
1607 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1608 {
1609 	u8 *p, *b;
1610 	int i, extra, bit_offset = cell->bit_offset;
1611 
1612 	p = b = buf;
1613 	if (bit_offset) {
1614 		/* First shift */
1615 		*b++ >>= bit_offset;
1616 
1617 		/* setup rest of the bytes if any */
1618 		for (i = 1; i < cell->bytes; i++) {
1619 			/* Get bits from next byte and shift them towards msb */
1620 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1621 
1622 			p = b;
1623 			*b++ >>= bit_offset;
1624 		}
1625 	} else {
1626 		/* point to the msb */
1627 		p += cell->bytes - 1;
1628 	}
1629 
1630 	/* result fits in less bytes */
1631 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1632 	while (--extra >= 0)
1633 		*p-- = 0;
1634 
1635 	/* clear msb bits if any leftover in the last byte */
1636 	if (cell->nbits % BITS_PER_BYTE)
1637 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1638 }
1639 
1640 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1641 			     struct nvmem_cell_entry *cell,
1642 			     void *buf, size_t *len, const char *id, int index)
1643 {
1644 	int rc;
1645 
1646 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1647 
1648 	if (rc)
1649 		return rc;
1650 
1651 	/* shift bits in-place */
1652 	if (cell->bit_offset || cell->nbits)
1653 		nvmem_shift_read_buffer_in_place(cell, buf);
1654 
1655 	if (cell->read_post_process) {
1656 		rc = cell->read_post_process(cell->priv, id, index,
1657 					     cell->offset, buf, cell->raw_len);
1658 		if (rc)
1659 			return rc;
1660 	}
1661 
1662 	if (len)
1663 		*len = cell->bytes;
1664 
1665 	return 0;
1666 }
1667 
1668 /**
1669  * nvmem_cell_read() - Read a given nvmem cell
1670  *
1671  * @cell: nvmem cell to be read.
1672  * @len: pointer to length of cell which will be populated on successful read;
1673  *	 can be NULL.
1674  *
1675  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1676  * buffer should be freed by the consumer with a kfree().
1677  */
1678 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1679 {
1680 	struct nvmem_cell_entry *entry = cell->entry;
1681 	struct nvmem_device *nvmem = entry->nvmem;
1682 	u8 *buf;
1683 	int rc;
1684 
1685 	if (!nvmem)
1686 		return ERR_PTR(-EINVAL);
1687 
1688 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1689 	if (!buf)
1690 		return ERR_PTR(-ENOMEM);
1691 
1692 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1693 	if (rc) {
1694 		kfree(buf);
1695 		return ERR_PTR(rc);
1696 	}
1697 
1698 	return buf;
1699 }
1700 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1701 
1702 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1703 					     u8 *_buf, int len)
1704 {
1705 	struct nvmem_device *nvmem = cell->nvmem;
1706 	int i, rc, nbits, bit_offset = cell->bit_offset;
1707 	u8 v, *p, *buf, *b, pbyte, pbits;
1708 
1709 	nbits = cell->nbits;
1710 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1711 	if (!buf)
1712 		return ERR_PTR(-ENOMEM);
1713 
1714 	memcpy(buf, _buf, len);
1715 	p = b = buf;
1716 
1717 	if (bit_offset) {
1718 		pbyte = *b;
1719 		*b <<= bit_offset;
1720 
1721 		/* setup the first byte with lsb bits from nvmem */
1722 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1723 		if (rc)
1724 			goto err;
1725 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1726 
1727 		/* setup rest of the byte if any */
1728 		for (i = 1; i < cell->bytes; i++) {
1729 			/* Get last byte bits and shift them towards lsb */
1730 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1731 			pbyte = *b;
1732 			p = b;
1733 			*b <<= bit_offset;
1734 			*b++ |= pbits;
1735 		}
1736 	}
1737 
1738 	/* if it's not end on byte boundary */
1739 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1740 		/* setup the last byte with msb bits from nvmem */
1741 		rc = nvmem_reg_read(nvmem,
1742 				    cell->offset + cell->bytes - 1, &v, 1);
1743 		if (rc)
1744 			goto err;
1745 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1746 
1747 	}
1748 
1749 	return buf;
1750 err:
1751 	kfree(buf);
1752 	return ERR_PTR(rc);
1753 }
1754 
1755 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1756 {
1757 	struct nvmem_device *nvmem = cell->nvmem;
1758 	int rc;
1759 
1760 	if (!nvmem || nvmem->read_only ||
1761 	    (cell->bit_offset == 0 && len != cell->bytes))
1762 		return -EINVAL;
1763 
1764 	/*
1765 	 * Any cells which have a read_post_process hook are read-only because
1766 	 * we cannot reverse the operation and it might affect other cells,
1767 	 * too.
1768 	 */
1769 	if (cell->read_post_process)
1770 		return -EINVAL;
1771 
1772 	if (cell->bit_offset || cell->nbits) {
1773 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1774 		if (IS_ERR(buf))
1775 			return PTR_ERR(buf);
1776 	}
1777 
1778 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1779 
1780 	/* free the tmp buffer */
1781 	if (cell->bit_offset || cell->nbits)
1782 		kfree(buf);
1783 
1784 	if (rc)
1785 		return rc;
1786 
1787 	return len;
1788 }
1789 
1790 /**
1791  * nvmem_cell_write() - Write to a given nvmem cell
1792  *
1793  * @cell: nvmem cell to be written.
1794  * @buf: Buffer to be written.
1795  * @len: length of buffer to be written to nvmem cell.
1796  *
1797  * Return: length of bytes written or negative on failure.
1798  */
1799 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1800 {
1801 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1802 }
1803 
1804 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1805 
1806 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1807 				  void *val, size_t count)
1808 {
1809 	struct nvmem_cell *cell;
1810 	void *buf;
1811 	size_t len;
1812 
1813 	cell = nvmem_cell_get(dev, cell_id);
1814 	if (IS_ERR(cell))
1815 		return PTR_ERR(cell);
1816 
1817 	buf = nvmem_cell_read(cell, &len);
1818 	if (IS_ERR(buf)) {
1819 		nvmem_cell_put(cell);
1820 		return PTR_ERR(buf);
1821 	}
1822 	if (len != count) {
1823 		kfree(buf);
1824 		nvmem_cell_put(cell);
1825 		return -EINVAL;
1826 	}
1827 	memcpy(val, buf, count);
1828 	kfree(buf);
1829 	nvmem_cell_put(cell);
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * nvmem_cell_read_u8() - Read a cell value as a u8
1836  *
1837  * @dev: Device that requests the nvmem cell.
1838  * @cell_id: Name of nvmem cell to read.
1839  * @val: pointer to output value.
1840  *
1841  * Return: 0 on success or negative errno.
1842  */
1843 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1844 {
1845 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1846 }
1847 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1848 
1849 /**
1850  * nvmem_cell_read_u16() - Read a cell value as a u16
1851  *
1852  * @dev: Device that requests the nvmem cell.
1853  * @cell_id: Name of nvmem cell to read.
1854  * @val: pointer to output value.
1855  *
1856  * Return: 0 on success or negative errno.
1857  */
1858 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1859 {
1860 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1861 }
1862 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1863 
1864 /**
1865  * nvmem_cell_read_u32() - Read a cell value as a u32
1866  *
1867  * @dev: Device that requests the nvmem cell.
1868  * @cell_id: Name of nvmem cell to read.
1869  * @val: pointer to output value.
1870  *
1871  * Return: 0 on success or negative errno.
1872  */
1873 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1874 {
1875 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1876 }
1877 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1878 
1879 /**
1880  * nvmem_cell_read_u64() - Read a cell value as a u64
1881  *
1882  * @dev: Device that requests the nvmem cell.
1883  * @cell_id: Name of nvmem cell to read.
1884  * @val: pointer to output value.
1885  *
1886  * Return: 0 on success or negative errno.
1887  */
1888 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1889 {
1890 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1891 }
1892 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1893 
1894 static const void *nvmem_cell_read_variable_common(struct device *dev,
1895 						   const char *cell_id,
1896 						   size_t max_len, size_t *len)
1897 {
1898 	struct nvmem_cell *cell;
1899 	int nbits;
1900 	void *buf;
1901 
1902 	cell = nvmem_cell_get(dev, cell_id);
1903 	if (IS_ERR(cell))
1904 		return cell;
1905 
1906 	nbits = cell->entry->nbits;
1907 	buf = nvmem_cell_read(cell, len);
1908 	nvmem_cell_put(cell);
1909 	if (IS_ERR(buf))
1910 		return buf;
1911 
1912 	/*
1913 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1914 	 * the length of the real data. Throw away the extra junk.
1915 	 */
1916 	if (nbits)
1917 		*len = DIV_ROUND_UP(nbits, 8);
1918 
1919 	if (*len > max_len) {
1920 		kfree(buf);
1921 		return ERR_PTR(-ERANGE);
1922 	}
1923 
1924 	return buf;
1925 }
1926 
1927 /**
1928  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1929  *
1930  * @dev: Device that requests the nvmem cell.
1931  * @cell_id: Name of nvmem cell to read.
1932  * @val: pointer to output value.
1933  *
1934  * Return: 0 on success or negative errno.
1935  */
1936 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1937 				    u32 *val)
1938 {
1939 	size_t len;
1940 	const u8 *buf;
1941 	int i;
1942 
1943 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1944 	if (IS_ERR(buf))
1945 		return PTR_ERR(buf);
1946 
1947 	/* Copy w/ implicit endian conversion */
1948 	*val = 0;
1949 	for (i = 0; i < len; i++)
1950 		*val |= buf[i] << (8 * i);
1951 
1952 	kfree(buf);
1953 
1954 	return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1957 
1958 /**
1959  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1960  *
1961  * @dev: Device that requests the nvmem cell.
1962  * @cell_id: Name of nvmem cell to read.
1963  * @val: pointer to output value.
1964  *
1965  * Return: 0 on success or negative errno.
1966  */
1967 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1968 				    u64 *val)
1969 {
1970 	size_t len;
1971 	const u8 *buf;
1972 	int i;
1973 
1974 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1975 	if (IS_ERR(buf))
1976 		return PTR_ERR(buf);
1977 
1978 	/* Copy w/ implicit endian conversion */
1979 	*val = 0;
1980 	for (i = 0; i < len; i++)
1981 		*val |= (uint64_t)buf[i] << (8 * i);
1982 
1983 	kfree(buf);
1984 
1985 	return 0;
1986 }
1987 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1988 
1989 /**
1990  * nvmem_device_cell_read() - Read a given nvmem device and cell
1991  *
1992  * @nvmem: nvmem device to read from.
1993  * @info: nvmem cell info to be read.
1994  * @buf: buffer pointer which will be populated on successful read.
1995  *
1996  * Return: length of successful bytes read on success and negative
1997  * error code on error.
1998  */
1999 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2000 			   struct nvmem_cell_info *info, void *buf)
2001 {
2002 	struct nvmem_cell_entry cell;
2003 	int rc;
2004 	ssize_t len;
2005 
2006 	if (!nvmem)
2007 		return -EINVAL;
2008 
2009 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2010 	if (rc)
2011 		return rc;
2012 
2013 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2014 	if (rc)
2015 		return rc;
2016 
2017 	return len;
2018 }
2019 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2020 
2021 /**
2022  * nvmem_device_cell_write() - Write cell to a given nvmem device
2023  *
2024  * @nvmem: nvmem device to be written to.
2025  * @info: nvmem cell info to be written.
2026  * @buf: buffer to be written to cell.
2027  *
2028  * Return: length of bytes written or negative error code on failure.
2029  */
2030 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2031 			    struct nvmem_cell_info *info, void *buf)
2032 {
2033 	struct nvmem_cell_entry cell;
2034 	int rc;
2035 
2036 	if (!nvmem)
2037 		return -EINVAL;
2038 
2039 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2040 	if (rc)
2041 		return rc;
2042 
2043 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2044 }
2045 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2046 
2047 /**
2048  * nvmem_device_read() - Read from a given nvmem device
2049  *
2050  * @nvmem: nvmem device to read from.
2051  * @offset: offset in nvmem device.
2052  * @bytes: number of bytes to read.
2053  * @buf: buffer pointer which will be populated on successful read.
2054  *
2055  * Return: length of successful bytes read on success and negative
2056  * error code on error.
2057  */
2058 int nvmem_device_read(struct nvmem_device *nvmem,
2059 		      unsigned int offset,
2060 		      size_t bytes, void *buf)
2061 {
2062 	int rc;
2063 
2064 	if (!nvmem)
2065 		return -EINVAL;
2066 
2067 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2068 
2069 	if (rc)
2070 		return rc;
2071 
2072 	return bytes;
2073 }
2074 EXPORT_SYMBOL_GPL(nvmem_device_read);
2075 
2076 /**
2077  * nvmem_device_write() - Write cell to a given nvmem device
2078  *
2079  * @nvmem: nvmem device to be written to.
2080  * @offset: offset in nvmem device.
2081  * @bytes: number of bytes to write.
2082  * @buf: buffer to be written.
2083  *
2084  * Return: length of bytes written or negative error code on failure.
2085  */
2086 int nvmem_device_write(struct nvmem_device *nvmem,
2087 		       unsigned int offset,
2088 		       size_t bytes, void *buf)
2089 {
2090 	int rc;
2091 
2092 	if (!nvmem)
2093 		return -EINVAL;
2094 
2095 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2096 
2097 	if (rc)
2098 		return rc;
2099 
2100 
2101 	return bytes;
2102 }
2103 EXPORT_SYMBOL_GPL(nvmem_device_write);
2104 
2105 /**
2106  * nvmem_add_cell_table() - register a table of cell info entries
2107  *
2108  * @table: table of cell info entries
2109  */
2110 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2111 {
2112 	mutex_lock(&nvmem_cell_mutex);
2113 	list_add_tail(&table->node, &nvmem_cell_tables);
2114 	mutex_unlock(&nvmem_cell_mutex);
2115 }
2116 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2117 
2118 /**
2119  * nvmem_del_cell_table() - remove a previously registered cell info table
2120  *
2121  * @table: table of cell info entries
2122  */
2123 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2124 {
2125 	mutex_lock(&nvmem_cell_mutex);
2126 	list_del(&table->node);
2127 	mutex_unlock(&nvmem_cell_mutex);
2128 }
2129 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2130 
2131 /**
2132  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2133  *
2134  * @entries: array of cell lookup entries
2135  * @nentries: number of cell lookup entries in the array
2136  */
2137 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2138 {
2139 	int i;
2140 
2141 	mutex_lock(&nvmem_lookup_mutex);
2142 	for (i = 0; i < nentries; i++)
2143 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2144 	mutex_unlock(&nvmem_lookup_mutex);
2145 }
2146 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2147 
2148 /**
2149  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2150  *                            entries
2151  *
2152  * @entries: array of cell lookup entries
2153  * @nentries: number of cell lookup entries in the array
2154  */
2155 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2156 {
2157 	int i;
2158 
2159 	mutex_lock(&nvmem_lookup_mutex);
2160 	for (i = 0; i < nentries; i++)
2161 		list_del(&entries[i].node);
2162 	mutex_unlock(&nvmem_lookup_mutex);
2163 }
2164 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2165 
2166 /**
2167  * nvmem_dev_name() - Get the name of a given nvmem device.
2168  *
2169  * @nvmem: nvmem device.
2170  *
2171  * Return: name of the nvmem device.
2172  */
2173 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2174 {
2175 	return dev_name(&nvmem->dev);
2176 }
2177 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2178 
2179 static int __init nvmem_init(void)
2180 {
2181 	int ret;
2182 
2183 	ret = bus_register(&nvmem_bus_type);
2184 	if (ret)
2185 		return ret;
2186 
2187 	ret = nvmem_layout_bus_register();
2188 	if (ret)
2189 		bus_unregister(&nvmem_bus_type);
2190 
2191 	return ret;
2192 }
2193 
2194 static void __exit nvmem_exit(void)
2195 {
2196 	nvmem_layout_bus_unregister();
2197 	bus_unregister(&nvmem_bus_type);
2198 }
2199 
2200 subsys_initcall(nvmem_init);
2201 module_exit(nvmem_exit);
2202 
2203 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2204 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2205 MODULE_DESCRIPTION("nvmem Driver Core");
2206