1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * nvmem framework core. 4 * 5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/idr.h> 13 #include <linux/init.h> 14 #include <linux/kref.h> 15 #include <linux/module.h> 16 #include <linux/nvmem-consumer.h> 17 #include <linux/nvmem-provider.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/of.h> 20 #include <linux/slab.h> 21 22 struct nvmem_device { 23 struct module *owner; 24 struct device dev; 25 int stride; 26 int word_size; 27 int id; 28 struct kref refcnt; 29 size_t size; 30 bool read_only; 31 bool root_only; 32 int flags; 33 enum nvmem_type type; 34 struct bin_attribute eeprom; 35 struct device *base_dev; 36 struct list_head cells; 37 const struct nvmem_keepout *keepout; 38 unsigned int nkeepout; 39 nvmem_reg_read_t reg_read; 40 nvmem_reg_write_t reg_write; 41 nvmem_cell_post_process_t cell_post_process; 42 struct gpio_desc *wp_gpio; 43 void *priv; 44 }; 45 46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 47 48 #define FLAG_COMPAT BIT(0) 49 struct nvmem_cell_entry { 50 const char *name; 51 int offset; 52 int bytes; 53 int bit_offset; 54 int nbits; 55 struct device_node *np; 56 struct nvmem_device *nvmem; 57 struct list_head node; 58 }; 59 60 struct nvmem_cell { 61 struct nvmem_cell_entry *entry; 62 const char *id; 63 }; 64 65 static DEFINE_MUTEX(nvmem_mutex); 66 static DEFINE_IDA(nvmem_ida); 67 68 static DEFINE_MUTEX(nvmem_cell_mutex); 69 static LIST_HEAD(nvmem_cell_tables); 70 71 static DEFINE_MUTEX(nvmem_lookup_mutex); 72 static LIST_HEAD(nvmem_lookup_list); 73 74 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier); 75 76 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 77 void *val, size_t bytes) 78 { 79 if (nvmem->reg_read) 80 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 81 82 return -EINVAL; 83 } 84 85 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 86 void *val, size_t bytes) 87 { 88 int ret; 89 90 if (nvmem->reg_write) { 91 gpiod_set_value_cansleep(nvmem->wp_gpio, 0); 92 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes); 93 gpiod_set_value_cansleep(nvmem->wp_gpio, 1); 94 return ret; 95 } 96 97 return -EINVAL; 98 } 99 100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem, 101 unsigned int offset, void *val, 102 size_t bytes, int write) 103 { 104 105 unsigned int end = offset + bytes; 106 unsigned int kend, ksize; 107 const struct nvmem_keepout *keepout = nvmem->keepout; 108 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 109 int rc; 110 111 /* 112 * Skip all keepouts before the range being accessed. 113 * Keepouts are sorted. 114 */ 115 while ((keepout < keepoutend) && (keepout->end <= offset)) 116 keepout++; 117 118 while ((offset < end) && (keepout < keepoutend)) { 119 /* Access the valid portion before the keepout. */ 120 if (offset < keepout->start) { 121 kend = min(end, keepout->start); 122 ksize = kend - offset; 123 if (write) 124 rc = __nvmem_reg_write(nvmem, offset, val, ksize); 125 else 126 rc = __nvmem_reg_read(nvmem, offset, val, ksize); 127 128 if (rc) 129 return rc; 130 131 offset += ksize; 132 val += ksize; 133 } 134 135 /* 136 * Now we're aligned to the start of this keepout zone. Go 137 * through it. 138 */ 139 kend = min(end, keepout->end); 140 ksize = kend - offset; 141 if (!write) 142 memset(val, keepout->value, ksize); 143 144 val += ksize; 145 offset += ksize; 146 keepout++; 147 } 148 149 /* 150 * If we ran out of keepouts but there's still stuff to do, send it 151 * down directly 152 */ 153 if (offset < end) { 154 ksize = end - offset; 155 if (write) 156 return __nvmem_reg_write(nvmem, offset, val, ksize); 157 else 158 return __nvmem_reg_read(nvmem, offset, val, ksize); 159 } 160 161 return 0; 162 } 163 164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 165 void *val, size_t bytes) 166 { 167 if (!nvmem->nkeepout) 168 return __nvmem_reg_read(nvmem, offset, val, bytes); 169 170 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false); 171 } 172 173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 174 void *val, size_t bytes) 175 { 176 if (!nvmem->nkeepout) 177 return __nvmem_reg_write(nvmem, offset, val, bytes); 178 179 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true); 180 } 181 182 #ifdef CONFIG_NVMEM_SYSFS 183 static const char * const nvmem_type_str[] = { 184 [NVMEM_TYPE_UNKNOWN] = "Unknown", 185 [NVMEM_TYPE_EEPROM] = "EEPROM", 186 [NVMEM_TYPE_OTP] = "OTP", 187 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed", 188 [NVMEM_TYPE_FRAM] = "FRAM", 189 }; 190 191 #ifdef CONFIG_DEBUG_LOCK_ALLOC 192 static struct lock_class_key eeprom_lock_key; 193 #endif 194 195 static ssize_t type_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct nvmem_device *nvmem = to_nvmem_device(dev); 199 200 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]); 201 } 202 203 static DEVICE_ATTR_RO(type); 204 205 static struct attribute *nvmem_attrs[] = { 206 &dev_attr_type.attr, 207 NULL, 208 }; 209 210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 211 struct bin_attribute *attr, char *buf, 212 loff_t pos, size_t count) 213 { 214 struct device *dev; 215 struct nvmem_device *nvmem; 216 int rc; 217 218 if (attr->private) 219 dev = attr->private; 220 else 221 dev = kobj_to_dev(kobj); 222 nvmem = to_nvmem_device(dev); 223 224 /* Stop the user from reading */ 225 if (pos >= nvmem->size) 226 return 0; 227 228 if (!IS_ALIGNED(pos, nvmem->stride)) 229 return -EINVAL; 230 231 if (count < nvmem->word_size) 232 return -EINVAL; 233 234 if (pos + count > nvmem->size) 235 count = nvmem->size - pos; 236 237 count = round_down(count, nvmem->word_size); 238 239 if (!nvmem->reg_read) 240 return -EPERM; 241 242 rc = nvmem_reg_read(nvmem, pos, buf, count); 243 244 if (rc) 245 return rc; 246 247 return count; 248 } 249 250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 251 struct bin_attribute *attr, char *buf, 252 loff_t pos, size_t count) 253 { 254 struct device *dev; 255 struct nvmem_device *nvmem; 256 int rc; 257 258 if (attr->private) 259 dev = attr->private; 260 else 261 dev = kobj_to_dev(kobj); 262 nvmem = to_nvmem_device(dev); 263 264 /* Stop the user from writing */ 265 if (pos >= nvmem->size) 266 return -EFBIG; 267 268 if (!IS_ALIGNED(pos, nvmem->stride)) 269 return -EINVAL; 270 271 if (count < nvmem->word_size) 272 return -EINVAL; 273 274 if (pos + count > nvmem->size) 275 count = nvmem->size - pos; 276 277 count = round_down(count, nvmem->word_size); 278 279 if (!nvmem->reg_write) 280 return -EPERM; 281 282 rc = nvmem_reg_write(nvmem, pos, buf, count); 283 284 if (rc) 285 return rc; 286 287 return count; 288 } 289 290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem) 291 { 292 umode_t mode = 0400; 293 294 if (!nvmem->root_only) 295 mode |= 0044; 296 297 if (!nvmem->read_only) 298 mode |= 0200; 299 300 if (!nvmem->reg_write) 301 mode &= ~0200; 302 303 if (!nvmem->reg_read) 304 mode &= ~0444; 305 306 return mode; 307 } 308 309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj, 310 struct bin_attribute *attr, int i) 311 { 312 struct device *dev = kobj_to_dev(kobj); 313 struct nvmem_device *nvmem = to_nvmem_device(dev); 314 315 attr->size = nvmem->size; 316 317 return nvmem_bin_attr_get_umode(nvmem); 318 } 319 320 /* default read/write permissions */ 321 static struct bin_attribute bin_attr_rw_nvmem = { 322 .attr = { 323 .name = "nvmem", 324 .mode = 0644, 325 }, 326 .read = bin_attr_nvmem_read, 327 .write = bin_attr_nvmem_write, 328 }; 329 330 static struct bin_attribute *nvmem_bin_attributes[] = { 331 &bin_attr_rw_nvmem, 332 NULL, 333 }; 334 335 static const struct attribute_group nvmem_bin_group = { 336 .bin_attrs = nvmem_bin_attributes, 337 .attrs = nvmem_attrs, 338 .is_bin_visible = nvmem_bin_attr_is_visible, 339 }; 340 341 static const struct attribute_group *nvmem_dev_groups[] = { 342 &nvmem_bin_group, 343 NULL, 344 }; 345 346 static struct bin_attribute bin_attr_nvmem_eeprom_compat = { 347 .attr = { 348 .name = "eeprom", 349 }, 350 .read = bin_attr_nvmem_read, 351 .write = bin_attr_nvmem_write, 352 }; 353 354 /* 355 * nvmem_setup_compat() - Create an additional binary entry in 356 * drivers sys directory, to be backwards compatible with the older 357 * drivers/misc/eeprom drivers. 358 */ 359 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 360 const struct nvmem_config *config) 361 { 362 int rval; 363 364 if (!config->compat) 365 return 0; 366 367 if (!config->base_dev) 368 return -EINVAL; 369 370 if (config->type == NVMEM_TYPE_FRAM) 371 bin_attr_nvmem_eeprom_compat.attr.name = "fram"; 372 373 nvmem->eeprom = bin_attr_nvmem_eeprom_compat; 374 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem); 375 nvmem->eeprom.size = nvmem->size; 376 #ifdef CONFIG_DEBUG_LOCK_ALLOC 377 nvmem->eeprom.attr.key = &eeprom_lock_key; 378 #endif 379 nvmem->eeprom.private = &nvmem->dev; 380 nvmem->base_dev = config->base_dev; 381 382 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 383 if (rval) { 384 dev_err(&nvmem->dev, 385 "Failed to create eeprom binary file %d\n", rval); 386 return rval; 387 } 388 389 nvmem->flags |= FLAG_COMPAT; 390 391 return 0; 392 } 393 394 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 395 const struct nvmem_config *config) 396 { 397 if (config->compat) 398 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 399 } 400 401 #else /* CONFIG_NVMEM_SYSFS */ 402 403 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 404 const struct nvmem_config *config) 405 { 406 return -ENOSYS; 407 } 408 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 409 const struct nvmem_config *config) 410 { 411 } 412 413 #endif /* CONFIG_NVMEM_SYSFS */ 414 415 static void nvmem_release(struct device *dev) 416 { 417 struct nvmem_device *nvmem = to_nvmem_device(dev); 418 419 ida_free(&nvmem_ida, nvmem->id); 420 gpiod_put(nvmem->wp_gpio); 421 kfree(nvmem); 422 } 423 424 static const struct device_type nvmem_provider_type = { 425 .release = nvmem_release, 426 }; 427 428 static struct bus_type nvmem_bus_type = { 429 .name = "nvmem", 430 }; 431 432 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell) 433 { 434 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell); 435 mutex_lock(&nvmem_mutex); 436 list_del(&cell->node); 437 mutex_unlock(&nvmem_mutex); 438 of_node_put(cell->np); 439 kfree_const(cell->name); 440 kfree(cell); 441 } 442 443 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 444 { 445 struct nvmem_cell_entry *cell, *p; 446 447 list_for_each_entry_safe(cell, p, &nvmem->cells, node) 448 nvmem_cell_entry_drop(cell); 449 } 450 451 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell) 452 { 453 mutex_lock(&nvmem_mutex); 454 list_add_tail(&cell->node, &cell->nvmem->cells); 455 mutex_unlock(&nvmem_mutex); 456 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell); 457 } 458 459 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem, 460 const struct nvmem_cell_info *info, 461 struct nvmem_cell_entry *cell) 462 { 463 cell->nvmem = nvmem; 464 cell->offset = info->offset; 465 cell->bytes = info->bytes; 466 cell->name = info->name; 467 468 cell->bit_offset = info->bit_offset; 469 cell->nbits = info->nbits; 470 cell->np = info->np; 471 472 if (cell->nbits) 473 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 474 BITS_PER_BYTE); 475 476 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 477 dev_err(&nvmem->dev, 478 "cell %s unaligned to nvmem stride %d\n", 479 cell->name ?: "<unknown>", nvmem->stride); 480 return -EINVAL; 481 } 482 483 return 0; 484 } 485 486 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem, 487 const struct nvmem_cell_info *info, 488 struct nvmem_cell_entry *cell) 489 { 490 int err; 491 492 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell); 493 if (err) 494 return err; 495 496 cell->name = kstrdup_const(info->name, GFP_KERNEL); 497 if (!cell->name) 498 return -ENOMEM; 499 500 return 0; 501 } 502 503 /** 504 * nvmem_add_cells() - Add cell information to an nvmem device 505 * 506 * @nvmem: nvmem device to add cells to. 507 * @info: nvmem cell info to add to the device 508 * @ncells: number of cells in info 509 * 510 * Return: 0 or negative error code on failure. 511 */ 512 static int nvmem_add_cells(struct nvmem_device *nvmem, 513 const struct nvmem_cell_info *info, 514 int ncells) 515 { 516 struct nvmem_cell_entry **cells; 517 int i, rval; 518 519 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL); 520 if (!cells) 521 return -ENOMEM; 522 523 for (i = 0; i < ncells; i++) { 524 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL); 525 if (!cells[i]) { 526 rval = -ENOMEM; 527 goto err; 528 } 529 530 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]); 531 if (rval) { 532 kfree(cells[i]); 533 goto err; 534 } 535 536 nvmem_cell_entry_add(cells[i]); 537 } 538 539 /* remove tmp array */ 540 kfree(cells); 541 542 return 0; 543 err: 544 while (i--) 545 nvmem_cell_entry_drop(cells[i]); 546 547 kfree(cells); 548 549 return rval; 550 } 551 552 /** 553 * nvmem_register_notifier() - Register a notifier block for nvmem events. 554 * 555 * @nb: notifier block to be called on nvmem events. 556 * 557 * Return: 0 on success, negative error number on failure. 558 */ 559 int nvmem_register_notifier(struct notifier_block *nb) 560 { 561 return blocking_notifier_chain_register(&nvmem_notifier, nb); 562 } 563 EXPORT_SYMBOL_GPL(nvmem_register_notifier); 564 565 /** 566 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events. 567 * 568 * @nb: notifier block to be unregistered. 569 * 570 * Return: 0 on success, negative error number on failure. 571 */ 572 int nvmem_unregister_notifier(struct notifier_block *nb) 573 { 574 return blocking_notifier_chain_unregister(&nvmem_notifier, nb); 575 } 576 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier); 577 578 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem) 579 { 580 const struct nvmem_cell_info *info; 581 struct nvmem_cell_table *table; 582 struct nvmem_cell_entry *cell; 583 int rval = 0, i; 584 585 mutex_lock(&nvmem_cell_mutex); 586 list_for_each_entry(table, &nvmem_cell_tables, node) { 587 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) { 588 for (i = 0; i < table->ncells; i++) { 589 info = &table->cells[i]; 590 591 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 592 if (!cell) { 593 rval = -ENOMEM; 594 goto out; 595 } 596 597 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 598 if (rval) { 599 kfree(cell); 600 goto out; 601 } 602 603 nvmem_cell_entry_add(cell); 604 } 605 } 606 } 607 608 out: 609 mutex_unlock(&nvmem_cell_mutex); 610 return rval; 611 } 612 613 static struct nvmem_cell_entry * 614 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id) 615 { 616 struct nvmem_cell_entry *iter, *cell = NULL; 617 618 mutex_lock(&nvmem_mutex); 619 list_for_each_entry(iter, &nvmem->cells, node) { 620 if (strcmp(cell_id, iter->name) == 0) { 621 cell = iter; 622 break; 623 } 624 } 625 mutex_unlock(&nvmem_mutex); 626 627 return cell; 628 } 629 630 static int nvmem_validate_keepouts(struct nvmem_device *nvmem) 631 { 632 unsigned int cur = 0; 633 const struct nvmem_keepout *keepout = nvmem->keepout; 634 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 635 636 while (keepout < keepoutend) { 637 /* Ensure keepouts are sorted and don't overlap. */ 638 if (keepout->start < cur) { 639 dev_err(&nvmem->dev, 640 "Keepout regions aren't sorted or overlap.\n"); 641 642 return -ERANGE; 643 } 644 645 if (keepout->end < keepout->start) { 646 dev_err(&nvmem->dev, 647 "Invalid keepout region.\n"); 648 649 return -EINVAL; 650 } 651 652 /* 653 * Validate keepouts (and holes between) don't violate 654 * word_size constraints. 655 */ 656 if ((keepout->end - keepout->start < nvmem->word_size) || 657 ((keepout->start != cur) && 658 (keepout->start - cur < nvmem->word_size))) { 659 660 dev_err(&nvmem->dev, 661 "Keepout regions violate word_size constraints.\n"); 662 663 return -ERANGE; 664 } 665 666 /* Validate keepouts don't violate stride (alignment). */ 667 if (!IS_ALIGNED(keepout->start, nvmem->stride) || 668 !IS_ALIGNED(keepout->end, nvmem->stride)) { 669 670 dev_err(&nvmem->dev, 671 "Keepout regions violate stride.\n"); 672 673 return -EINVAL; 674 } 675 676 cur = keepout->end; 677 keepout++; 678 } 679 680 return 0; 681 } 682 683 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem) 684 { 685 struct device_node *parent, *child; 686 struct device *dev = &nvmem->dev; 687 struct nvmem_cell_entry *cell; 688 const __be32 *addr; 689 int len; 690 691 parent = dev->of_node; 692 693 for_each_child_of_node(parent, child) { 694 addr = of_get_property(child, "reg", &len); 695 if (!addr) 696 continue; 697 if (len < 2 * sizeof(u32)) { 698 dev_err(dev, "nvmem: invalid reg on %pOF\n", child); 699 of_node_put(child); 700 return -EINVAL; 701 } 702 703 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 704 if (!cell) { 705 of_node_put(child); 706 return -ENOMEM; 707 } 708 709 cell->nvmem = nvmem; 710 cell->offset = be32_to_cpup(addr++); 711 cell->bytes = be32_to_cpup(addr); 712 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child); 713 714 addr = of_get_property(child, "bits", &len); 715 if (addr && len == (2 * sizeof(u32))) { 716 cell->bit_offset = be32_to_cpup(addr++); 717 cell->nbits = be32_to_cpup(addr); 718 } 719 720 if (cell->nbits) 721 cell->bytes = DIV_ROUND_UP( 722 cell->nbits + cell->bit_offset, 723 BITS_PER_BYTE); 724 725 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 726 dev_err(dev, "cell %s unaligned to nvmem stride %d\n", 727 cell->name, nvmem->stride); 728 /* Cells already added will be freed later. */ 729 kfree_const(cell->name); 730 kfree(cell); 731 of_node_put(child); 732 return -EINVAL; 733 } 734 735 cell->np = of_node_get(child); 736 nvmem_cell_entry_add(cell); 737 } 738 739 return 0; 740 } 741 742 /** 743 * nvmem_register() - Register a nvmem device for given nvmem_config. 744 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 745 * 746 * @config: nvmem device configuration with which nvmem device is created. 747 * 748 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 749 * on success. 750 */ 751 752 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 753 { 754 struct nvmem_device *nvmem; 755 int rval; 756 757 if (!config->dev) 758 return ERR_PTR(-EINVAL); 759 760 if (!config->reg_read && !config->reg_write) 761 return ERR_PTR(-EINVAL); 762 763 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 764 if (!nvmem) 765 return ERR_PTR(-ENOMEM); 766 767 rval = ida_alloc(&nvmem_ida, GFP_KERNEL); 768 if (rval < 0) { 769 kfree(nvmem); 770 return ERR_PTR(rval); 771 } 772 773 if (config->wp_gpio) 774 nvmem->wp_gpio = config->wp_gpio; 775 else if (!config->ignore_wp) 776 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp", 777 GPIOD_OUT_HIGH); 778 if (IS_ERR(nvmem->wp_gpio)) { 779 ida_free(&nvmem_ida, nvmem->id); 780 rval = PTR_ERR(nvmem->wp_gpio); 781 kfree(nvmem); 782 return ERR_PTR(rval); 783 } 784 785 kref_init(&nvmem->refcnt); 786 INIT_LIST_HEAD(&nvmem->cells); 787 788 nvmem->id = rval; 789 nvmem->owner = config->owner; 790 if (!nvmem->owner && config->dev->driver) 791 nvmem->owner = config->dev->driver->owner; 792 nvmem->stride = config->stride ?: 1; 793 nvmem->word_size = config->word_size ?: 1; 794 nvmem->size = config->size; 795 nvmem->dev.type = &nvmem_provider_type; 796 nvmem->dev.bus = &nvmem_bus_type; 797 nvmem->dev.parent = config->dev; 798 nvmem->root_only = config->root_only; 799 nvmem->priv = config->priv; 800 nvmem->type = config->type; 801 nvmem->reg_read = config->reg_read; 802 nvmem->reg_write = config->reg_write; 803 nvmem->cell_post_process = config->cell_post_process; 804 nvmem->keepout = config->keepout; 805 nvmem->nkeepout = config->nkeepout; 806 if (config->of_node) 807 nvmem->dev.of_node = config->of_node; 808 else if (!config->no_of_node) 809 nvmem->dev.of_node = config->dev->of_node; 810 811 switch (config->id) { 812 case NVMEM_DEVID_NONE: 813 dev_set_name(&nvmem->dev, "%s", config->name); 814 break; 815 case NVMEM_DEVID_AUTO: 816 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id); 817 break; 818 default: 819 dev_set_name(&nvmem->dev, "%s%d", 820 config->name ? : "nvmem", 821 config->name ? config->id : nvmem->id); 822 break; 823 } 824 825 nvmem->read_only = device_property_present(config->dev, "read-only") || 826 config->read_only || !nvmem->reg_write; 827 828 #ifdef CONFIG_NVMEM_SYSFS 829 nvmem->dev.groups = nvmem_dev_groups; 830 #endif 831 832 if (nvmem->nkeepout) { 833 rval = nvmem_validate_keepouts(nvmem); 834 if (rval) { 835 ida_free(&nvmem_ida, nvmem->id); 836 kfree(nvmem); 837 return ERR_PTR(rval); 838 } 839 } 840 841 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 842 843 rval = device_register(&nvmem->dev); 844 if (rval) 845 goto err_put_device; 846 847 if (config->compat) { 848 rval = nvmem_sysfs_setup_compat(nvmem, config); 849 if (rval) 850 goto err_device_del; 851 } 852 853 if (config->cells) { 854 rval = nvmem_add_cells(nvmem, config->cells, config->ncells); 855 if (rval) 856 goto err_teardown_compat; 857 } 858 859 rval = nvmem_add_cells_from_table(nvmem); 860 if (rval) 861 goto err_remove_cells; 862 863 rval = nvmem_add_cells_from_of(nvmem); 864 if (rval) 865 goto err_remove_cells; 866 867 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem); 868 869 return nvmem; 870 871 err_remove_cells: 872 nvmem_device_remove_all_cells(nvmem); 873 err_teardown_compat: 874 if (config->compat) 875 nvmem_sysfs_remove_compat(nvmem, config); 876 err_device_del: 877 device_del(&nvmem->dev); 878 err_put_device: 879 put_device(&nvmem->dev); 880 881 return ERR_PTR(rval); 882 } 883 EXPORT_SYMBOL_GPL(nvmem_register); 884 885 static void nvmem_device_release(struct kref *kref) 886 { 887 struct nvmem_device *nvmem; 888 889 nvmem = container_of(kref, struct nvmem_device, refcnt); 890 891 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem); 892 893 if (nvmem->flags & FLAG_COMPAT) 894 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 895 896 nvmem_device_remove_all_cells(nvmem); 897 device_unregister(&nvmem->dev); 898 } 899 900 /** 901 * nvmem_unregister() - Unregister previously registered nvmem device 902 * 903 * @nvmem: Pointer to previously registered nvmem device. 904 */ 905 void nvmem_unregister(struct nvmem_device *nvmem) 906 { 907 if (nvmem) 908 kref_put(&nvmem->refcnt, nvmem_device_release); 909 } 910 EXPORT_SYMBOL_GPL(nvmem_unregister); 911 912 static void devm_nvmem_unregister(void *nvmem) 913 { 914 nvmem_unregister(nvmem); 915 } 916 917 /** 918 * devm_nvmem_register() - Register a managed nvmem device for given 919 * nvmem_config. 920 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 921 * 922 * @dev: Device that uses the nvmem device. 923 * @config: nvmem device configuration with which nvmem device is created. 924 * 925 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 926 * on success. 927 */ 928 struct nvmem_device *devm_nvmem_register(struct device *dev, 929 const struct nvmem_config *config) 930 { 931 struct nvmem_device *nvmem; 932 int ret; 933 934 nvmem = nvmem_register(config); 935 if (IS_ERR(nvmem)) 936 return nvmem; 937 938 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem); 939 if (ret) 940 return ERR_PTR(ret); 941 942 return nvmem; 943 } 944 EXPORT_SYMBOL_GPL(devm_nvmem_register); 945 946 static struct nvmem_device *__nvmem_device_get(void *data, 947 int (*match)(struct device *dev, const void *data)) 948 { 949 struct nvmem_device *nvmem = NULL; 950 struct device *dev; 951 952 mutex_lock(&nvmem_mutex); 953 dev = bus_find_device(&nvmem_bus_type, NULL, data, match); 954 if (dev) 955 nvmem = to_nvmem_device(dev); 956 mutex_unlock(&nvmem_mutex); 957 if (!nvmem) 958 return ERR_PTR(-EPROBE_DEFER); 959 960 if (!try_module_get(nvmem->owner)) { 961 dev_err(&nvmem->dev, 962 "could not increase module refcount for cell %s\n", 963 nvmem_dev_name(nvmem)); 964 965 put_device(&nvmem->dev); 966 return ERR_PTR(-EINVAL); 967 } 968 969 kref_get(&nvmem->refcnt); 970 971 return nvmem; 972 } 973 974 static void __nvmem_device_put(struct nvmem_device *nvmem) 975 { 976 put_device(&nvmem->dev); 977 module_put(nvmem->owner); 978 kref_put(&nvmem->refcnt, nvmem_device_release); 979 } 980 981 #if IS_ENABLED(CONFIG_OF) 982 /** 983 * of_nvmem_device_get() - Get nvmem device from a given id 984 * 985 * @np: Device tree node that uses the nvmem device. 986 * @id: nvmem name from nvmem-names property. 987 * 988 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 989 * on success. 990 */ 991 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 992 { 993 994 struct device_node *nvmem_np; 995 struct nvmem_device *nvmem; 996 int index = 0; 997 998 if (id) 999 index = of_property_match_string(np, "nvmem-names", id); 1000 1001 nvmem_np = of_parse_phandle(np, "nvmem", index); 1002 if (!nvmem_np) 1003 return ERR_PTR(-ENOENT); 1004 1005 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1006 of_node_put(nvmem_np); 1007 return nvmem; 1008 } 1009 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 1010 #endif 1011 1012 /** 1013 * nvmem_device_get() - Get nvmem device from a given id 1014 * 1015 * @dev: Device that uses the nvmem device. 1016 * @dev_name: name of the requested nvmem device. 1017 * 1018 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1019 * on success. 1020 */ 1021 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 1022 { 1023 if (dev->of_node) { /* try dt first */ 1024 struct nvmem_device *nvmem; 1025 1026 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 1027 1028 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 1029 return nvmem; 1030 1031 } 1032 1033 return __nvmem_device_get((void *)dev_name, device_match_name); 1034 } 1035 EXPORT_SYMBOL_GPL(nvmem_device_get); 1036 1037 /** 1038 * nvmem_device_find() - Find nvmem device with matching function 1039 * 1040 * @data: Data to pass to match function 1041 * @match: Callback function to check device 1042 * 1043 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1044 * on success. 1045 */ 1046 struct nvmem_device *nvmem_device_find(void *data, 1047 int (*match)(struct device *dev, const void *data)) 1048 { 1049 return __nvmem_device_get(data, match); 1050 } 1051 EXPORT_SYMBOL_GPL(nvmem_device_find); 1052 1053 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 1054 { 1055 struct nvmem_device **nvmem = res; 1056 1057 if (WARN_ON(!nvmem || !*nvmem)) 1058 return 0; 1059 1060 return *nvmem == data; 1061 } 1062 1063 static void devm_nvmem_device_release(struct device *dev, void *res) 1064 { 1065 nvmem_device_put(*(struct nvmem_device **)res); 1066 } 1067 1068 /** 1069 * devm_nvmem_device_put() - put alredy got nvmem device 1070 * 1071 * @dev: Device that uses the nvmem device. 1072 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 1073 * that needs to be released. 1074 */ 1075 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 1076 { 1077 int ret; 1078 1079 ret = devres_release(dev, devm_nvmem_device_release, 1080 devm_nvmem_device_match, nvmem); 1081 1082 WARN_ON(ret); 1083 } 1084 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 1085 1086 /** 1087 * nvmem_device_put() - put alredy got nvmem device 1088 * 1089 * @nvmem: pointer to nvmem device that needs to be released. 1090 */ 1091 void nvmem_device_put(struct nvmem_device *nvmem) 1092 { 1093 __nvmem_device_put(nvmem); 1094 } 1095 EXPORT_SYMBOL_GPL(nvmem_device_put); 1096 1097 /** 1098 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 1099 * 1100 * @dev: Device that requests the nvmem device. 1101 * @id: name id for the requested nvmem device. 1102 * 1103 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 1104 * on success. The nvmem_cell will be freed by the automatically once the 1105 * device is freed. 1106 */ 1107 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 1108 { 1109 struct nvmem_device **ptr, *nvmem; 1110 1111 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 1112 if (!ptr) 1113 return ERR_PTR(-ENOMEM); 1114 1115 nvmem = nvmem_device_get(dev, id); 1116 if (!IS_ERR(nvmem)) { 1117 *ptr = nvmem; 1118 devres_add(dev, ptr); 1119 } else { 1120 devres_free(ptr); 1121 } 1122 1123 return nvmem; 1124 } 1125 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 1126 1127 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id) 1128 { 1129 struct nvmem_cell *cell; 1130 const char *name = NULL; 1131 1132 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 1133 if (!cell) 1134 return ERR_PTR(-ENOMEM); 1135 1136 if (id) { 1137 name = kstrdup_const(id, GFP_KERNEL); 1138 if (!name) { 1139 kfree(cell); 1140 return ERR_PTR(-ENOMEM); 1141 } 1142 } 1143 1144 cell->id = name; 1145 cell->entry = entry; 1146 1147 return cell; 1148 } 1149 1150 static struct nvmem_cell * 1151 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id) 1152 { 1153 struct nvmem_cell_entry *cell_entry; 1154 struct nvmem_cell *cell = ERR_PTR(-ENOENT); 1155 struct nvmem_cell_lookup *lookup; 1156 struct nvmem_device *nvmem; 1157 const char *dev_id; 1158 1159 if (!dev) 1160 return ERR_PTR(-EINVAL); 1161 1162 dev_id = dev_name(dev); 1163 1164 mutex_lock(&nvmem_lookup_mutex); 1165 1166 list_for_each_entry(lookup, &nvmem_lookup_list, node) { 1167 if ((strcmp(lookup->dev_id, dev_id) == 0) && 1168 (strcmp(lookup->con_id, con_id) == 0)) { 1169 /* This is the right entry. */ 1170 nvmem = __nvmem_device_get((void *)lookup->nvmem_name, 1171 device_match_name); 1172 if (IS_ERR(nvmem)) { 1173 /* Provider may not be registered yet. */ 1174 cell = ERR_CAST(nvmem); 1175 break; 1176 } 1177 1178 cell_entry = nvmem_find_cell_entry_by_name(nvmem, 1179 lookup->cell_name); 1180 if (!cell_entry) { 1181 __nvmem_device_put(nvmem); 1182 cell = ERR_PTR(-ENOENT); 1183 } else { 1184 cell = nvmem_create_cell(cell_entry, con_id); 1185 if (IS_ERR(cell)) 1186 __nvmem_device_put(nvmem); 1187 } 1188 break; 1189 } 1190 } 1191 1192 mutex_unlock(&nvmem_lookup_mutex); 1193 return cell; 1194 } 1195 1196 #if IS_ENABLED(CONFIG_OF) 1197 static struct nvmem_cell_entry * 1198 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np) 1199 { 1200 struct nvmem_cell_entry *iter, *cell = NULL; 1201 1202 mutex_lock(&nvmem_mutex); 1203 list_for_each_entry(iter, &nvmem->cells, node) { 1204 if (np == iter->np) { 1205 cell = iter; 1206 break; 1207 } 1208 } 1209 mutex_unlock(&nvmem_mutex); 1210 1211 return cell; 1212 } 1213 1214 /** 1215 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 1216 * 1217 * @np: Device tree node that uses the nvmem cell. 1218 * @id: nvmem cell name from nvmem-cell-names property, or NULL 1219 * for the cell at index 0 (the lone cell with no accompanying 1220 * nvmem-cell-names property). 1221 * 1222 * Return: Will be an ERR_PTR() on error or a valid pointer 1223 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1224 * nvmem_cell_put(). 1225 */ 1226 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id) 1227 { 1228 struct device_node *cell_np, *nvmem_np; 1229 struct nvmem_device *nvmem; 1230 struct nvmem_cell_entry *cell_entry; 1231 struct nvmem_cell *cell; 1232 int index = 0; 1233 1234 /* if cell name exists, find index to the name */ 1235 if (id) 1236 index = of_property_match_string(np, "nvmem-cell-names", id); 1237 1238 cell_np = of_parse_phandle(np, "nvmem-cells", index); 1239 if (!cell_np) 1240 return ERR_PTR(-ENOENT); 1241 1242 nvmem_np = of_get_next_parent(cell_np); 1243 if (!nvmem_np) 1244 return ERR_PTR(-EINVAL); 1245 1246 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1247 of_node_put(nvmem_np); 1248 if (IS_ERR(nvmem)) 1249 return ERR_CAST(nvmem); 1250 1251 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np); 1252 if (!cell_entry) { 1253 __nvmem_device_put(nvmem); 1254 return ERR_PTR(-ENOENT); 1255 } 1256 1257 cell = nvmem_create_cell(cell_entry, id); 1258 if (IS_ERR(cell)) 1259 __nvmem_device_put(nvmem); 1260 1261 return cell; 1262 } 1263 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 1264 #endif 1265 1266 /** 1267 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 1268 * 1269 * @dev: Device that requests the nvmem cell. 1270 * @id: nvmem cell name to get (this corresponds with the name from the 1271 * nvmem-cell-names property for DT systems and with the con_id from 1272 * the lookup entry for non-DT systems). 1273 * 1274 * Return: Will be an ERR_PTR() on error or a valid pointer 1275 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1276 * nvmem_cell_put(). 1277 */ 1278 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id) 1279 { 1280 struct nvmem_cell *cell; 1281 1282 if (dev->of_node) { /* try dt first */ 1283 cell = of_nvmem_cell_get(dev->of_node, id); 1284 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 1285 return cell; 1286 } 1287 1288 /* NULL cell id only allowed for device tree; invalid otherwise */ 1289 if (!id) 1290 return ERR_PTR(-EINVAL); 1291 1292 return nvmem_cell_get_from_lookup(dev, id); 1293 } 1294 EXPORT_SYMBOL_GPL(nvmem_cell_get); 1295 1296 static void devm_nvmem_cell_release(struct device *dev, void *res) 1297 { 1298 nvmem_cell_put(*(struct nvmem_cell **)res); 1299 } 1300 1301 /** 1302 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 1303 * 1304 * @dev: Device that requests the nvmem cell. 1305 * @id: nvmem cell name id to get. 1306 * 1307 * Return: Will be an ERR_PTR() on error or a valid pointer 1308 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1309 * automatically once the device is freed. 1310 */ 1311 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 1312 { 1313 struct nvmem_cell **ptr, *cell; 1314 1315 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 1316 if (!ptr) 1317 return ERR_PTR(-ENOMEM); 1318 1319 cell = nvmem_cell_get(dev, id); 1320 if (!IS_ERR(cell)) { 1321 *ptr = cell; 1322 devres_add(dev, ptr); 1323 } else { 1324 devres_free(ptr); 1325 } 1326 1327 return cell; 1328 } 1329 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 1330 1331 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 1332 { 1333 struct nvmem_cell **c = res; 1334 1335 if (WARN_ON(!c || !*c)) 1336 return 0; 1337 1338 return *c == data; 1339 } 1340 1341 /** 1342 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 1343 * from devm_nvmem_cell_get. 1344 * 1345 * @dev: Device that requests the nvmem cell. 1346 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 1347 */ 1348 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 1349 { 1350 int ret; 1351 1352 ret = devres_release(dev, devm_nvmem_cell_release, 1353 devm_nvmem_cell_match, cell); 1354 1355 WARN_ON(ret); 1356 } 1357 EXPORT_SYMBOL(devm_nvmem_cell_put); 1358 1359 /** 1360 * nvmem_cell_put() - Release previously allocated nvmem cell. 1361 * 1362 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 1363 */ 1364 void nvmem_cell_put(struct nvmem_cell *cell) 1365 { 1366 struct nvmem_device *nvmem = cell->entry->nvmem; 1367 1368 if (cell->id) 1369 kfree_const(cell->id); 1370 1371 kfree(cell); 1372 __nvmem_device_put(nvmem); 1373 } 1374 EXPORT_SYMBOL_GPL(nvmem_cell_put); 1375 1376 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf) 1377 { 1378 u8 *p, *b; 1379 int i, extra, bit_offset = cell->bit_offset; 1380 1381 p = b = buf; 1382 if (bit_offset) { 1383 /* First shift */ 1384 *b++ >>= bit_offset; 1385 1386 /* setup rest of the bytes if any */ 1387 for (i = 1; i < cell->bytes; i++) { 1388 /* Get bits from next byte and shift them towards msb */ 1389 *p |= *b << (BITS_PER_BYTE - bit_offset); 1390 1391 p = b; 1392 *b++ >>= bit_offset; 1393 } 1394 } else { 1395 /* point to the msb */ 1396 p += cell->bytes - 1; 1397 } 1398 1399 /* result fits in less bytes */ 1400 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE); 1401 while (--extra >= 0) 1402 *p-- = 0; 1403 1404 /* clear msb bits if any leftover in the last byte */ 1405 if (cell->nbits % BITS_PER_BYTE) 1406 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0); 1407 } 1408 1409 static int __nvmem_cell_read(struct nvmem_device *nvmem, 1410 struct nvmem_cell_entry *cell, 1411 void *buf, size_t *len, const char *id) 1412 { 1413 int rc; 1414 1415 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes); 1416 1417 if (rc) 1418 return rc; 1419 1420 /* shift bits in-place */ 1421 if (cell->bit_offset || cell->nbits) 1422 nvmem_shift_read_buffer_in_place(cell, buf); 1423 1424 if (nvmem->cell_post_process) { 1425 rc = nvmem->cell_post_process(nvmem->priv, id, 1426 cell->offset, buf, cell->bytes); 1427 if (rc) 1428 return rc; 1429 } 1430 1431 if (len) 1432 *len = cell->bytes; 1433 1434 return 0; 1435 } 1436 1437 /** 1438 * nvmem_cell_read() - Read a given nvmem cell 1439 * 1440 * @cell: nvmem cell to be read. 1441 * @len: pointer to length of cell which will be populated on successful read; 1442 * can be NULL. 1443 * 1444 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 1445 * buffer should be freed by the consumer with a kfree(). 1446 */ 1447 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 1448 { 1449 struct nvmem_device *nvmem = cell->entry->nvmem; 1450 u8 *buf; 1451 int rc; 1452 1453 if (!nvmem) 1454 return ERR_PTR(-EINVAL); 1455 1456 buf = kzalloc(cell->entry->bytes, GFP_KERNEL); 1457 if (!buf) 1458 return ERR_PTR(-ENOMEM); 1459 1460 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id); 1461 if (rc) { 1462 kfree(buf); 1463 return ERR_PTR(rc); 1464 } 1465 1466 return buf; 1467 } 1468 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1469 1470 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell, 1471 u8 *_buf, int len) 1472 { 1473 struct nvmem_device *nvmem = cell->nvmem; 1474 int i, rc, nbits, bit_offset = cell->bit_offset; 1475 u8 v, *p, *buf, *b, pbyte, pbits; 1476 1477 nbits = cell->nbits; 1478 buf = kzalloc(cell->bytes, GFP_KERNEL); 1479 if (!buf) 1480 return ERR_PTR(-ENOMEM); 1481 1482 memcpy(buf, _buf, len); 1483 p = b = buf; 1484 1485 if (bit_offset) { 1486 pbyte = *b; 1487 *b <<= bit_offset; 1488 1489 /* setup the first byte with lsb bits from nvmem */ 1490 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1491 if (rc) 1492 goto err; 1493 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1494 1495 /* setup rest of the byte if any */ 1496 for (i = 1; i < cell->bytes; i++) { 1497 /* Get last byte bits and shift them towards lsb */ 1498 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1499 pbyte = *b; 1500 p = b; 1501 *b <<= bit_offset; 1502 *b++ |= pbits; 1503 } 1504 } 1505 1506 /* if it's not end on byte boundary */ 1507 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1508 /* setup the last byte with msb bits from nvmem */ 1509 rc = nvmem_reg_read(nvmem, 1510 cell->offset + cell->bytes - 1, &v, 1); 1511 if (rc) 1512 goto err; 1513 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1514 1515 } 1516 1517 return buf; 1518 err: 1519 kfree(buf); 1520 return ERR_PTR(rc); 1521 } 1522 1523 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len) 1524 { 1525 struct nvmem_device *nvmem = cell->nvmem; 1526 int rc; 1527 1528 if (!nvmem || nvmem->read_only || 1529 (cell->bit_offset == 0 && len != cell->bytes)) 1530 return -EINVAL; 1531 1532 if (cell->bit_offset || cell->nbits) { 1533 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1534 if (IS_ERR(buf)) 1535 return PTR_ERR(buf); 1536 } 1537 1538 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1539 1540 /* free the tmp buffer */ 1541 if (cell->bit_offset || cell->nbits) 1542 kfree(buf); 1543 1544 if (rc) 1545 return rc; 1546 1547 return len; 1548 } 1549 1550 /** 1551 * nvmem_cell_write() - Write to a given nvmem cell 1552 * 1553 * @cell: nvmem cell to be written. 1554 * @buf: Buffer to be written. 1555 * @len: length of buffer to be written to nvmem cell. 1556 * 1557 * Return: length of bytes written or negative on failure. 1558 */ 1559 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1560 { 1561 return __nvmem_cell_entry_write(cell->entry, buf, len); 1562 } 1563 1564 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1565 1566 static int nvmem_cell_read_common(struct device *dev, const char *cell_id, 1567 void *val, size_t count) 1568 { 1569 struct nvmem_cell *cell; 1570 void *buf; 1571 size_t len; 1572 1573 cell = nvmem_cell_get(dev, cell_id); 1574 if (IS_ERR(cell)) 1575 return PTR_ERR(cell); 1576 1577 buf = nvmem_cell_read(cell, &len); 1578 if (IS_ERR(buf)) { 1579 nvmem_cell_put(cell); 1580 return PTR_ERR(buf); 1581 } 1582 if (len != count) { 1583 kfree(buf); 1584 nvmem_cell_put(cell); 1585 return -EINVAL; 1586 } 1587 memcpy(val, buf, count); 1588 kfree(buf); 1589 nvmem_cell_put(cell); 1590 1591 return 0; 1592 } 1593 1594 /** 1595 * nvmem_cell_read_u8() - Read a cell value as a u8 1596 * 1597 * @dev: Device that requests the nvmem cell. 1598 * @cell_id: Name of nvmem cell to read. 1599 * @val: pointer to output value. 1600 * 1601 * Return: 0 on success or negative errno. 1602 */ 1603 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val) 1604 { 1605 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1606 } 1607 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8); 1608 1609 /** 1610 * nvmem_cell_read_u16() - Read a cell value as a u16 1611 * 1612 * @dev: Device that requests the nvmem cell. 1613 * @cell_id: Name of nvmem cell to read. 1614 * @val: pointer to output value. 1615 * 1616 * Return: 0 on success or negative errno. 1617 */ 1618 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val) 1619 { 1620 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1621 } 1622 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16); 1623 1624 /** 1625 * nvmem_cell_read_u32() - Read a cell value as a u32 1626 * 1627 * @dev: Device that requests the nvmem cell. 1628 * @cell_id: Name of nvmem cell to read. 1629 * @val: pointer to output value. 1630 * 1631 * Return: 0 on success or negative errno. 1632 */ 1633 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val) 1634 { 1635 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1636 } 1637 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32); 1638 1639 /** 1640 * nvmem_cell_read_u64() - Read a cell value as a u64 1641 * 1642 * @dev: Device that requests the nvmem cell. 1643 * @cell_id: Name of nvmem cell to read. 1644 * @val: pointer to output value. 1645 * 1646 * Return: 0 on success or negative errno. 1647 */ 1648 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val) 1649 { 1650 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1651 } 1652 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64); 1653 1654 static const void *nvmem_cell_read_variable_common(struct device *dev, 1655 const char *cell_id, 1656 size_t max_len, size_t *len) 1657 { 1658 struct nvmem_cell *cell; 1659 int nbits; 1660 void *buf; 1661 1662 cell = nvmem_cell_get(dev, cell_id); 1663 if (IS_ERR(cell)) 1664 return cell; 1665 1666 nbits = cell->entry->nbits; 1667 buf = nvmem_cell_read(cell, len); 1668 nvmem_cell_put(cell); 1669 if (IS_ERR(buf)) 1670 return buf; 1671 1672 /* 1673 * If nbits is set then nvmem_cell_read() can significantly exaggerate 1674 * the length of the real data. Throw away the extra junk. 1675 */ 1676 if (nbits) 1677 *len = DIV_ROUND_UP(nbits, 8); 1678 1679 if (*len > max_len) { 1680 kfree(buf); 1681 return ERR_PTR(-ERANGE); 1682 } 1683 1684 return buf; 1685 } 1686 1687 /** 1688 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number. 1689 * 1690 * @dev: Device that requests the nvmem cell. 1691 * @cell_id: Name of nvmem cell to read. 1692 * @val: pointer to output value. 1693 * 1694 * Return: 0 on success or negative errno. 1695 */ 1696 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id, 1697 u32 *val) 1698 { 1699 size_t len; 1700 const u8 *buf; 1701 int i; 1702 1703 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1704 if (IS_ERR(buf)) 1705 return PTR_ERR(buf); 1706 1707 /* Copy w/ implicit endian conversion */ 1708 *val = 0; 1709 for (i = 0; i < len; i++) 1710 *val |= buf[i] << (8 * i); 1711 1712 kfree(buf); 1713 1714 return 0; 1715 } 1716 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32); 1717 1718 /** 1719 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number. 1720 * 1721 * @dev: Device that requests the nvmem cell. 1722 * @cell_id: Name of nvmem cell to read. 1723 * @val: pointer to output value. 1724 * 1725 * Return: 0 on success or negative errno. 1726 */ 1727 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id, 1728 u64 *val) 1729 { 1730 size_t len; 1731 const u8 *buf; 1732 int i; 1733 1734 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1735 if (IS_ERR(buf)) 1736 return PTR_ERR(buf); 1737 1738 /* Copy w/ implicit endian conversion */ 1739 *val = 0; 1740 for (i = 0; i < len; i++) 1741 *val |= (uint64_t)buf[i] << (8 * i); 1742 1743 kfree(buf); 1744 1745 return 0; 1746 } 1747 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64); 1748 1749 /** 1750 * nvmem_device_cell_read() - Read a given nvmem device and cell 1751 * 1752 * @nvmem: nvmem device to read from. 1753 * @info: nvmem cell info to be read. 1754 * @buf: buffer pointer which will be populated on successful read. 1755 * 1756 * Return: length of successful bytes read on success and negative 1757 * error code on error. 1758 */ 1759 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1760 struct nvmem_cell_info *info, void *buf) 1761 { 1762 struct nvmem_cell_entry cell; 1763 int rc; 1764 ssize_t len; 1765 1766 if (!nvmem) 1767 return -EINVAL; 1768 1769 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1770 if (rc) 1771 return rc; 1772 1773 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL); 1774 if (rc) 1775 return rc; 1776 1777 return len; 1778 } 1779 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 1780 1781 /** 1782 * nvmem_device_cell_write() - Write cell to a given nvmem device 1783 * 1784 * @nvmem: nvmem device to be written to. 1785 * @info: nvmem cell info to be written. 1786 * @buf: buffer to be written to cell. 1787 * 1788 * Return: length of bytes written or negative error code on failure. 1789 */ 1790 int nvmem_device_cell_write(struct nvmem_device *nvmem, 1791 struct nvmem_cell_info *info, void *buf) 1792 { 1793 struct nvmem_cell_entry cell; 1794 int rc; 1795 1796 if (!nvmem) 1797 return -EINVAL; 1798 1799 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1800 if (rc) 1801 return rc; 1802 1803 return __nvmem_cell_entry_write(&cell, buf, cell.bytes); 1804 } 1805 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 1806 1807 /** 1808 * nvmem_device_read() - Read from a given nvmem device 1809 * 1810 * @nvmem: nvmem device to read from. 1811 * @offset: offset in nvmem device. 1812 * @bytes: number of bytes to read. 1813 * @buf: buffer pointer which will be populated on successful read. 1814 * 1815 * Return: length of successful bytes read on success and negative 1816 * error code on error. 1817 */ 1818 int nvmem_device_read(struct nvmem_device *nvmem, 1819 unsigned int offset, 1820 size_t bytes, void *buf) 1821 { 1822 int rc; 1823 1824 if (!nvmem) 1825 return -EINVAL; 1826 1827 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 1828 1829 if (rc) 1830 return rc; 1831 1832 return bytes; 1833 } 1834 EXPORT_SYMBOL_GPL(nvmem_device_read); 1835 1836 /** 1837 * nvmem_device_write() - Write cell to a given nvmem device 1838 * 1839 * @nvmem: nvmem device to be written to. 1840 * @offset: offset in nvmem device. 1841 * @bytes: number of bytes to write. 1842 * @buf: buffer to be written. 1843 * 1844 * Return: length of bytes written or negative error code on failure. 1845 */ 1846 int nvmem_device_write(struct nvmem_device *nvmem, 1847 unsigned int offset, 1848 size_t bytes, void *buf) 1849 { 1850 int rc; 1851 1852 if (!nvmem) 1853 return -EINVAL; 1854 1855 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 1856 1857 if (rc) 1858 return rc; 1859 1860 1861 return bytes; 1862 } 1863 EXPORT_SYMBOL_GPL(nvmem_device_write); 1864 1865 /** 1866 * nvmem_add_cell_table() - register a table of cell info entries 1867 * 1868 * @table: table of cell info entries 1869 */ 1870 void nvmem_add_cell_table(struct nvmem_cell_table *table) 1871 { 1872 mutex_lock(&nvmem_cell_mutex); 1873 list_add_tail(&table->node, &nvmem_cell_tables); 1874 mutex_unlock(&nvmem_cell_mutex); 1875 } 1876 EXPORT_SYMBOL_GPL(nvmem_add_cell_table); 1877 1878 /** 1879 * nvmem_del_cell_table() - remove a previously registered cell info table 1880 * 1881 * @table: table of cell info entries 1882 */ 1883 void nvmem_del_cell_table(struct nvmem_cell_table *table) 1884 { 1885 mutex_lock(&nvmem_cell_mutex); 1886 list_del(&table->node); 1887 mutex_unlock(&nvmem_cell_mutex); 1888 } 1889 EXPORT_SYMBOL_GPL(nvmem_del_cell_table); 1890 1891 /** 1892 * nvmem_add_cell_lookups() - register a list of cell lookup entries 1893 * 1894 * @entries: array of cell lookup entries 1895 * @nentries: number of cell lookup entries in the array 1896 */ 1897 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 1898 { 1899 int i; 1900 1901 mutex_lock(&nvmem_lookup_mutex); 1902 for (i = 0; i < nentries; i++) 1903 list_add_tail(&entries[i].node, &nvmem_lookup_list); 1904 mutex_unlock(&nvmem_lookup_mutex); 1905 } 1906 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups); 1907 1908 /** 1909 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup 1910 * entries 1911 * 1912 * @entries: array of cell lookup entries 1913 * @nentries: number of cell lookup entries in the array 1914 */ 1915 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 1916 { 1917 int i; 1918 1919 mutex_lock(&nvmem_lookup_mutex); 1920 for (i = 0; i < nentries; i++) 1921 list_del(&entries[i].node); 1922 mutex_unlock(&nvmem_lookup_mutex); 1923 } 1924 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups); 1925 1926 /** 1927 * nvmem_dev_name() - Get the name of a given nvmem device. 1928 * 1929 * @nvmem: nvmem device. 1930 * 1931 * Return: name of the nvmem device. 1932 */ 1933 const char *nvmem_dev_name(struct nvmem_device *nvmem) 1934 { 1935 return dev_name(&nvmem->dev); 1936 } 1937 EXPORT_SYMBOL_GPL(nvmem_dev_name); 1938 1939 static int __init nvmem_init(void) 1940 { 1941 return bus_register(&nvmem_bus_type); 1942 } 1943 1944 static void __exit nvmem_exit(void) 1945 { 1946 bus_unregister(&nvmem_bus_type); 1947 } 1948 1949 subsys_initcall(nvmem_init); 1950 module_exit(nvmem_exit); 1951 1952 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 1953 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 1954 MODULE_DESCRIPTION("nvmem Driver Core"); 1955 MODULE_LICENSE("GPL v2"); 1956