xref: /linux/drivers/nvmem/core.c (revision 94c37d42cb7ca362aee9633bec2dbeed787edf3e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_lookup_mutex);
51 static LIST_HEAD(nvmem_lookup_list);
52 
53 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
54 
55 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
56 			    void *val, size_t bytes)
57 {
58 	if (nvmem->reg_read)
59 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
60 
61 	return -EINVAL;
62 }
63 
64 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
65 			     void *val, size_t bytes)
66 {
67 	int ret;
68 
69 	if (nvmem->reg_write) {
70 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
71 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
72 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
73 		return ret;
74 	}
75 
76 	return -EINVAL;
77 }
78 
79 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
80 				      unsigned int offset, void *val,
81 				      size_t bytes, int write)
82 {
83 
84 	unsigned int end = offset + bytes;
85 	unsigned int kend, ksize;
86 	const struct nvmem_keepout *keepout = nvmem->keepout;
87 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
88 	int rc;
89 
90 	/*
91 	 * Skip all keepouts before the range being accessed.
92 	 * Keepouts are sorted.
93 	 */
94 	while ((keepout < keepoutend) && (keepout->end <= offset))
95 		keepout++;
96 
97 	while ((offset < end) && (keepout < keepoutend)) {
98 		/* Access the valid portion before the keepout. */
99 		if (offset < keepout->start) {
100 			kend = min(end, keepout->start);
101 			ksize = kend - offset;
102 			if (write)
103 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
104 			else
105 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
106 
107 			if (rc)
108 				return rc;
109 
110 			offset += ksize;
111 			val += ksize;
112 		}
113 
114 		/*
115 		 * Now we're aligned to the start of this keepout zone. Go
116 		 * through it.
117 		 */
118 		kend = min(end, keepout->end);
119 		ksize = kend - offset;
120 		if (!write)
121 			memset(val, keepout->value, ksize);
122 
123 		val += ksize;
124 		offset += ksize;
125 		keepout++;
126 	}
127 
128 	/*
129 	 * If we ran out of keepouts but there's still stuff to do, send it
130 	 * down directly
131 	 */
132 	if (offset < end) {
133 		ksize = end - offset;
134 		if (write)
135 			return __nvmem_reg_write(nvmem, offset, val, ksize);
136 		else
137 			return __nvmem_reg_read(nvmem, offset, val, ksize);
138 	}
139 
140 	return 0;
141 }
142 
143 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
144 			  void *val, size_t bytes)
145 {
146 	if (!nvmem->nkeepout)
147 		return __nvmem_reg_read(nvmem, offset, val, bytes);
148 
149 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
150 }
151 
152 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
153 			   void *val, size_t bytes)
154 {
155 	if (!nvmem->nkeepout)
156 		return __nvmem_reg_write(nvmem, offset, val, bytes);
157 
158 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
159 }
160 
161 #ifdef CONFIG_NVMEM_SYSFS
162 static const char * const nvmem_type_str[] = {
163 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
164 	[NVMEM_TYPE_EEPROM] = "EEPROM",
165 	[NVMEM_TYPE_OTP] = "OTP",
166 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
167 	[NVMEM_TYPE_FRAM] = "FRAM",
168 };
169 
170 #ifdef CONFIG_DEBUG_LOCK_ALLOC
171 static struct lock_class_key eeprom_lock_key;
172 #endif
173 
174 static ssize_t type_show(struct device *dev,
175 			 struct device_attribute *attr, char *buf)
176 {
177 	struct nvmem_device *nvmem = to_nvmem_device(dev);
178 
179 	return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
180 }
181 
182 static DEVICE_ATTR_RO(type);
183 
184 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
185 			     char *buf)
186 {
187 	struct nvmem_device *nvmem = to_nvmem_device(dev);
188 
189 	return sysfs_emit(buf, "%d\n", nvmem->read_only);
190 }
191 
192 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
193 			      const char *buf, size_t count)
194 {
195 	struct nvmem_device *nvmem = to_nvmem_device(dev);
196 	int ret = kstrtobool(buf, &nvmem->read_only);
197 
198 	if (ret < 0)
199 		return ret;
200 
201 	return count;
202 }
203 
204 static DEVICE_ATTR_RW(force_ro);
205 
206 static struct attribute *nvmem_attrs[] = {
207 	&dev_attr_force_ro.attr,
208 	&dev_attr_type.attr,
209 	NULL,
210 };
211 
212 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
213 				   const struct bin_attribute *attr, char *buf,
214 				   loff_t pos, size_t count)
215 {
216 	struct device *dev;
217 	struct nvmem_device *nvmem;
218 	int rc;
219 
220 	if (attr->private)
221 		dev = attr->private;
222 	else
223 		dev = kobj_to_dev(kobj);
224 	nvmem = to_nvmem_device(dev);
225 
226 	if (!IS_ALIGNED(pos, nvmem->stride))
227 		return -EINVAL;
228 
229 	if (count < nvmem->word_size)
230 		return -EINVAL;
231 
232 	count = round_down(count, nvmem->word_size);
233 
234 	if (!nvmem->reg_read)
235 		return -EPERM;
236 
237 	rc = nvmem_reg_read(nvmem, pos, buf, count);
238 
239 	if (rc)
240 		return rc;
241 
242 	return count;
243 }
244 
245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 				    const struct bin_attribute *attr, char *buf,
247 				    loff_t pos, size_t count)
248 {
249 	struct device *dev;
250 	struct nvmem_device *nvmem;
251 	int rc;
252 
253 	if (attr->private)
254 		dev = attr->private;
255 	else
256 		dev = kobj_to_dev(kobj);
257 	nvmem = to_nvmem_device(dev);
258 
259 	if (!IS_ALIGNED(pos, nvmem->stride))
260 		return -EINVAL;
261 
262 	if (count < nvmem->word_size)
263 		return -EINVAL;
264 
265 	count = round_down(count, nvmem->word_size);
266 
267 	if (!nvmem->reg_write || nvmem->read_only)
268 		return -EPERM;
269 
270 	rc = nvmem_reg_write(nvmem, pos, buf, count);
271 
272 	if (rc)
273 		return rc;
274 
275 	return count;
276 }
277 
278 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
279 {
280 	umode_t mode = 0400;
281 
282 	if (!nvmem->root_only)
283 		mode |= 0044;
284 
285 	if (!nvmem->read_only)
286 		mode |= 0200;
287 
288 	if (!nvmem->reg_write)
289 		mode &= ~0200;
290 
291 	if (!nvmem->reg_read)
292 		mode &= ~0444;
293 
294 	return mode;
295 }
296 
297 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
298 					 const struct bin_attribute *attr,
299 					 int i)
300 {
301 	struct device *dev = kobj_to_dev(kobj);
302 	struct nvmem_device *nvmem = to_nvmem_device(dev);
303 
304 	return nvmem_bin_attr_get_umode(nvmem);
305 }
306 
307 static size_t nvmem_bin_attr_size(struct kobject *kobj,
308 				  const struct bin_attribute *attr,
309 				  int i)
310 {
311 	struct device *dev = kobj_to_dev(kobj);
312 	struct nvmem_device *nvmem = to_nvmem_device(dev);
313 
314 	return nvmem->size;
315 }
316 
317 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
318 				     struct attribute *attr, int i)
319 {
320 	struct device *dev = kobj_to_dev(kobj);
321 	struct nvmem_device *nvmem = to_nvmem_device(dev);
322 
323 	/*
324 	 * If the device has no .reg_write operation, do not allow
325 	 * configuration as read-write.
326 	 * If the device is set as read-only by configuration, it
327 	 * can be forced into read-write mode using the 'force_ro'
328 	 * attribute.
329 	 */
330 	if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
331 		return 0;	/* Attribute not visible */
332 
333 	return attr->mode;
334 }
335 
336 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
337 					    const char *id, int index);
338 
339 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
340 				    const struct bin_attribute *attr, char *buf,
341 				    loff_t pos, size_t count)
342 {
343 	struct nvmem_cell_entry *entry;
344 	struct nvmem_cell *cell = NULL;
345 	size_t cell_sz, read_len;
346 	void *content;
347 
348 	entry = attr->private;
349 	cell = nvmem_create_cell(entry, entry->name, 0);
350 	if (IS_ERR(cell))
351 		return PTR_ERR(cell);
352 
353 	if (!cell)
354 		return -EINVAL;
355 
356 	content = nvmem_cell_read(cell, &cell_sz);
357 	if (IS_ERR(content)) {
358 		read_len = PTR_ERR(content);
359 		goto destroy_cell;
360 	}
361 
362 	read_len = min_t(unsigned int, cell_sz - pos, count);
363 	memcpy(buf, content + pos, read_len);
364 	kfree(content);
365 
366 destroy_cell:
367 	kfree_const(cell->id);
368 	kfree(cell);
369 
370 	return read_len;
371 }
372 
373 /* default read/write permissions */
374 static const struct bin_attribute bin_attr_rw_nvmem = {
375 	.attr	= {
376 		.name	= "nvmem",
377 		.mode	= 0644,
378 	},
379 	.read	= bin_attr_nvmem_read,
380 	.write	= bin_attr_nvmem_write,
381 };
382 
383 static const struct bin_attribute *const nvmem_bin_attributes[] = {
384 	&bin_attr_rw_nvmem,
385 	NULL,
386 };
387 
388 static const struct attribute_group nvmem_bin_group = {
389 	.bin_attrs	= nvmem_bin_attributes,
390 	.attrs		= nvmem_attrs,
391 	.is_bin_visible = nvmem_bin_attr_is_visible,
392 	.bin_size	= nvmem_bin_attr_size,
393 	.is_visible	= nvmem_attr_is_visible,
394 };
395 
396 static const struct attribute_group *nvmem_dev_groups[] = {
397 	&nvmem_bin_group,
398 	NULL,
399 };
400 
401 static const struct bin_attribute bin_attr_nvmem_eeprom_compat = {
402 	.attr	= {
403 		.name	= "eeprom",
404 	},
405 	.read	= bin_attr_nvmem_read,
406 	.write	= bin_attr_nvmem_write,
407 };
408 
409 /*
410  * nvmem_setup_compat() - Create an additional binary entry in
411  * drivers sys directory, to be backwards compatible with the older
412  * drivers/misc/eeprom drivers.
413  */
414 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
415 				    const struct nvmem_config *config)
416 {
417 	int rval;
418 
419 	if (!config->compat)
420 		return 0;
421 
422 	if (!config->base_dev)
423 		return -EINVAL;
424 
425 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
426 	if (config->type == NVMEM_TYPE_FRAM)
427 		nvmem->eeprom.attr.name = "fram";
428 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
429 	nvmem->eeprom.size = nvmem->size;
430 #ifdef CONFIG_DEBUG_LOCK_ALLOC
431 	nvmem->eeprom.attr.key = &eeprom_lock_key;
432 #endif
433 	nvmem->eeprom.private = &nvmem->dev;
434 	nvmem->base_dev = config->base_dev;
435 
436 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
437 	if (rval) {
438 		dev_err(&nvmem->dev,
439 			"Failed to create eeprom binary file %d\n", rval);
440 		return rval;
441 	}
442 
443 	nvmem->flags |= FLAG_COMPAT;
444 
445 	return 0;
446 }
447 
448 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
449 			      const struct nvmem_config *config)
450 {
451 	if (config->compat)
452 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
453 }
454 
455 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
456 {
457 	struct attribute_group group = {
458 		.name	= "cells",
459 	};
460 	struct nvmem_cell_entry *entry;
461 	const struct bin_attribute **pattrs;
462 	struct bin_attribute *attrs;
463 	unsigned int ncells = 0, i = 0;
464 	int ret = 0;
465 
466 	mutex_lock(&nvmem_mutex);
467 
468 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
469 		goto unlock_mutex;
470 
471 	/* Allocate an array of attributes with a sentinel */
472 	ncells = list_count_nodes(&nvmem->cells);
473 	pattrs = devm_kcalloc(&nvmem->dev, ncells + 1,
474 			      sizeof(struct bin_attribute *), GFP_KERNEL);
475 	if (!pattrs) {
476 		ret = -ENOMEM;
477 		goto unlock_mutex;
478 	}
479 
480 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
481 	if (!attrs) {
482 		ret = -ENOMEM;
483 		goto unlock_mutex;
484 	}
485 
486 	/* Initialize each attribute to take the name and size of the cell */
487 	list_for_each_entry(entry, &nvmem->cells, node) {
488 		sysfs_bin_attr_init(&attrs[i]);
489 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
490 						    "%s@%x,%x", entry->name,
491 						    entry->offset,
492 						    entry->bit_offset);
493 		attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
494 		attrs[i].size = entry->bytes;
495 		attrs[i].read = &nvmem_cell_attr_read;
496 		attrs[i].private = entry;
497 		if (!attrs[i].attr.name) {
498 			ret = -ENOMEM;
499 			goto unlock_mutex;
500 		}
501 
502 		pattrs[i] = &attrs[i];
503 		i++;
504 	}
505 
506 	group.bin_attrs = pattrs;
507 
508 	ret = device_add_group(&nvmem->dev, &group);
509 	if (ret)
510 		goto unlock_mutex;
511 
512 	nvmem->sysfs_cells_populated = true;
513 
514 unlock_mutex:
515 	mutex_unlock(&nvmem_mutex);
516 
517 	return ret;
518 }
519 
520 #else /* CONFIG_NVMEM_SYSFS */
521 
522 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
523 				    const struct nvmem_config *config)
524 {
525 	return -ENOSYS;
526 }
527 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
528 				      const struct nvmem_config *config)
529 {
530 }
531 
532 #endif /* CONFIG_NVMEM_SYSFS */
533 
534 static void nvmem_release(struct device *dev)
535 {
536 	struct nvmem_device *nvmem = to_nvmem_device(dev);
537 
538 	ida_free(&nvmem_ida, nvmem->id);
539 	gpiod_put(nvmem->wp_gpio);
540 	kfree(nvmem);
541 }
542 
543 static const struct device_type nvmem_provider_type = {
544 	.release	= nvmem_release,
545 };
546 
547 static const struct bus_type nvmem_bus_type = {
548 	.name		= "nvmem",
549 };
550 
551 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
552 {
553 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
554 	mutex_lock(&nvmem_mutex);
555 	list_del(&cell->node);
556 	mutex_unlock(&nvmem_mutex);
557 	of_node_put(cell->np);
558 	kfree_const(cell->name);
559 	kfree(cell);
560 }
561 
562 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
563 {
564 	struct nvmem_cell_entry *cell, *p;
565 
566 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
567 		nvmem_cell_entry_drop(cell);
568 }
569 
570 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
571 {
572 	mutex_lock(&nvmem_mutex);
573 	list_add_tail(&cell->node, &cell->nvmem->cells);
574 	mutex_unlock(&nvmem_mutex);
575 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
576 }
577 
578 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
579 						     const struct nvmem_cell_info *info,
580 						     struct nvmem_cell_entry *cell)
581 {
582 	cell->nvmem = nvmem;
583 	cell->offset = info->offset;
584 	cell->raw_len = info->raw_len ?: info->bytes;
585 	cell->bytes = info->bytes;
586 	cell->name = info->name;
587 	cell->read_post_process = info->read_post_process;
588 	cell->priv = info->priv;
589 
590 	cell->bit_offset = info->bit_offset;
591 	cell->nbits = info->nbits;
592 	cell->np = info->np;
593 
594 	if (cell->nbits) {
595 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
596 					   BITS_PER_BYTE);
597 		cell->raw_len = ALIGN(cell->bytes, nvmem->word_size);
598 	}
599 
600 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
601 		dev_err(&nvmem->dev,
602 			"cell %s unaligned to nvmem stride %d\n",
603 			cell->name ?: "<unknown>", nvmem->stride);
604 		return -EINVAL;
605 	}
606 
607 	if (!IS_ALIGNED(cell->raw_len, nvmem->word_size)) {
608 		dev_err(&nvmem->dev,
609 			"cell %s raw len %zd unaligned to nvmem word size %d\n",
610 			cell->name ?: "<unknown>", cell->raw_len,
611 			nvmem->word_size);
612 
613 		if (info->raw_len)
614 			return -EINVAL;
615 
616 		cell->raw_len = ALIGN(cell->raw_len, nvmem->word_size);
617 	}
618 
619 	return 0;
620 }
621 
622 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
623 					       const struct nvmem_cell_info *info,
624 					       struct nvmem_cell_entry *cell)
625 {
626 	int err;
627 
628 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
629 	if (err)
630 		return err;
631 
632 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
633 	if (!cell->name)
634 		return -ENOMEM;
635 
636 	return 0;
637 }
638 
639 /**
640  * nvmem_add_one_cell() - Add one cell information to an nvmem device
641  *
642  * @nvmem: nvmem device to add cells to.
643  * @info: nvmem cell info to add to the device
644  *
645  * Return: 0 or negative error code on failure.
646  */
647 int nvmem_add_one_cell(struct nvmem_device *nvmem,
648 		       const struct nvmem_cell_info *info)
649 {
650 	struct nvmem_cell_entry *cell;
651 	int rval;
652 
653 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
654 	if (!cell)
655 		return -ENOMEM;
656 
657 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
658 	if (rval) {
659 		kfree(cell);
660 		return rval;
661 	}
662 
663 	nvmem_cell_entry_add(cell);
664 
665 	return 0;
666 }
667 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
668 
669 /**
670  * nvmem_add_cells() - Add cell information to an nvmem device
671  *
672  * @nvmem: nvmem device to add cells to.
673  * @info: nvmem cell info to add to the device
674  * @ncells: number of cells in info
675  *
676  * Return: 0 or negative error code on failure.
677  */
678 static int nvmem_add_cells(struct nvmem_device *nvmem,
679 		    const struct nvmem_cell_info *info,
680 		    int ncells)
681 {
682 	int i, rval;
683 
684 	for (i = 0; i < ncells; i++) {
685 		rval = nvmem_add_one_cell(nvmem, &info[i]);
686 		if (rval)
687 			return rval;
688 	}
689 
690 	return 0;
691 }
692 
693 /**
694  * nvmem_register_notifier() - Register a notifier block for nvmem events.
695  *
696  * @nb: notifier block to be called on nvmem events.
697  *
698  * Return: 0 on success, negative error number on failure.
699  */
700 int nvmem_register_notifier(struct notifier_block *nb)
701 {
702 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
703 }
704 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
705 
706 /**
707  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
708  *
709  * @nb: notifier block to be unregistered.
710  *
711  * Return: 0 on success, negative error number on failure.
712  */
713 int nvmem_unregister_notifier(struct notifier_block *nb)
714 {
715 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
716 }
717 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
718 
719 static struct nvmem_cell_entry *
720 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
721 {
722 	struct nvmem_cell_entry *iter, *cell = NULL;
723 
724 	mutex_lock(&nvmem_mutex);
725 	list_for_each_entry(iter, &nvmem->cells, node) {
726 		if (strcmp(cell_id, iter->name) == 0) {
727 			cell = iter;
728 			break;
729 		}
730 	}
731 	mutex_unlock(&nvmem_mutex);
732 
733 	return cell;
734 }
735 
736 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
737 {
738 	unsigned int cur = 0;
739 	const struct nvmem_keepout *keepout = nvmem->keepout;
740 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
741 
742 	while (keepout < keepoutend) {
743 		/* Ensure keepouts are sorted and don't overlap. */
744 		if (keepout->start < cur) {
745 			dev_err(&nvmem->dev,
746 				"Keepout regions aren't sorted or overlap.\n");
747 
748 			return -ERANGE;
749 		}
750 
751 		if (keepout->end < keepout->start) {
752 			dev_err(&nvmem->dev,
753 				"Invalid keepout region.\n");
754 
755 			return -EINVAL;
756 		}
757 
758 		/*
759 		 * Validate keepouts (and holes between) don't violate
760 		 * word_size constraints.
761 		 */
762 		if ((keepout->end - keepout->start < nvmem->word_size) ||
763 		    ((keepout->start != cur) &&
764 		     (keepout->start - cur < nvmem->word_size))) {
765 
766 			dev_err(&nvmem->dev,
767 				"Keepout regions violate word_size constraints.\n");
768 
769 			return -ERANGE;
770 		}
771 
772 		/* Validate keepouts don't violate stride (alignment). */
773 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
774 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
775 
776 			dev_err(&nvmem->dev,
777 				"Keepout regions violate stride.\n");
778 
779 			return -EINVAL;
780 		}
781 
782 		cur = keepout->end;
783 		keepout++;
784 	}
785 
786 	return 0;
787 }
788 
789 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
790 {
791 	struct device *dev = &nvmem->dev;
792 	const __be32 *addr;
793 	int len, ret;
794 
795 	for_each_child_of_node_scoped(np, child) {
796 		struct nvmem_cell_info info = {0};
797 
798 		addr = of_get_property(child, "reg", &len);
799 		if (!addr)
800 			continue;
801 		if (len < 2 * sizeof(u32)) {
802 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
803 			return -EINVAL;
804 		}
805 
806 		info.offset = be32_to_cpup(addr++);
807 		info.bytes = be32_to_cpup(addr);
808 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
809 
810 		addr = of_get_property(child, "bits", &len);
811 		if (addr && len == (2 * sizeof(u32))) {
812 			info.bit_offset = be32_to_cpup(addr++);
813 			info.nbits = be32_to_cpup(addr);
814 			if (info.bit_offset >= BITS_PER_BYTE * info.bytes ||
815 			    info.nbits < 1 ||
816 			    info.bit_offset + info.nbits > BITS_PER_BYTE * info.bytes) {
817 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
818 				return -EINVAL;
819 			}
820 		}
821 
822 		info.np = of_node_get(child);
823 
824 		if (nvmem->fixup_dt_cell_info)
825 			nvmem->fixup_dt_cell_info(nvmem, &info);
826 
827 		ret = nvmem_add_one_cell(nvmem, &info);
828 		kfree(info.name);
829 		if (ret) {
830 			of_node_put(info.np);
831 			return ret;
832 		}
833 	}
834 
835 	return 0;
836 }
837 
838 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
839 {
840 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
841 }
842 
843 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
844 {
845 	struct device_node *layout_np;
846 	int err = 0;
847 
848 	layout_np = of_nvmem_layout_get_container(nvmem);
849 	if (!layout_np)
850 		return 0;
851 
852 	if (of_device_is_compatible(layout_np, "fixed-layout"))
853 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
854 
855 	of_node_put(layout_np);
856 
857 	return err;
858 }
859 
860 int nvmem_layout_register(struct nvmem_layout *layout)
861 {
862 	int ret;
863 
864 	if (!layout->add_cells)
865 		return -EINVAL;
866 
867 	/* Populate the cells */
868 	ret = layout->add_cells(layout);
869 	if (ret)
870 		return ret;
871 
872 #ifdef CONFIG_NVMEM_SYSFS
873 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
874 	if (ret) {
875 		nvmem_device_remove_all_cells(layout->nvmem);
876 		return ret;
877 	}
878 #endif
879 
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(nvmem_layout_register);
883 
884 void nvmem_layout_unregister(struct nvmem_layout *layout)
885 {
886 	/* Keep the API even with an empty stub in case we need it later */
887 }
888 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
889 
890 /**
891  * nvmem_register() - Register a nvmem device for given nvmem_config.
892  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
893  *
894  * @config: nvmem device configuration with which nvmem device is created.
895  *
896  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
897  * on success.
898  */
899 
900 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
901 {
902 	struct nvmem_device *nvmem;
903 	int rval;
904 
905 	if (!config->dev)
906 		return ERR_PTR(-EINVAL);
907 
908 	if (!config->reg_read && !config->reg_write)
909 		return ERR_PTR(-EINVAL);
910 
911 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
912 	if (!nvmem)
913 		return ERR_PTR(-ENOMEM);
914 
915 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
916 	if (rval < 0) {
917 		kfree(nvmem);
918 		return ERR_PTR(rval);
919 	}
920 
921 	nvmem->id = rval;
922 
923 	nvmem->dev.type = &nvmem_provider_type;
924 	nvmem->dev.bus = &nvmem_bus_type;
925 	nvmem->dev.parent = config->dev;
926 
927 	device_initialize(&nvmem->dev);
928 
929 	if (!config->ignore_wp)
930 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
931 						    GPIOD_OUT_HIGH);
932 	if (IS_ERR(nvmem->wp_gpio)) {
933 		rval = PTR_ERR(nvmem->wp_gpio);
934 		nvmem->wp_gpio = NULL;
935 		goto err_put_device;
936 	}
937 
938 	kref_init(&nvmem->refcnt);
939 	INIT_LIST_HEAD(&nvmem->cells);
940 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
941 
942 	nvmem->owner = config->owner;
943 	if (!nvmem->owner && config->dev->driver)
944 		nvmem->owner = config->dev->driver->owner;
945 	nvmem->stride = config->stride ?: 1;
946 	nvmem->word_size = config->word_size ?: 1;
947 	nvmem->size = config->size;
948 	nvmem->root_only = config->root_only;
949 	nvmem->priv = config->priv;
950 	nvmem->type = config->type;
951 	nvmem->reg_read = config->reg_read;
952 	nvmem->reg_write = config->reg_write;
953 	nvmem->keepout = config->keepout;
954 	nvmem->nkeepout = config->nkeepout;
955 	if (config->of_node)
956 		nvmem->dev.of_node = config->of_node;
957 	else
958 		nvmem->dev.of_node = config->dev->of_node;
959 
960 	switch (config->id) {
961 	case NVMEM_DEVID_NONE:
962 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
963 		break;
964 	case NVMEM_DEVID_AUTO:
965 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
966 		break;
967 	default:
968 		rval = dev_set_name(&nvmem->dev, "%s%d",
969 			     config->name ? : "nvmem",
970 			     config->name ? config->id : nvmem->id);
971 		break;
972 	}
973 
974 	if (rval)
975 		goto err_put_device;
976 
977 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
978 			   config->read_only || !nvmem->reg_write;
979 
980 #ifdef CONFIG_NVMEM_SYSFS
981 	nvmem->dev.groups = nvmem_dev_groups;
982 #endif
983 
984 	if (nvmem->nkeepout) {
985 		rval = nvmem_validate_keepouts(nvmem);
986 		if (rval)
987 			goto err_put_device;
988 	}
989 
990 	if (config->compat) {
991 		rval = nvmem_sysfs_setup_compat(nvmem, config);
992 		if (rval)
993 			goto err_put_device;
994 	}
995 
996 	if (config->cells) {
997 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
998 		if (rval)
999 			goto err_remove_cells;
1000 	}
1001 
1002 	if (config->add_legacy_fixed_of_cells) {
1003 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1004 		if (rval)
1005 			goto err_remove_cells;
1006 	}
1007 
1008 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1009 	if (rval)
1010 		goto err_remove_cells;
1011 
1012 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1013 
1014 	rval = device_add(&nvmem->dev);
1015 	if (rval)
1016 		goto err_remove_cells;
1017 
1018 	rval = nvmem_populate_layout(nvmem);
1019 	if (rval)
1020 		goto err_remove_dev;
1021 
1022 #ifdef CONFIG_NVMEM_SYSFS
1023 	rval = nvmem_populate_sysfs_cells(nvmem);
1024 	if (rval)
1025 		goto err_destroy_layout;
1026 #endif
1027 
1028 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1029 
1030 	return nvmem;
1031 
1032 #ifdef CONFIG_NVMEM_SYSFS
1033 err_destroy_layout:
1034 	nvmem_destroy_layout(nvmem);
1035 #endif
1036 err_remove_dev:
1037 	device_del(&nvmem->dev);
1038 err_remove_cells:
1039 	nvmem_device_remove_all_cells(nvmem);
1040 	if (config->compat)
1041 		nvmem_sysfs_remove_compat(nvmem, config);
1042 err_put_device:
1043 	put_device(&nvmem->dev);
1044 
1045 	return ERR_PTR(rval);
1046 }
1047 EXPORT_SYMBOL_GPL(nvmem_register);
1048 
1049 static void nvmem_device_release(struct kref *kref)
1050 {
1051 	struct nvmem_device *nvmem;
1052 
1053 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1054 
1055 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1056 
1057 	if (nvmem->flags & FLAG_COMPAT)
1058 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1059 
1060 	nvmem_device_remove_all_cells(nvmem);
1061 	nvmem_destroy_layout(nvmem);
1062 	device_unregister(&nvmem->dev);
1063 }
1064 
1065 /**
1066  * nvmem_unregister() - Unregister previously registered nvmem device
1067  *
1068  * @nvmem: Pointer to previously registered nvmem device.
1069  */
1070 void nvmem_unregister(struct nvmem_device *nvmem)
1071 {
1072 	if (nvmem)
1073 		kref_put(&nvmem->refcnt, nvmem_device_release);
1074 }
1075 EXPORT_SYMBOL_GPL(nvmem_unregister);
1076 
1077 static void devm_nvmem_unregister(void *nvmem)
1078 {
1079 	nvmem_unregister(nvmem);
1080 }
1081 
1082 /**
1083  * devm_nvmem_register() - Register a managed nvmem device for given
1084  * nvmem_config.
1085  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1086  *
1087  * @dev: Device that uses the nvmem device.
1088  * @config: nvmem device configuration with which nvmem device is created.
1089  *
1090  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1091  * on success.
1092  */
1093 struct nvmem_device *devm_nvmem_register(struct device *dev,
1094 					 const struct nvmem_config *config)
1095 {
1096 	struct nvmem_device *nvmem;
1097 	int ret;
1098 
1099 	nvmem = nvmem_register(config);
1100 	if (IS_ERR(nvmem))
1101 		return nvmem;
1102 
1103 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1104 	if (ret)
1105 		return ERR_PTR(ret);
1106 
1107 	return nvmem;
1108 }
1109 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1110 
1111 static struct nvmem_device *__nvmem_device_get(void *data,
1112 			int (*match)(struct device *dev, const void *data))
1113 {
1114 	struct nvmem_device *nvmem = NULL;
1115 	struct device *dev;
1116 
1117 	mutex_lock(&nvmem_mutex);
1118 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1119 	if (dev)
1120 		nvmem = to_nvmem_device(dev);
1121 	mutex_unlock(&nvmem_mutex);
1122 	if (!nvmem)
1123 		return ERR_PTR(-EPROBE_DEFER);
1124 
1125 	if (!try_module_get(nvmem->owner)) {
1126 		dev_err(&nvmem->dev,
1127 			"could not increase module refcount for cell %s\n",
1128 			nvmem_dev_name(nvmem));
1129 
1130 		put_device(&nvmem->dev);
1131 		return ERR_PTR(-EINVAL);
1132 	}
1133 
1134 	kref_get(&nvmem->refcnt);
1135 
1136 	return nvmem;
1137 }
1138 
1139 static void __nvmem_device_put(struct nvmem_device *nvmem)
1140 {
1141 	put_device(&nvmem->dev);
1142 	module_put(nvmem->owner);
1143 	kref_put(&nvmem->refcnt, nvmem_device_release);
1144 }
1145 
1146 #if IS_ENABLED(CONFIG_OF)
1147 /**
1148  * of_nvmem_device_get() - Get nvmem device from a given id
1149  *
1150  * @np: Device tree node that uses the nvmem device.
1151  * @id: nvmem name from nvmem-names property.
1152  *
1153  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1154  * on success.
1155  */
1156 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1157 {
1158 
1159 	struct device_node *nvmem_np;
1160 	struct nvmem_device *nvmem;
1161 	int index = 0;
1162 
1163 	if (id)
1164 		index = of_property_match_string(np, "nvmem-names", id);
1165 
1166 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1167 	if (!nvmem_np)
1168 		return ERR_PTR(-ENOENT);
1169 
1170 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1171 	of_node_put(nvmem_np);
1172 	return nvmem;
1173 }
1174 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1175 #endif
1176 
1177 /**
1178  * nvmem_device_get() - Get nvmem device from a given id
1179  *
1180  * @dev: Device that uses the nvmem device.
1181  * @dev_name: name of the requested nvmem device.
1182  *
1183  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1184  * on success.
1185  */
1186 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1187 {
1188 	if (dev->of_node) { /* try dt first */
1189 		struct nvmem_device *nvmem;
1190 
1191 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1192 
1193 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1194 			return nvmem;
1195 
1196 	}
1197 
1198 	return __nvmem_device_get((void *)dev_name, device_match_name);
1199 }
1200 EXPORT_SYMBOL_GPL(nvmem_device_get);
1201 
1202 /**
1203  * nvmem_device_find() - Find nvmem device with matching function
1204  *
1205  * @data: Data to pass to match function
1206  * @match: Callback function to check device
1207  *
1208  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1209  * on success.
1210  */
1211 struct nvmem_device *nvmem_device_find(void *data,
1212 			int (*match)(struct device *dev, const void *data))
1213 {
1214 	return __nvmem_device_get(data, match);
1215 }
1216 EXPORT_SYMBOL_GPL(nvmem_device_find);
1217 
1218 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1219 {
1220 	struct nvmem_device **nvmem = res;
1221 
1222 	if (WARN_ON(!nvmem || !*nvmem))
1223 		return 0;
1224 
1225 	return *nvmem == data;
1226 }
1227 
1228 static void devm_nvmem_device_release(struct device *dev, void *res)
1229 {
1230 	nvmem_device_put(*(struct nvmem_device **)res);
1231 }
1232 
1233 /**
1234  * devm_nvmem_device_put() - put already got nvmem device
1235  *
1236  * @dev: Device that uses the nvmem device.
1237  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1238  * that needs to be released.
1239  */
1240 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1241 {
1242 	int ret;
1243 
1244 	ret = devres_release(dev, devm_nvmem_device_release,
1245 			     devm_nvmem_device_match, nvmem);
1246 
1247 	WARN_ON(ret);
1248 }
1249 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1250 
1251 /**
1252  * nvmem_device_put() - put already got nvmem device
1253  *
1254  * @nvmem: pointer to nvmem device that needs to be released.
1255  */
1256 void nvmem_device_put(struct nvmem_device *nvmem)
1257 {
1258 	__nvmem_device_put(nvmem);
1259 }
1260 EXPORT_SYMBOL_GPL(nvmem_device_put);
1261 
1262 /**
1263  * devm_nvmem_device_get() - Get nvmem device of device from a given id
1264  *
1265  * @dev: Device that requests the nvmem device.
1266  * @id: name id for the requested nvmem device.
1267  *
1268  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1269  * on success.  The nvmem_device will be freed by the automatically once the
1270  * device is freed.
1271  */
1272 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1273 {
1274 	struct nvmem_device **ptr, *nvmem;
1275 
1276 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1277 	if (!ptr)
1278 		return ERR_PTR(-ENOMEM);
1279 
1280 	nvmem = nvmem_device_get(dev, id);
1281 	if (!IS_ERR(nvmem)) {
1282 		*ptr = nvmem;
1283 		devres_add(dev, ptr);
1284 	} else {
1285 		devres_free(ptr);
1286 	}
1287 
1288 	return nvmem;
1289 }
1290 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1291 
1292 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1293 					    const char *id, int index)
1294 {
1295 	struct nvmem_cell *cell;
1296 	const char *name = NULL;
1297 
1298 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1299 	if (!cell)
1300 		return ERR_PTR(-ENOMEM);
1301 
1302 	if (id) {
1303 		name = kstrdup_const(id, GFP_KERNEL);
1304 		if (!name) {
1305 			kfree(cell);
1306 			return ERR_PTR(-ENOMEM);
1307 		}
1308 	}
1309 
1310 	cell->id = name;
1311 	cell->entry = entry;
1312 	cell->index = index;
1313 
1314 	return cell;
1315 }
1316 
1317 static struct nvmem_cell *
1318 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1319 {
1320 	struct nvmem_cell_entry *cell_entry;
1321 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1322 	struct nvmem_cell_lookup *lookup;
1323 	struct nvmem_device *nvmem;
1324 	const char *dev_id;
1325 
1326 	if (!dev)
1327 		return ERR_PTR(-EINVAL);
1328 
1329 	dev_id = dev_name(dev);
1330 
1331 	mutex_lock(&nvmem_lookup_mutex);
1332 
1333 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1334 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1335 		    (strcmp(lookup->con_id, con_id) == 0)) {
1336 			/* This is the right entry. */
1337 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1338 						   device_match_name);
1339 			if (IS_ERR(nvmem)) {
1340 				/* Provider may not be registered yet. */
1341 				cell = ERR_CAST(nvmem);
1342 				break;
1343 			}
1344 
1345 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1346 								   lookup->cell_name);
1347 			if (!cell_entry) {
1348 				__nvmem_device_put(nvmem);
1349 				cell = ERR_PTR(-ENOENT);
1350 			} else {
1351 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1352 				if (IS_ERR(cell))
1353 					__nvmem_device_put(nvmem);
1354 			}
1355 			break;
1356 		}
1357 	}
1358 
1359 	mutex_unlock(&nvmem_lookup_mutex);
1360 	return cell;
1361 }
1362 
1363 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1364 {
1365 	if (nvmem->layout && nvmem->layout->dev.driver)
1366 		module_put(nvmem->layout->dev.driver->owner);
1367 }
1368 
1369 #if IS_ENABLED(CONFIG_OF)
1370 static struct nvmem_cell_entry *
1371 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1372 {
1373 	struct nvmem_cell_entry *iter, *cell = NULL;
1374 
1375 	mutex_lock(&nvmem_mutex);
1376 	list_for_each_entry(iter, &nvmem->cells, node) {
1377 		if (np == iter->np) {
1378 			cell = iter;
1379 			break;
1380 		}
1381 	}
1382 	mutex_unlock(&nvmem_mutex);
1383 
1384 	return cell;
1385 }
1386 
1387 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1388 {
1389 	if (!nvmem->layout)
1390 		return 0;
1391 
1392 	if (!nvmem->layout->dev.driver ||
1393 	    !try_module_get(nvmem->layout->dev.driver->owner))
1394 		return -EPROBE_DEFER;
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1401  *
1402  * @np: Device tree node that uses the nvmem cell.
1403  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1404  *      for the cell at index 0 (the lone cell with no accompanying
1405  *      nvmem-cell-names property).
1406  *
1407  * Return: Will be an ERR_PTR() on error or a valid pointer
1408  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1409  * nvmem_cell_put().
1410  */
1411 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1412 {
1413 	struct device_node *cell_np, *nvmem_np;
1414 	struct nvmem_device *nvmem;
1415 	struct nvmem_cell_entry *cell_entry;
1416 	struct nvmem_cell *cell;
1417 	struct of_phandle_args cell_spec;
1418 	int index = 0;
1419 	int cell_index = 0;
1420 	int ret;
1421 
1422 	/* if cell name exists, find index to the name */
1423 	if (id)
1424 		index = of_property_match_string(np, "nvmem-cell-names", id);
1425 
1426 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1427 						  "#nvmem-cell-cells",
1428 						  index, &cell_spec);
1429 	if (ret)
1430 		return ERR_PTR(-ENOENT);
1431 
1432 	if (cell_spec.args_count > 1)
1433 		return ERR_PTR(-EINVAL);
1434 
1435 	cell_np = cell_spec.np;
1436 	if (cell_spec.args_count)
1437 		cell_index = cell_spec.args[0];
1438 
1439 	nvmem_np = of_get_parent(cell_np);
1440 	if (!nvmem_np) {
1441 		of_node_put(cell_np);
1442 		return ERR_PTR(-EINVAL);
1443 	}
1444 
1445 	/* nvmem layouts produce cells within the nvmem-layout container */
1446 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1447 		nvmem_np = of_get_next_parent(nvmem_np);
1448 		if (!nvmem_np) {
1449 			of_node_put(cell_np);
1450 			return ERR_PTR(-EINVAL);
1451 		}
1452 	}
1453 
1454 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1455 	of_node_put(nvmem_np);
1456 	if (IS_ERR(nvmem)) {
1457 		of_node_put(cell_np);
1458 		return ERR_CAST(nvmem);
1459 	}
1460 
1461 	ret = nvmem_layout_module_get_optional(nvmem);
1462 	if (ret) {
1463 		of_node_put(cell_np);
1464 		__nvmem_device_put(nvmem);
1465 		return ERR_PTR(ret);
1466 	}
1467 
1468 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1469 	of_node_put(cell_np);
1470 	if (!cell_entry) {
1471 		__nvmem_device_put(nvmem);
1472 		nvmem_layout_module_put(nvmem);
1473 		if (nvmem->layout)
1474 			return ERR_PTR(-EPROBE_DEFER);
1475 		else
1476 			return ERR_PTR(-ENOENT);
1477 	}
1478 
1479 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1480 	if (IS_ERR(cell)) {
1481 		__nvmem_device_put(nvmem);
1482 		nvmem_layout_module_put(nvmem);
1483 	}
1484 
1485 	return cell;
1486 }
1487 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1488 #endif
1489 
1490 /**
1491  * nvmem_cell_get() - Get nvmem cell of device from a given cell name
1492  *
1493  * @dev: Device that requests the nvmem cell.
1494  * @id: nvmem cell name to get (this corresponds with the name from the
1495  *      nvmem-cell-names property for DT systems and with the con_id from
1496  *      the lookup entry for non-DT systems).
1497  *
1498  * Return: Will be an ERR_PTR() on error or a valid pointer
1499  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1500  * nvmem_cell_put().
1501  */
1502 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1503 {
1504 	struct nvmem_cell *cell;
1505 
1506 	if (dev->of_node) { /* try dt first */
1507 		cell = of_nvmem_cell_get(dev->of_node, id);
1508 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1509 			return cell;
1510 	}
1511 
1512 	/* NULL cell id only allowed for device tree; invalid otherwise */
1513 	if (!id)
1514 		return ERR_PTR(-EINVAL);
1515 
1516 	return nvmem_cell_get_from_lookup(dev, id);
1517 }
1518 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1519 
1520 static void devm_nvmem_cell_release(struct device *dev, void *res)
1521 {
1522 	nvmem_cell_put(*(struct nvmem_cell **)res);
1523 }
1524 
1525 /**
1526  * devm_nvmem_cell_get() - Get nvmem cell of device from a given id
1527  *
1528  * @dev: Device that requests the nvmem cell.
1529  * @id: nvmem cell name id to get.
1530  *
1531  * Return: Will be an ERR_PTR() on error or a valid pointer
1532  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1533  * automatically once the device is freed.
1534  */
1535 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1536 {
1537 	struct nvmem_cell **ptr, *cell;
1538 
1539 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1540 	if (!ptr)
1541 		return ERR_PTR(-ENOMEM);
1542 
1543 	cell = nvmem_cell_get(dev, id);
1544 	if (!IS_ERR(cell)) {
1545 		*ptr = cell;
1546 		devres_add(dev, ptr);
1547 	} else {
1548 		devres_free(ptr);
1549 	}
1550 
1551 	return cell;
1552 }
1553 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1554 
1555 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1556 {
1557 	struct nvmem_cell **c = res;
1558 
1559 	if (WARN_ON(!c || !*c))
1560 		return 0;
1561 
1562 	return *c == data;
1563 }
1564 
1565 /**
1566  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1567  * from devm_nvmem_cell_get.
1568  *
1569  * @dev: Device that requests the nvmem cell.
1570  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1571  */
1572 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1573 {
1574 	int ret;
1575 
1576 	ret = devres_release(dev, devm_nvmem_cell_release,
1577 				devm_nvmem_cell_match, cell);
1578 
1579 	WARN_ON(ret);
1580 }
1581 EXPORT_SYMBOL(devm_nvmem_cell_put);
1582 
1583 /**
1584  * nvmem_cell_put() - Release previously allocated nvmem cell.
1585  *
1586  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1587  */
1588 void nvmem_cell_put(struct nvmem_cell *cell)
1589 {
1590 	struct nvmem_device *nvmem = cell->entry->nvmem;
1591 
1592 	if (cell->id)
1593 		kfree_const(cell->id);
1594 
1595 	kfree(cell);
1596 	__nvmem_device_put(nvmem);
1597 	nvmem_layout_module_put(nvmem);
1598 }
1599 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1600 
1601 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1602 {
1603 	u8 *p, *b;
1604 	int i, extra, bytes_offset;
1605 	int bit_offset = cell->bit_offset;
1606 
1607 	p = b = buf;
1608 
1609 	bytes_offset = bit_offset / BITS_PER_BYTE;
1610 	b += bytes_offset;
1611 	bit_offset %= BITS_PER_BYTE;
1612 
1613 	if (bit_offset % BITS_PER_BYTE) {
1614 		/* First shift */
1615 		*p = *b++ >> bit_offset;
1616 
1617 		/* setup rest of the bytes if any */
1618 		for (i = 1; i < cell->bytes; i++) {
1619 			/* Get bits from next byte and shift them towards msb */
1620 			*p++ |= *b << (BITS_PER_BYTE - bit_offset);
1621 
1622 			*p = *b++ >> bit_offset;
1623 		}
1624 	} else if (p != b) {
1625 		memmove(p, b, cell->bytes - bytes_offset);
1626 		p += cell->bytes - 1;
1627 	} else {
1628 		/* point to the msb */
1629 		p += cell->bytes - 1;
1630 	}
1631 
1632 	/* result fits in less bytes */
1633 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1634 	while (--extra >= 0)
1635 		*p-- = 0;
1636 
1637 	/* clear msb bits if any leftover in the last byte */
1638 	if (cell->nbits % BITS_PER_BYTE)
1639 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1640 }
1641 
1642 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1643 			     struct nvmem_cell_entry *cell,
1644 			     void *buf, size_t *len, const char *id, int index)
1645 {
1646 	int rc;
1647 
1648 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1649 
1650 	if (rc)
1651 		return rc;
1652 
1653 	/* shift bits in-place */
1654 	if (cell->bit_offset || cell->nbits)
1655 		nvmem_shift_read_buffer_in_place(cell, buf);
1656 
1657 	if (cell->read_post_process) {
1658 		rc = cell->read_post_process(cell->priv, id, index,
1659 					     cell->offset, buf, cell->raw_len);
1660 		if (rc)
1661 			return rc;
1662 	}
1663 
1664 	if (len)
1665 		*len = cell->bytes;
1666 
1667 	return 0;
1668 }
1669 
1670 /**
1671  * nvmem_cell_read() - Read a given nvmem cell
1672  *
1673  * @cell: nvmem cell to be read.
1674  * @len: pointer to length of cell which will be populated on successful read;
1675  *	 can be NULL.
1676  *
1677  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1678  * buffer should be freed by the consumer with a kfree().
1679  */
1680 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1681 {
1682 	struct nvmem_cell_entry *entry = cell->entry;
1683 	struct nvmem_device *nvmem = entry->nvmem;
1684 	u8 *buf;
1685 	int rc;
1686 
1687 	if (!nvmem)
1688 		return ERR_PTR(-EINVAL);
1689 
1690 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1691 	if (!buf)
1692 		return ERR_PTR(-ENOMEM);
1693 
1694 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1695 	if (rc) {
1696 		kfree(buf);
1697 		return ERR_PTR(rc);
1698 	}
1699 
1700 	return buf;
1701 }
1702 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1703 
1704 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1705 					     u8 *_buf, int len)
1706 {
1707 	struct nvmem_device *nvmem = cell->nvmem;
1708 	int i, rc, nbits, bit_offset = cell->bit_offset;
1709 	u8 v, *p, *buf, *b, pbyte, pbits;
1710 
1711 	nbits = cell->nbits;
1712 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1713 	if (!buf)
1714 		return ERR_PTR(-ENOMEM);
1715 
1716 	memcpy(buf, _buf, len);
1717 	p = b = buf;
1718 
1719 	if (bit_offset) {
1720 		pbyte = *b;
1721 		*b <<= bit_offset;
1722 
1723 		/* setup the first byte with lsb bits from nvmem */
1724 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1725 		if (rc)
1726 			goto err;
1727 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1728 
1729 		/* setup rest of the byte if any */
1730 		for (i = 1; i < cell->bytes; i++) {
1731 			/* Get last byte bits and shift them towards lsb */
1732 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1733 			pbyte = *b;
1734 			p = b;
1735 			*b <<= bit_offset;
1736 			*b++ |= pbits;
1737 		}
1738 	}
1739 
1740 	/* if it's not end on byte boundary */
1741 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1742 		/* setup the last byte with msb bits from nvmem */
1743 		rc = nvmem_reg_read(nvmem,
1744 				    cell->offset + cell->bytes - 1, &v, 1);
1745 		if (rc)
1746 			goto err;
1747 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1748 
1749 	}
1750 
1751 	return buf;
1752 err:
1753 	kfree(buf);
1754 	return ERR_PTR(rc);
1755 }
1756 
1757 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1758 {
1759 	struct nvmem_device *nvmem = cell->nvmem;
1760 	int rc;
1761 
1762 	if (!nvmem || nvmem->read_only ||
1763 	    (cell->bit_offset == 0 && len != cell->bytes))
1764 		return -EINVAL;
1765 
1766 	/*
1767 	 * Any cells which have a read_post_process hook are read-only because
1768 	 * we cannot reverse the operation and it might affect other cells,
1769 	 * too.
1770 	 */
1771 	if (cell->read_post_process)
1772 		return -EINVAL;
1773 
1774 	if (cell->bit_offset || cell->nbits) {
1775 		if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1776 			return -EINVAL;
1777 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1778 		if (IS_ERR(buf))
1779 			return PTR_ERR(buf);
1780 	}
1781 
1782 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1783 
1784 	/* free the tmp buffer */
1785 	if (cell->bit_offset || cell->nbits)
1786 		kfree(buf);
1787 
1788 	if (rc)
1789 		return rc;
1790 
1791 	return len;
1792 }
1793 
1794 /**
1795  * nvmem_cell_write() - Write to a given nvmem cell
1796  *
1797  * @cell: nvmem cell to be written.
1798  * @buf: Buffer to be written.
1799  * @len: length of buffer to be written to nvmem cell.
1800  *
1801  * Return: length of bytes written or negative on failure.
1802  */
1803 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1804 {
1805 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1806 }
1807 
1808 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1809 
1810 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1811 				  void *val, size_t count)
1812 {
1813 	struct nvmem_cell *cell;
1814 	void *buf;
1815 	size_t len;
1816 
1817 	cell = nvmem_cell_get(dev, cell_id);
1818 	if (IS_ERR(cell))
1819 		return PTR_ERR(cell);
1820 
1821 	buf = nvmem_cell_read(cell, &len);
1822 	if (IS_ERR(buf)) {
1823 		nvmem_cell_put(cell);
1824 		return PTR_ERR(buf);
1825 	}
1826 	if (len != count) {
1827 		kfree(buf);
1828 		nvmem_cell_put(cell);
1829 		return -EINVAL;
1830 	}
1831 	memcpy(val, buf, count);
1832 	kfree(buf);
1833 	nvmem_cell_put(cell);
1834 
1835 	return 0;
1836 }
1837 
1838 /**
1839  * nvmem_cell_read_u8() - Read a cell value as a u8
1840  *
1841  * @dev: Device that requests the nvmem cell.
1842  * @cell_id: Name of nvmem cell to read.
1843  * @val: pointer to output value.
1844  *
1845  * Return: 0 on success or negative errno.
1846  */
1847 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1848 {
1849 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1850 }
1851 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1852 
1853 /**
1854  * nvmem_cell_read_u16() - Read a cell value as a u16
1855  *
1856  * @dev: Device that requests the nvmem cell.
1857  * @cell_id: Name of nvmem cell to read.
1858  * @val: pointer to output value.
1859  *
1860  * Return: 0 on success or negative errno.
1861  */
1862 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1863 {
1864 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1865 }
1866 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1867 
1868 /**
1869  * nvmem_cell_read_u32() - Read a cell value as a u32
1870  *
1871  * @dev: Device that requests the nvmem cell.
1872  * @cell_id: Name of nvmem cell to read.
1873  * @val: pointer to output value.
1874  *
1875  * Return: 0 on success or negative errno.
1876  */
1877 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1878 {
1879 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1880 }
1881 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1882 
1883 /**
1884  * nvmem_cell_read_u64() - Read a cell value as a u64
1885  *
1886  * @dev: Device that requests the nvmem cell.
1887  * @cell_id: Name of nvmem cell to read.
1888  * @val: pointer to output value.
1889  *
1890  * Return: 0 on success or negative errno.
1891  */
1892 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1893 {
1894 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1895 }
1896 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1897 
1898 static const void *nvmem_cell_read_variable_common(struct device *dev,
1899 						   const char *cell_id,
1900 						   size_t max_len, size_t *len)
1901 {
1902 	struct nvmem_cell *cell;
1903 	int nbits;
1904 	void *buf;
1905 
1906 	cell = nvmem_cell_get(dev, cell_id);
1907 	if (IS_ERR(cell))
1908 		return cell;
1909 
1910 	nbits = cell->entry->nbits;
1911 	buf = nvmem_cell_read(cell, len);
1912 	nvmem_cell_put(cell);
1913 	if (IS_ERR(buf))
1914 		return buf;
1915 
1916 	/*
1917 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1918 	 * the length of the real data. Throw away the extra junk.
1919 	 */
1920 	if (nbits)
1921 		*len = DIV_ROUND_UP(nbits, 8);
1922 
1923 	if (*len > max_len) {
1924 		kfree(buf);
1925 		return ERR_PTR(-ERANGE);
1926 	}
1927 
1928 	return buf;
1929 }
1930 
1931 /**
1932  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1933  *
1934  * @dev: Device that requests the nvmem cell.
1935  * @cell_id: Name of nvmem cell to read.
1936  * @val: pointer to output value.
1937  *
1938  * Return: 0 on success or negative errno.
1939  */
1940 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1941 				    u32 *val)
1942 {
1943 	size_t len;
1944 	const u8 *buf;
1945 	int i;
1946 
1947 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1948 	if (IS_ERR(buf))
1949 		return PTR_ERR(buf);
1950 
1951 	/* Copy w/ implicit endian conversion */
1952 	*val = 0;
1953 	for (i = 0; i < len; i++)
1954 		*val |= buf[i] << (8 * i);
1955 
1956 	kfree(buf);
1957 
1958 	return 0;
1959 }
1960 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1961 
1962 /**
1963  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1964  *
1965  * @dev: Device that requests the nvmem cell.
1966  * @cell_id: Name of nvmem cell to read.
1967  * @val: pointer to output value.
1968  *
1969  * Return: 0 on success or negative errno.
1970  */
1971 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1972 				    u64 *val)
1973 {
1974 	size_t len;
1975 	const u8 *buf;
1976 	int i;
1977 
1978 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1979 	if (IS_ERR(buf))
1980 		return PTR_ERR(buf);
1981 
1982 	/* Copy w/ implicit endian conversion */
1983 	*val = 0;
1984 	for (i = 0; i < len; i++)
1985 		*val |= (uint64_t)buf[i] << (8 * i);
1986 
1987 	kfree(buf);
1988 
1989 	return 0;
1990 }
1991 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1992 
1993 /**
1994  * nvmem_device_cell_read() - Read a given nvmem device and cell
1995  *
1996  * @nvmem: nvmem device to read from.
1997  * @info: nvmem cell info to be read.
1998  * @buf: buffer pointer which will be populated on successful read.
1999  *
2000  * Return: length of successful bytes read on success and negative
2001  * error code on error.
2002  */
2003 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2004 			   struct nvmem_cell_info *info, void *buf)
2005 {
2006 	struct nvmem_cell_entry cell;
2007 	int rc;
2008 	ssize_t len;
2009 
2010 	if (!nvmem)
2011 		return -EINVAL;
2012 
2013 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2014 	if (rc)
2015 		return rc;
2016 
2017 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2018 	if (rc)
2019 		return rc;
2020 
2021 	return len;
2022 }
2023 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2024 
2025 /**
2026  * nvmem_device_cell_write() - Write cell to a given nvmem device
2027  *
2028  * @nvmem: nvmem device to be written to.
2029  * @info: nvmem cell info to be written.
2030  * @buf: buffer to be written to cell.
2031  *
2032  * Return: length of bytes written or negative error code on failure.
2033  */
2034 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2035 			    struct nvmem_cell_info *info, void *buf)
2036 {
2037 	struct nvmem_cell_entry cell;
2038 	int rc;
2039 
2040 	if (!nvmem)
2041 		return -EINVAL;
2042 
2043 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2044 	if (rc)
2045 		return rc;
2046 
2047 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2048 }
2049 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2050 
2051 /**
2052  * nvmem_device_read() - Read from a given nvmem device
2053  *
2054  * @nvmem: nvmem device to read from.
2055  * @offset: offset in nvmem device.
2056  * @bytes: number of bytes to read.
2057  * @buf: buffer pointer which will be populated on successful read.
2058  *
2059  * Return: length of successful bytes read on success and negative
2060  * error code on error.
2061  */
2062 int nvmem_device_read(struct nvmem_device *nvmem,
2063 		      unsigned int offset,
2064 		      size_t bytes, void *buf)
2065 {
2066 	int rc;
2067 
2068 	if (!nvmem)
2069 		return -EINVAL;
2070 
2071 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2072 
2073 	if (rc)
2074 		return rc;
2075 
2076 	return bytes;
2077 }
2078 EXPORT_SYMBOL_GPL(nvmem_device_read);
2079 
2080 /**
2081  * nvmem_device_write() - Write cell to a given nvmem device
2082  *
2083  * @nvmem: nvmem device to be written to.
2084  * @offset: offset in nvmem device.
2085  * @bytes: number of bytes to write.
2086  * @buf: buffer to be written.
2087  *
2088  * Return: length of bytes written or negative error code on failure.
2089  */
2090 int nvmem_device_write(struct nvmem_device *nvmem,
2091 		       unsigned int offset,
2092 		       size_t bytes, void *buf)
2093 {
2094 	int rc;
2095 
2096 	if (!nvmem)
2097 		return -EINVAL;
2098 
2099 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2100 
2101 	if (rc)
2102 		return rc;
2103 
2104 
2105 	return bytes;
2106 }
2107 EXPORT_SYMBOL_GPL(nvmem_device_write);
2108 
2109 /**
2110  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2111  *
2112  * @entries: array of cell lookup entries
2113  * @nentries: number of cell lookup entries in the array
2114  */
2115 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2116 {
2117 	int i;
2118 
2119 	mutex_lock(&nvmem_lookup_mutex);
2120 	for (i = 0; i < nentries; i++)
2121 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2122 	mutex_unlock(&nvmem_lookup_mutex);
2123 }
2124 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2125 
2126 /**
2127  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2128  *                            entries
2129  *
2130  * @entries: array of cell lookup entries
2131  * @nentries: number of cell lookup entries in the array
2132  */
2133 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2134 {
2135 	int i;
2136 
2137 	mutex_lock(&nvmem_lookup_mutex);
2138 	for (i = 0; i < nentries; i++)
2139 		list_del(&entries[i].node);
2140 	mutex_unlock(&nvmem_lookup_mutex);
2141 }
2142 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2143 
2144 /**
2145  * nvmem_dev_name() - Get the name of a given nvmem device.
2146  *
2147  * @nvmem: nvmem device.
2148  *
2149  * Return: name of the nvmem device.
2150  */
2151 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2152 {
2153 	return dev_name(&nvmem->dev);
2154 }
2155 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2156 
2157 /**
2158  * nvmem_dev_size() - Get the size of a given nvmem device.
2159  *
2160  * @nvmem: nvmem device.
2161  *
2162  * Return: size of the nvmem device.
2163  */
2164 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2165 {
2166 	return nvmem->size;
2167 }
2168 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2169 
2170 static int __init nvmem_init(void)
2171 {
2172 	int ret;
2173 
2174 	ret = bus_register(&nvmem_bus_type);
2175 	if (ret)
2176 		return ret;
2177 
2178 	ret = nvmem_layout_bus_register();
2179 	if (ret)
2180 		bus_unregister(&nvmem_bus_type);
2181 
2182 	return ret;
2183 }
2184 
2185 static void __exit nvmem_exit(void)
2186 {
2187 	nvmem_layout_bus_unregister();
2188 	bus_unregister(&nvmem_bus_type);
2189 }
2190 
2191 subsys_initcall(nvmem_init);
2192 module_exit(nvmem_exit);
2193 
2194 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org>");
2195 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
2196 MODULE_DESCRIPTION("nvmem Driver Core");
2197