xref: /linux/drivers/nvmem/core.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 			     char *buf)
189 {
190 	struct nvmem_device *nvmem = to_nvmem_device(dev);
191 
192 	return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194 
195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 			      const char *buf, size_t count)
197 {
198 	struct nvmem_device *nvmem = to_nvmem_device(dev);
199 	int ret = kstrtobool(buf, &nvmem->read_only);
200 
201 	if (ret < 0)
202 		return ret;
203 
204 	return count;
205 }
206 
207 static DEVICE_ATTR_RW(force_ro);
208 
209 static struct attribute *nvmem_attrs[] = {
210 	&dev_attr_force_ro.attr,
211 	&dev_attr_type.attr,
212 	NULL,
213 };
214 
215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 				   struct bin_attribute *attr, char *buf,
217 				   loff_t pos, size_t count)
218 {
219 	struct device *dev;
220 	struct nvmem_device *nvmem;
221 	int rc;
222 
223 	if (attr->private)
224 		dev = attr->private;
225 	else
226 		dev = kobj_to_dev(kobj);
227 	nvmem = to_nvmem_device(dev);
228 
229 	if (!IS_ALIGNED(pos, nvmem->stride))
230 		return -EINVAL;
231 
232 	if (count < nvmem->word_size)
233 		return -EINVAL;
234 
235 	count = round_down(count, nvmem->word_size);
236 
237 	if (!nvmem->reg_read)
238 		return -EPERM;
239 
240 	rc = nvmem_reg_read(nvmem, pos, buf, count);
241 
242 	if (rc)
243 		return rc;
244 
245 	return count;
246 }
247 
248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 				    struct bin_attribute *attr, char *buf,
250 				    loff_t pos, size_t count)
251 {
252 	struct device *dev;
253 	struct nvmem_device *nvmem;
254 	int rc;
255 
256 	if (attr->private)
257 		dev = attr->private;
258 	else
259 		dev = kobj_to_dev(kobj);
260 	nvmem = to_nvmem_device(dev);
261 
262 	if (!IS_ALIGNED(pos, nvmem->stride))
263 		return -EINVAL;
264 
265 	if (count < nvmem->word_size)
266 		return -EINVAL;
267 
268 	count = round_down(count, nvmem->word_size);
269 
270 	if (!nvmem->reg_write || nvmem->read_only)
271 		return -EPERM;
272 
273 	rc = nvmem_reg_write(nvmem, pos, buf, count);
274 
275 	if (rc)
276 		return rc;
277 
278 	return count;
279 }
280 
281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 	umode_t mode = 0400;
284 
285 	if (!nvmem->root_only)
286 		mode |= 0044;
287 
288 	if (!nvmem->read_only)
289 		mode |= 0200;
290 
291 	if (!nvmem->reg_write)
292 		mode &= ~0200;
293 
294 	if (!nvmem->reg_read)
295 		mode &= ~0444;
296 
297 	return mode;
298 }
299 
300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 					 const struct bin_attribute *attr,
302 					 int i)
303 {
304 	struct device *dev = kobj_to_dev(kobj);
305 	struct nvmem_device *nvmem = to_nvmem_device(dev);
306 
307 	return nvmem_bin_attr_get_umode(nvmem);
308 }
309 
310 static size_t nvmem_bin_attr_size(struct kobject *kobj,
311 				  const struct bin_attribute *attr,
312 				  int i)
313 {
314 	struct device *dev = kobj_to_dev(kobj);
315 	struct nvmem_device *nvmem = to_nvmem_device(dev);
316 
317 	return nvmem->size;
318 }
319 
320 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
321 				     struct attribute *attr, int i)
322 {
323 	struct device *dev = kobj_to_dev(kobj);
324 	struct nvmem_device *nvmem = to_nvmem_device(dev);
325 
326 	/*
327 	 * If the device has no .reg_write operation, do not allow
328 	 * configuration as read-write.
329 	 * If the device is set as read-only by configuration, it
330 	 * can be forced into read-write mode using the 'force_ro'
331 	 * attribute.
332 	 */
333 	if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
334 		return 0;	/* Attribute not visible */
335 
336 	return attr->mode;
337 }
338 
339 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
340 					    const char *id, int index);
341 
342 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
343 				    struct bin_attribute *attr, char *buf,
344 				    loff_t pos, size_t count)
345 {
346 	struct nvmem_cell_entry *entry;
347 	struct nvmem_cell *cell = NULL;
348 	size_t cell_sz, read_len;
349 	void *content;
350 
351 	entry = attr->private;
352 	cell = nvmem_create_cell(entry, entry->name, 0);
353 	if (IS_ERR(cell))
354 		return PTR_ERR(cell);
355 
356 	if (!cell)
357 		return -EINVAL;
358 
359 	content = nvmem_cell_read(cell, &cell_sz);
360 	if (IS_ERR(content)) {
361 		read_len = PTR_ERR(content);
362 		goto destroy_cell;
363 	}
364 
365 	read_len = min_t(unsigned int, cell_sz - pos, count);
366 	memcpy(buf, content + pos, read_len);
367 	kfree(content);
368 
369 destroy_cell:
370 	kfree_const(cell->id);
371 	kfree(cell);
372 
373 	return read_len;
374 }
375 
376 /* default read/write permissions */
377 static struct bin_attribute bin_attr_rw_nvmem = {
378 	.attr	= {
379 		.name	= "nvmem",
380 		.mode	= 0644,
381 	},
382 	.read	= bin_attr_nvmem_read,
383 	.write	= bin_attr_nvmem_write,
384 };
385 
386 static struct bin_attribute *nvmem_bin_attributes[] = {
387 	&bin_attr_rw_nvmem,
388 	NULL,
389 };
390 
391 static const struct attribute_group nvmem_bin_group = {
392 	.bin_attrs	= nvmem_bin_attributes,
393 	.attrs		= nvmem_attrs,
394 	.is_bin_visible = nvmem_bin_attr_is_visible,
395 	.bin_size	= nvmem_bin_attr_size,
396 	.is_visible	= nvmem_attr_is_visible,
397 };
398 
399 static const struct attribute_group *nvmem_dev_groups[] = {
400 	&nvmem_bin_group,
401 	NULL,
402 };
403 
404 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
405 	.attr	= {
406 		.name	= "eeprom",
407 	},
408 	.read	= bin_attr_nvmem_read,
409 	.write	= bin_attr_nvmem_write,
410 };
411 
412 /*
413  * nvmem_setup_compat() - Create an additional binary entry in
414  * drivers sys directory, to be backwards compatible with the older
415  * drivers/misc/eeprom drivers.
416  */
417 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
418 				    const struct nvmem_config *config)
419 {
420 	int rval;
421 
422 	if (!config->compat)
423 		return 0;
424 
425 	if (!config->base_dev)
426 		return -EINVAL;
427 
428 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
429 	if (config->type == NVMEM_TYPE_FRAM)
430 		nvmem->eeprom.attr.name = "fram";
431 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
432 	nvmem->eeprom.size = nvmem->size;
433 #ifdef CONFIG_DEBUG_LOCK_ALLOC
434 	nvmem->eeprom.attr.key = &eeprom_lock_key;
435 #endif
436 	nvmem->eeprom.private = &nvmem->dev;
437 	nvmem->base_dev = config->base_dev;
438 
439 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
440 	if (rval) {
441 		dev_err(&nvmem->dev,
442 			"Failed to create eeprom binary file %d\n", rval);
443 		return rval;
444 	}
445 
446 	nvmem->flags |= FLAG_COMPAT;
447 
448 	return 0;
449 }
450 
451 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
452 			      const struct nvmem_config *config)
453 {
454 	if (config->compat)
455 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
456 }
457 
458 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
459 {
460 	struct attribute_group group = {
461 		.name	= "cells",
462 	};
463 	struct nvmem_cell_entry *entry;
464 	struct bin_attribute *attrs;
465 	unsigned int ncells = 0, i = 0;
466 	int ret = 0;
467 
468 	mutex_lock(&nvmem_mutex);
469 
470 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
471 		goto unlock_mutex;
472 
473 	/* Allocate an array of attributes with a sentinel */
474 	ncells = list_count_nodes(&nvmem->cells);
475 	group.bin_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
476 				       sizeof(struct bin_attribute *), GFP_KERNEL);
477 	if (!group.bin_attrs) {
478 		ret = -ENOMEM;
479 		goto unlock_mutex;
480 	}
481 
482 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
483 	if (!attrs) {
484 		ret = -ENOMEM;
485 		goto unlock_mutex;
486 	}
487 
488 	/* Initialize each attribute to take the name and size of the cell */
489 	list_for_each_entry(entry, &nvmem->cells, node) {
490 		sysfs_bin_attr_init(&attrs[i]);
491 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
492 						    "%s@%x,%x", entry->name,
493 						    entry->offset,
494 						    entry->bit_offset);
495 		attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
496 		attrs[i].size = entry->bytes;
497 		attrs[i].read = &nvmem_cell_attr_read;
498 		attrs[i].private = entry;
499 		if (!attrs[i].attr.name) {
500 			ret = -ENOMEM;
501 			goto unlock_mutex;
502 		}
503 
504 		group.bin_attrs[i] = &attrs[i];
505 		i++;
506 	}
507 
508 	ret = device_add_group(&nvmem->dev, &group);
509 	if (ret)
510 		goto unlock_mutex;
511 
512 	nvmem->sysfs_cells_populated = true;
513 
514 unlock_mutex:
515 	mutex_unlock(&nvmem_mutex);
516 
517 	return ret;
518 }
519 
520 #else /* CONFIG_NVMEM_SYSFS */
521 
522 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
523 				    const struct nvmem_config *config)
524 {
525 	return -ENOSYS;
526 }
527 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
528 				      const struct nvmem_config *config)
529 {
530 }
531 
532 #endif /* CONFIG_NVMEM_SYSFS */
533 
534 static void nvmem_release(struct device *dev)
535 {
536 	struct nvmem_device *nvmem = to_nvmem_device(dev);
537 
538 	ida_free(&nvmem_ida, nvmem->id);
539 	gpiod_put(nvmem->wp_gpio);
540 	kfree(nvmem);
541 }
542 
543 static const struct device_type nvmem_provider_type = {
544 	.release	= nvmem_release,
545 };
546 
547 static struct bus_type nvmem_bus_type = {
548 	.name		= "nvmem",
549 };
550 
551 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
552 {
553 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
554 	mutex_lock(&nvmem_mutex);
555 	list_del(&cell->node);
556 	mutex_unlock(&nvmem_mutex);
557 	of_node_put(cell->np);
558 	kfree_const(cell->name);
559 	kfree(cell);
560 }
561 
562 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
563 {
564 	struct nvmem_cell_entry *cell, *p;
565 
566 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
567 		nvmem_cell_entry_drop(cell);
568 }
569 
570 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
571 {
572 	mutex_lock(&nvmem_mutex);
573 	list_add_tail(&cell->node, &cell->nvmem->cells);
574 	mutex_unlock(&nvmem_mutex);
575 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
576 }
577 
578 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
579 						     const struct nvmem_cell_info *info,
580 						     struct nvmem_cell_entry *cell)
581 {
582 	cell->nvmem = nvmem;
583 	cell->offset = info->offset;
584 	cell->raw_len = info->raw_len ?: info->bytes;
585 	cell->bytes = info->bytes;
586 	cell->name = info->name;
587 	cell->read_post_process = info->read_post_process;
588 	cell->priv = info->priv;
589 
590 	cell->bit_offset = info->bit_offset;
591 	cell->nbits = info->nbits;
592 	cell->np = info->np;
593 
594 	if (cell->nbits)
595 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
596 					   BITS_PER_BYTE);
597 
598 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
599 		dev_err(&nvmem->dev,
600 			"cell %s unaligned to nvmem stride %d\n",
601 			cell->name ?: "<unknown>", nvmem->stride);
602 		return -EINVAL;
603 	}
604 
605 	return 0;
606 }
607 
608 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
609 					       const struct nvmem_cell_info *info,
610 					       struct nvmem_cell_entry *cell)
611 {
612 	int err;
613 
614 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
615 	if (err)
616 		return err;
617 
618 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
619 	if (!cell->name)
620 		return -ENOMEM;
621 
622 	return 0;
623 }
624 
625 /**
626  * nvmem_add_one_cell() - Add one cell information to an nvmem device
627  *
628  * @nvmem: nvmem device to add cells to.
629  * @info: nvmem cell info to add to the device
630  *
631  * Return: 0 or negative error code on failure.
632  */
633 int nvmem_add_one_cell(struct nvmem_device *nvmem,
634 		       const struct nvmem_cell_info *info)
635 {
636 	struct nvmem_cell_entry *cell;
637 	int rval;
638 
639 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
640 	if (!cell)
641 		return -ENOMEM;
642 
643 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
644 	if (rval) {
645 		kfree(cell);
646 		return rval;
647 	}
648 
649 	nvmem_cell_entry_add(cell);
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
654 
655 /**
656  * nvmem_add_cells() - Add cell information to an nvmem device
657  *
658  * @nvmem: nvmem device to add cells to.
659  * @info: nvmem cell info to add to the device
660  * @ncells: number of cells in info
661  *
662  * Return: 0 or negative error code on failure.
663  */
664 static int nvmem_add_cells(struct nvmem_device *nvmem,
665 		    const struct nvmem_cell_info *info,
666 		    int ncells)
667 {
668 	int i, rval;
669 
670 	for (i = 0; i < ncells; i++) {
671 		rval = nvmem_add_one_cell(nvmem, &info[i]);
672 		if (rval)
673 			return rval;
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * nvmem_register_notifier() - Register a notifier block for nvmem events.
681  *
682  * @nb: notifier block to be called on nvmem events.
683  *
684  * Return: 0 on success, negative error number on failure.
685  */
686 int nvmem_register_notifier(struct notifier_block *nb)
687 {
688 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
689 }
690 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
691 
692 /**
693  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
694  *
695  * @nb: notifier block to be unregistered.
696  *
697  * Return: 0 on success, negative error number on failure.
698  */
699 int nvmem_unregister_notifier(struct notifier_block *nb)
700 {
701 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
702 }
703 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
704 
705 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
706 {
707 	const struct nvmem_cell_info *info;
708 	struct nvmem_cell_table *table;
709 	struct nvmem_cell_entry *cell;
710 	int rval = 0, i;
711 
712 	mutex_lock(&nvmem_cell_mutex);
713 	list_for_each_entry(table, &nvmem_cell_tables, node) {
714 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
715 			for (i = 0; i < table->ncells; i++) {
716 				info = &table->cells[i];
717 
718 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
719 				if (!cell) {
720 					rval = -ENOMEM;
721 					goto out;
722 				}
723 
724 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
725 				if (rval) {
726 					kfree(cell);
727 					goto out;
728 				}
729 
730 				nvmem_cell_entry_add(cell);
731 			}
732 		}
733 	}
734 
735 out:
736 	mutex_unlock(&nvmem_cell_mutex);
737 	return rval;
738 }
739 
740 static struct nvmem_cell_entry *
741 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
742 {
743 	struct nvmem_cell_entry *iter, *cell = NULL;
744 
745 	mutex_lock(&nvmem_mutex);
746 	list_for_each_entry(iter, &nvmem->cells, node) {
747 		if (strcmp(cell_id, iter->name) == 0) {
748 			cell = iter;
749 			break;
750 		}
751 	}
752 	mutex_unlock(&nvmem_mutex);
753 
754 	return cell;
755 }
756 
757 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
758 {
759 	unsigned int cur = 0;
760 	const struct nvmem_keepout *keepout = nvmem->keepout;
761 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
762 
763 	while (keepout < keepoutend) {
764 		/* Ensure keepouts are sorted and don't overlap. */
765 		if (keepout->start < cur) {
766 			dev_err(&nvmem->dev,
767 				"Keepout regions aren't sorted or overlap.\n");
768 
769 			return -ERANGE;
770 		}
771 
772 		if (keepout->end < keepout->start) {
773 			dev_err(&nvmem->dev,
774 				"Invalid keepout region.\n");
775 
776 			return -EINVAL;
777 		}
778 
779 		/*
780 		 * Validate keepouts (and holes between) don't violate
781 		 * word_size constraints.
782 		 */
783 		if ((keepout->end - keepout->start < nvmem->word_size) ||
784 		    ((keepout->start != cur) &&
785 		     (keepout->start - cur < nvmem->word_size))) {
786 
787 			dev_err(&nvmem->dev,
788 				"Keepout regions violate word_size constraints.\n");
789 
790 			return -ERANGE;
791 		}
792 
793 		/* Validate keepouts don't violate stride (alignment). */
794 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
795 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
796 
797 			dev_err(&nvmem->dev,
798 				"Keepout regions violate stride.\n");
799 
800 			return -EINVAL;
801 		}
802 
803 		cur = keepout->end;
804 		keepout++;
805 	}
806 
807 	return 0;
808 }
809 
810 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
811 {
812 	struct device *dev = &nvmem->dev;
813 	struct device_node *child;
814 	const __be32 *addr;
815 	int len, ret;
816 
817 	for_each_child_of_node(np, child) {
818 		struct nvmem_cell_info info = {0};
819 
820 		addr = of_get_property(child, "reg", &len);
821 		if (!addr)
822 			continue;
823 		if (len < 2 * sizeof(u32)) {
824 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
825 			of_node_put(child);
826 			return -EINVAL;
827 		}
828 
829 		info.offset = be32_to_cpup(addr++);
830 		info.bytes = be32_to_cpup(addr);
831 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
832 
833 		addr = of_get_property(child, "bits", &len);
834 		if (addr && len == (2 * sizeof(u32))) {
835 			info.bit_offset = be32_to_cpup(addr++);
836 			info.nbits = be32_to_cpup(addr);
837 			if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
838 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
839 				of_node_put(child);
840 				return -EINVAL;
841 			}
842 		}
843 
844 		info.np = of_node_get(child);
845 
846 		if (nvmem->fixup_dt_cell_info)
847 			nvmem->fixup_dt_cell_info(nvmem, &info);
848 
849 		ret = nvmem_add_one_cell(nvmem, &info);
850 		kfree(info.name);
851 		if (ret) {
852 			of_node_put(child);
853 			return ret;
854 		}
855 	}
856 
857 	return 0;
858 }
859 
860 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
861 {
862 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
863 }
864 
865 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
866 {
867 	struct device_node *layout_np;
868 	int err = 0;
869 
870 	layout_np = of_nvmem_layout_get_container(nvmem);
871 	if (!layout_np)
872 		return 0;
873 
874 	if (of_device_is_compatible(layout_np, "fixed-layout"))
875 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
876 
877 	of_node_put(layout_np);
878 
879 	return err;
880 }
881 
882 int nvmem_layout_register(struct nvmem_layout *layout)
883 {
884 	int ret;
885 
886 	if (!layout->add_cells)
887 		return -EINVAL;
888 
889 	/* Populate the cells */
890 	ret = layout->add_cells(layout);
891 	if (ret)
892 		return ret;
893 
894 #ifdef CONFIG_NVMEM_SYSFS
895 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
896 	if (ret) {
897 		nvmem_device_remove_all_cells(layout->nvmem);
898 		return ret;
899 	}
900 #endif
901 
902 	return 0;
903 }
904 EXPORT_SYMBOL_GPL(nvmem_layout_register);
905 
906 void nvmem_layout_unregister(struct nvmem_layout *layout)
907 {
908 	/* Keep the API even with an empty stub in case we need it later */
909 }
910 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
911 
912 /**
913  * nvmem_register() - Register a nvmem device for given nvmem_config.
914  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
915  *
916  * @config: nvmem device configuration with which nvmem device is created.
917  *
918  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
919  * on success.
920  */
921 
922 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
923 {
924 	struct nvmem_device *nvmem;
925 	int rval;
926 
927 	if (!config->dev)
928 		return ERR_PTR(-EINVAL);
929 
930 	if (!config->reg_read && !config->reg_write)
931 		return ERR_PTR(-EINVAL);
932 
933 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
934 	if (!nvmem)
935 		return ERR_PTR(-ENOMEM);
936 
937 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
938 	if (rval < 0) {
939 		kfree(nvmem);
940 		return ERR_PTR(rval);
941 	}
942 
943 	nvmem->id = rval;
944 
945 	nvmem->dev.type = &nvmem_provider_type;
946 	nvmem->dev.bus = &nvmem_bus_type;
947 	nvmem->dev.parent = config->dev;
948 
949 	device_initialize(&nvmem->dev);
950 
951 	if (!config->ignore_wp)
952 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
953 						    GPIOD_OUT_HIGH);
954 	if (IS_ERR(nvmem->wp_gpio)) {
955 		rval = PTR_ERR(nvmem->wp_gpio);
956 		nvmem->wp_gpio = NULL;
957 		goto err_put_device;
958 	}
959 
960 	kref_init(&nvmem->refcnt);
961 	INIT_LIST_HEAD(&nvmem->cells);
962 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
963 
964 	nvmem->owner = config->owner;
965 	if (!nvmem->owner && config->dev->driver)
966 		nvmem->owner = config->dev->driver->owner;
967 	nvmem->stride = config->stride ?: 1;
968 	nvmem->word_size = config->word_size ?: 1;
969 	nvmem->size = config->size;
970 	nvmem->root_only = config->root_only;
971 	nvmem->priv = config->priv;
972 	nvmem->type = config->type;
973 	nvmem->reg_read = config->reg_read;
974 	nvmem->reg_write = config->reg_write;
975 	nvmem->keepout = config->keepout;
976 	nvmem->nkeepout = config->nkeepout;
977 	if (config->of_node)
978 		nvmem->dev.of_node = config->of_node;
979 	else
980 		nvmem->dev.of_node = config->dev->of_node;
981 
982 	switch (config->id) {
983 	case NVMEM_DEVID_NONE:
984 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
985 		break;
986 	case NVMEM_DEVID_AUTO:
987 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
988 		break;
989 	default:
990 		rval = dev_set_name(&nvmem->dev, "%s%d",
991 			     config->name ? : "nvmem",
992 			     config->name ? config->id : nvmem->id);
993 		break;
994 	}
995 
996 	if (rval)
997 		goto err_put_device;
998 
999 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
1000 			   config->read_only || !nvmem->reg_write;
1001 
1002 #ifdef CONFIG_NVMEM_SYSFS
1003 	nvmem->dev.groups = nvmem_dev_groups;
1004 #endif
1005 
1006 	if (nvmem->nkeepout) {
1007 		rval = nvmem_validate_keepouts(nvmem);
1008 		if (rval)
1009 			goto err_put_device;
1010 	}
1011 
1012 	if (config->compat) {
1013 		rval = nvmem_sysfs_setup_compat(nvmem, config);
1014 		if (rval)
1015 			goto err_put_device;
1016 	}
1017 
1018 	if (config->cells) {
1019 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1020 		if (rval)
1021 			goto err_remove_cells;
1022 	}
1023 
1024 	rval = nvmem_add_cells_from_table(nvmem);
1025 	if (rval)
1026 		goto err_remove_cells;
1027 
1028 	if (config->add_legacy_fixed_of_cells) {
1029 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1030 		if (rval)
1031 			goto err_remove_cells;
1032 	}
1033 
1034 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1035 	if (rval)
1036 		goto err_remove_cells;
1037 
1038 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1039 
1040 	rval = device_add(&nvmem->dev);
1041 	if (rval)
1042 		goto err_remove_cells;
1043 
1044 	rval = nvmem_populate_layout(nvmem);
1045 	if (rval)
1046 		goto err_remove_dev;
1047 
1048 #ifdef CONFIG_NVMEM_SYSFS
1049 	rval = nvmem_populate_sysfs_cells(nvmem);
1050 	if (rval)
1051 		goto err_destroy_layout;
1052 #endif
1053 
1054 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1055 
1056 	return nvmem;
1057 
1058 #ifdef CONFIG_NVMEM_SYSFS
1059 err_destroy_layout:
1060 	nvmem_destroy_layout(nvmem);
1061 #endif
1062 err_remove_dev:
1063 	device_del(&nvmem->dev);
1064 err_remove_cells:
1065 	nvmem_device_remove_all_cells(nvmem);
1066 	if (config->compat)
1067 		nvmem_sysfs_remove_compat(nvmem, config);
1068 err_put_device:
1069 	put_device(&nvmem->dev);
1070 
1071 	return ERR_PTR(rval);
1072 }
1073 EXPORT_SYMBOL_GPL(nvmem_register);
1074 
1075 static void nvmem_device_release(struct kref *kref)
1076 {
1077 	struct nvmem_device *nvmem;
1078 
1079 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1080 
1081 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1082 
1083 	if (nvmem->flags & FLAG_COMPAT)
1084 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1085 
1086 	nvmem_device_remove_all_cells(nvmem);
1087 	nvmem_destroy_layout(nvmem);
1088 	device_unregister(&nvmem->dev);
1089 }
1090 
1091 /**
1092  * nvmem_unregister() - Unregister previously registered nvmem device
1093  *
1094  * @nvmem: Pointer to previously registered nvmem device.
1095  */
1096 void nvmem_unregister(struct nvmem_device *nvmem)
1097 {
1098 	if (nvmem)
1099 		kref_put(&nvmem->refcnt, nvmem_device_release);
1100 }
1101 EXPORT_SYMBOL_GPL(nvmem_unregister);
1102 
1103 static void devm_nvmem_unregister(void *nvmem)
1104 {
1105 	nvmem_unregister(nvmem);
1106 }
1107 
1108 /**
1109  * devm_nvmem_register() - Register a managed nvmem device for given
1110  * nvmem_config.
1111  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1112  *
1113  * @dev: Device that uses the nvmem device.
1114  * @config: nvmem device configuration with which nvmem device is created.
1115  *
1116  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1117  * on success.
1118  */
1119 struct nvmem_device *devm_nvmem_register(struct device *dev,
1120 					 const struct nvmem_config *config)
1121 {
1122 	struct nvmem_device *nvmem;
1123 	int ret;
1124 
1125 	nvmem = nvmem_register(config);
1126 	if (IS_ERR(nvmem))
1127 		return nvmem;
1128 
1129 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1130 	if (ret)
1131 		return ERR_PTR(ret);
1132 
1133 	return nvmem;
1134 }
1135 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1136 
1137 static struct nvmem_device *__nvmem_device_get(void *data,
1138 			int (*match)(struct device *dev, const void *data))
1139 {
1140 	struct nvmem_device *nvmem = NULL;
1141 	struct device *dev;
1142 
1143 	mutex_lock(&nvmem_mutex);
1144 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1145 	if (dev)
1146 		nvmem = to_nvmem_device(dev);
1147 	mutex_unlock(&nvmem_mutex);
1148 	if (!nvmem)
1149 		return ERR_PTR(-EPROBE_DEFER);
1150 
1151 	if (!try_module_get(nvmem->owner)) {
1152 		dev_err(&nvmem->dev,
1153 			"could not increase module refcount for cell %s\n",
1154 			nvmem_dev_name(nvmem));
1155 
1156 		put_device(&nvmem->dev);
1157 		return ERR_PTR(-EINVAL);
1158 	}
1159 
1160 	kref_get(&nvmem->refcnt);
1161 
1162 	return nvmem;
1163 }
1164 
1165 static void __nvmem_device_put(struct nvmem_device *nvmem)
1166 {
1167 	put_device(&nvmem->dev);
1168 	module_put(nvmem->owner);
1169 	kref_put(&nvmem->refcnt, nvmem_device_release);
1170 }
1171 
1172 #if IS_ENABLED(CONFIG_OF)
1173 /**
1174  * of_nvmem_device_get() - Get nvmem device from a given id
1175  *
1176  * @np: Device tree node that uses the nvmem device.
1177  * @id: nvmem name from nvmem-names property.
1178  *
1179  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1180  * on success.
1181  */
1182 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1183 {
1184 
1185 	struct device_node *nvmem_np;
1186 	struct nvmem_device *nvmem;
1187 	int index = 0;
1188 
1189 	if (id)
1190 		index = of_property_match_string(np, "nvmem-names", id);
1191 
1192 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1193 	if (!nvmem_np)
1194 		return ERR_PTR(-ENOENT);
1195 
1196 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1197 	of_node_put(nvmem_np);
1198 	return nvmem;
1199 }
1200 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1201 #endif
1202 
1203 /**
1204  * nvmem_device_get() - Get nvmem device from a given id
1205  *
1206  * @dev: Device that uses the nvmem device.
1207  * @dev_name: name of the requested nvmem device.
1208  *
1209  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1210  * on success.
1211  */
1212 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1213 {
1214 	if (dev->of_node) { /* try dt first */
1215 		struct nvmem_device *nvmem;
1216 
1217 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1218 
1219 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1220 			return nvmem;
1221 
1222 	}
1223 
1224 	return __nvmem_device_get((void *)dev_name, device_match_name);
1225 }
1226 EXPORT_SYMBOL_GPL(nvmem_device_get);
1227 
1228 /**
1229  * nvmem_device_find() - Find nvmem device with matching function
1230  *
1231  * @data: Data to pass to match function
1232  * @match: Callback function to check device
1233  *
1234  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1235  * on success.
1236  */
1237 struct nvmem_device *nvmem_device_find(void *data,
1238 			int (*match)(struct device *dev, const void *data))
1239 {
1240 	return __nvmem_device_get(data, match);
1241 }
1242 EXPORT_SYMBOL_GPL(nvmem_device_find);
1243 
1244 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1245 {
1246 	struct nvmem_device **nvmem = res;
1247 
1248 	if (WARN_ON(!nvmem || !*nvmem))
1249 		return 0;
1250 
1251 	return *nvmem == data;
1252 }
1253 
1254 static void devm_nvmem_device_release(struct device *dev, void *res)
1255 {
1256 	nvmem_device_put(*(struct nvmem_device **)res);
1257 }
1258 
1259 /**
1260  * devm_nvmem_device_put() - put already got nvmem device
1261  *
1262  * @dev: Device that uses the nvmem device.
1263  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1264  * that needs to be released.
1265  */
1266 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1267 {
1268 	int ret;
1269 
1270 	ret = devres_release(dev, devm_nvmem_device_release,
1271 			     devm_nvmem_device_match, nvmem);
1272 
1273 	WARN_ON(ret);
1274 }
1275 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1276 
1277 /**
1278  * nvmem_device_put() - put already got nvmem device
1279  *
1280  * @nvmem: pointer to nvmem device that needs to be released.
1281  */
1282 void nvmem_device_put(struct nvmem_device *nvmem)
1283 {
1284 	__nvmem_device_put(nvmem);
1285 }
1286 EXPORT_SYMBOL_GPL(nvmem_device_put);
1287 
1288 /**
1289  * devm_nvmem_device_get() - Get nvmem device of device form a given id
1290  *
1291  * @dev: Device that requests the nvmem device.
1292  * @id: name id for the requested nvmem device.
1293  *
1294  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1295  * on success.  The nvmem_device will be freed by the automatically once the
1296  * device is freed.
1297  */
1298 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1299 {
1300 	struct nvmem_device **ptr, *nvmem;
1301 
1302 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1303 	if (!ptr)
1304 		return ERR_PTR(-ENOMEM);
1305 
1306 	nvmem = nvmem_device_get(dev, id);
1307 	if (!IS_ERR(nvmem)) {
1308 		*ptr = nvmem;
1309 		devres_add(dev, ptr);
1310 	} else {
1311 		devres_free(ptr);
1312 	}
1313 
1314 	return nvmem;
1315 }
1316 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1317 
1318 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1319 					    const char *id, int index)
1320 {
1321 	struct nvmem_cell *cell;
1322 	const char *name = NULL;
1323 
1324 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1325 	if (!cell)
1326 		return ERR_PTR(-ENOMEM);
1327 
1328 	if (id) {
1329 		name = kstrdup_const(id, GFP_KERNEL);
1330 		if (!name) {
1331 			kfree(cell);
1332 			return ERR_PTR(-ENOMEM);
1333 		}
1334 	}
1335 
1336 	cell->id = name;
1337 	cell->entry = entry;
1338 	cell->index = index;
1339 
1340 	return cell;
1341 }
1342 
1343 static struct nvmem_cell *
1344 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1345 {
1346 	struct nvmem_cell_entry *cell_entry;
1347 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1348 	struct nvmem_cell_lookup *lookup;
1349 	struct nvmem_device *nvmem;
1350 	const char *dev_id;
1351 
1352 	if (!dev)
1353 		return ERR_PTR(-EINVAL);
1354 
1355 	dev_id = dev_name(dev);
1356 
1357 	mutex_lock(&nvmem_lookup_mutex);
1358 
1359 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1360 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1361 		    (strcmp(lookup->con_id, con_id) == 0)) {
1362 			/* This is the right entry. */
1363 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1364 						   device_match_name);
1365 			if (IS_ERR(nvmem)) {
1366 				/* Provider may not be registered yet. */
1367 				cell = ERR_CAST(nvmem);
1368 				break;
1369 			}
1370 
1371 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1372 								   lookup->cell_name);
1373 			if (!cell_entry) {
1374 				__nvmem_device_put(nvmem);
1375 				cell = ERR_PTR(-ENOENT);
1376 			} else {
1377 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1378 				if (IS_ERR(cell))
1379 					__nvmem_device_put(nvmem);
1380 			}
1381 			break;
1382 		}
1383 	}
1384 
1385 	mutex_unlock(&nvmem_lookup_mutex);
1386 	return cell;
1387 }
1388 
1389 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1390 {
1391 	if (nvmem->layout && nvmem->layout->dev.driver)
1392 		module_put(nvmem->layout->dev.driver->owner);
1393 }
1394 
1395 #if IS_ENABLED(CONFIG_OF)
1396 static struct nvmem_cell_entry *
1397 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1398 {
1399 	struct nvmem_cell_entry *iter, *cell = NULL;
1400 
1401 	mutex_lock(&nvmem_mutex);
1402 	list_for_each_entry(iter, &nvmem->cells, node) {
1403 		if (np == iter->np) {
1404 			cell = iter;
1405 			break;
1406 		}
1407 	}
1408 	mutex_unlock(&nvmem_mutex);
1409 
1410 	return cell;
1411 }
1412 
1413 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1414 {
1415 	if (!nvmem->layout)
1416 		return 0;
1417 
1418 	if (!nvmem->layout->dev.driver ||
1419 	    !try_module_get(nvmem->layout->dev.driver->owner))
1420 		return -EPROBE_DEFER;
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1427  *
1428  * @np: Device tree node that uses the nvmem cell.
1429  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1430  *      for the cell at index 0 (the lone cell with no accompanying
1431  *      nvmem-cell-names property).
1432  *
1433  * Return: Will be an ERR_PTR() on error or a valid pointer
1434  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1435  * nvmem_cell_put().
1436  */
1437 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1438 {
1439 	struct device_node *cell_np, *nvmem_np;
1440 	struct nvmem_device *nvmem;
1441 	struct nvmem_cell_entry *cell_entry;
1442 	struct nvmem_cell *cell;
1443 	struct of_phandle_args cell_spec;
1444 	int index = 0;
1445 	int cell_index = 0;
1446 	int ret;
1447 
1448 	/* if cell name exists, find index to the name */
1449 	if (id)
1450 		index = of_property_match_string(np, "nvmem-cell-names", id);
1451 
1452 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1453 						  "#nvmem-cell-cells",
1454 						  index, &cell_spec);
1455 	if (ret)
1456 		return ERR_PTR(-ENOENT);
1457 
1458 	if (cell_spec.args_count > 1)
1459 		return ERR_PTR(-EINVAL);
1460 
1461 	cell_np = cell_spec.np;
1462 	if (cell_spec.args_count)
1463 		cell_index = cell_spec.args[0];
1464 
1465 	nvmem_np = of_get_parent(cell_np);
1466 	if (!nvmem_np) {
1467 		of_node_put(cell_np);
1468 		return ERR_PTR(-EINVAL);
1469 	}
1470 
1471 	/* nvmem layouts produce cells within the nvmem-layout container */
1472 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1473 		nvmem_np = of_get_next_parent(nvmem_np);
1474 		if (!nvmem_np) {
1475 			of_node_put(cell_np);
1476 			return ERR_PTR(-EINVAL);
1477 		}
1478 	}
1479 
1480 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1481 	of_node_put(nvmem_np);
1482 	if (IS_ERR(nvmem)) {
1483 		of_node_put(cell_np);
1484 		return ERR_CAST(nvmem);
1485 	}
1486 
1487 	ret = nvmem_layout_module_get_optional(nvmem);
1488 	if (ret) {
1489 		of_node_put(cell_np);
1490 		__nvmem_device_put(nvmem);
1491 		return ERR_PTR(ret);
1492 	}
1493 
1494 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1495 	of_node_put(cell_np);
1496 	if (!cell_entry) {
1497 		__nvmem_device_put(nvmem);
1498 		nvmem_layout_module_put(nvmem);
1499 		if (nvmem->layout)
1500 			return ERR_PTR(-EPROBE_DEFER);
1501 		else
1502 			return ERR_PTR(-ENOENT);
1503 	}
1504 
1505 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1506 	if (IS_ERR(cell)) {
1507 		__nvmem_device_put(nvmem);
1508 		nvmem_layout_module_put(nvmem);
1509 	}
1510 
1511 	return cell;
1512 }
1513 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1514 #endif
1515 
1516 /**
1517  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1518  *
1519  * @dev: Device that requests the nvmem cell.
1520  * @id: nvmem cell name to get (this corresponds with the name from the
1521  *      nvmem-cell-names property for DT systems and with the con_id from
1522  *      the lookup entry for non-DT systems).
1523  *
1524  * Return: Will be an ERR_PTR() on error or a valid pointer
1525  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1526  * nvmem_cell_put().
1527  */
1528 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1529 {
1530 	struct nvmem_cell *cell;
1531 
1532 	if (dev->of_node) { /* try dt first */
1533 		cell = of_nvmem_cell_get(dev->of_node, id);
1534 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1535 			return cell;
1536 	}
1537 
1538 	/* NULL cell id only allowed for device tree; invalid otherwise */
1539 	if (!id)
1540 		return ERR_PTR(-EINVAL);
1541 
1542 	return nvmem_cell_get_from_lookup(dev, id);
1543 }
1544 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1545 
1546 static void devm_nvmem_cell_release(struct device *dev, void *res)
1547 {
1548 	nvmem_cell_put(*(struct nvmem_cell **)res);
1549 }
1550 
1551 /**
1552  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1553  *
1554  * @dev: Device that requests the nvmem cell.
1555  * @id: nvmem cell name id to get.
1556  *
1557  * Return: Will be an ERR_PTR() on error or a valid pointer
1558  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1559  * automatically once the device is freed.
1560  */
1561 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1562 {
1563 	struct nvmem_cell **ptr, *cell;
1564 
1565 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1566 	if (!ptr)
1567 		return ERR_PTR(-ENOMEM);
1568 
1569 	cell = nvmem_cell_get(dev, id);
1570 	if (!IS_ERR(cell)) {
1571 		*ptr = cell;
1572 		devres_add(dev, ptr);
1573 	} else {
1574 		devres_free(ptr);
1575 	}
1576 
1577 	return cell;
1578 }
1579 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1580 
1581 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1582 {
1583 	struct nvmem_cell **c = res;
1584 
1585 	if (WARN_ON(!c || !*c))
1586 		return 0;
1587 
1588 	return *c == data;
1589 }
1590 
1591 /**
1592  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1593  * from devm_nvmem_cell_get.
1594  *
1595  * @dev: Device that requests the nvmem cell.
1596  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1597  */
1598 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1599 {
1600 	int ret;
1601 
1602 	ret = devres_release(dev, devm_nvmem_cell_release,
1603 				devm_nvmem_cell_match, cell);
1604 
1605 	WARN_ON(ret);
1606 }
1607 EXPORT_SYMBOL(devm_nvmem_cell_put);
1608 
1609 /**
1610  * nvmem_cell_put() - Release previously allocated nvmem cell.
1611  *
1612  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1613  */
1614 void nvmem_cell_put(struct nvmem_cell *cell)
1615 {
1616 	struct nvmem_device *nvmem = cell->entry->nvmem;
1617 
1618 	if (cell->id)
1619 		kfree_const(cell->id);
1620 
1621 	kfree(cell);
1622 	__nvmem_device_put(nvmem);
1623 	nvmem_layout_module_put(nvmem);
1624 }
1625 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1626 
1627 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1628 {
1629 	u8 *p, *b;
1630 	int i, extra, bit_offset = cell->bit_offset;
1631 
1632 	p = b = buf;
1633 	if (bit_offset) {
1634 		/* First shift */
1635 		*b++ >>= bit_offset;
1636 
1637 		/* setup rest of the bytes if any */
1638 		for (i = 1; i < cell->bytes; i++) {
1639 			/* Get bits from next byte and shift them towards msb */
1640 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1641 
1642 			p = b;
1643 			*b++ >>= bit_offset;
1644 		}
1645 	} else {
1646 		/* point to the msb */
1647 		p += cell->bytes - 1;
1648 	}
1649 
1650 	/* result fits in less bytes */
1651 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1652 	while (--extra >= 0)
1653 		*p-- = 0;
1654 
1655 	/* clear msb bits if any leftover in the last byte */
1656 	if (cell->nbits % BITS_PER_BYTE)
1657 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1658 }
1659 
1660 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1661 			     struct nvmem_cell_entry *cell,
1662 			     void *buf, size_t *len, const char *id, int index)
1663 {
1664 	int rc;
1665 
1666 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1667 
1668 	if (rc)
1669 		return rc;
1670 
1671 	/* shift bits in-place */
1672 	if (cell->bit_offset || cell->nbits)
1673 		nvmem_shift_read_buffer_in_place(cell, buf);
1674 
1675 	if (cell->read_post_process) {
1676 		rc = cell->read_post_process(cell->priv, id, index,
1677 					     cell->offset, buf, cell->raw_len);
1678 		if (rc)
1679 			return rc;
1680 	}
1681 
1682 	if (len)
1683 		*len = cell->bytes;
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * nvmem_cell_read() - Read a given nvmem cell
1690  *
1691  * @cell: nvmem cell to be read.
1692  * @len: pointer to length of cell which will be populated on successful read;
1693  *	 can be NULL.
1694  *
1695  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1696  * buffer should be freed by the consumer with a kfree().
1697  */
1698 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1699 {
1700 	struct nvmem_cell_entry *entry = cell->entry;
1701 	struct nvmem_device *nvmem = entry->nvmem;
1702 	u8 *buf;
1703 	int rc;
1704 
1705 	if (!nvmem)
1706 		return ERR_PTR(-EINVAL);
1707 
1708 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1709 	if (!buf)
1710 		return ERR_PTR(-ENOMEM);
1711 
1712 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1713 	if (rc) {
1714 		kfree(buf);
1715 		return ERR_PTR(rc);
1716 	}
1717 
1718 	return buf;
1719 }
1720 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1721 
1722 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1723 					     u8 *_buf, int len)
1724 {
1725 	struct nvmem_device *nvmem = cell->nvmem;
1726 	int i, rc, nbits, bit_offset = cell->bit_offset;
1727 	u8 v, *p, *buf, *b, pbyte, pbits;
1728 
1729 	nbits = cell->nbits;
1730 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1731 	if (!buf)
1732 		return ERR_PTR(-ENOMEM);
1733 
1734 	memcpy(buf, _buf, len);
1735 	p = b = buf;
1736 
1737 	if (bit_offset) {
1738 		pbyte = *b;
1739 		*b <<= bit_offset;
1740 
1741 		/* setup the first byte with lsb bits from nvmem */
1742 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1743 		if (rc)
1744 			goto err;
1745 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1746 
1747 		/* setup rest of the byte if any */
1748 		for (i = 1; i < cell->bytes; i++) {
1749 			/* Get last byte bits and shift them towards lsb */
1750 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1751 			pbyte = *b;
1752 			p = b;
1753 			*b <<= bit_offset;
1754 			*b++ |= pbits;
1755 		}
1756 	}
1757 
1758 	/* if it's not end on byte boundary */
1759 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1760 		/* setup the last byte with msb bits from nvmem */
1761 		rc = nvmem_reg_read(nvmem,
1762 				    cell->offset + cell->bytes - 1, &v, 1);
1763 		if (rc)
1764 			goto err;
1765 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1766 
1767 	}
1768 
1769 	return buf;
1770 err:
1771 	kfree(buf);
1772 	return ERR_PTR(rc);
1773 }
1774 
1775 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1776 {
1777 	struct nvmem_device *nvmem = cell->nvmem;
1778 	int rc;
1779 
1780 	if (!nvmem || nvmem->read_only ||
1781 	    (cell->bit_offset == 0 && len != cell->bytes))
1782 		return -EINVAL;
1783 
1784 	/*
1785 	 * Any cells which have a read_post_process hook are read-only because
1786 	 * we cannot reverse the operation and it might affect other cells,
1787 	 * too.
1788 	 */
1789 	if (cell->read_post_process)
1790 		return -EINVAL;
1791 
1792 	if (cell->bit_offset || cell->nbits) {
1793 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1794 		if (IS_ERR(buf))
1795 			return PTR_ERR(buf);
1796 	}
1797 
1798 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1799 
1800 	/* free the tmp buffer */
1801 	if (cell->bit_offset || cell->nbits)
1802 		kfree(buf);
1803 
1804 	if (rc)
1805 		return rc;
1806 
1807 	return len;
1808 }
1809 
1810 /**
1811  * nvmem_cell_write() - Write to a given nvmem cell
1812  *
1813  * @cell: nvmem cell to be written.
1814  * @buf: Buffer to be written.
1815  * @len: length of buffer to be written to nvmem cell.
1816  *
1817  * Return: length of bytes written or negative on failure.
1818  */
1819 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1820 {
1821 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1822 }
1823 
1824 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1825 
1826 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1827 				  void *val, size_t count)
1828 {
1829 	struct nvmem_cell *cell;
1830 	void *buf;
1831 	size_t len;
1832 
1833 	cell = nvmem_cell_get(dev, cell_id);
1834 	if (IS_ERR(cell))
1835 		return PTR_ERR(cell);
1836 
1837 	buf = nvmem_cell_read(cell, &len);
1838 	if (IS_ERR(buf)) {
1839 		nvmem_cell_put(cell);
1840 		return PTR_ERR(buf);
1841 	}
1842 	if (len != count) {
1843 		kfree(buf);
1844 		nvmem_cell_put(cell);
1845 		return -EINVAL;
1846 	}
1847 	memcpy(val, buf, count);
1848 	kfree(buf);
1849 	nvmem_cell_put(cell);
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * nvmem_cell_read_u8() - Read a cell value as a u8
1856  *
1857  * @dev: Device that requests the nvmem cell.
1858  * @cell_id: Name of nvmem cell to read.
1859  * @val: pointer to output value.
1860  *
1861  * Return: 0 on success or negative errno.
1862  */
1863 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1864 {
1865 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1866 }
1867 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1868 
1869 /**
1870  * nvmem_cell_read_u16() - Read a cell value as a u16
1871  *
1872  * @dev: Device that requests the nvmem cell.
1873  * @cell_id: Name of nvmem cell to read.
1874  * @val: pointer to output value.
1875  *
1876  * Return: 0 on success or negative errno.
1877  */
1878 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1879 {
1880 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1881 }
1882 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1883 
1884 /**
1885  * nvmem_cell_read_u32() - Read a cell value as a u32
1886  *
1887  * @dev: Device that requests the nvmem cell.
1888  * @cell_id: Name of nvmem cell to read.
1889  * @val: pointer to output value.
1890  *
1891  * Return: 0 on success or negative errno.
1892  */
1893 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1894 {
1895 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1896 }
1897 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1898 
1899 /**
1900  * nvmem_cell_read_u64() - Read a cell value as a u64
1901  *
1902  * @dev: Device that requests the nvmem cell.
1903  * @cell_id: Name of nvmem cell to read.
1904  * @val: pointer to output value.
1905  *
1906  * Return: 0 on success or negative errno.
1907  */
1908 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1909 {
1910 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1911 }
1912 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1913 
1914 static const void *nvmem_cell_read_variable_common(struct device *dev,
1915 						   const char *cell_id,
1916 						   size_t max_len, size_t *len)
1917 {
1918 	struct nvmem_cell *cell;
1919 	int nbits;
1920 	void *buf;
1921 
1922 	cell = nvmem_cell_get(dev, cell_id);
1923 	if (IS_ERR(cell))
1924 		return cell;
1925 
1926 	nbits = cell->entry->nbits;
1927 	buf = nvmem_cell_read(cell, len);
1928 	nvmem_cell_put(cell);
1929 	if (IS_ERR(buf))
1930 		return buf;
1931 
1932 	/*
1933 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1934 	 * the length of the real data. Throw away the extra junk.
1935 	 */
1936 	if (nbits)
1937 		*len = DIV_ROUND_UP(nbits, 8);
1938 
1939 	if (*len > max_len) {
1940 		kfree(buf);
1941 		return ERR_PTR(-ERANGE);
1942 	}
1943 
1944 	return buf;
1945 }
1946 
1947 /**
1948  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1949  *
1950  * @dev: Device that requests the nvmem cell.
1951  * @cell_id: Name of nvmem cell to read.
1952  * @val: pointer to output value.
1953  *
1954  * Return: 0 on success or negative errno.
1955  */
1956 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1957 				    u32 *val)
1958 {
1959 	size_t len;
1960 	const u8 *buf;
1961 	int i;
1962 
1963 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1964 	if (IS_ERR(buf))
1965 		return PTR_ERR(buf);
1966 
1967 	/* Copy w/ implicit endian conversion */
1968 	*val = 0;
1969 	for (i = 0; i < len; i++)
1970 		*val |= buf[i] << (8 * i);
1971 
1972 	kfree(buf);
1973 
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1977 
1978 /**
1979  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1980  *
1981  * @dev: Device that requests the nvmem cell.
1982  * @cell_id: Name of nvmem cell to read.
1983  * @val: pointer to output value.
1984  *
1985  * Return: 0 on success or negative errno.
1986  */
1987 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1988 				    u64 *val)
1989 {
1990 	size_t len;
1991 	const u8 *buf;
1992 	int i;
1993 
1994 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1995 	if (IS_ERR(buf))
1996 		return PTR_ERR(buf);
1997 
1998 	/* Copy w/ implicit endian conversion */
1999 	*val = 0;
2000 	for (i = 0; i < len; i++)
2001 		*val |= (uint64_t)buf[i] << (8 * i);
2002 
2003 	kfree(buf);
2004 
2005 	return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2008 
2009 /**
2010  * nvmem_device_cell_read() - Read a given nvmem device and cell
2011  *
2012  * @nvmem: nvmem device to read from.
2013  * @info: nvmem cell info to be read.
2014  * @buf: buffer pointer which will be populated on successful read.
2015  *
2016  * Return: length of successful bytes read on success and negative
2017  * error code on error.
2018  */
2019 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2020 			   struct nvmem_cell_info *info, void *buf)
2021 {
2022 	struct nvmem_cell_entry cell;
2023 	int rc;
2024 	ssize_t len;
2025 
2026 	if (!nvmem)
2027 		return -EINVAL;
2028 
2029 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2030 	if (rc)
2031 		return rc;
2032 
2033 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2034 	if (rc)
2035 		return rc;
2036 
2037 	return len;
2038 }
2039 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2040 
2041 /**
2042  * nvmem_device_cell_write() - Write cell to a given nvmem device
2043  *
2044  * @nvmem: nvmem device to be written to.
2045  * @info: nvmem cell info to be written.
2046  * @buf: buffer to be written to cell.
2047  *
2048  * Return: length of bytes written or negative error code on failure.
2049  */
2050 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2051 			    struct nvmem_cell_info *info, void *buf)
2052 {
2053 	struct nvmem_cell_entry cell;
2054 	int rc;
2055 
2056 	if (!nvmem)
2057 		return -EINVAL;
2058 
2059 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2060 	if (rc)
2061 		return rc;
2062 
2063 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2064 }
2065 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2066 
2067 /**
2068  * nvmem_device_read() - Read from a given nvmem device
2069  *
2070  * @nvmem: nvmem device to read from.
2071  * @offset: offset in nvmem device.
2072  * @bytes: number of bytes to read.
2073  * @buf: buffer pointer which will be populated on successful read.
2074  *
2075  * Return: length of successful bytes read on success and negative
2076  * error code on error.
2077  */
2078 int nvmem_device_read(struct nvmem_device *nvmem,
2079 		      unsigned int offset,
2080 		      size_t bytes, void *buf)
2081 {
2082 	int rc;
2083 
2084 	if (!nvmem)
2085 		return -EINVAL;
2086 
2087 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2088 
2089 	if (rc)
2090 		return rc;
2091 
2092 	return bytes;
2093 }
2094 EXPORT_SYMBOL_GPL(nvmem_device_read);
2095 
2096 /**
2097  * nvmem_device_write() - Write cell to a given nvmem device
2098  *
2099  * @nvmem: nvmem device to be written to.
2100  * @offset: offset in nvmem device.
2101  * @bytes: number of bytes to write.
2102  * @buf: buffer to be written.
2103  *
2104  * Return: length of bytes written or negative error code on failure.
2105  */
2106 int nvmem_device_write(struct nvmem_device *nvmem,
2107 		       unsigned int offset,
2108 		       size_t bytes, void *buf)
2109 {
2110 	int rc;
2111 
2112 	if (!nvmem)
2113 		return -EINVAL;
2114 
2115 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2116 
2117 	if (rc)
2118 		return rc;
2119 
2120 
2121 	return bytes;
2122 }
2123 EXPORT_SYMBOL_GPL(nvmem_device_write);
2124 
2125 /**
2126  * nvmem_add_cell_table() - register a table of cell info entries
2127  *
2128  * @table: table of cell info entries
2129  */
2130 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2131 {
2132 	mutex_lock(&nvmem_cell_mutex);
2133 	list_add_tail(&table->node, &nvmem_cell_tables);
2134 	mutex_unlock(&nvmem_cell_mutex);
2135 }
2136 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2137 
2138 /**
2139  * nvmem_del_cell_table() - remove a previously registered cell info table
2140  *
2141  * @table: table of cell info entries
2142  */
2143 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2144 {
2145 	mutex_lock(&nvmem_cell_mutex);
2146 	list_del(&table->node);
2147 	mutex_unlock(&nvmem_cell_mutex);
2148 }
2149 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2150 
2151 /**
2152  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2153  *
2154  * @entries: array of cell lookup entries
2155  * @nentries: number of cell lookup entries in the array
2156  */
2157 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2158 {
2159 	int i;
2160 
2161 	mutex_lock(&nvmem_lookup_mutex);
2162 	for (i = 0; i < nentries; i++)
2163 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2164 	mutex_unlock(&nvmem_lookup_mutex);
2165 }
2166 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2167 
2168 /**
2169  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2170  *                            entries
2171  *
2172  * @entries: array of cell lookup entries
2173  * @nentries: number of cell lookup entries in the array
2174  */
2175 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2176 {
2177 	int i;
2178 
2179 	mutex_lock(&nvmem_lookup_mutex);
2180 	for (i = 0; i < nentries; i++)
2181 		list_del(&entries[i].node);
2182 	mutex_unlock(&nvmem_lookup_mutex);
2183 }
2184 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2185 
2186 /**
2187  * nvmem_dev_name() - Get the name of a given nvmem device.
2188  *
2189  * @nvmem: nvmem device.
2190  *
2191  * Return: name of the nvmem device.
2192  */
2193 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2194 {
2195 	return dev_name(&nvmem->dev);
2196 }
2197 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2198 
2199 /**
2200  * nvmem_dev_size() - Get the size of a given nvmem device.
2201  *
2202  * @nvmem: nvmem device.
2203  *
2204  * Return: size of the nvmem device.
2205  */
2206 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2207 {
2208 	return nvmem->size;
2209 }
2210 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2211 
2212 static int __init nvmem_init(void)
2213 {
2214 	int ret;
2215 
2216 	ret = bus_register(&nvmem_bus_type);
2217 	if (ret)
2218 		return ret;
2219 
2220 	ret = nvmem_layout_bus_register();
2221 	if (ret)
2222 		bus_unregister(&nvmem_bus_type);
2223 
2224 	return ret;
2225 }
2226 
2227 static void __exit nvmem_exit(void)
2228 {
2229 	nvmem_layout_bus_unregister();
2230 	bus_unregister(&nvmem_bus_type);
2231 }
2232 
2233 subsys_initcall(nvmem_init);
2234 module_exit(nvmem_exit);
2235 
2236 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2237 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2238 MODULE_DESCRIPTION("nvmem Driver Core");
2239