xref: /linux/drivers/nvmem/core.c (revision 95f28190aa012b18eab14799b905b6db3cf31529)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27 
28 struct nvmem_device {
29 	const char		*name;
30 	struct module		*owner;
31 	struct device		dev;
32 	int			stride;
33 	int			word_size;
34 	int			ncells;
35 	int			id;
36 	int			users;
37 	size_t			size;
38 	bool			read_only;
39 	int			flags;
40 	struct bin_attribute	eeprom;
41 	struct device		*base_dev;
42 	nvmem_reg_read_t	reg_read;
43 	nvmem_reg_write_t	reg_write;
44 	void *priv;
45 };
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct nvmem_device	*nvmem;
56 	struct list_head	node;
57 };
58 
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61 
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68 
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 			  void *val, size_t bytes)
72 {
73 	if (nvmem->reg_read)
74 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75 
76 	return -EINVAL;
77 }
78 
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 			   void *val, size_t bytes)
81 {
82 	if (nvmem->reg_write)
83 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84 
85 	return -EINVAL;
86 }
87 
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 				    struct bin_attribute *attr,
90 				    char *buf, loff_t pos, size_t count)
91 {
92 	struct device *dev;
93 	struct nvmem_device *nvmem;
94 	int rc;
95 
96 	if (attr->private)
97 		dev = attr->private;
98 	else
99 		dev = container_of(kobj, struct device, kobj);
100 	nvmem = to_nvmem_device(dev);
101 
102 	/* Stop the user from reading */
103 	if (pos >= nvmem->size)
104 		return 0;
105 
106 	if (count < nvmem->word_size)
107 		return -EINVAL;
108 
109 	if (pos + count > nvmem->size)
110 		count = nvmem->size - pos;
111 
112 	count = round_down(count, nvmem->word_size);
113 
114 	rc = nvmem_reg_read(nvmem, pos, buf, count);
115 
116 	if (rc)
117 		return rc;
118 
119 	return count;
120 }
121 
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 				     struct bin_attribute *attr,
124 				     char *buf, loff_t pos, size_t count)
125 {
126 	struct device *dev;
127 	struct nvmem_device *nvmem;
128 	int rc;
129 
130 	if (attr->private)
131 		dev = attr->private;
132 	else
133 		dev = container_of(kobj, struct device, kobj);
134 	nvmem = to_nvmem_device(dev);
135 
136 	/* Stop the user from writing */
137 	if (pos >= nvmem->size)
138 		return -EFBIG;
139 
140 	if (count < nvmem->word_size)
141 		return -EINVAL;
142 
143 	if (pos + count > nvmem->size)
144 		count = nvmem->size - pos;
145 
146 	count = round_down(count, nvmem->word_size);
147 
148 	rc = nvmem_reg_write(nvmem, pos, buf, count);
149 
150 	if (rc)
151 		return rc;
152 
153 	return count;
154 }
155 
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 	.attr	= {
159 		.name	= "nvmem",
160 		.mode	= S_IWUSR | S_IRUGO,
161 	},
162 	.read	= bin_attr_nvmem_read,
163 	.write	= bin_attr_nvmem_write,
164 };
165 
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 	&bin_attr_rw_nvmem,
168 	NULL,
169 };
170 
171 static const struct attribute_group nvmem_bin_rw_group = {
172 	.bin_attrs	= nvmem_bin_rw_attributes,
173 };
174 
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 	&nvmem_bin_rw_group,
177 	NULL,
178 };
179 
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 	.attr	= {
183 		.name	= "nvmem",
184 		.mode	= S_IRUGO,
185 	},
186 	.read	= bin_attr_nvmem_read,
187 };
188 
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 	&bin_attr_ro_nvmem,
191 	NULL,
192 };
193 
194 static const struct attribute_group nvmem_bin_ro_group = {
195 	.bin_attrs	= nvmem_bin_ro_attributes,
196 };
197 
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 	&nvmem_bin_ro_group,
200 	NULL,
201 };
202 
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 	.attr	= {
206 		.name	= "nvmem",
207 		.mode	= S_IWUSR | S_IRUSR,
208 	},
209 	.read	= bin_attr_nvmem_read,
210 	.write	= bin_attr_nvmem_write,
211 };
212 
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 	&bin_attr_rw_root_nvmem,
215 	NULL,
216 };
217 
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 	.bin_attrs	= nvmem_bin_rw_root_attributes,
220 };
221 
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 	&nvmem_bin_rw_root_group,
224 	NULL,
225 };
226 
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 	.attr	= {
230 		.name	= "nvmem",
231 		.mode	= S_IRUSR,
232 	},
233 	.read	= bin_attr_nvmem_read,
234 };
235 
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 	&bin_attr_ro_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 	.bin_attrs	= nvmem_bin_ro_root_attributes,
243 };
244 
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 	&nvmem_bin_ro_root_group,
247 	NULL,
248 };
249 
250 static void nvmem_release(struct device *dev)
251 {
252 	struct nvmem_device *nvmem = to_nvmem_device(dev);
253 
254 	ida_simple_remove(&nvmem_ida, nvmem->id);
255 	kfree(nvmem);
256 }
257 
258 static const struct device_type nvmem_provider_type = {
259 	.release	= nvmem_release,
260 };
261 
262 static struct bus_type nvmem_bus_type = {
263 	.name		= "nvmem",
264 };
265 
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 	return dev->of_node == nvmem_np;
269 }
270 
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 	struct device *d;
274 
275 	if (!nvmem_np)
276 		return NULL;
277 
278 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279 
280 	if (!d)
281 		return NULL;
282 
283 	return to_nvmem_device(d);
284 }
285 
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 	struct nvmem_cell *p;
289 
290 	mutex_lock(&nvmem_cells_mutex);
291 
292 	list_for_each_entry(p, &nvmem_cells, node)
293 		if (!strcmp(p->name, cell_id)) {
294 			mutex_unlock(&nvmem_cells_mutex);
295 			return p;
296 		}
297 
298 	mutex_unlock(&nvmem_cells_mutex);
299 
300 	return NULL;
301 }
302 
303 static void nvmem_cell_drop(struct nvmem_cell *cell)
304 {
305 	mutex_lock(&nvmem_cells_mutex);
306 	list_del(&cell->node);
307 	mutex_unlock(&nvmem_cells_mutex);
308 	kfree(cell);
309 }
310 
311 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
312 {
313 	struct nvmem_cell *cell;
314 	struct list_head *p, *n;
315 
316 	list_for_each_safe(p, n, &nvmem_cells) {
317 		cell = list_entry(p, struct nvmem_cell, node);
318 		if (cell->nvmem == nvmem)
319 			nvmem_cell_drop(cell);
320 	}
321 }
322 
323 static void nvmem_cell_add(struct nvmem_cell *cell)
324 {
325 	mutex_lock(&nvmem_cells_mutex);
326 	list_add_tail(&cell->node, &nvmem_cells);
327 	mutex_unlock(&nvmem_cells_mutex);
328 }
329 
330 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
331 				   const struct nvmem_cell_info *info,
332 				   struct nvmem_cell *cell)
333 {
334 	cell->nvmem = nvmem;
335 	cell->offset = info->offset;
336 	cell->bytes = info->bytes;
337 	cell->name = info->name;
338 
339 	cell->bit_offset = info->bit_offset;
340 	cell->nbits = info->nbits;
341 
342 	if (cell->nbits)
343 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
344 					   BITS_PER_BYTE);
345 
346 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
347 		dev_err(&nvmem->dev,
348 			"cell %s unaligned to nvmem stride %d\n",
349 			cell->name, nvmem->stride);
350 		return -EINVAL;
351 	}
352 
353 	return 0;
354 }
355 
356 static int nvmem_add_cells(struct nvmem_device *nvmem,
357 			   const struct nvmem_config *cfg)
358 {
359 	struct nvmem_cell **cells;
360 	const struct nvmem_cell_info *info = cfg->cells;
361 	int i, rval;
362 
363 	cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
364 	if (!cells)
365 		return -ENOMEM;
366 
367 	for (i = 0; i < cfg->ncells; i++) {
368 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
369 		if (!cells[i]) {
370 			rval = -ENOMEM;
371 			goto err;
372 		}
373 
374 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
375 		if (rval) {
376 			kfree(cells[i]);
377 			goto err;
378 		}
379 
380 		nvmem_cell_add(cells[i]);
381 	}
382 
383 	nvmem->ncells = cfg->ncells;
384 	/* remove tmp array */
385 	kfree(cells);
386 
387 	return 0;
388 err:
389 	while (i--)
390 		nvmem_cell_drop(cells[i]);
391 
392 	kfree(cells);
393 
394 	return rval;
395 }
396 
397 /*
398  * nvmem_setup_compat() - Create an additional binary entry in
399  * drivers sys directory, to be backwards compatible with the older
400  * drivers/misc/eeprom drivers.
401  */
402 static int nvmem_setup_compat(struct nvmem_device *nvmem,
403 			      const struct nvmem_config *config)
404 {
405 	int rval;
406 
407 	if (!config->base_dev)
408 		return -EINVAL;
409 
410 	if (nvmem->read_only)
411 		nvmem->eeprom = bin_attr_ro_root_nvmem;
412 	else
413 		nvmem->eeprom = bin_attr_rw_root_nvmem;
414 	nvmem->eeprom.attr.name = "eeprom";
415 	nvmem->eeprom.size = nvmem->size;
416 #ifdef CONFIG_DEBUG_LOCK_ALLOC
417 	nvmem->eeprom.attr.key = &eeprom_lock_key;
418 #endif
419 	nvmem->eeprom.private = &nvmem->dev;
420 	nvmem->base_dev = config->base_dev;
421 
422 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
423 	if (rval) {
424 		dev_err(&nvmem->dev,
425 			"Failed to create eeprom binary file %d\n", rval);
426 		return rval;
427 	}
428 
429 	nvmem->flags |= FLAG_COMPAT;
430 
431 	return 0;
432 }
433 
434 /**
435  * nvmem_register() - Register a nvmem device for given nvmem_config.
436  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
437  *
438  * @config: nvmem device configuration with which nvmem device is created.
439  *
440  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
441  * on success.
442  */
443 
444 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
445 {
446 	struct nvmem_device *nvmem;
447 	struct device_node *np;
448 	int rval;
449 
450 	if (!config->dev)
451 		return ERR_PTR(-EINVAL);
452 
453 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
454 	if (!nvmem)
455 		return ERR_PTR(-ENOMEM);
456 
457 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
458 	if (rval < 0) {
459 		kfree(nvmem);
460 		return ERR_PTR(rval);
461 	}
462 
463 	nvmem->id = rval;
464 	nvmem->owner = config->owner;
465 	if (!nvmem->owner && config->dev->driver)
466 		nvmem->owner = config->dev->driver->owner;
467 	nvmem->stride = config->stride;
468 	nvmem->word_size = config->word_size;
469 	nvmem->size = config->size;
470 	nvmem->dev.type = &nvmem_provider_type;
471 	nvmem->dev.bus = &nvmem_bus_type;
472 	nvmem->dev.parent = config->dev;
473 	nvmem->priv = config->priv;
474 	nvmem->reg_read = config->reg_read;
475 	nvmem->reg_write = config->reg_write;
476 	np = config->dev->of_node;
477 	nvmem->dev.of_node = np;
478 	dev_set_name(&nvmem->dev, "%s%d",
479 		     config->name ? : "nvmem",
480 		     config->name ? config->id : nvmem->id);
481 
482 	nvmem->read_only = of_property_read_bool(np, "read-only") |
483 			   config->read_only;
484 
485 	if (config->root_only)
486 		nvmem->dev.groups = nvmem->read_only ?
487 			nvmem_ro_root_dev_groups :
488 			nvmem_rw_root_dev_groups;
489 	else
490 		nvmem->dev.groups = nvmem->read_only ?
491 			nvmem_ro_dev_groups :
492 			nvmem_rw_dev_groups;
493 
494 	device_initialize(&nvmem->dev);
495 
496 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
497 
498 	rval = device_add(&nvmem->dev);
499 	if (rval)
500 		goto err_put_device;
501 
502 	if (config->compat) {
503 		rval = nvmem_setup_compat(nvmem, config);
504 		if (rval)
505 			goto err_device_del;
506 	}
507 
508 	if (config->cells)
509 		nvmem_add_cells(nvmem, config);
510 
511 	return nvmem;
512 
513 err_device_del:
514 	device_del(&nvmem->dev);
515 err_put_device:
516 	put_device(&nvmem->dev);
517 
518 	return ERR_PTR(rval);
519 }
520 EXPORT_SYMBOL_GPL(nvmem_register);
521 
522 /**
523  * nvmem_unregister() - Unregister previously registered nvmem device
524  *
525  * @nvmem: Pointer to previously registered nvmem device.
526  *
527  * Return: Will be an negative on error or a zero on success.
528  */
529 int nvmem_unregister(struct nvmem_device *nvmem)
530 {
531 	mutex_lock(&nvmem_mutex);
532 	if (nvmem->users) {
533 		mutex_unlock(&nvmem_mutex);
534 		return -EBUSY;
535 	}
536 	mutex_unlock(&nvmem_mutex);
537 
538 	if (nvmem->flags & FLAG_COMPAT)
539 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
540 
541 	nvmem_device_remove_all_cells(nvmem);
542 	device_del(&nvmem->dev);
543 	put_device(&nvmem->dev);
544 
545 	return 0;
546 }
547 EXPORT_SYMBOL_GPL(nvmem_unregister);
548 
549 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
550 					       struct nvmem_cell **cellp,
551 					       const char *cell_id)
552 {
553 	struct nvmem_device *nvmem = NULL;
554 
555 	mutex_lock(&nvmem_mutex);
556 
557 	if (np) {
558 		nvmem = of_nvmem_find(np);
559 		if (!nvmem) {
560 			mutex_unlock(&nvmem_mutex);
561 			return ERR_PTR(-EPROBE_DEFER);
562 		}
563 	} else {
564 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
565 
566 		if (cell) {
567 			nvmem = cell->nvmem;
568 			*cellp = cell;
569 		}
570 
571 		if (!nvmem) {
572 			mutex_unlock(&nvmem_mutex);
573 			return ERR_PTR(-ENOENT);
574 		}
575 	}
576 
577 	nvmem->users++;
578 	mutex_unlock(&nvmem_mutex);
579 
580 	if (!try_module_get(nvmem->owner)) {
581 		dev_err(&nvmem->dev,
582 			"could not increase module refcount for cell %s\n",
583 			nvmem->name);
584 
585 		mutex_lock(&nvmem_mutex);
586 		nvmem->users--;
587 		mutex_unlock(&nvmem_mutex);
588 
589 		return ERR_PTR(-EINVAL);
590 	}
591 
592 	return nvmem;
593 }
594 
595 static void __nvmem_device_put(struct nvmem_device *nvmem)
596 {
597 	module_put(nvmem->owner);
598 	mutex_lock(&nvmem_mutex);
599 	nvmem->users--;
600 	mutex_unlock(&nvmem_mutex);
601 }
602 
603 static int nvmem_match(struct device *dev, void *data)
604 {
605 	return !strcmp(dev_name(dev), data);
606 }
607 
608 static struct nvmem_device *nvmem_find(const char *name)
609 {
610 	struct device *d;
611 
612 	d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
613 
614 	if (!d)
615 		return NULL;
616 
617 	return to_nvmem_device(d);
618 }
619 
620 #if IS_ENABLED(CONFIG_OF)
621 /**
622  * of_nvmem_device_get() - Get nvmem device from a given id
623  *
624  * @np: Device tree node that uses the nvmem device.
625  * @id: nvmem name from nvmem-names property.
626  *
627  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
628  * on success.
629  */
630 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
631 {
632 
633 	struct device_node *nvmem_np;
634 	int index;
635 
636 	index = of_property_match_string(np, "nvmem-names", id);
637 
638 	nvmem_np = of_parse_phandle(np, "nvmem", index);
639 	if (!nvmem_np)
640 		return ERR_PTR(-EINVAL);
641 
642 	return __nvmem_device_get(nvmem_np, NULL, NULL);
643 }
644 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
645 #endif
646 
647 /**
648  * nvmem_device_get() - Get nvmem device from a given id
649  *
650  * @dev: Device that uses the nvmem device.
651  * @dev_name: name of the requested nvmem device.
652  *
653  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
654  * on success.
655  */
656 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
657 {
658 	if (dev->of_node) { /* try dt first */
659 		struct nvmem_device *nvmem;
660 
661 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
662 
663 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
664 			return nvmem;
665 
666 	}
667 
668 	return nvmem_find(dev_name);
669 }
670 EXPORT_SYMBOL_GPL(nvmem_device_get);
671 
672 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
673 {
674 	struct nvmem_device **nvmem = res;
675 
676 	if (WARN_ON(!nvmem || !*nvmem))
677 		return 0;
678 
679 	return *nvmem == data;
680 }
681 
682 static void devm_nvmem_device_release(struct device *dev, void *res)
683 {
684 	nvmem_device_put(*(struct nvmem_device **)res);
685 }
686 
687 /**
688  * devm_nvmem_device_put() - put alredy got nvmem device
689  *
690  * @dev: Device that uses the nvmem device.
691  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
692  * that needs to be released.
693  */
694 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
695 {
696 	int ret;
697 
698 	ret = devres_release(dev, devm_nvmem_device_release,
699 			     devm_nvmem_device_match, nvmem);
700 
701 	WARN_ON(ret);
702 }
703 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
704 
705 /**
706  * nvmem_device_put() - put alredy got nvmem device
707  *
708  * @nvmem: pointer to nvmem device that needs to be released.
709  */
710 void nvmem_device_put(struct nvmem_device *nvmem)
711 {
712 	__nvmem_device_put(nvmem);
713 }
714 EXPORT_SYMBOL_GPL(nvmem_device_put);
715 
716 /**
717  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
718  *
719  * @dev: Device that requests the nvmem device.
720  * @id: name id for the requested nvmem device.
721  *
722  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
723  * on success.  The nvmem_cell will be freed by the automatically once the
724  * device is freed.
725  */
726 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
727 {
728 	struct nvmem_device **ptr, *nvmem;
729 
730 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
731 	if (!ptr)
732 		return ERR_PTR(-ENOMEM);
733 
734 	nvmem = nvmem_device_get(dev, id);
735 	if (!IS_ERR(nvmem)) {
736 		*ptr = nvmem;
737 		devres_add(dev, ptr);
738 	} else {
739 		devres_free(ptr);
740 	}
741 
742 	return nvmem;
743 }
744 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
745 
746 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
747 {
748 	struct nvmem_cell *cell = NULL;
749 	struct nvmem_device *nvmem;
750 
751 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
752 	if (IS_ERR(nvmem))
753 		return ERR_CAST(nvmem);
754 
755 	return cell;
756 }
757 
758 #if IS_ENABLED(CONFIG_OF)
759 /**
760  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
761  *
762  * @np: Device tree node that uses the nvmem cell.
763  * @name: nvmem cell name from nvmem-cell-names property, or NULL
764  *	  for the cell at index 0 (the lone cell with no accompanying
765  *	  nvmem-cell-names property).
766  *
767  * Return: Will be an ERR_PTR() on error or a valid pointer
768  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
769  * nvmem_cell_put().
770  */
771 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
772 					    const char *name)
773 {
774 	struct device_node *cell_np, *nvmem_np;
775 	struct nvmem_cell *cell;
776 	struct nvmem_device *nvmem;
777 	const __be32 *addr;
778 	int rval, len;
779 	int index = 0;
780 
781 	/* if cell name exists, find index to the name */
782 	if (name)
783 		index = of_property_match_string(np, "nvmem-cell-names", name);
784 
785 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
786 	if (!cell_np)
787 		return ERR_PTR(-EINVAL);
788 
789 	nvmem_np = of_get_next_parent(cell_np);
790 	if (!nvmem_np)
791 		return ERR_PTR(-EINVAL);
792 
793 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
794 	of_node_put(nvmem_np);
795 	if (IS_ERR(nvmem))
796 		return ERR_CAST(nvmem);
797 
798 	addr = of_get_property(cell_np, "reg", &len);
799 	if (!addr || (len < 2 * sizeof(u32))) {
800 		dev_err(&nvmem->dev, "nvmem: invalid reg on %pOF\n",
801 			cell_np);
802 		rval  = -EINVAL;
803 		goto err_mem;
804 	}
805 
806 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
807 	if (!cell) {
808 		rval = -ENOMEM;
809 		goto err_mem;
810 	}
811 
812 	cell->nvmem = nvmem;
813 	cell->offset = be32_to_cpup(addr++);
814 	cell->bytes = be32_to_cpup(addr);
815 	cell->name = cell_np->name;
816 
817 	addr = of_get_property(cell_np, "bits", &len);
818 	if (addr && len == (2 * sizeof(u32))) {
819 		cell->bit_offset = be32_to_cpup(addr++);
820 		cell->nbits = be32_to_cpup(addr);
821 	}
822 
823 	if (cell->nbits)
824 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
825 					   BITS_PER_BYTE);
826 
827 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
828 			dev_err(&nvmem->dev,
829 				"cell %s unaligned to nvmem stride %d\n",
830 				cell->name, nvmem->stride);
831 		rval  = -EINVAL;
832 		goto err_sanity;
833 	}
834 
835 	nvmem_cell_add(cell);
836 
837 	return cell;
838 
839 err_sanity:
840 	kfree(cell);
841 
842 err_mem:
843 	__nvmem_device_put(nvmem);
844 
845 	return ERR_PTR(rval);
846 }
847 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
848 #endif
849 
850 /**
851  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
852  *
853  * @dev: Device that requests the nvmem cell.
854  * @cell_id: nvmem cell name to get.
855  *
856  * Return: Will be an ERR_PTR() on error or a valid pointer
857  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
858  * nvmem_cell_put().
859  */
860 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
861 {
862 	struct nvmem_cell *cell;
863 
864 	if (dev->of_node) { /* try dt first */
865 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
866 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
867 			return cell;
868 	}
869 
870 	return nvmem_cell_get_from_list(cell_id);
871 }
872 EXPORT_SYMBOL_GPL(nvmem_cell_get);
873 
874 static void devm_nvmem_cell_release(struct device *dev, void *res)
875 {
876 	nvmem_cell_put(*(struct nvmem_cell **)res);
877 }
878 
879 /**
880  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
881  *
882  * @dev: Device that requests the nvmem cell.
883  * @id: nvmem cell name id to get.
884  *
885  * Return: Will be an ERR_PTR() on error or a valid pointer
886  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
887  * automatically once the device is freed.
888  */
889 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
890 {
891 	struct nvmem_cell **ptr, *cell;
892 
893 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
894 	if (!ptr)
895 		return ERR_PTR(-ENOMEM);
896 
897 	cell = nvmem_cell_get(dev, id);
898 	if (!IS_ERR(cell)) {
899 		*ptr = cell;
900 		devres_add(dev, ptr);
901 	} else {
902 		devres_free(ptr);
903 	}
904 
905 	return cell;
906 }
907 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
908 
909 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
910 {
911 	struct nvmem_cell **c = res;
912 
913 	if (WARN_ON(!c || !*c))
914 		return 0;
915 
916 	return *c == data;
917 }
918 
919 /**
920  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
921  * from devm_nvmem_cell_get.
922  *
923  * @dev: Device that requests the nvmem cell.
924  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
925  */
926 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
927 {
928 	int ret;
929 
930 	ret = devres_release(dev, devm_nvmem_cell_release,
931 				devm_nvmem_cell_match, cell);
932 
933 	WARN_ON(ret);
934 }
935 EXPORT_SYMBOL(devm_nvmem_cell_put);
936 
937 /**
938  * nvmem_cell_put() - Release previously allocated nvmem cell.
939  *
940  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
941  */
942 void nvmem_cell_put(struct nvmem_cell *cell)
943 {
944 	struct nvmem_device *nvmem = cell->nvmem;
945 
946 	__nvmem_device_put(nvmem);
947 	nvmem_cell_drop(cell);
948 }
949 EXPORT_SYMBOL_GPL(nvmem_cell_put);
950 
951 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
952 {
953 	u8 *p, *b;
954 	int i, bit_offset = cell->bit_offset;
955 
956 	p = b = buf;
957 	if (bit_offset) {
958 		/* First shift */
959 		*b++ >>= bit_offset;
960 
961 		/* setup rest of the bytes if any */
962 		for (i = 1; i < cell->bytes; i++) {
963 			/* Get bits from next byte and shift them towards msb */
964 			*p |= *b << (BITS_PER_BYTE - bit_offset);
965 
966 			p = b;
967 			*b++ >>= bit_offset;
968 		}
969 
970 		/* result fits in less bytes */
971 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
972 			*p-- = 0;
973 	}
974 	/* clear msb bits if any leftover in the last byte */
975 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
976 }
977 
978 static int __nvmem_cell_read(struct nvmem_device *nvmem,
979 		      struct nvmem_cell *cell,
980 		      void *buf, size_t *len)
981 {
982 	int rc;
983 
984 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
985 
986 	if (rc)
987 		return rc;
988 
989 	/* shift bits in-place */
990 	if (cell->bit_offset || cell->nbits)
991 		nvmem_shift_read_buffer_in_place(cell, buf);
992 
993 	if (len)
994 		*len = cell->bytes;
995 
996 	return 0;
997 }
998 
999 /**
1000  * nvmem_cell_read() - Read a given nvmem cell
1001  *
1002  * @cell: nvmem cell to be read.
1003  * @len: pointer to length of cell which will be populated on successful read;
1004  *	 can be NULL.
1005  *
1006  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1007  * buffer should be freed by the consumer with a kfree().
1008  */
1009 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1010 {
1011 	struct nvmem_device *nvmem = cell->nvmem;
1012 	u8 *buf;
1013 	int rc;
1014 
1015 	if (!nvmem)
1016 		return ERR_PTR(-EINVAL);
1017 
1018 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1019 	if (!buf)
1020 		return ERR_PTR(-ENOMEM);
1021 
1022 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1023 	if (rc) {
1024 		kfree(buf);
1025 		return ERR_PTR(rc);
1026 	}
1027 
1028 	return buf;
1029 }
1030 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1031 
1032 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1033 					     u8 *_buf, int len)
1034 {
1035 	struct nvmem_device *nvmem = cell->nvmem;
1036 	int i, rc, nbits, bit_offset = cell->bit_offset;
1037 	u8 v, *p, *buf, *b, pbyte, pbits;
1038 
1039 	nbits = cell->nbits;
1040 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1041 	if (!buf)
1042 		return ERR_PTR(-ENOMEM);
1043 
1044 	memcpy(buf, _buf, len);
1045 	p = b = buf;
1046 
1047 	if (bit_offset) {
1048 		pbyte = *b;
1049 		*b <<= bit_offset;
1050 
1051 		/* setup the first byte with lsb bits from nvmem */
1052 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1053 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1054 
1055 		/* setup rest of the byte if any */
1056 		for (i = 1; i < cell->bytes; i++) {
1057 			/* Get last byte bits and shift them towards lsb */
1058 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1059 			pbyte = *b;
1060 			p = b;
1061 			*b <<= bit_offset;
1062 			*b++ |= pbits;
1063 		}
1064 	}
1065 
1066 	/* if it's not end on byte boundary */
1067 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1068 		/* setup the last byte with msb bits from nvmem */
1069 		rc = nvmem_reg_read(nvmem,
1070 				    cell->offset + cell->bytes - 1, &v, 1);
1071 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1072 
1073 	}
1074 
1075 	return buf;
1076 }
1077 
1078 /**
1079  * nvmem_cell_write() - Write to a given nvmem cell
1080  *
1081  * @cell: nvmem cell to be written.
1082  * @buf: Buffer to be written.
1083  * @len: length of buffer to be written to nvmem cell.
1084  *
1085  * Return: length of bytes written or negative on failure.
1086  */
1087 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1088 {
1089 	struct nvmem_device *nvmem = cell->nvmem;
1090 	int rc;
1091 
1092 	if (!nvmem || nvmem->read_only ||
1093 	    (cell->bit_offset == 0 && len != cell->bytes))
1094 		return -EINVAL;
1095 
1096 	if (cell->bit_offset || cell->nbits) {
1097 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1098 		if (IS_ERR(buf))
1099 			return PTR_ERR(buf);
1100 	}
1101 
1102 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1103 
1104 	/* free the tmp buffer */
1105 	if (cell->bit_offset || cell->nbits)
1106 		kfree(buf);
1107 
1108 	if (rc)
1109 		return rc;
1110 
1111 	return len;
1112 }
1113 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1114 
1115 /**
1116  * nvmem_cell_read_u32() - Read a cell value as an u32
1117  *
1118  * @dev: Device that requests the nvmem cell.
1119  * @cell_id: Name of nvmem cell to read.
1120  * @val: pointer to output value.
1121  *
1122  * Return: 0 on success or negative errno.
1123  */
1124 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1125 {
1126 	struct nvmem_cell *cell;
1127 	void *buf;
1128 	size_t len;
1129 
1130 	cell = nvmem_cell_get(dev, cell_id);
1131 	if (IS_ERR(cell))
1132 		return PTR_ERR(cell);
1133 
1134 	buf = nvmem_cell_read(cell, &len);
1135 	if (IS_ERR(buf)) {
1136 		nvmem_cell_put(cell);
1137 		return PTR_ERR(buf);
1138 	}
1139 	if (len != sizeof(*val)) {
1140 		kfree(buf);
1141 		nvmem_cell_put(cell);
1142 		return -EINVAL;
1143 	}
1144 	memcpy(val, buf, sizeof(*val));
1145 
1146 	kfree(buf);
1147 	nvmem_cell_put(cell);
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1151 
1152 /**
1153  * nvmem_device_cell_read() - Read a given nvmem device and cell
1154  *
1155  * @nvmem: nvmem device to read from.
1156  * @info: nvmem cell info to be read.
1157  * @buf: buffer pointer which will be populated on successful read.
1158  *
1159  * Return: length of successful bytes read on success and negative
1160  * error code on error.
1161  */
1162 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1163 			   struct nvmem_cell_info *info, void *buf)
1164 {
1165 	struct nvmem_cell cell;
1166 	int rc;
1167 	ssize_t len;
1168 
1169 	if (!nvmem)
1170 		return -EINVAL;
1171 
1172 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1173 	if (rc)
1174 		return rc;
1175 
1176 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1177 	if (rc)
1178 		return rc;
1179 
1180 	return len;
1181 }
1182 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1183 
1184 /**
1185  * nvmem_device_cell_write() - Write cell to a given nvmem device
1186  *
1187  * @nvmem: nvmem device to be written to.
1188  * @info: nvmem cell info to be written.
1189  * @buf: buffer to be written to cell.
1190  *
1191  * Return: length of bytes written or negative error code on failure.
1192  * */
1193 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1194 			    struct nvmem_cell_info *info, void *buf)
1195 {
1196 	struct nvmem_cell cell;
1197 	int rc;
1198 
1199 	if (!nvmem)
1200 		return -EINVAL;
1201 
1202 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1203 	if (rc)
1204 		return rc;
1205 
1206 	return nvmem_cell_write(&cell, buf, cell.bytes);
1207 }
1208 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1209 
1210 /**
1211  * nvmem_device_read() - Read from a given nvmem device
1212  *
1213  * @nvmem: nvmem device to read from.
1214  * @offset: offset in nvmem device.
1215  * @bytes: number of bytes to read.
1216  * @buf: buffer pointer which will be populated on successful read.
1217  *
1218  * Return: length of successful bytes read on success and negative
1219  * error code on error.
1220  */
1221 int nvmem_device_read(struct nvmem_device *nvmem,
1222 		      unsigned int offset,
1223 		      size_t bytes, void *buf)
1224 {
1225 	int rc;
1226 
1227 	if (!nvmem)
1228 		return -EINVAL;
1229 
1230 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1231 
1232 	if (rc)
1233 		return rc;
1234 
1235 	return bytes;
1236 }
1237 EXPORT_SYMBOL_GPL(nvmem_device_read);
1238 
1239 /**
1240  * nvmem_device_write() - Write cell to a given nvmem device
1241  *
1242  * @nvmem: nvmem device to be written to.
1243  * @offset: offset in nvmem device.
1244  * @bytes: number of bytes to write.
1245  * @buf: buffer to be written.
1246  *
1247  * Return: length of bytes written or negative error code on failure.
1248  * */
1249 int nvmem_device_write(struct nvmem_device *nvmem,
1250 		       unsigned int offset,
1251 		       size_t bytes, void *buf)
1252 {
1253 	int rc;
1254 
1255 	if (!nvmem)
1256 		return -EINVAL;
1257 
1258 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1259 
1260 	if (rc)
1261 		return rc;
1262 
1263 
1264 	return bytes;
1265 }
1266 EXPORT_SYMBOL_GPL(nvmem_device_write);
1267 
1268 static int __init nvmem_init(void)
1269 {
1270 	return bus_register(&nvmem_bus_type);
1271 }
1272 
1273 static void __exit nvmem_exit(void)
1274 {
1275 	bus_unregister(&nvmem_bus_type);
1276 }
1277 
1278 subsys_initcall(nvmem_init);
1279 module_exit(nvmem_exit);
1280 
1281 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1282 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1283 MODULE_DESCRIPTION("nvmem Driver Core");
1284 MODULE_LICENSE("GPL v2");
1285