xref: /linux/drivers/nvmem/core.c (revision 856e7c4b619af622d56b3b454f7bec32a170ac99)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27 
28 struct nvmem_device {
29 	const char		*name;
30 	struct module		*owner;
31 	struct device		dev;
32 	int			stride;
33 	int			word_size;
34 	int			ncells;
35 	int			id;
36 	int			users;
37 	size_t			size;
38 	bool			read_only;
39 	int			flags;
40 	struct bin_attribute	eeprom;
41 	struct device		*base_dev;
42 	nvmem_reg_read_t	reg_read;
43 	nvmem_reg_write_t	reg_write;
44 	void *priv;
45 };
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct nvmem_device	*nvmem;
56 	struct list_head	node;
57 };
58 
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61 
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68 
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 			  void *val, size_t bytes)
72 {
73 	if (nvmem->reg_read)
74 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75 
76 	return -EINVAL;
77 }
78 
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 			   void *val, size_t bytes)
81 {
82 	if (nvmem->reg_write)
83 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84 
85 	return -EINVAL;
86 }
87 
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 				    struct bin_attribute *attr,
90 				    char *buf, loff_t pos, size_t count)
91 {
92 	struct device *dev;
93 	struct nvmem_device *nvmem;
94 	int rc;
95 
96 	if (attr->private)
97 		dev = attr->private;
98 	else
99 		dev = container_of(kobj, struct device, kobj);
100 	nvmem = to_nvmem_device(dev);
101 
102 	/* Stop the user from reading */
103 	if (pos >= nvmem->size)
104 		return 0;
105 
106 	if (count < nvmem->word_size)
107 		return -EINVAL;
108 
109 	if (pos + count > nvmem->size)
110 		count = nvmem->size - pos;
111 
112 	count = round_down(count, nvmem->word_size);
113 
114 	rc = nvmem_reg_read(nvmem, pos, buf, count);
115 
116 	if (rc)
117 		return rc;
118 
119 	return count;
120 }
121 
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 				     struct bin_attribute *attr,
124 				     char *buf, loff_t pos, size_t count)
125 {
126 	struct device *dev;
127 	struct nvmem_device *nvmem;
128 	int rc;
129 
130 	if (attr->private)
131 		dev = attr->private;
132 	else
133 		dev = container_of(kobj, struct device, kobj);
134 	nvmem = to_nvmem_device(dev);
135 
136 	/* Stop the user from writing */
137 	if (pos >= nvmem->size)
138 		return -EFBIG;
139 
140 	if (count < nvmem->word_size)
141 		return -EINVAL;
142 
143 	if (pos + count > nvmem->size)
144 		count = nvmem->size - pos;
145 
146 	count = round_down(count, nvmem->word_size);
147 
148 	rc = nvmem_reg_write(nvmem, pos, buf, count);
149 
150 	if (rc)
151 		return rc;
152 
153 	return count;
154 }
155 
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 	.attr	= {
159 		.name	= "nvmem",
160 		.mode	= S_IWUSR | S_IRUGO,
161 	},
162 	.read	= bin_attr_nvmem_read,
163 	.write	= bin_attr_nvmem_write,
164 };
165 
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 	&bin_attr_rw_nvmem,
168 	NULL,
169 };
170 
171 static const struct attribute_group nvmem_bin_rw_group = {
172 	.bin_attrs	= nvmem_bin_rw_attributes,
173 };
174 
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 	&nvmem_bin_rw_group,
177 	NULL,
178 };
179 
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 	.attr	= {
183 		.name	= "nvmem",
184 		.mode	= S_IRUGO,
185 	},
186 	.read	= bin_attr_nvmem_read,
187 };
188 
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 	&bin_attr_ro_nvmem,
191 	NULL,
192 };
193 
194 static const struct attribute_group nvmem_bin_ro_group = {
195 	.bin_attrs	= nvmem_bin_ro_attributes,
196 };
197 
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 	&nvmem_bin_ro_group,
200 	NULL,
201 };
202 
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 	.attr	= {
206 		.name	= "nvmem",
207 		.mode	= S_IWUSR | S_IRUSR,
208 	},
209 	.read	= bin_attr_nvmem_read,
210 	.write	= bin_attr_nvmem_write,
211 };
212 
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 	&bin_attr_rw_root_nvmem,
215 	NULL,
216 };
217 
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 	.bin_attrs	= nvmem_bin_rw_root_attributes,
220 };
221 
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 	&nvmem_bin_rw_root_group,
224 	NULL,
225 };
226 
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 	.attr	= {
230 		.name	= "nvmem",
231 		.mode	= S_IRUSR,
232 	},
233 	.read	= bin_attr_nvmem_read,
234 };
235 
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 	&bin_attr_ro_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 	.bin_attrs	= nvmem_bin_ro_root_attributes,
243 };
244 
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 	&nvmem_bin_ro_root_group,
247 	NULL,
248 };
249 
250 static void nvmem_release(struct device *dev)
251 {
252 	struct nvmem_device *nvmem = to_nvmem_device(dev);
253 
254 	ida_simple_remove(&nvmem_ida, nvmem->id);
255 	kfree(nvmem);
256 }
257 
258 static const struct device_type nvmem_provider_type = {
259 	.release	= nvmem_release,
260 };
261 
262 static struct bus_type nvmem_bus_type = {
263 	.name		= "nvmem",
264 };
265 
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 	return dev->of_node == nvmem_np;
269 }
270 
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 	struct device *d;
274 
275 	if (!nvmem_np)
276 		return NULL;
277 
278 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279 
280 	if (!d)
281 		return NULL;
282 
283 	return to_nvmem_device(d);
284 }
285 
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 	struct nvmem_cell *p;
289 
290 	mutex_lock(&nvmem_cells_mutex);
291 
292 	list_for_each_entry(p, &nvmem_cells, node)
293 		if (!strcmp(p->name, cell_id)) {
294 			mutex_unlock(&nvmem_cells_mutex);
295 			return p;
296 		}
297 
298 	mutex_unlock(&nvmem_cells_mutex);
299 
300 	return NULL;
301 }
302 
303 static void nvmem_cell_drop(struct nvmem_cell *cell)
304 {
305 	mutex_lock(&nvmem_cells_mutex);
306 	list_del(&cell->node);
307 	mutex_unlock(&nvmem_cells_mutex);
308 	kfree(cell);
309 }
310 
311 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
312 {
313 	struct nvmem_cell *cell;
314 	struct list_head *p, *n;
315 
316 	list_for_each_safe(p, n, &nvmem_cells) {
317 		cell = list_entry(p, struct nvmem_cell, node);
318 		if (cell->nvmem == nvmem)
319 			nvmem_cell_drop(cell);
320 	}
321 }
322 
323 static void nvmem_cell_add(struct nvmem_cell *cell)
324 {
325 	mutex_lock(&nvmem_cells_mutex);
326 	list_add_tail(&cell->node, &nvmem_cells);
327 	mutex_unlock(&nvmem_cells_mutex);
328 }
329 
330 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
331 				   const struct nvmem_cell_info *info,
332 				   struct nvmem_cell *cell)
333 {
334 	cell->nvmem = nvmem;
335 	cell->offset = info->offset;
336 	cell->bytes = info->bytes;
337 	cell->name = info->name;
338 
339 	cell->bit_offset = info->bit_offset;
340 	cell->nbits = info->nbits;
341 
342 	if (cell->nbits)
343 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
344 					   BITS_PER_BYTE);
345 
346 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
347 		dev_err(&nvmem->dev,
348 			"cell %s unaligned to nvmem stride %d\n",
349 			cell->name, nvmem->stride);
350 		return -EINVAL;
351 	}
352 
353 	return 0;
354 }
355 
356 /**
357  * nvmem_add_cells() - Add cell information to an nvmem device
358  *
359  * @nvmem: nvmem device to add cells to.
360  * @info: nvmem cell info to add to the device
361  * @ncells: number of cells in info
362  *
363  * Return: 0 or negative error code on failure.
364  */
365 int nvmem_add_cells(struct nvmem_device *nvmem,
366 		    const struct nvmem_cell_info *info,
367 		    int ncells)
368 {
369 	struct nvmem_cell **cells;
370 	int i, rval;
371 
372 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
373 	if (!cells)
374 		return -ENOMEM;
375 
376 	for (i = 0; i < ncells; i++) {
377 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
378 		if (!cells[i]) {
379 			rval = -ENOMEM;
380 			goto err;
381 		}
382 
383 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
384 		if (rval) {
385 			kfree(cells[i]);
386 			goto err;
387 		}
388 
389 		nvmem_cell_add(cells[i]);
390 	}
391 
392 	nvmem->ncells = ncells;
393 	/* remove tmp array */
394 	kfree(cells);
395 
396 	return 0;
397 err:
398 	while (i--)
399 		nvmem_cell_drop(cells[i]);
400 
401 	kfree(cells);
402 
403 	return rval;
404 }
405 EXPORT_SYMBOL_GPL(nvmem_add_cells);
406 
407 /*
408  * nvmem_setup_compat() - Create an additional binary entry in
409  * drivers sys directory, to be backwards compatible with the older
410  * drivers/misc/eeprom drivers.
411  */
412 static int nvmem_setup_compat(struct nvmem_device *nvmem,
413 			      const struct nvmem_config *config)
414 {
415 	int rval;
416 
417 	if (!config->base_dev)
418 		return -EINVAL;
419 
420 	if (nvmem->read_only)
421 		nvmem->eeprom = bin_attr_ro_root_nvmem;
422 	else
423 		nvmem->eeprom = bin_attr_rw_root_nvmem;
424 	nvmem->eeprom.attr.name = "eeprom";
425 	nvmem->eeprom.size = nvmem->size;
426 #ifdef CONFIG_DEBUG_LOCK_ALLOC
427 	nvmem->eeprom.attr.key = &eeprom_lock_key;
428 #endif
429 	nvmem->eeprom.private = &nvmem->dev;
430 	nvmem->base_dev = config->base_dev;
431 
432 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
433 	if (rval) {
434 		dev_err(&nvmem->dev,
435 			"Failed to create eeprom binary file %d\n", rval);
436 		return rval;
437 	}
438 
439 	nvmem->flags |= FLAG_COMPAT;
440 
441 	return 0;
442 }
443 
444 /**
445  * nvmem_register() - Register a nvmem device for given nvmem_config.
446  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
447  *
448  * @config: nvmem device configuration with which nvmem device is created.
449  *
450  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
451  * on success.
452  */
453 
454 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
455 {
456 	struct nvmem_device *nvmem;
457 	int rval;
458 
459 	if (!config->dev)
460 		return ERR_PTR(-EINVAL);
461 
462 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
463 	if (!nvmem)
464 		return ERR_PTR(-ENOMEM);
465 
466 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
467 	if (rval < 0) {
468 		kfree(nvmem);
469 		return ERR_PTR(rval);
470 	}
471 
472 	nvmem->id = rval;
473 	nvmem->owner = config->owner;
474 	if (!nvmem->owner && config->dev->driver)
475 		nvmem->owner = config->dev->driver->owner;
476 	nvmem->stride = config->stride ?: 1;
477 	nvmem->word_size = config->word_size ?: 1;
478 	nvmem->size = config->size;
479 	nvmem->dev.type = &nvmem_provider_type;
480 	nvmem->dev.bus = &nvmem_bus_type;
481 	nvmem->dev.parent = config->dev;
482 	nvmem->priv = config->priv;
483 	nvmem->reg_read = config->reg_read;
484 	nvmem->reg_write = config->reg_write;
485 	nvmem->dev.of_node = config->dev->of_node;
486 
487 	if (config->id == -1 && config->name) {
488 		dev_set_name(&nvmem->dev, "%s", config->name);
489 	} else {
490 		dev_set_name(&nvmem->dev, "%s%d",
491 			     config->name ? : "nvmem",
492 			     config->name ? config->id : nvmem->id);
493 	}
494 
495 	nvmem->read_only = device_property_present(config->dev, "read-only") |
496 			   config->read_only;
497 
498 	if (config->root_only)
499 		nvmem->dev.groups = nvmem->read_only ?
500 			nvmem_ro_root_dev_groups :
501 			nvmem_rw_root_dev_groups;
502 	else
503 		nvmem->dev.groups = nvmem->read_only ?
504 			nvmem_ro_dev_groups :
505 			nvmem_rw_dev_groups;
506 
507 	device_initialize(&nvmem->dev);
508 
509 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
510 
511 	rval = device_add(&nvmem->dev);
512 	if (rval)
513 		goto err_put_device;
514 
515 	if (config->compat) {
516 		rval = nvmem_setup_compat(nvmem, config);
517 		if (rval)
518 			goto err_device_del;
519 	}
520 
521 	if (config->cells)
522 		nvmem_add_cells(nvmem, config->cells, config->ncells);
523 
524 	return nvmem;
525 
526 err_device_del:
527 	device_del(&nvmem->dev);
528 err_put_device:
529 	put_device(&nvmem->dev);
530 
531 	return ERR_PTR(rval);
532 }
533 EXPORT_SYMBOL_GPL(nvmem_register);
534 
535 /**
536  * nvmem_unregister() - Unregister previously registered nvmem device
537  *
538  * @nvmem: Pointer to previously registered nvmem device.
539  *
540  * Return: Will be an negative on error or a zero on success.
541  */
542 int nvmem_unregister(struct nvmem_device *nvmem)
543 {
544 	mutex_lock(&nvmem_mutex);
545 	if (nvmem->users) {
546 		mutex_unlock(&nvmem_mutex);
547 		return -EBUSY;
548 	}
549 	mutex_unlock(&nvmem_mutex);
550 
551 	if (nvmem->flags & FLAG_COMPAT)
552 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
553 
554 	nvmem_device_remove_all_cells(nvmem);
555 	device_del(&nvmem->dev);
556 	put_device(&nvmem->dev);
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL_GPL(nvmem_unregister);
561 
562 static void devm_nvmem_release(struct device *dev, void *res)
563 {
564 	WARN_ON(nvmem_unregister(*(struct nvmem_device **)res));
565 }
566 
567 /**
568  * devm_nvmem_register() - Register a managed nvmem device for given
569  * nvmem_config.
570  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
571  *
572  * @dev: Device that uses the nvmem device.
573  * @config: nvmem device configuration with which nvmem device is created.
574  *
575  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
576  * on success.
577  */
578 struct nvmem_device *devm_nvmem_register(struct device *dev,
579 					 const struct nvmem_config *config)
580 {
581 	struct nvmem_device **ptr, *nvmem;
582 
583 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
584 	if (!ptr)
585 		return ERR_PTR(-ENOMEM);
586 
587 	nvmem = nvmem_register(config);
588 
589 	if (!IS_ERR(nvmem)) {
590 		*ptr = nvmem;
591 		devres_add(dev, ptr);
592 	} else {
593 		devres_free(ptr);
594 	}
595 
596 	return nvmem;
597 }
598 EXPORT_SYMBOL_GPL(devm_nvmem_register);
599 
600 static int devm_nvmem_match(struct device *dev, void *res, void *data)
601 {
602 	struct nvmem_device **r = res;
603 
604 	return *r == data;
605 }
606 
607 /**
608  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
609  * device.
610  *
611  * @dev: Device that uses the nvmem device.
612  * @nvmem: Pointer to previously registered nvmem device.
613  *
614  * Return: Will be an negative on error or a zero on success.
615  */
616 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
617 {
618 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
619 }
620 EXPORT_SYMBOL(devm_nvmem_unregister);
621 
622 
623 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
624 					       struct nvmem_cell **cellp,
625 					       const char *cell_id)
626 {
627 	struct nvmem_device *nvmem = NULL;
628 
629 	mutex_lock(&nvmem_mutex);
630 
631 	if (np) {
632 		nvmem = of_nvmem_find(np);
633 		if (!nvmem) {
634 			mutex_unlock(&nvmem_mutex);
635 			return ERR_PTR(-EPROBE_DEFER);
636 		}
637 	} else {
638 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
639 
640 		if (cell) {
641 			nvmem = cell->nvmem;
642 			*cellp = cell;
643 		}
644 
645 		if (!nvmem) {
646 			mutex_unlock(&nvmem_mutex);
647 			return ERR_PTR(-ENOENT);
648 		}
649 	}
650 
651 	nvmem->users++;
652 	mutex_unlock(&nvmem_mutex);
653 
654 	if (!try_module_get(nvmem->owner)) {
655 		dev_err(&nvmem->dev,
656 			"could not increase module refcount for cell %s\n",
657 			nvmem->name);
658 
659 		mutex_lock(&nvmem_mutex);
660 		nvmem->users--;
661 		mutex_unlock(&nvmem_mutex);
662 
663 		return ERR_PTR(-EINVAL);
664 	}
665 
666 	return nvmem;
667 }
668 
669 static void __nvmem_device_put(struct nvmem_device *nvmem)
670 {
671 	module_put(nvmem->owner);
672 	mutex_lock(&nvmem_mutex);
673 	nvmem->users--;
674 	mutex_unlock(&nvmem_mutex);
675 }
676 
677 static struct nvmem_device *nvmem_find(const char *name)
678 {
679 	struct device *d;
680 
681 	d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
682 
683 	if (!d)
684 		return NULL;
685 
686 	return to_nvmem_device(d);
687 }
688 
689 #if IS_ENABLED(CONFIG_OF)
690 /**
691  * of_nvmem_device_get() - Get nvmem device from a given id
692  *
693  * @np: Device tree node that uses the nvmem device.
694  * @id: nvmem name from nvmem-names property.
695  *
696  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
697  * on success.
698  */
699 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
700 {
701 
702 	struct device_node *nvmem_np;
703 	int index;
704 
705 	index = of_property_match_string(np, "nvmem-names", id);
706 
707 	nvmem_np = of_parse_phandle(np, "nvmem", index);
708 	if (!nvmem_np)
709 		return ERR_PTR(-EINVAL);
710 
711 	return __nvmem_device_get(nvmem_np, NULL, NULL);
712 }
713 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
714 #endif
715 
716 /**
717  * nvmem_device_get() - Get nvmem device from a given id
718  *
719  * @dev: Device that uses the nvmem device.
720  * @dev_name: name of the requested nvmem device.
721  *
722  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
723  * on success.
724  */
725 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
726 {
727 	if (dev->of_node) { /* try dt first */
728 		struct nvmem_device *nvmem;
729 
730 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
731 
732 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
733 			return nvmem;
734 
735 	}
736 
737 	return nvmem_find(dev_name);
738 }
739 EXPORT_SYMBOL_GPL(nvmem_device_get);
740 
741 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
742 {
743 	struct nvmem_device **nvmem = res;
744 
745 	if (WARN_ON(!nvmem || !*nvmem))
746 		return 0;
747 
748 	return *nvmem == data;
749 }
750 
751 static void devm_nvmem_device_release(struct device *dev, void *res)
752 {
753 	nvmem_device_put(*(struct nvmem_device **)res);
754 }
755 
756 /**
757  * devm_nvmem_device_put() - put alredy got nvmem device
758  *
759  * @dev: Device that uses the nvmem device.
760  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
761  * that needs to be released.
762  */
763 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
764 {
765 	int ret;
766 
767 	ret = devres_release(dev, devm_nvmem_device_release,
768 			     devm_nvmem_device_match, nvmem);
769 
770 	WARN_ON(ret);
771 }
772 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
773 
774 /**
775  * nvmem_device_put() - put alredy got nvmem device
776  *
777  * @nvmem: pointer to nvmem device that needs to be released.
778  */
779 void nvmem_device_put(struct nvmem_device *nvmem)
780 {
781 	__nvmem_device_put(nvmem);
782 }
783 EXPORT_SYMBOL_GPL(nvmem_device_put);
784 
785 /**
786  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
787  *
788  * @dev: Device that requests the nvmem device.
789  * @id: name id for the requested nvmem device.
790  *
791  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
792  * on success.  The nvmem_cell will be freed by the automatically once the
793  * device is freed.
794  */
795 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
796 {
797 	struct nvmem_device **ptr, *nvmem;
798 
799 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
800 	if (!ptr)
801 		return ERR_PTR(-ENOMEM);
802 
803 	nvmem = nvmem_device_get(dev, id);
804 	if (!IS_ERR(nvmem)) {
805 		*ptr = nvmem;
806 		devres_add(dev, ptr);
807 	} else {
808 		devres_free(ptr);
809 	}
810 
811 	return nvmem;
812 }
813 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
814 
815 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
816 {
817 	struct nvmem_cell *cell = NULL;
818 	struct nvmem_device *nvmem;
819 
820 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
821 	if (IS_ERR(nvmem))
822 		return ERR_CAST(nvmem);
823 
824 	return cell;
825 }
826 
827 #if IS_ENABLED(CONFIG_OF)
828 /**
829  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
830  *
831  * @np: Device tree node that uses the nvmem cell.
832  * @name: nvmem cell name from nvmem-cell-names property, or NULL
833  *	  for the cell at index 0 (the lone cell with no accompanying
834  *	  nvmem-cell-names property).
835  *
836  * Return: Will be an ERR_PTR() on error or a valid pointer
837  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
838  * nvmem_cell_put().
839  */
840 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
841 					    const char *name)
842 {
843 	struct device_node *cell_np, *nvmem_np;
844 	struct nvmem_cell *cell;
845 	struct nvmem_device *nvmem;
846 	const __be32 *addr;
847 	int rval, len;
848 	int index = 0;
849 
850 	/* if cell name exists, find index to the name */
851 	if (name)
852 		index = of_property_match_string(np, "nvmem-cell-names", name);
853 
854 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
855 	if (!cell_np)
856 		return ERR_PTR(-EINVAL);
857 
858 	nvmem_np = of_get_next_parent(cell_np);
859 	if (!nvmem_np)
860 		return ERR_PTR(-EINVAL);
861 
862 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
863 	of_node_put(nvmem_np);
864 	if (IS_ERR(nvmem))
865 		return ERR_CAST(nvmem);
866 
867 	addr = of_get_property(cell_np, "reg", &len);
868 	if (!addr || (len < 2 * sizeof(u32))) {
869 		dev_err(&nvmem->dev, "nvmem: invalid reg on %pOF\n",
870 			cell_np);
871 		rval  = -EINVAL;
872 		goto err_mem;
873 	}
874 
875 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
876 	if (!cell) {
877 		rval = -ENOMEM;
878 		goto err_mem;
879 	}
880 
881 	cell->nvmem = nvmem;
882 	cell->offset = be32_to_cpup(addr++);
883 	cell->bytes = be32_to_cpup(addr);
884 	cell->name = cell_np->name;
885 
886 	addr = of_get_property(cell_np, "bits", &len);
887 	if (addr && len == (2 * sizeof(u32))) {
888 		cell->bit_offset = be32_to_cpup(addr++);
889 		cell->nbits = be32_to_cpup(addr);
890 	}
891 
892 	if (cell->nbits)
893 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
894 					   BITS_PER_BYTE);
895 
896 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
897 			dev_err(&nvmem->dev,
898 				"cell %s unaligned to nvmem stride %d\n",
899 				cell->name, nvmem->stride);
900 		rval  = -EINVAL;
901 		goto err_sanity;
902 	}
903 
904 	nvmem_cell_add(cell);
905 
906 	return cell;
907 
908 err_sanity:
909 	kfree(cell);
910 
911 err_mem:
912 	__nvmem_device_put(nvmem);
913 
914 	return ERR_PTR(rval);
915 }
916 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
917 #endif
918 
919 /**
920  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
921  *
922  * @dev: Device that requests the nvmem cell.
923  * @cell_id: nvmem cell name to get.
924  *
925  * Return: Will be an ERR_PTR() on error or a valid pointer
926  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
927  * nvmem_cell_put().
928  */
929 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
930 {
931 	struct nvmem_cell *cell;
932 
933 	if (dev->of_node) { /* try dt first */
934 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
935 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
936 			return cell;
937 	}
938 
939 	return nvmem_cell_get_from_list(cell_id);
940 }
941 EXPORT_SYMBOL_GPL(nvmem_cell_get);
942 
943 static void devm_nvmem_cell_release(struct device *dev, void *res)
944 {
945 	nvmem_cell_put(*(struct nvmem_cell **)res);
946 }
947 
948 /**
949  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
950  *
951  * @dev: Device that requests the nvmem cell.
952  * @id: nvmem cell name id to get.
953  *
954  * Return: Will be an ERR_PTR() on error or a valid pointer
955  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
956  * automatically once the device is freed.
957  */
958 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
959 {
960 	struct nvmem_cell **ptr, *cell;
961 
962 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
963 	if (!ptr)
964 		return ERR_PTR(-ENOMEM);
965 
966 	cell = nvmem_cell_get(dev, id);
967 	if (!IS_ERR(cell)) {
968 		*ptr = cell;
969 		devres_add(dev, ptr);
970 	} else {
971 		devres_free(ptr);
972 	}
973 
974 	return cell;
975 }
976 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
977 
978 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
979 {
980 	struct nvmem_cell **c = res;
981 
982 	if (WARN_ON(!c || !*c))
983 		return 0;
984 
985 	return *c == data;
986 }
987 
988 /**
989  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
990  * from devm_nvmem_cell_get.
991  *
992  * @dev: Device that requests the nvmem cell.
993  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
994  */
995 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
996 {
997 	int ret;
998 
999 	ret = devres_release(dev, devm_nvmem_cell_release,
1000 				devm_nvmem_cell_match, cell);
1001 
1002 	WARN_ON(ret);
1003 }
1004 EXPORT_SYMBOL(devm_nvmem_cell_put);
1005 
1006 /**
1007  * nvmem_cell_put() - Release previously allocated nvmem cell.
1008  *
1009  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1010  */
1011 void nvmem_cell_put(struct nvmem_cell *cell)
1012 {
1013 	struct nvmem_device *nvmem = cell->nvmem;
1014 
1015 	__nvmem_device_put(nvmem);
1016 	nvmem_cell_drop(cell);
1017 }
1018 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1019 
1020 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1021 {
1022 	u8 *p, *b;
1023 	int i, bit_offset = cell->bit_offset;
1024 
1025 	p = b = buf;
1026 	if (bit_offset) {
1027 		/* First shift */
1028 		*b++ >>= bit_offset;
1029 
1030 		/* setup rest of the bytes if any */
1031 		for (i = 1; i < cell->bytes; i++) {
1032 			/* Get bits from next byte and shift them towards msb */
1033 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1034 
1035 			p = b;
1036 			*b++ >>= bit_offset;
1037 		}
1038 
1039 		/* result fits in less bytes */
1040 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
1041 			*p-- = 0;
1042 	}
1043 	/* clear msb bits if any leftover in the last byte */
1044 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1045 }
1046 
1047 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1048 		      struct nvmem_cell *cell,
1049 		      void *buf, size_t *len)
1050 {
1051 	int rc;
1052 
1053 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1054 
1055 	if (rc)
1056 		return rc;
1057 
1058 	/* shift bits in-place */
1059 	if (cell->bit_offset || cell->nbits)
1060 		nvmem_shift_read_buffer_in_place(cell, buf);
1061 
1062 	if (len)
1063 		*len = cell->bytes;
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  * nvmem_cell_read() - Read a given nvmem cell
1070  *
1071  * @cell: nvmem cell to be read.
1072  * @len: pointer to length of cell which will be populated on successful read;
1073  *	 can be NULL.
1074  *
1075  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1076  * buffer should be freed by the consumer with a kfree().
1077  */
1078 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1079 {
1080 	struct nvmem_device *nvmem = cell->nvmem;
1081 	u8 *buf;
1082 	int rc;
1083 
1084 	if (!nvmem)
1085 		return ERR_PTR(-EINVAL);
1086 
1087 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1088 	if (!buf)
1089 		return ERR_PTR(-ENOMEM);
1090 
1091 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1092 	if (rc) {
1093 		kfree(buf);
1094 		return ERR_PTR(rc);
1095 	}
1096 
1097 	return buf;
1098 }
1099 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1100 
1101 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1102 					     u8 *_buf, int len)
1103 {
1104 	struct nvmem_device *nvmem = cell->nvmem;
1105 	int i, rc, nbits, bit_offset = cell->bit_offset;
1106 	u8 v, *p, *buf, *b, pbyte, pbits;
1107 
1108 	nbits = cell->nbits;
1109 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1110 	if (!buf)
1111 		return ERR_PTR(-ENOMEM);
1112 
1113 	memcpy(buf, _buf, len);
1114 	p = b = buf;
1115 
1116 	if (bit_offset) {
1117 		pbyte = *b;
1118 		*b <<= bit_offset;
1119 
1120 		/* setup the first byte with lsb bits from nvmem */
1121 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1122 		if (rc)
1123 			goto err;
1124 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1125 
1126 		/* setup rest of the byte if any */
1127 		for (i = 1; i < cell->bytes; i++) {
1128 			/* Get last byte bits and shift them towards lsb */
1129 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1130 			pbyte = *b;
1131 			p = b;
1132 			*b <<= bit_offset;
1133 			*b++ |= pbits;
1134 		}
1135 	}
1136 
1137 	/* if it's not end on byte boundary */
1138 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1139 		/* setup the last byte with msb bits from nvmem */
1140 		rc = nvmem_reg_read(nvmem,
1141 				    cell->offset + cell->bytes - 1, &v, 1);
1142 		if (rc)
1143 			goto err;
1144 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1145 
1146 	}
1147 
1148 	return buf;
1149 err:
1150 	kfree(buf);
1151 	return ERR_PTR(rc);
1152 }
1153 
1154 /**
1155  * nvmem_cell_write() - Write to a given nvmem cell
1156  *
1157  * @cell: nvmem cell to be written.
1158  * @buf: Buffer to be written.
1159  * @len: length of buffer to be written to nvmem cell.
1160  *
1161  * Return: length of bytes written or negative on failure.
1162  */
1163 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1164 {
1165 	struct nvmem_device *nvmem = cell->nvmem;
1166 	int rc;
1167 
1168 	if (!nvmem || nvmem->read_only ||
1169 	    (cell->bit_offset == 0 && len != cell->bytes))
1170 		return -EINVAL;
1171 
1172 	if (cell->bit_offset || cell->nbits) {
1173 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1174 		if (IS_ERR(buf))
1175 			return PTR_ERR(buf);
1176 	}
1177 
1178 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1179 
1180 	/* free the tmp buffer */
1181 	if (cell->bit_offset || cell->nbits)
1182 		kfree(buf);
1183 
1184 	if (rc)
1185 		return rc;
1186 
1187 	return len;
1188 }
1189 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1190 
1191 /**
1192  * nvmem_cell_read_u32() - Read a cell value as an u32
1193  *
1194  * @dev: Device that requests the nvmem cell.
1195  * @cell_id: Name of nvmem cell to read.
1196  * @val: pointer to output value.
1197  *
1198  * Return: 0 on success or negative errno.
1199  */
1200 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1201 {
1202 	struct nvmem_cell *cell;
1203 	void *buf;
1204 	size_t len;
1205 
1206 	cell = nvmem_cell_get(dev, cell_id);
1207 	if (IS_ERR(cell))
1208 		return PTR_ERR(cell);
1209 
1210 	buf = nvmem_cell_read(cell, &len);
1211 	if (IS_ERR(buf)) {
1212 		nvmem_cell_put(cell);
1213 		return PTR_ERR(buf);
1214 	}
1215 	if (len != sizeof(*val)) {
1216 		kfree(buf);
1217 		nvmem_cell_put(cell);
1218 		return -EINVAL;
1219 	}
1220 	memcpy(val, buf, sizeof(*val));
1221 
1222 	kfree(buf);
1223 	nvmem_cell_put(cell);
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1227 
1228 /**
1229  * nvmem_device_cell_read() - Read a given nvmem device and cell
1230  *
1231  * @nvmem: nvmem device to read from.
1232  * @info: nvmem cell info to be read.
1233  * @buf: buffer pointer which will be populated on successful read.
1234  *
1235  * Return: length of successful bytes read on success and negative
1236  * error code on error.
1237  */
1238 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1239 			   struct nvmem_cell_info *info, void *buf)
1240 {
1241 	struct nvmem_cell cell;
1242 	int rc;
1243 	ssize_t len;
1244 
1245 	if (!nvmem)
1246 		return -EINVAL;
1247 
1248 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1249 	if (rc)
1250 		return rc;
1251 
1252 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1253 	if (rc)
1254 		return rc;
1255 
1256 	return len;
1257 }
1258 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1259 
1260 /**
1261  * nvmem_device_cell_write() - Write cell to a given nvmem device
1262  *
1263  * @nvmem: nvmem device to be written to.
1264  * @info: nvmem cell info to be written.
1265  * @buf: buffer to be written to cell.
1266  *
1267  * Return: length of bytes written or negative error code on failure.
1268  * */
1269 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1270 			    struct nvmem_cell_info *info, void *buf)
1271 {
1272 	struct nvmem_cell cell;
1273 	int rc;
1274 
1275 	if (!nvmem)
1276 		return -EINVAL;
1277 
1278 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1279 	if (rc)
1280 		return rc;
1281 
1282 	return nvmem_cell_write(&cell, buf, cell.bytes);
1283 }
1284 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1285 
1286 /**
1287  * nvmem_device_read() - Read from a given nvmem device
1288  *
1289  * @nvmem: nvmem device to read from.
1290  * @offset: offset in nvmem device.
1291  * @bytes: number of bytes to read.
1292  * @buf: buffer pointer which will be populated on successful read.
1293  *
1294  * Return: length of successful bytes read on success and negative
1295  * error code on error.
1296  */
1297 int nvmem_device_read(struct nvmem_device *nvmem,
1298 		      unsigned int offset,
1299 		      size_t bytes, void *buf)
1300 {
1301 	int rc;
1302 
1303 	if (!nvmem)
1304 		return -EINVAL;
1305 
1306 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1307 
1308 	if (rc)
1309 		return rc;
1310 
1311 	return bytes;
1312 }
1313 EXPORT_SYMBOL_GPL(nvmem_device_read);
1314 
1315 /**
1316  * nvmem_device_write() - Write cell to a given nvmem device
1317  *
1318  * @nvmem: nvmem device to be written to.
1319  * @offset: offset in nvmem device.
1320  * @bytes: number of bytes to write.
1321  * @buf: buffer to be written.
1322  *
1323  * Return: length of bytes written or negative error code on failure.
1324  * */
1325 int nvmem_device_write(struct nvmem_device *nvmem,
1326 		       unsigned int offset,
1327 		       size_t bytes, void *buf)
1328 {
1329 	int rc;
1330 
1331 	if (!nvmem)
1332 		return -EINVAL;
1333 
1334 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1335 
1336 	if (rc)
1337 		return rc;
1338 
1339 
1340 	return bytes;
1341 }
1342 EXPORT_SYMBOL_GPL(nvmem_device_write);
1343 
1344 static int __init nvmem_init(void)
1345 {
1346 	return bus_register(&nvmem_bus_type);
1347 }
1348 
1349 static void __exit nvmem_exit(void)
1350 {
1351 	bus_unregister(&nvmem_bus_type);
1352 }
1353 
1354 subsys_initcall(nvmem_init);
1355 module_exit(nvmem_exit);
1356 
1357 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1358 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1359 MODULE_DESCRIPTION("nvmem Driver Core");
1360 MODULE_LICENSE("GPL v2");
1361