xref: /linux/drivers/nvmem/core.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 			     char *buf)
189 {
190 	struct nvmem_device *nvmem = to_nvmem_device(dev);
191 
192 	return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194 
195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 			      const char *buf, size_t count)
197 {
198 	struct nvmem_device *nvmem = to_nvmem_device(dev);
199 	int ret = kstrtobool(buf, &nvmem->read_only);
200 
201 	if (ret < 0)
202 		return ret;
203 
204 	return count;
205 }
206 
207 static DEVICE_ATTR_RW(force_ro);
208 
209 static struct attribute *nvmem_attrs[] = {
210 	&dev_attr_force_ro.attr,
211 	&dev_attr_type.attr,
212 	NULL,
213 };
214 
215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 				   struct bin_attribute *attr, char *buf,
217 				   loff_t pos, size_t count)
218 {
219 	struct device *dev;
220 	struct nvmem_device *nvmem;
221 	int rc;
222 
223 	if (attr->private)
224 		dev = attr->private;
225 	else
226 		dev = kobj_to_dev(kobj);
227 	nvmem = to_nvmem_device(dev);
228 
229 	if (!IS_ALIGNED(pos, nvmem->stride))
230 		return -EINVAL;
231 
232 	if (count < nvmem->word_size)
233 		return -EINVAL;
234 
235 	count = round_down(count, nvmem->word_size);
236 
237 	if (!nvmem->reg_read)
238 		return -EPERM;
239 
240 	rc = nvmem_reg_read(nvmem, pos, buf, count);
241 
242 	if (rc)
243 		return rc;
244 
245 	return count;
246 }
247 
248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 				    struct bin_attribute *attr, char *buf,
250 				    loff_t pos, size_t count)
251 {
252 	struct device *dev;
253 	struct nvmem_device *nvmem;
254 	int rc;
255 
256 	if (attr->private)
257 		dev = attr->private;
258 	else
259 		dev = kobj_to_dev(kobj);
260 	nvmem = to_nvmem_device(dev);
261 
262 	if (!IS_ALIGNED(pos, nvmem->stride))
263 		return -EINVAL;
264 
265 	if (count < nvmem->word_size)
266 		return -EINVAL;
267 
268 	count = round_down(count, nvmem->word_size);
269 
270 	if (!nvmem->reg_write)
271 		return -EPERM;
272 
273 	rc = nvmem_reg_write(nvmem, pos, buf, count);
274 
275 	if (rc)
276 		return rc;
277 
278 	return count;
279 }
280 
281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 	umode_t mode = 0400;
284 
285 	if (!nvmem->root_only)
286 		mode |= 0044;
287 
288 	if (!nvmem->read_only)
289 		mode |= 0200;
290 
291 	if (!nvmem->reg_write)
292 		mode &= ~0200;
293 
294 	if (!nvmem->reg_read)
295 		mode &= ~0444;
296 
297 	return mode;
298 }
299 
300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 					 struct bin_attribute *attr, int i)
302 {
303 	struct device *dev = kobj_to_dev(kobj);
304 	struct nvmem_device *nvmem = to_nvmem_device(dev);
305 
306 	attr->size = nvmem->size;
307 
308 	return nvmem_bin_attr_get_umode(nvmem);
309 }
310 
311 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
312 				     struct attribute *attr, int i)
313 {
314 	struct device *dev = kobj_to_dev(kobj);
315 	struct nvmem_device *nvmem = to_nvmem_device(dev);
316 
317 	/*
318 	 * If the device has no .reg_write operation, do not allow
319 	 * configuration as read-write.
320 	 * If the device is set as read-only by configuration, it
321 	 * can be forced into read-write mode using the 'force_ro'
322 	 * attribute.
323 	 */
324 	if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
325 		return 0;	/* Attribute not visible */
326 
327 	return attr->mode;
328 }
329 
330 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
331 					    const char *id, int index);
332 
333 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
334 				    struct bin_attribute *attr, char *buf,
335 				    loff_t pos, size_t count)
336 {
337 	struct nvmem_cell_entry *entry;
338 	struct nvmem_cell *cell = NULL;
339 	size_t cell_sz, read_len;
340 	void *content;
341 
342 	entry = attr->private;
343 	cell = nvmem_create_cell(entry, entry->name, 0);
344 	if (IS_ERR(cell))
345 		return PTR_ERR(cell);
346 
347 	if (!cell)
348 		return -EINVAL;
349 
350 	content = nvmem_cell_read(cell, &cell_sz);
351 	if (IS_ERR(content)) {
352 		read_len = PTR_ERR(content);
353 		goto destroy_cell;
354 	}
355 
356 	read_len = min_t(unsigned int, cell_sz - pos, count);
357 	memcpy(buf, content + pos, read_len);
358 	kfree(content);
359 
360 destroy_cell:
361 	kfree_const(cell->id);
362 	kfree(cell);
363 
364 	return read_len;
365 }
366 
367 /* default read/write permissions */
368 static struct bin_attribute bin_attr_rw_nvmem = {
369 	.attr	= {
370 		.name	= "nvmem",
371 		.mode	= 0644,
372 	},
373 	.read	= bin_attr_nvmem_read,
374 	.write	= bin_attr_nvmem_write,
375 };
376 
377 static struct bin_attribute *nvmem_bin_attributes[] = {
378 	&bin_attr_rw_nvmem,
379 	NULL,
380 };
381 
382 static const struct attribute_group nvmem_bin_group = {
383 	.bin_attrs	= nvmem_bin_attributes,
384 	.attrs		= nvmem_attrs,
385 	.is_bin_visible = nvmem_bin_attr_is_visible,
386 	.is_visible	= nvmem_attr_is_visible,
387 };
388 
389 static const struct attribute_group *nvmem_dev_groups[] = {
390 	&nvmem_bin_group,
391 	NULL,
392 };
393 
394 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
395 	.attr	= {
396 		.name	= "eeprom",
397 	},
398 	.read	= bin_attr_nvmem_read,
399 	.write	= bin_attr_nvmem_write,
400 };
401 
402 /*
403  * nvmem_setup_compat() - Create an additional binary entry in
404  * drivers sys directory, to be backwards compatible with the older
405  * drivers/misc/eeprom drivers.
406  */
407 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
408 				    const struct nvmem_config *config)
409 {
410 	int rval;
411 
412 	if (!config->compat)
413 		return 0;
414 
415 	if (!config->base_dev)
416 		return -EINVAL;
417 
418 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
419 	if (config->type == NVMEM_TYPE_FRAM)
420 		nvmem->eeprom.attr.name = "fram";
421 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
422 	nvmem->eeprom.size = nvmem->size;
423 #ifdef CONFIG_DEBUG_LOCK_ALLOC
424 	nvmem->eeprom.attr.key = &eeprom_lock_key;
425 #endif
426 	nvmem->eeprom.private = &nvmem->dev;
427 	nvmem->base_dev = config->base_dev;
428 
429 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
430 	if (rval) {
431 		dev_err(&nvmem->dev,
432 			"Failed to create eeprom binary file %d\n", rval);
433 		return rval;
434 	}
435 
436 	nvmem->flags |= FLAG_COMPAT;
437 
438 	return 0;
439 }
440 
441 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
442 			      const struct nvmem_config *config)
443 {
444 	if (config->compat)
445 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
446 }
447 
448 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
449 {
450 	struct attribute_group group = {
451 		.name	= "cells",
452 	};
453 	struct nvmem_cell_entry *entry;
454 	struct bin_attribute *attrs;
455 	unsigned int ncells = 0, i = 0;
456 	int ret = 0;
457 
458 	mutex_lock(&nvmem_mutex);
459 
460 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
461 		goto unlock_mutex;
462 
463 	/* Allocate an array of attributes with a sentinel */
464 	ncells = list_count_nodes(&nvmem->cells);
465 	group.bin_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
466 				       sizeof(struct bin_attribute *), GFP_KERNEL);
467 	if (!group.bin_attrs) {
468 		ret = -ENOMEM;
469 		goto unlock_mutex;
470 	}
471 
472 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
473 	if (!attrs) {
474 		ret = -ENOMEM;
475 		goto unlock_mutex;
476 	}
477 
478 	/* Initialize each attribute to take the name and size of the cell */
479 	list_for_each_entry(entry, &nvmem->cells, node) {
480 		sysfs_bin_attr_init(&attrs[i]);
481 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
482 						    "%s@%x,%x", entry->name,
483 						    entry->offset,
484 						    entry->bit_offset);
485 		attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
486 		attrs[i].size = entry->bytes;
487 		attrs[i].read = &nvmem_cell_attr_read;
488 		attrs[i].private = entry;
489 		if (!attrs[i].attr.name) {
490 			ret = -ENOMEM;
491 			goto unlock_mutex;
492 		}
493 
494 		group.bin_attrs[i] = &attrs[i];
495 		i++;
496 	}
497 
498 	ret = device_add_group(&nvmem->dev, &group);
499 	if (ret)
500 		goto unlock_mutex;
501 
502 	nvmem->sysfs_cells_populated = true;
503 
504 unlock_mutex:
505 	mutex_unlock(&nvmem_mutex);
506 
507 	return ret;
508 }
509 
510 #else /* CONFIG_NVMEM_SYSFS */
511 
512 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
513 				    const struct nvmem_config *config)
514 {
515 	return -ENOSYS;
516 }
517 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
518 				      const struct nvmem_config *config)
519 {
520 }
521 
522 #endif /* CONFIG_NVMEM_SYSFS */
523 
524 static void nvmem_release(struct device *dev)
525 {
526 	struct nvmem_device *nvmem = to_nvmem_device(dev);
527 
528 	ida_free(&nvmem_ida, nvmem->id);
529 	gpiod_put(nvmem->wp_gpio);
530 	kfree(nvmem);
531 }
532 
533 static const struct device_type nvmem_provider_type = {
534 	.release	= nvmem_release,
535 };
536 
537 static struct bus_type nvmem_bus_type = {
538 	.name		= "nvmem",
539 };
540 
541 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
542 {
543 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
544 	mutex_lock(&nvmem_mutex);
545 	list_del(&cell->node);
546 	mutex_unlock(&nvmem_mutex);
547 	of_node_put(cell->np);
548 	kfree_const(cell->name);
549 	kfree(cell);
550 }
551 
552 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
553 {
554 	struct nvmem_cell_entry *cell, *p;
555 
556 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
557 		nvmem_cell_entry_drop(cell);
558 }
559 
560 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
561 {
562 	mutex_lock(&nvmem_mutex);
563 	list_add_tail(&cell->node, &cell->nvmem->cells);
564 	mutex_unlock(&nvmem_mutex);
565 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
566 }
567 
568 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
569 						     const struct nvmem_cell_info *info,
570 						     struct nvmem_cell_entry *cell)
571 {
572 	cell->nvmem = nvmem;
573 	cell->offset = info->offset;
574 	cell->raw_len = info->raw_len ?: info->bytes;
575 	cell->bytes = info->bytes;
576 	cell->name = info->name;
577 	cell->read_post_process = info->read_post_process;
578 	cell->priv = info->priv;
579 
580 	cell->bit_offset = info->bit_offset;
581 	cell->nbits = info->nbits;
582 	cell->np = info->np;
583 
584 	if (cell->nbits)
585 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
586 					   BITS_PER_BYTE);
587 
588 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
589 		dev_err(&nvmem->dev,
590 			"cell %s unaligned to nvmem stride %d\n",
591 			cell->name ?: "<unknown>", nvmem->stride);
592 		return -EINVAL;
593 	}
594 
595 	return 0;
596 }
597 
598 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
599 					       const struct nvmem_cell_info *info,
600 					       struct nvmem_cell_entry *cell)
601 {
602 	int err;
603 
604 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
605 	if (err)
606 		return err;
607 
608 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
609 	if (!cell->name)
610 		return -ENOMEM;
611 
612 	return 0;
613 }
614 
615 /**
616  * nvmem_add_one_cell() - Add one cell information to an nvmem device
617  *
618  * @nvmem: nvmem device to add cells to.
619  * @info: nvmem cell info to add to the device
620  *
621  * Return: 0 or negative error code on failure.
622  */
623 int nvmem_add_one_cell(struct nvmem_device *nvmem,
624 		       const struct nvmem_cell_info *info)
625 {
626 	struct nvmem_cell_entry *cell;
627 	int rval;
628 
629 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
630 	if (!cell)
631 		return -ENOMEM;
632 
633 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
634 	if (rval) {
635 		kfree(cell);
636 		return rval;
637 	}
638 
639 	nvmem_cell_entry_add(cell);
640 
641 	return 0;
642 }
643 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
644 
645 /**
646  * nvmem_add_cells() - Add cell information to an nvmem device
647  *
648  * @nvmem: nvmem device to add cells to.
649  * @info: nvmem cell info to add to the device
650  * @ncells: number of cells in info
651  *
652  * Return: 0 or negative error code on failure.
653  */
654 static int nvmem_add_cells(struct nvmem_device *nvmem,
655 		    const struct nvmem_cell_info *info,
656 		    int ncells)
657 {
658 	int i, rval;
659 
660 	for (i = 0; i < ncells; i++) {
661 		rval = nvmem_add_one_cell(nvmem, &info[i]);
662 		if (rval)
663 			return rval;
664 	}
665 
666 	return 0;
667 }
668 
669 /**
670  * nvmem_register_notifier() - Register a notifier block for nvmem events.
671  *
672  * @nb: notifier block to be called on nvmem events.
673  *
674  * Return: 0 on success, negative error number on failure.
675  */
676 int nvmem_register_notifier(struct notifier_block *nb)
677 {
678 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
679 }
680 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
681 
682 /**
683  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
684  *
685  * @nb: notifier block to be unregistered.
686  *
687  * Return: 0 on success, negative error number on failure.
688  */
689 int nvmem_unregister_notifier(struct notifier_block *nb)
690 {
691 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
692 }
693 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
694 
695 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
696 {
697 	const struct nvmem_cell_info *info;
698 	struct nvmem_cell_table *table;
699 	struct nvmem_cell_entry *cell;
700 	int rval = 0, i;
701 
702 	mutex_lock(&nvmem_cell_mutex);
703 	list_for_each_entry(table, &nvmem_cell_tables, node) {
704 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
705 			for (i = 0; i < table->ncells; i++) {
706 				info = &table->cells[i];
707 
708 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
709 				if (!cell) {
710 					rval = -ENOMEM;
711 					goto out;
712 				}
713 
714 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
715 				if (rval) {
716 					kfree(cell);
717 					goto out;
718 				}
719 
720 				nvmem_cell_entry_add(cell);
721 			}
722 		}
723 	}
724 
725 out:
726 	mutex_unlock(&nvmem_cell_mutex);
727 	return rval;
728 }
729 
730 static struct nvmem_cell_entry *
731 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
732 {
733 	struct nvmem_cell_entry *iter, *cell = NULL;
734 
735 	mutex_lock(&nvmem_mutex);
736 	list_for_each_entry(iter, &nvmem->cells, node) {
737 		if (strcmp(cell_id, iter->name) == 0) {
738 			cell = iter;
739 			break;
740 		}
741 	}
742 	mutex_unlock(&nvmem_mutex);
743 
744 	return cell;
745 }
746 
747 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
748 {
749 	unsigned int cur = 0;
750 	const struct nvmem_keepout *keepout = nvmem->keepout;
751 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
752 
753 	while (keepout < keepoutend) {
754 		/* Ensure keepouts are sorted and don't overlap. */
755 		if (keepout->start < cur) {
756 			dev_err(&nvmem->dev,
757 				"Keepout regions aren't sorted or overlap.\n");
758 
759 			return -ERANGE;
760 		}
761 
762 		if (keepout->end < keepout->start) {
763 			dev_err(&nvmem->dev,
764 				"Invalid keepout region.\n");
765 
766 			return -EINVAL;
767 		}
768 
769 		/*
770 		 * Validate keepouts (and holes between) don't violate
771 		 * word_size constraints.
772 		 */
773 		if ((keepout->end - keepout->start < nvmem->word_size) ||
774 		    ((keepout->start != cur) &&
775 		     (keepout->start - cur < nvmem->word_size))) {
776 
777 			dev_err(&nvmem->dev,
778 				"Keepout regions violate word_size constraints.\n");
779 
780 			return -ERANGE;
781 		}
782 
783 		/* Validate keepouts don't violate stride (alignment). */
784 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
785 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
786 
787 			dev_err(&nvmem->dev,
788 				"Keepout regions violate stride.\n");
789 
790 			return -EINVAL;
791 		}
792 
793 		cur = keepout->end;
794 		keepout++;
795 	}
796 
797 	return 0;
798 }
799 
800 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
801 {
802 	struct device *dev = &nvmem->dev;
803 	struct device_node *child;
804 	const __be32 *addr;
805 	int len, ret;
806 
807 	for_each_child_of_node(np, child) {
808 		struct nvmem_cell_info info = {0};
809 
810 		addr = of_get_property(child, "reg", &len);
811 		if (!addr)
812 			continue;
813 		if (len < 2 * sizeof(u32)) {
814 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
815 			of_node_put(child);
816 			return -EINVAL;
817 		}
818 
819 		info.offset = be32_to_cpup(addr++);
820 		info.bytes = be32_to_cpup(addr);
821 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
822 
823 		addr = of_get_property(child, "bits", &len);
824 		if (addr && len == (2 * sizeof(u32))) {
825 			info.bit_offset = be32_to_cpup(addr++);
826 			info.nbits = be32_to_cpup(addr);
827 			if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
828 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
829 				of_node_put(child);
830 				return -EINVAL;
831 			}
832 		}
833 
834 		info.np = of_node_get(child);
835 
836 		if (nvmem->fixup_dt_cell_info)
837 			nvmem->fixup_dt_cell_info(nvmem, &info);
838 
839 		ret = nvmem_add_one_cell(nvmem, &info);
840 		kfree(info.name);
841 		if (ret) {
842 			of_node_put(child);
843 			return ret;
844 		}
845 	}
846 
847 	return 0;
848 }
849 
850 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
851 {
852 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
853 }
854 
855 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
856 {
857 	struct device_node *layout_np;
858 	int err = 0;
859 
860 	layout_np = of_nvmem_layout_get_container(nvmem);
861 	if (!layout_np)
862 		return 0;
863 
864 	if (of_device_is_compatible(layout_np, "fixed-layout"))
865 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
866 
867 	of_node_put(layout_np);
868 
869 	return err;
870 }
871 
872 int nvmem_layout_register(struct nvmem_layout *layout)
873 {
874 	int ret;
875 
876 	if (!layout->add_cells)
877 		return -EINVAL;
878 
879 	/* Populate the cells */
880 	ret = layout->add_cells(layout);
881 	if (ret)
882 		return ret;
883 
884 #ifdef CONFIG_NVMEM_SYSFS
885 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
886 	if (ret) {
887 		nvmem_device_remove_all_cells(layout->nvmem);
888 		return ret;
889 	}
890 #endif
891 
892 	return 0;
893 }
894 EXPORT_SYMBOL_GPL(nvmem_layout_register);
895 
896 void nvmem_layout_unregister(struct nvmem_layout *layout)
897 {
898 	/* Keep the API even with an empty stub in case we need it later */
899 }
900 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
901 
902 /**
903  * nvmem_register() - Register a nvmem device for given nvmem_config.
904  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
905  *
906  * @config: nvmem device configuration with which nvmem device is created.
907  *
908  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
909  * on success.
910  */
911 
912 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
913 {
914 	struct nvmem_device *nvmem;
915 	int rval;
916 
917 	if (!config->dev)
918 		return ERR_PTR(-EINVAL);
919 
920 	if (!config->reg_read && !config->reg_write)
921 		return ERR_PTR(-EINVAL);
922 
923 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
924 	if (!nvmem)
925 		return ERR_PTR(-ENOMEM);
926 
927 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
928 	if (rval < 0) {
929 		kfree(nvmem);
930 		return ERR_PTR(rval);
931 	}
932 
933 	nvmem->id = rval;
934 
935 	nvmem->dev.type = &nvmem_provider_type;
936 	nvmem->dev.bus = &nvmem_bus_type;
937 	nvmem->dev.parent = config->dev;
938 
939 	device_initialize(&nvmem->dev);
940 
941 	if (!config->ignore_wp)
942 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
943 						    GPIOD_OUT_HIGH);
944 	if (IS_ERR(nvmem->wp_gpio)) {
945 		rval = PTR_ERR(nvmem->wp_gpio);
946 		nvmem->wp_gpio = NULL;
947 		goto err_put_device;
948 	}
949 
950 	kref_init(&nvmem->refcnt);
951 	INIT_LIST_HEAD(&nvmem->cells);
952 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
953 
954 	nvmem->owner = config->owner;
955 	if (!nvmem->owner && config->dev->driver)
956 		nvmem->owner = config->dev->driver->owner;
957 	nvmem->stride = config->stride ?: 1;
958 	nvmem->word_size = config->word_size ?: 1;
959 	nvmem->size = config->size;
960 	nvmem->root_only = config->root_only;
961 	nvmem->priv = config->priv;
962 	nvmem->type = config->type;
963 	nvmem->reg_read = config->reg_read;
964 	nvmem->reg_write = config->reg_write;
965 	nvmem->keepout = config->keepout;
966 	nvmem->nkeepout = config->nkeepout;
967 	if (config->of_node)
968 		nvmem->dev.of_node = config->of_node;
969 	else
970 		nvmem->dev.of_node = config->dev->of_node;
971 
972 	switch (config->id) {
973 	case NVMEM_DEVID_NONE:
974 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
975 		break;
976 	case NVMEM_DEVID_AUTO:
977 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
978 		break;
979 	default:
980 		rval = dev_set_name(&nvmem->dev, "%s%d",
981 			     config->name ? : "nvmem",
982 			     config->name ? config->id : nvmem->id);
983 		break;
984 	}
985 
986 	if (rval)
987 		goto err_put_device;
988 
989 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
990 			   config->read_only || !nvmem->reg_write;
991 
992 #ifdef CONFIG_NVMEM_SYSFS
993 	nvmem->dev.groups = nvmem_dev_groups;
994 #endif
995 
996 	if (nvmem->nkeepout) {
997 		rval = nvmem_validate_keepouts(nvmem);
998 		if (rval)
999 			goto err_put_device;
1000 	}
1001 
1002 	if (config->compat) {
1003 		rval = nvmem_sysfs_setup_compat(nvmem, config);
1004 		if (rval)
1005 			goto err_put_device;
1006 	}
1007 
1008 	if (config->cells) {
1009 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1010 		if (rval)
1011 			goto err_remove_cells;
1012 	}
1013 
1014 	rval = nvmem_add_cells_from_table(nvmem);
1015 	if (rval)
1016 		goto err_remove_cells;
1017 
1018 	if (config->add_legacy_fixed_of_cells) {
1019 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1020 		if (rval)
1021 			goto err_remove_cells;
1022 	}
1023 
1024 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1025 	if (rval)
1026 		goto err_remove_cells;
1027 
1028 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1029 
1030 	rval = device_add(&nvmem->dev);
1031 	if (rval)
1032 		goto err_remove_cells;
1033 
1034 	rval = nvmem_populate_layout(nvmem);
1035 	if (rval)
1036 		goto err_remove_dev;
1037 
1038 #ifdef CONFIG_NVMEM_SYSFS
1039 	rval = nvmem_populate_sysfs_cells(nvmem);
1040 	if (rval)
1041 		goto err_destroy_layout;
1042 #endif
1043 
1044 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1045 
1046 	return nvmem;
1047 
1048 #ifdef CONFIG_NVMEM_SYSFS
1049 err_destroy_layout:
1050 	nvmem_destroy_layout(nvmem);
1051 #endif
1052 err_remove_dev:
1053 	device_del(&nvmem->dev);
1054 err_remove_cells:
1055 	nvmem_device_remove_all_cells(nvmem);
1056 	if (config->compat)
1057 		nvmem_sysfs_remove_compat(nvmem, config);
1058 err_put_device:
1059 	put_device(&nvmem->dev);
1060 
1061 	return ERR_PTR(rval);
1062 }
1063 EXPORT_SYMBOL_GPL(nvmem_register);
1064 
1065 static void nvmem_device_release(struct kref *kref)
1066 {
1067 	struct nvmem_device *nvmem;
1068 
1069 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1070 
1071 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1072 
1073 	if (nvmem->flags & FLAG_COMPAT)
1074 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1075 
1076 	nvmem_device_remove_all_cells(nvmem);
1077 	nvmem_destroy_layout(nvmem);
1078 	device_unregister(&nvmem->dev);
1079 }
1080 
1081 /**
1082  * nvmem_unregister() - Unregister previously registered nvmem device
1083  *
1084  * @nvmem: Pointer to previously registered nvmem device.
1085  */
1086 void nvmem_unregister(struct nvmem_device *nvmem)
1087 {
1088 	if (nvmem)
1089 		kref_put(&nvmem->refcnt, nvmem_device_release);
1090 }
1091 EXPORT_SYMBOL_GPL(nvmem_unregister);
1092 
1093 static void devm_nvmem_unregister(void *nvmem)
1094 {
1095 	nvmem_unregister(nvmem);
1096 }
1097 
1098 /**
1099  * devm_nvmem_register() - Register a managed nvmem device for given
1100  * nvmem_config.
1101  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1102  *
1103  * @dev: Device that uses the nvmem device.
1104  * @config: nvmem device configuration with which nvmem device is created.
1105  *
1106  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1107  * on success.
1108  */
1109 struct nvmem_device *devm_nvmem_register(struct device *dev,
1110 					 const struct nvmem_config *config)
1111 {
1112 	struct nvmem_device *nvmem;
1113 	int ret;
1114 
1115 	nvmem = nvmem_register(config);
1116 	if (IS_ERR(nvmem))
1117 		return nvmem;
1118 
1119 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1120 	if (ret)
1121 		return ERR_PTR(ret);
1122 
1123 	return nvmem;
1124 }
1125 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1126 
1127 static struct nvmem_device *__nvmem_device_get(void *data,
1128 			int (*match)(struct device *dev, const void *data))
1129 {
1130 	struct nvmem_device *nvmem = NULL;
1131 	struct device *dev;
1132 
1133 	mutex_lock(&nvmem_mutex);
1134 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1135 	if (dev)
1136 		nvmem = to_nvmem_device(dev);
1137 	mutex_unlock(&nvmem_mutex);
1138 	if (!nvmem)
1139 		return ERR_PTR(-EPROBE_DEFER);
1140 
1141 	if (!try_module_get(nvmem->owner)) {
1142 		dev_err(&nvmem->dev,
1143 			"could not increase module refcount for cell %s\n",
1144 			nvmem_dev_name(nvmem));
1145 
1146 		put_device(&nvmem->dev);
1147 		return ERR_PTR(-EINVAL);
1148 	}
1149 
1150 	kref_get(&nvmem->refcnt);
1151 
1152 	return nvmem;
1153 }
1154 
1155 static void __nvmem_device_put(struct nvmem_device *nvmem)
1156 {
1157 	put_device(&nvmem->dev);
1158 	module_put(nvmem->owner);
1159 	kref_put(&nvmem->refcnt, nvmem_device_release);
1160 }
1161 
1162 #if IS_ENABLED(CONFIG_OF)
1163 /**
1164  * of_nvmem_device_get() - Get nvmem device from a given id
1165  *
1166  * @np: Device tree node that uses the nvmem device.
1167  * @id: nvmem name from nvmem-names property.
1168  *
1169  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1170  * on success.
1171  */
1172 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1173 {
1174 
1175 	struct device_node *nvmem_np;
1176 	struct nvmem_device *nvmem;
1177 	int index = 0;
1178 
1179 	if (id)
1180 		index = of_property_match_string(np, "nvmem-names", id);
1181 
1182 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1183 	if (!nvmem_np)
1184 		return ERR_PTR(-ENOENT);
1185 
1186 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1187 	of_node_put(nvmem_np);
1188 	return nvmem;
1189 }
1190 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1191 #endif
1192 
1193 /**
1194  * nvmem_device_get() - Get nvmem device from a given id
1195  *
1196  * @dev: Device that uses the nvmem device.
1197  * @dev_name: name of the requested nvmem device.
1198  *
1199  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1200  * on success.
1201  */
1202 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1203 {
1204 	if (dev->of_node) { /* try dt first */
1205 		struct nvmem_device *nvmem;
1206 
1207 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1208 
1209 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1210 			return nvmem;
1211 
1212 	}
1213 
1214 	return __nvmem_device_get((void *)dev_name, device_match_name);
1215 }
1216 EXPORT_SYMBOL_GPL(nvmem_device_get);
1217 
1218 /**
1219  * nvmem_device_find() - Find nvmem device with matching function
1220  *
1221  * @data: Data to pass to match function
1222  * @match: Callback function to check device
1223  *
1224  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1225  * on success.
1226  */
1227 struct nvmem_device *nvmem_device_find(void *data,
1228 			int (*match)(struct device *dev, const void *data))
1229 {
1230 	return __nvmem_device_get(data, match);
1231 }
1232 EXPORT_SYMBOL_GPL(nvmem_device_find);
1233 
1234 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1235 {
1236 	struct nvmem_device **nvmem = res;
1237 
1238 	if (WARN_ON(!nvmem || !*nvmem))
1239 		return 0;
1240 
1241 	return *nvmem == data;
1242 }
1243 
1244 static void devm_nvmem_device_release(struct device *dev, void *res)
1245 {
1246 	nvmem_device_put(*(struct nvmem_device **)res);
1247 }
1248 
1249 /**
1250  * devm_nvmem_device_put() - put alredy got nvmem device
1251  *
1252  * @dev: Device that uses the nvmem device.
1253  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1254  * that needs to be released.
1255  */
1256 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1257 {
1258 	int ret;
1259 
1260 	ret = devres_release(dev, devm_nvmem_device_release,
1261 			     devm_nvmem_device_match, nvmem);
1262 
1263 	WARN_ON(ret);
1264 }
1265 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1266 
1267 /**
1268  * nvmem_device_put() - put alredy got nvmem device
1269  *
1270  * @nvmem: pointer to nvmem device that needs to be released.
1271  */
1272 void nvmem_device_put(struct nvmem_device *nvmem)
1273 {
1274 	__nvmem_device_put(nvmem);
1275 }
1276 EXPORT_SYMBOL_GPL(nvmem_device_put);
1277 
1278 /**
1279  * devm_nvmem_device_get() - Get nvmem device of device form a given id
1280  *
1281  * @dev: Device that requests the nvmem device.
1282  * @id: name id for the requested nvmem device.
1283  *
1284  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1285  * on success.  The nvmem_device will be freed by the automatically once the
1286  * device is freed.
1287  */
1288 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1289 {
1290 	struct nvmem_device **ptr, *nvmem;
1291 
1292 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1293 	if (!ptr)
1294 		return ERR_PTR(-ENOMEM);
1295 
1296 	nvmem = nvmem_device_get(dev, id);
1297 	if (!IS_ERR(nvmem)) {
1298 		*ptr = nvmem;
1299 		devres_add(dev, ptr);
1300 	} else {
1301 		devres_free(ptr);
1302 	}
1303 
1304 	return nvmem;
1305 }
1306 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1307 
1308 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1309 					    const char *id, int index)
1310 {
1311 	struct nvmem_cell *cell;
1312 	const char *name = NULL;
1313 
1314 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1315 	if (!cell)
1316 		return ERR_PTR(-ENOMEM);
1317 
1318 	if (id) {
1319 		name = kstrdup_const(id, GFP_KERNEL);
1320 		if (!name) {
1321 			kfree(cell);
1322 			return ERR_PTR(-ENOMEM);
1323 		}
1324 	}
1325 
1326 	cell->id = name;
1327 	cell->entry = entry;
1328 	cell->index = index;
1329 
1330 	return cell;
1331 }
1332 
1333 static struct nvmem_cell *
1334 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1335 {
1336 	struct nvmem_cell_entry *cell_entry;
1337 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1338 	struct nvmem_cell_lookup *lookup;
1339 	struct nvmem_device *nvmem;
1340 	const char *dev_id;
1341 
1342 	if (!dev)
1343 		return ERR_PTR(-EINVAL);
1344 
1345 	dev_id = dev_name(dev);
1346 
1347 	mutex_lock(&nvmem_lookup_mutex);
1348 
1349 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1350 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1351 		    (strcmp(lookup->con_id, con_id) == 0)) {
1352 			/* This is the right entry. */
1353 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1354 						   device_match_name);
1355 			if (IS_ERR(nvmem)) {
1356 				/* Provider may not be registered yet. */
1357 				cell = ERR_CAST(nvmem);
1358 				break;
1359 			}
1360 
1361 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1362 								   lookup->cell_name);
1363 			if (!cell_entry) {
1364 				__nvmem_device_put(nvmem);
1365 				cell = ERR_PTR(-ENOENT);
1366 			} else {
1367 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1368 				if (IS_ERR(cell))
1369 					__nvmem_device_put(nvmem);
1370 			}
1371 			break;
1372 		}
1373 	}
1374 
1375 	mutex_unlock(&nvmem_lookup_mutex);
1376 	return cell;
1377 }
1378 
1379 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1380 {
1381 	if (nvmem->layout && nvmem->layout->dev.driver)
1382 		module_put(nvmem->layout->dev.driver->owner);
1383 }
1384 
1385 #if IS_ENABLED(CONFIG_OF)
1386 static struct nvmem_cell_entry *
1387 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1388 {
1389 	struct nvmem_cell_entry *iter, *cell = NULL;
1390 
1391 	mutex_lock(&nvmem_mutex);
1392 	list_for_each_entry(iter, &nvmem->cells, node) {
1393 		if (np == iter->np) {
1394 			cell = iter;
1395 			break;
1396 		}
1397 	}
1398 	mutex_unlock(&nvmem_mutex);
1399 
1400 	return cell;
1401 }
1402 
1403 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1404 {
1405 	if (!nvmem->layout)
1406 		return 0;
1407 
1408 	if (!nvmem->layout->dev.driver ||
1409 	    !try_module_get(nvmem->layout->dev.driver->owner))
1410 		return -EPROBE_DEFER;
1411 
1412 	return 0;
1413 }
1414 
1415 /**
1416  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1417  *
1418  * @np: Device tree node that uses the nvmem cell.
1419  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1420  *      for the cell at index 0 (the lone cell with no accompanying
1421  *      nvmem-cell-names property).
1422  *
1423  * Return: Will be an ERR_PTR() on error or a valid pointer
1424  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1425  * nvmem_cell_put().
1426  */
1427 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1428 {
1429 	struct device_node *cell_np, *nvmem_np;
1430 	struct nvmem_device *nvmem;
1431 	struct nvmem_cell_entry *cell_entry;
1432 	struct nvmem_cell *cell;
1433 	struct of_phandle_args cell_spec;
1434 	int index = 0;
1435 	int cell_index = 0;
1436 	int ret;
1437 
1438 	/* if cell name exists, find index to the name */
1439 	if (id)
1440 		index = of_property_match_string(np, "nvmem-cell-names", id);
1441 
1442 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1443 						  "#nvmem-cell-cells",
1444 						  index, &cell_spec);
1445 	if (ret)
1446 		return ERR_PTR(-ENOENT);
1447 
1448 	if (cell_spec.args_count > 1)
1449 		return ERR_PTR(-EINVAL);
1450 
1451 	cell_np = cell_spec.np;
1452 	if (cell_spec.args_count)
1453 		cell_index = cell_spec.args[0];
1454 
1455 	nvmem_np = of_get_parent(cell_np);
1456 	if (!nvmem_np) {
1457 		of_node_put(cell_np);
1458 		return ERR_PTR(-EINVAL);
1459 	}
1460 
1461 	/* nvmem layouts produce cells within the nvmem-layout container */
1462 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1463 		nvmem_np = of_get_next_parent(nvmem_np);
1464 		if (!nvmem_np) {
1465 			of_node_put(cell_np);
1466 			return ERR_PTR(-EINVAL);
1467 		}
1468 	}
1469 
1470 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1471 	of_node_put(nvmem_np);
1472 	if (IS_ERR(nvmem)) {
1473 		of_node_put(cell_np);
1474 		return ERR_CAST(nvmem);
1475 	}
1476 
1477 	ret = nvmem_layout_module_get_optional(nvmem);
1478 	if (ret) {
1479 		of_node_put(cell_np);
1480 		__nvmem_device_put(nvmem);
1481 		return ERR_PTR(ret);
1482 	}
1483 
1484 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1485 	of_node_put(cell_np);
1486 	if (!cell_entry) {
1487 		__nvmem_device_put(nvmem);
1488 		nvmem_layout_module_put(nvmem);
1489 		if (nvmem->layout)
1490 			return ERR_PTR(-EPROBE_DEFER);
1491 		else
1492 			return ERR_PTR(-ENOENT);
1493 	}
1494 
1495 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1496 	if (IS_ERR(cell)) {
1497 		__nvmem_device_put(nvmem);
1498 		nvmem_layout_module_put(nvmem);
1499 	}
1500 
1501 	return cell;
1502 }
1503 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1504 #endif
1505 
1506 /**
1507  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1508  *
1509  * @dev: Device that requests the nvmem cell.
1510  * @id: nvmem cell name to get (this corresponds with the name from the
1511  *      nvmem-cell-names property for DT systems and with the con_id from
1512  *      the lookup entry for non-DT systems).
1513  *
1514  * Return: Will be an ERR_PTR() on error or a valid pointer
1515  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1516  * nvmem_cell_put().
1517  */
1518 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1519 {
1520 	struct nvmem_cell *cell;
1521 
1522 	if (dev->of_node) { /* try dt first */
1523 		cell = of_nvmem_cell_get(dev->of_node, id);
1524 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1525 			return cell;
1526 	}
1527 
1528 	/* NULL cell id only allowed for device tree; invalid otherwise */
1529 	if (!id)
1530 		return ERR_PTR(-EINVAL);
1531 
1532 	return nvmem_cell_get_from_lookup(dev, id);
1533 }
1534 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1535 
1536 static void devm_nvmem_cell_release(struct device *dev, void *res)
1537 {
1538 	nvmem_cell_put(*(struct nvmem_cell **)res);
1539 }
1540 
1541 /**
1542  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1543  *
1544  * @dev: Device that requests the nvmem cell.
1545  * @id: nvmem cell name id to get.
1546  *
1547  * Return: Will be an ERR_PTR() on error or a valid pointer
1548  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1549  * automatically once the device is freed.
1550  */
1551 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1552 {
1553 	struct nvmem_cell **ptr, *cell;
1554 
1555 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1556 	if (!ptr)
1557 		return ERR_PTR(-ENOMEM);
1558 
1559 	cell = nvmem_cell_get(dev, id);
1560 	if (!IS_ERR(cell)) {
1561 		*ptr = cell;
1562 		devres_add(dev, ptr);
1563 	} else {
1564 		devres_free(ptr);
1565 	}
1566 
1567 	return cell;
1568 }
1569 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1570 
1571 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1572 {
1573 	struct nvmem_cell **c = res;
1574 
1575 	if (WARN_ON(!c || !*c))
1576 		return 0;
1577 
1578 	return *c == data;
1579 }
1580 
1581 /**
1582  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1583  * from devm_nvmem_cell_get.
1584  *
1585  * @dev: Device that requests the nvmem cell.
1586  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1587  */
1588 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1589 {
1590 	int ret;
1591 
1592 	ret = devres_release(dev, devm_nvmem_cell_release,
1593 				devm_nvmem_cell_match, cell);
1594 
1595 	WARN_ON(ret);
1596 }
1597 EXPORT_SYMBOL(devm_nvmem_cell_put);
1598 
1599 /**
1600  * nvmem_cell_put() - Release previously allocated nvmem cell.
1601  *
1602  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1603  */
1604 void nvmem_cell_put(struct nvmem_cell *cell)
1605 {
1606 	struct nvmem_device *nvmem = cell->entry->nvmem;
1607 
1608 	if (cell->id)
1609 		kfree_const(cell->id);
1610 
1611 	kfree(cell);
1612 	__nvmem_device_put(nvmem);
1613 	nvmem_layout_module_put(nvmem);
1614 }
1615 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1616 
1617 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1618 {
1619 	u8 *p, *b;
1620 	int i, extra, bit_offset = cell->bit_offset;
1621 
1622 	p = b = buf;
1623 	if (bit_offset) {
1624 		/* First shift */
1625 		*b++ >>= bit_offset;
1626 
1627 		/* setup rest of the bytes if any */
1628 		for (i = 1; i < cell->bytes; i++) {
1629 			/* Get bits from next byte and shift them towards msb */
1630 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1631 
1632 			p = b;
1633 			*b++ >>= bit_offset;
1634 		}
1635 	} else {
1636 		/* point to the msb */
1637 		p += cell->bytes - 1;
1638 	}
1639 
1640 	/* result fits in less bytes */
1641 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1642 	while (--extra >= 0)
1643 		*p-- = 0;
1644 
1645 	/* clear msb bits if any leftover in the last byte */
1646 	if (cell->nbits % BITS_PER_BYTE)
1647 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1648 }
1649 
1650 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1651 			     struct nvmem_cell_entry *cell,
1652 			     void *buf, size_t *len, const char *id, int index)
1653 {
1654 	int rc;
1655 
1656 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1657 
1658 	if (rc)
1659 		return rc;
1660 
1661 	/* shift bits in-place */
1662 	if (cell->bit_offset || cell->nbits)
1663 		nvmem_shift_read_buffer_in_place(cell, buf);
1664 
1665 	if (cell->read_post_process) {
1666 		rc = cell->read_post_process(cell->priv, id, index,
1667 					     cell->offset, buf, cell->raw_len);
1668 		if (rc)
1669 			return rc;
1670 	}
1671 
1672 	if (len)
1673 		*len = cell->bytes;
1674 
1675 	return 0;
1676 }
1677 
1678 /**
1679  * nvmem_cell_read() - Read a given nvmem cell
1680  *
1681  * @cell: nvmem cell to be read.
1682  * @len: pointer to length of cell which will be populated on successful read;
1683  *	 can be NULL.
1684  *
1685  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1686  * buffer should be freed by the consumer with a kfree().
1687  */
1688 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1689 {
1690 	struct nvmem_cell_entry *entry = cell->entry;
1691 	struct nvmem_device *nvmem = entry->nvmem;
1692 	u8 *buf;
1693 	int rc;
1694 
1695 	if (!nvmem)
1696 		return ERR_PTR(-EINVAL);
1697 
1698 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1699 	if (!buf)
1700 		return ERR_PTR(-ENOMEM);
1701 
1702 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1703 	if (rc) {
1704 		kfree(buf);
1705 		return ERR_PTR(rc);
1706 	}
1707 
1708 	return buf;
1709 }
1710 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1711 
1712 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1713 					     u8 *_buf, int len)
1714 {
1715 	struct nvmem_device *nvmem = cell->nvmem;
1716 	int i, rc, nbits, bit_offset = cell->bit_offset;
1717 	u8 v, *p, *buf, *b, pbyte, pbits;
1718 
1719 	nbits = cell->nbits;
1720 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1721 	if (!buf)
1722 		return ERR_PTR(-ENOMEM);
1723 
1724 	memcpy(buf, _buf, len);
1725 	p = b = buf;
1726 
1727 	if (bit_offset) {
1728 		pbyte = *b;
1729 		*b <<= bit_offset;
1730 
1731 		/* setup the first byte with lsb bits from nvmem */
1732 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1733 		if (rc)
1734 			goto err;
1735 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1736 
1737 		/* setup rest of the byte if any */
1738 		for (i = 1; i < cell->bytes; i++) {
1739 			/* Get last byte bits and shift them towards lsb */
1740 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1741 			pbyte = *b;
1742 			p = b;
1743 			*b <<= bit_offset;
1744 			*b++ |= pbits;
1745 		}
1746 	}
1747 
1748 	/* if it's not end on byte boundary */
1749 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1750 		/* setup the last byte with msb bits from nvmem */
1751 		rc = nvmem_reg_read(nvmem,
1752 				    cell->offset + cell->bytes - 1, &v, 1);
1753 		if (rc)
1754 			goto err;
1755 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1756 
1757 	}
1758 
1759 	return buf;
1760 err:
1761 	kfree(buf);
1762 	return ERR_PTR(rc);
1763 }
1764 
1765 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1766 {
1767 	struct nvmem_device *nvmem = cell->nvmem;
1768 	int rc;
1769 
1770 	if (!nvmem || nvmem->read_only ||
1771 	    (cell->bit_offset == 0 && len != cell->bytes))
1772 		return -EINVAL;
1773 
1774 	/*
1775 	 * Any cells which have a read_post_process hook are read-only because
1776 	 * we cannot reverse the operation and it might affect other cells,
1777 	 * too.
1778 	 */
1779 	if (cell->read_post_process)
1780 		return -EINVAL;
1781 
1782 	if (cell->bit_offset || cell->nbits) {
1783 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1784 		if (IS_ERR(buf))
1785 			return PTR_ERR(buf);
1786 	}
1787 
1788 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1789 
1790 	/* free the tmp buffer */
1791 	if (cell->bit_offset || cell->nbits)
1792 		kfree(buf);
1793 
1794 	if (rc)
1795 		return rc;
1796 
1797 	return len;
1798 }
1799 
1800 /**
1801  * nvmem_cell_write() - Write to a given nvmem cell
1802  *
1803  * @cell: nvmem cell to be written.
1804  * @buf: Buffer to be written.
1805  * @len: length of buffer to be written to nvmem cell.
1806  *
1807  * Return: length of bytes written or negative on failure.
1808  */
1809 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1810 {
1811 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1812 }
1813 
1814 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1815 
1816 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1817 				  void *val, size_t count)
1818 {
1819 	struct nvmem_cell *cell;
1820 	void *buf;
1821 	size_t len;
1822 
1823 	cell = nvmem_cell_get(dev, cell_id);
1824 	if (IS_ERR(cell))
1825 		return PTR_ERR(cell);
1826 
1827 	buf = nvmem_cell_read(cell, &len);
1828 	if (IS_ERR(buf)) {
1829 		nvmem_cell_put(cell);
1830 		return PTR_ERR(buf);
1831 	}
1832 	if (len != count) {
1833 		kfree(buf);
1834 		nvmem_cell_put(cell);
1835 		return -EINVAL;
1836 	}
1837 	memcpy(val, buf, count);
1838 	kfree(buf);
1839 	nvmem_cell_put(cell);
1840 
1841 	return 0;
1842 }
1843 
1844 /**
1845  * nvmem_cell_read_u8() - Read a cell value as a u8
1846  *
1847  * @dev: Device that requests the nvmem cell.
1848  * @cell_id: Name of nvmem cell to read.
1849  * @val: pointer to output value.
1850  *
1851  * Return: 0 on success or negative errno.
1852  */
1853 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1854 {
1855 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1856 }
1857 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1858 
1859 /**
1860  * nvmem_cell_read_u16() - Read a cell value as a u16
1861  *
1862  * @dev: Device that requests the nvmem cell.
1863  * @cell_id: Name of nvmem cell to read.
1864  * @val: pointer to output value.
1865  *
1866  * Return: 0 on success or negative errno.
1867  */
1868 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1869 {
1870 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1871 }
1872 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1873 
1874 /**
1875  * nvmem_cell_read_u32() - Read a cell value as a u32
1876  *
1877  * @dev: Device that requests the nvmem cell.
1878  * @cell_id: Name of nvmem cell to read.
1879  * @val: pointer to output value.
1880  *
1881  * Return: 0 on success or negative errno.
1882  */
1883 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1884 {
1885 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1886 }
1887 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1888 
1889 /**
1890  * nvmem_cell_read_u64() - Read a cell value as a u64
1891  *
1892  * @dev: Device that requests the nvmem cell.
1893  * @cell_id: Name of nvmem cell to read.
1894  * @val: pointer to output value.
1895  *
1896  * Return: 0 on success or negative errno.
1897  */
1898 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1899 {
1900 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1901 }
1902 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1903 
1904 static const void *nvmem_cell_read_variable_common(struct device *dev,
1905 						   const char *cell_id,
1906 						   size_t max_len, size_t *len)
1907 {
1908 	struct nvmem_cell *cell;
1909 	int nbits;
1910 	void *buf;
1911 
1912 	cell = nvmem_cell_get(dev, cell_id);
1913 	if (IS_ERR(cell))
1914 		return cell;
1915 
1916 	nbits = cell->entry->nbits;
1917 	buf = nvmem_cell_read(cell, len);
1918 	nvmem_cell_put(cell);
1919 	if (IS_ERR(buf))
1920 		return buf;
1921 
1922 	/*
1923 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1924 	 * the length of the real data. Throw away the extra junk.
1925 	 */
1926 	if (nbits)
1927 		*len = DIV_ROUND_UP(nbits, 8);
1928 
1929 	if (*len > max_len) {
1930 		kfree(buf);
1931 		return ERR_PTR(-ERANGE);
1932 	}
1933 
1934 	return buf;
1935 }
1936 
1937 /**
1938  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1939  *
1940  * @dev: Device that requests the nvmem cell.
1941  * @cell_id: Name of nvmem cell to read.
1942  * @val: pointer to output value.
1943  *
1944  * Return: 0 on success or negative errno.
1945  */
1946 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1947 				    u32 *val)
1948 {
1949 	size_t len;
1950 	const u8 *buf;
1951 	int i;
1952 
1953 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1954 	if (IS_ERR(buf))
1955 		return PTR_ERR(buf);
1956 
1957 	/* Copy w/ implicit endian conversion */
1958 	*val = 0;
1959 	for (i = 0; i < len; i++)
1960 		*val |= buf[i] << (8 * i);
1961 
1962 	kfree(buf);
1963 
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1967 
1968 /**
1969  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1970  *
1971  * @dev: Device that requests the nvmem cell.
1972  * @cell_id: Name of nvmem cell to read.
1973  * @val: pointer to output value.
1974  *
1975  * Return: 0 on success or negative errno.
1976  */
1977 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1978 				    u64 *val)
1979 {
1980 	size_t len;
1981 	const u8 *buf;
1982 	int i;
1983 
1984 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1985 	if (IS_ERR(buf))
1986 		return PTR_ERR(buf);
1987 
1988 	/* Copy w/ implicit endian conversion */
1989 	*val = 0;
1990 	for (i = 0; i < len; i++)
1991 		*val |= (uint64_t)buf[i] << (8 * i);
1992 
1993 	kfree(buf);
1994 
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1998 
1999 /**
2000  * nvmem_device_cell_read() - Read a given nvmem device and cell
2001  *
2002  * @nvmem: nvmem device to read from.
2003  * @info: nvmem cell info to be read.
2004  * @buf: buffer pointer which will be populated on successful read.
2005  *
2006  * Return: length of successful bytes read on success and negative
2007  * error code on error.
2008  */
2009 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2010 			   struct nvmem_cell_info *info, void *buf)
2011 {
2012 	struct nvmem_cell_entry cell;
2013 	int rc;
2014 	ssize_t len;
2015 
2016 	if (!nvmem)
2017 		return -EINVAL;
2018 
2019 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2020 	if (rc)
2021 		return rc;
2022 
2023 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2024 	if (rc)
2025 		return rc;
2026 
2027 	return len;
2028 }
2029 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2030 
2031 /**
2032  * nvmem_device_cell_write() - Write cell to a given nvmem device
2033  *
2034  * @nvmem: nvmem device to be written to.
2035  * @info: nvmem cell info to be written.
2036  * @buf: buffer to be written to cell.
2037  *
2038  * Return: length of bytes written or negative error code on failure.
2039  */
2040 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2041 			    struct nvmem_cell_info *info, void *buf)
2042 {
2043 	struct nvmem_cell_entry cell;
2044 	int rc;
2045 
2046 	if (!nvmem)
2047 		return -EINVAL;
2048 
2049 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2050 	if (rc)
2051 		return rc;
2052 
2053 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2054 }
2055 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2056 
2057 /**
2058  * nvmem_device_read() - Read from a given nvmem device
2059  *
2060  * @nvmem: nvmem device to read from.
2061  * @offset: offset in nvmem device.
2062  * @bytes: number of bytes to read.
2063  * @buf: buffer pointer which will be populated on successful read.
2064  *
2065  * Return: length of successful bytes read on success and negative
2066  * error code on error.
2067  */
2068 int nvmem_device_read(struct nvmem_device *nvmem,
2069 		      unsigned int offset,
2070 		      size_t bytes, void *buf)
2071 {
2072 	int rc;
2073 
2074 	if (!nvmem)
2075 		return -EINVAL;
2076 
2077 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2078 
2079 	if (rc)
2080 		return rc;
2081 
2082 	return bytes;
2083 }
2084 EXPORT_SYMBOL_GPL(nvmem_device_read);
2085 
2086 /**
2087  * nvmem_device_write() - Write cell to a given nvmem device
2088  *
2089  * @nvmem: nvmem device to be written to.
2090  * @offset: offset in nvmem device.
2091  * @bytes: number of bytes to write.
2092  * @buf: buffer to be written.
2093  *
2094  * Return: length of bytes written or negative error code on failure.
2095  */
2096 int nvmem_device_write(struct nvmem_device *nvmem,
2097 		       unsigned int offset,
2098 		       size_t bytes, void *buf)
2099 {
2100 	int rc;
2101 
2102 	if (!nvmem)
2103 		return -EINVAL;
2104 
2105 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2106 
2107 	if (rc)
2108 		return rc;
2109 
2110 
2111 	return bytes;
2112 }
2113 EXPORT_SYMBOL_GPL(nvmem_device_write);
2114 
2115 /**
2116  * nvmem_add_cell_table() - register a table of cell info entries
2117  *
2118  * @table: table of cell info entries
2119  */
2120 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2121 {
2122 	mutex_lock(&nvmem_cell_mutex);
2123 	list_add_tail(&table->node, &nvmem_cell_tables);
2124 	mutex_unlock(&nvmem_cell_mutex);
2125 }
2126 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2127 
2128 /**
2129  * nvmem_del_cell_table() - remove a previously registered cell info table
2130  *
2131  * @table: table of cell info entries
2132  */
2133 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2134 {
2135 	mutex_lock(&nvmem_cell_mutex);
2136 	list_del(&table->node);
2137 	mutex_unlock(&nvmem_cell_mutex);
2138 }
2139 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2140 
2141 /**
2142  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2143  *
2144  * @entries: array of cell lookup entries
2145  * @nentries: number of cell lookup entries in the array
2146  */
2147 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2148 {
2149 	int i;
2150 
2151 	mutex_lock(&nvmem_lookup_mutex);
2152 	for (i = 0; i < nentries; i++)
2153 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2154 	mutex_unlock(&nvmem_lookup_mutex);
2155 }
2156 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2157 
2158 /**
2159  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2160  *                            entries
2161  *
2162  * @entries: array of cell lookup entries
2163  * @nentries: number of cell lookup entries in the array
2164  */
2165 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2166 {
2167 	int i;
2168 
2169 	mutex_lock(&nvmem_lookup_mutex);
2170 	for (i = 0; i < nentries; i++)
2171 		list_del(&entries[i].node);
2172 	mutex_unlock(&nvmem_lookup_mutex);
2173 }
2174 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2175 
2176 /**
2177  * nvmem_dev_name() - Get the name of a given nvmem device.
2178  *
2179  * @nvmem: nvmem device.
2180  *
2181  * Return: name of the nvmem device.
2182  */
2183 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2184 {
2185 	return dev_name(&nvmem->dev);
2186 }
2187 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2188 
2189 /**
2190  * nvmem_dev_size() - Get the size of a given nvmem device.
2191  *
2192  * @nvmem: nvmem device.
2193  *
2194  * Return: size of the nvmem device.
2195  */
2196 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2197 {
2198 	return nvmem->size;
2199 }
2200 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2201 
2202 static int __init nvmem_init(void)
2203 {
2204 	int ret;
2205 
2206 	ret = bus_register(&nvmem_bus_type);
2207 	if (ret)
2208 		return ret;
2209 
2210 	ret = nvmem_layout_bus_register();
2211 	if (ret)
2212 		bus_unregister(&nvmem_bus_type);
2213 
2214 	return ret;
2215 }
2216 
2217 static void __exit nvmem_exit(void)
2218 {
2219 	nvmem_layout_bus_unregister();
2220 	bus_unregister(&nvmem_bus_type);
2221 }
2222 
2223 subsys_initcall(nvmem_init);
2224 module_exit(nvmem_exit);
2225 
2226 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2227 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2228 MODULE_DESCRIPTION("nvmem Driver Core");
2229