xref: /linux/drivers/nvmem/core.c (revision 1f20a5769446a1acae67ac9e63d07a594829a789)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
187 static struct attribute *nvmem_attrs[] = {
188 	&dev_attr_type.attr,
189 	NULL,
190 };
191 
192 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
193 				   struct bin_attribute *attr, char *buf,
194 				   loff_t pos, size_t count)
195 {
196 	struct device *dev;
197 	struct nvmem_device *nvmem;
198 	int rc;
199 
200 	if (attr->private)
201 		dev = attr->private;
202 	else
203 		dev = kobj_to_dev(kobj);
204 	nvmem = to_nvmem_device(dev);
205 
206 	/* Stop the user from reading */
207 	if (pos >= nvmem->size)
208 		return 0;
209 
210 	if (!IS_ALIGNED(pos, nvmem->stride))
211 		return -EINVAL;
212 
213 	if (count < nvmem->word_size)
214 		return -EINVAL;
215 
216 	if (pos + count > nvmem->size)
217 		count = nvmem->size - pos;
218 
219 	count = round_down(count, nvmem->word_size);
220 
221 	if (!nvmem->reg_read)
222 		return -EPERM;
223 
224 	rc = nvmem_reg_read(nvmem, pos, buf, count);
225 
226 	if (rc)
227 		return rc;
228 
229 	return count;
230 }
231 
232 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
233 				    struct bin_attribute *attr, char *buf,
234 				    loff_t pos, size_t count)
235 {
236 	struct device *dev;
237 	struct nvmem_device *nvmem;
238 	int rc;
239 
240 	if (attr->private)
241 		dev = attr->private;
242 	else
243 		dev = kobj_to_dev(kobj);
244 	nvmem = to_nvmem_device(dev);
245 
246 	/* Stop the user from writing */
247 	if (pos >= nvmem->size)
248 		return -EFBIG;
249 
250 	if (!IS_ALIGNED(pos, nvmem->stride))
251 		return -EINVAL;
252 
253 	if (count < nvmem->word_size)
254 		return -EINVAL;
255 
256 	if (pos + count > nvmem->size)
257 		count = nvmem->size - pos;
258 
259 	count = round_down(count, nvmem->word_size);
260 
261 	if (!nvmem->reg_write)
262 		return -EPERM;
263 
264 	rc = nvmem_reg_write(nvmem, pos, buf, count);
265 
266 	if (rc)
267 		return rc;
268 
269 	return count;
270 }
271 
272 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
273 {
274 	umode_t mode = 0400;
275 
276 	if (!nvmem->root_only)
277 		mode |= 0044;
278 
279 	if (!nvmem->read_only)
280 		mode |= 0200;
281 
282 	if (!nvmem->reg_write)
283 		mode &= ~0200;
284 
285 	if (!nvmem->reg_read)
286 		mode &= ~0444;
287 
288 	return mode;
289 }
290 
291 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
292 					 struct bin_attribute *attr, int i)
293 {
294 	struct device *dev = kobj_to_dev(kobj);
295 	struct nvmem_device *nvmem = to_nvmem_device(dev);
296 
297 	attr->size = nvmem->size;
298 
299 	return nvmem_bin_attr_get_umode(nvmem);
300 }
301 
302 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
303 					    const char *id, int index);
304 
305 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
306 				    struct bin_attribute *attr, char *buf,
307 				    loff_t pos, size_t count)
308 {
309 	struct nvmem_cell_entry *entry;
310 	struct nvmem_cell *cell = NULL;
311 	size_t cell_sz, read_len;
312 	void *content;
313 
314 	entry = attr->private;
315 	cell = nvmem_create_cell(entry, entry->name, 0);
316 	if (IS_ERR(cell))
317 		return PTR_ERR(cell);
318 
319 	if (!cell)
320 		return -EINVAL;
321 
322 	content = nvmem_cell_read(cell, &cell_sz);
323 	if (IS_ERR(content)) {
324 		read_len = PTR_ERR(content);
325 		goto destroy_cell;
326 	}
327 
328 	read_len = min_t(unsigned int, cell_sz - pos, count);
329 	memcpy(buf, content + pos, read_len);
330 	kfree(content);
331 
332 destroy_cell:
333 	kfree_const(cell->id);
334 	kfree(cell);
335 
336 	return read_len;
337 }
338 
339 /* default read/write permissions */
340 static struct bin_attribute bin_attr_rw_nvmem = {
341 	.attr	= {
342 		.name	= "nvmem",
343 		.mode	= 0644,
344 	},
345 	.read	= bin_attr_nvmem_read,
346 	.write	= bin_attr_nvmem_write,
347 };
348 
349 static struct bin_attribute *nvmem_bin_attributes[] = {
350 	&bin_attr_rw_nvmem,
351 	NULL,
352 };
353 
354 static const struct attribute_group nvmem_bin_group = {
355 	.bin_attrs	= nvmem_bin_attributes,
356 	.attrs		= nvmem_attrs,
357 	.is_bin_visible = nvmem_bin_attr_is_visible,
358 };
359 
360 /* Cell attributes will be dynamically allocated */
361 static struct attribute_group nvmem_cells_group = {
362 	.name		= "cells",
363 };
364 
365 static const struct attribute_group *nvmem_dev_groups[] = {
366 	&nvmem_bin_group,
367 	NULL,
368 };
369 
370 static const struct attribute_group *nvmem_cells_groups[] = {
371 	&nvmem_cells_group,
372 	NULL,
373 };
374 
375 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
376 	.attr	= {
377 		.name	= "eeprom",
378 	},
379 	.read	= bin_attr_nvmem_read,
380 	.write	= bin_attr_nvmem_write,
381 };
382 
383 /*
384  * nvmem_setup_compat() - Create an additional binary entry in
385  * drivers sys directory, to be backwards compatible with the older
386  * drivers/misc/eeprom drivers.
387  */
388 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
389 				    const struct nvmem_config *config)
390 {
391 	int rval;
392 
393 	if (!config->compat)
394 		return 0;
395 
396 	if (!config->base_dev)
397 		return -EINVAL;
398 
399 	if (config->type == NVMEM_TYPE_FRAM)
400 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
401 
402 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
403 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
404 	nvmem->eeprom.size = nvmem->size;
405 #ifdef CONFIG_DEBUG_LOCK_ALLOC
406 	nvmem->eeprom.attr.key = &eeprom_lock_key;
407 #endif
408 	nvmem->eeprom.private = &nvmem->dev;
409 	nvmem->base_dev = config->base_dev;
410 
411 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
412 	if (rval) {
413 		dev_err(&nvmem->dev,
414 			"Failed to create eeprom binary file %d\n", rval);
415 		return rval;
416 	}
417 
418 	nvmem->flags |= FLAG_COMPAT;
419 
420 	return 0;
421 }
422 
423 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
424 			      const struct nvmem_config *config)
425 {
426 	if (config->compat)
427 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
428 }
429 
430 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
431 {
432 	struct bin_attribute **cells_attrs, *attrs;
433 	struct nvmem_cell_entry *entry;
434 	unsigned int ncells = 0, i = 0;
435 	int ret = 0;
436 
437 	mutex_lock(&nvmem_mutex);
438 
439 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
440 		nvmem_cells_group.bin_attrs = NULL;
441 		goto unlock_mutex;
442 	}
443 
444 	/* Allocate an array of attributes with a sentinel */
445 	ncells = list_count_nodes(&nvmem->cells);
446 	cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
447 				   sizeof(struct bin_attribute *), GFP_KERNEL);
448 	if (!cells_attrs) {
449 		ret = -ENOMEM;
450 		goto unlock_mutex;
451 	}
452 
453 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
454 	if (!attrs) {
455 		ret = -ENOMEM;
456 		goto unlock_mutex;
457 	}
458 
459 	/* Initialize each attribute to take the name and size of the cell */
460 	list_for_each_entry(entry, &nvmem->cells, node) {
461 		sysfs_bin_attr_init(&attrs[i]);
462 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
463 						    "%s@%x,%x", entry->name,
464 						    entry->offset,
465 						    entry->bit_offset);
466 		attrs[i].attr.mode = 0444;
467 		attrs[i].size = entry->bytes;
468 		attrs[i].read = &nvmem_cell_attr_read;
469 		attrs[i].private = entry;
470 		if (!attrs[i].attr.name) {
471 			ret = -ENOMEM;
472 			goto unlock_mutex;
473 		}
474 
475 		cells_attrs[i] = &attrs[i];
476 		i++;
477 	}
478 
479 	nvmem_cells_group.bin_attrs = cells_attrs;
480 
481 	ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
482 	if (ret)
483 		goto unlock_mutex;
484 
485 	nvmem->sysfs_cells_populated = true;
486 
487 unlock_mutex:
488 	mutex_unlock(&nvmem_mutex);
489 
490 	return ret;
491 }
492 
493 #else /* CONFIG_NVMEM_SYSFS */
494 
495 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
496 				    const struct nvmem_config *config)
497 {
498 	return -ENOSYS;
499 }
500 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
501 				      const struct nvmem_config *config)
502 {
503 }
504 
505 #endif /* CONFIG_NVMEM_SYSFS */
506 
507 static void nvmem_release(struct device *dev)
508 {
509 	struct nvmem_device *nvmem = to_nvmem_device(dev);
510 
511 	ida_free(&nvmem_ida, nvmem->id);
512 	gpiod_put(nvmem->wp_gpio);
513 	kfree(nvmem);
514 }
515 
516 static const struct device_type nvmem_provider_type = {
517 	.release	= nvmem_release,
518 };
519 
520 static struct bus_type nvmem_bus_type = {
521 	.name		= "nvmem",
522 };
523 
524 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
525 {
526 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
527 	mutex_lock(&nvmem_mutex);
528 	list_del(&cell->node);
529 	mutex_unlock(&nvmem_mutex);
530 	of_node_put(cell->np);
531 	kfree_const(cell->name);
532 	kfree(cell);
533 }
534 
535 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
536 {
537 	struct nvmem_cell_entry *cell, *p;
538 
539 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
540 		nvmem_cell_entry_drop(cell);
541 }
542 
543 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
544 {
545 	mutex_lock(&nvmem_mutex);
546 	list_add_tail(&cell->node, &cell->nvmem->cells);
547 	mutex_unlock(&nvmem_mutex);
548 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
549 }
550 
551 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
552 						     const struct nvmem_cell_info *info,
553 						     struct nvmem_cell_entry *cell)
554 {
555 	cell->nvmem = nvmem;
556 	cell->offset = info->offset;
557 	cell->raw_len = info->raw_len ?: info->bytes;
558 	cell->bytes = info->bytes;
559 	cell->name = info->name;
560 	cell->read_post_process = info->read_post_process;
561 	cell->priv = info->priv;
562 
563 	cell->bit_offset = info->bit_offset;
564 	cell->nbits = info->nbits;
565 	cell->np = info->np;
566 
567 	if (cell->nbits)
568 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
569 					   BITS_PER_BYTE);
570 
571 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
572 		dev_err(&nvmem->dev,
573 			"cell %s unaligned to nvmem stride %d\n",
574 			cell->name ?: "<unknown>", nvmem->stride);
575 		return -EINVAL;
576 	}
577 
578 	return 0;
579 }
580 
581 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
582 					       const struct nvmem_cell_info *info,
583 					       struct nvmem_cell_entry *cell)
584 {
585 	int err;
586 
587 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
588 	if (err)
589 		return err;
590 
591 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
592 	if (!cell->name)
593 		return -ENOMEM;
594 
595 	return 0;
596 }
597 
598 /**
599  * nvmem_add_one_cell() - Add one cell information to an nvmem device
600  *
601  * @nvmem: nvmem device to add cells to.
602  * @info: nvmem cell info to add to the device
603  *
604  * Return: 0 or negative error code on failure.
605  */
606 int nvmem_add_one_cell(struct nvmem_device *nvmem,
607 		       const struct nvmem_cell_info *info)
608 {
609 	struct nvmem_cell_entry *cell;
610 	int rval;
611 
612 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
613 	if (!cell)
614 		return -ENOMEM;
615 
616 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
617 	if (rval) {
618 		kfree(cell);
619 		return rval;
620 	}
621 
622 	nvmem_cell_entry_add(cell);
623 
624 	return 0;
625 }
626 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
627 
628 /**
629  * nvmem_add_cells() - Add cell information to an nvmem device
630  *
631  * @nvmem: nvmem device to add cells to.
632  * @info: nvmem cell info to add to the device
633  * @ncells: number of cells in info
634  *
635  * Return: 0 or negative error code on failure.
636  */
637 static int nvmem_add_cells(struct nvmem_device *nvmem,
638 		    const struct nvmem_cell_info *info,
639 		    int ncells)
640 {
641 	int i, rval;
642 
643 	for (i = 0; i < ncells; i++) {
644 		rval = nvmem_add_one_cell(nvmem, &info[i]);
645 		if (rval)
646 			return rval;
647 	}
648 
649 	return 0;
650 }
651 
652 /**
653  * nvmem_register_notifier() - Register a notifier block for nvmem events.
654  *
655  * @nb: notifier block to be called on nvmem events.
656  *
657  * Return: 0 on success, negative error number on failure.
658  */
659 int nvmem_register_notifier(struct notifier_block *nb)
660 {
661 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
662 }
663 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
664 
665 /**
666  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
667  *
668  * @nb: notifier block to be unregistered.
669  *
670  * Return: 0 on success, negative error number on failure.
671  */
672 int nvmem_unregister_notifier(struct notifier_block *nb)
673 {
674 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
675 }
676 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
677 
678 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
679 {
680 	const struct nvmem_cell_info *info;
681 	struct nvmem_cell_table *table;
682 	struct nvmem_cell_entry *cell;
683 	int rval = 0, i;
684 
685 	mutex_lock(&nvmem_cell_mutex);
686 	list_for_each_entry(table, &nvmem_cell_tables, node) {
687 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
688 			for (i = 0; i < table->ncells; i++) {
689 				info = &table->cells[i];
690 
691 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
692 				if (!cell) {
693 					rval = -ENOMEM;
694 					goto out;
695 				}
696 
697 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
698 				if (rval) {
699 					kfree(cell);
700 					goto out;
701 				}
702 
703 				nvmem_cell_entry_add(cell);
704 			}
705 		}
706 	}
707 
708 out:
709 	mutex_unlock(&nvmem_cell_mutex);
710 	return rval;
711 }
712 
713 static struct nvmem_cell_entry *
714 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
715 {
716 	struct nvmem_cell_entry *iter, *cell = NULL;
717 
718 	mutex_lock(&nvmem_mutex);
719 	list_for_each_entry(iter, &nvmem->cells, node) {
720 		if (strcmp(cell_id, iter->name) == 0) {
721 			cell = iter;
722 			break;
723 		}
724 	}
725 	mutex_unlock(&nvmem_mutex);
726 
727 	return cell;
728 }
729 
730 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
731 {
732 	unsigned int cur = 0;
733 	const struct nvmem_keepout *keepout = nvmem->keepout;
734 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
735 
736 	while (keepout < keepoutend) {
737 		/* Ensure keepouts are sorted and don't overlap. */
738 		if (keepout->start < cur) {
739 			dev_err(&nvmem->dev,
740 				"Keepout regions aren't sorted or overlap.\n");
741 
742 			return -ERANGE;
743 		}
744 
745 		if (keepout->end < keepout->start) {
746 			dev_err(&nvmem->dev,
747 				"Invalid keepout region.\n");
748 
749 			return -EINVAL;
750 		}
751 
752 		/*
753 		 * Validate keepouts (and holes between) don't violate
754 		 * word_size constraints.
755 		 */
756 		if ((keepout->end - keepout->start < nvmem->word_size) ||
757 		    ((keepout->start != cur) &&
758 		     (keepout->start - cur < nvmem->word_size))) {
759 
760 			dev_err(&nvmem->dev,
761 				"Keepout regions violate word_size constraints.\n");
762 
763 			return -ERANGE;
764 		}
765 
766 		/* Validate keepouts don't violate stride (alignment). */
767 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
768 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
769 
770 			dev_err(&nvmem->dev,
771 				"Keepout regions violate stride.\n");
772 
773 			return -EINVAL;
774 		}
775 
776 		cur = keepout->end;
777 		keepout++;
778 	}
779 
780 	return 0;
781 }
782 
783 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
784 {
785 	struct device *dev = &nvmem->dev;
786 	struct device_node *child;
787 	const __be32 *addr;
788 	int len, ret;
789 
790 	for_each_child_of_node(np, child) {
791 		struct nvmem_cell_info info = {0};
792 
793 		addr = of_get_property(child, "reg", &len);
794 		if (!addr)
795 			continue;
796 		if (len < 2 * sizeof(u32)) {
797 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
798 			of_node_put(child);
799 			return -EINVAL;
800 		}
801 
802 		info.offset = be32_to_cpup(addr++);
803 		info.bytes = be32_to_cpup(addr);
804 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
805 
806 		addr = of_get_property(child, "bits", &len);
807 		if (addr && len == (2 * sizeof(u32))) {
808 			info.bit_offset = be32_to_cpup(addr++);
809 			info.nbits = be32_to_cpup(addr);
810 			if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
811 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
812 				of_node_put(child);
813 				return -EINVAL;
814 			}
815 		}
816 
817 		info.np = of_node_get(child);
818 
819 		if (nvmem->fixup_dt_cell_info)
820 			nvmem->fixup_dt_cell_info(nvmem, &info);
821 
822 		ret = nvmem_add_one_cell(nvmem, &info);
823 		kfree(info.name);
824 		if (ret) {
825 			of_node_put(child);
826 			return ret;
827 		}
828 	}
829 
830 	return 0;
831 }
832 
833 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
834 {
835 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
836 }
837 
838 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
839 {
840 	struct device_node *layout_np;
841 	int err = 0;
842 
843 	layout_np = of_nvmem_layout_get_container(nvmem);
844 	if (!layout_np)
845 		return 0;
846 
847 	if (of_device_is_compatible(layout_np, "fixed-layout"))
848 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
849 
850 	of_node_put(layout_np);
851 
852 	return err;
853 }
854 
855 int nvmem_layout_register(struct nvmem_layout *layout)
856 {
857 	int ret;
858 
859 	if (!layout->add_cells)
860 		return -EINVAL;
861 
862 	/* Populate the cells */
863 	ret = layout->add_cells(layout);
864 	if (ret)
865 		return ret;
866 
867 #ifdef CONFIG_NVMEM_SYSFS
868 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
869 	if (ret) {
870 		nvmem_device_remove_all_cells(layout->nvmem);
871 		return ret;
872 	}
873 #endif
874 
875 	return 0;
876 }
877 EXPORT_SYMBOL_GPL(nvmem_layout_register);
878 
879 void nvmem_layout_unregister(struct nvmem_layout *layout)
880 {
881 	/* Keep the API even with an empty stub in case we need it later */
882 }
883 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
884 
885 /**
886  * nvmem_register() - Register a nvmem device for given nvmem_config.
887  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
888  *
889  * @config: nvmem device configuration with which nvmem device is created.
890  *
891  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
892  * on success.
893  */
894 
895 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
896 {
897 	struct nvmem_device *nvmem;
898 	int rval;
899 
900 	if (!config->dev)
901 		return ERR_PTR(-EINVAL);
902 
903 	if (!config->reg_read && !config->reg_write)
904 		return ERR_PTR(-EINVAL);
905 
906 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
907 	if (!nvmem)
908 		return ERR_PTR(-ENOMEM);
909 
910 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
911 	if (rval < 0) {
912 		kfree(nvmem);
913 		return ERR_PTR(rval);
914 	}
915 
916 	nvmem->id = rval;
917 
918 	nvmem->dev.type = &nvmem_provider_type;
919 	nvmem->dev.bus = &nvmem_bus_type;
920 	nvmem->dev.parent = config->dev;
921 
922 	device_initialize(&nvmem->dev);
923 
924 	if (!config->ignore_wp)
925 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
926 						    GPIOD_OUT_HIGH);
927 	if (IS_ERR(nvmem->wp_gpio)) {
928 		rval = PTR_ERR(nvmem->wp_gpio);
929 		nvmem->wp_gpio = NULL;
930 		goto err_put_device;
931 	}
932 
933 	kref_init(&nvmem->refcnt);
934 	INIT_LIST_HEAD(&nvmem->cells);
935 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
936 
937 	nvmem->owner = config->owner;
938 	if (!nvmem->owner && config->dev->driver)
939 		nvmem->owner = config->dev->driver->owner;
940 	nvmem->stride = config->stride ?: 1;
941 	nvmem->word_size = config->word_size ?: 1;
942 	nvmem->size = config->size;
943 	nvmem->root_only = config->root_only;
944 	nvmem->priv = config->priv;
945 	nvmem->type = config->type;
946 	nvmem->reg_read = config->reg_read;
947 	nvmem->reg_write = config->reg_write;
948 	nvmem->keepout = config->keepout;
949 	nvmem->nkeepout = config->nkeepout;
950 	if (config->of_node)
951 		nvmem->dev.of_node = config->of_node;
952 	else
953 		nvmem->dev.of_node = config->dev->of_node;
954 
955 	switch (config->id) {
956 	case NVMEM_DEVID_NONE:
957 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
958 		break;
959 	case NVMEM_DEVID_AUTO:
960 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
961 		break;
962 	default:
963 		rval = dev_set_name(&nvmem->dev, "%s%d",
964 			     config->name ? : "nvmem",
965 			     config->name ? config->id : nvmem->id);
966 		break;
967 	}
968 
969 	if (rval)
970 		goto err_put_device;
971 
972 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
973 			   config->read_only || !nvmem->reg_write;
974 
975 #ifdef CONFIG_NVMEM_SYSFS
976 	nvmem->dev.groups = nvmem_dev_groups;
977 #endif
978 
979 	if (nvmem->nkeepout) {
980 		rval = nvmem_validate_keepouts(nvmem);
981 		if (rval)
982 			goto err_put_device;
983 	}
984 
985 	if (config->compat) {
986 		rval = nvmem_sysfs_setup_compat(nvmem, config);
987 		if (rval)
988 			goto err_put_device;
989 	}
990 
991 	if (config->cells) {
992 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
993 		if (rval)
994 			goto err_remove_cells;
995 	}
996 
997 	rval = nvmem_add_cells_from_table(nvmem);
998 	if (rval)
999 		goto err_remove_cells;
1000 
1001 	if (config->add_legacy_fixed_of_cells) {
1002 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1003 		if (rval)
1004 			goto err_remove_cells;
1005 	}
1006 
1007 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1008 	if (rval)
1009 		goto err_remove_cells;
1010 
1011 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1012 
1013 	rval = device_add(&nvmem->dev);
1014 	if (rval)
1015 		goto err_remove_cells;
1016 
1017 	rval = nvmem_populate_layout(nvmem);
1018 	if (rval)
1019 		goto err_remove_dev;
1020 
1021 #ifdef CONFIG_NVMEM_SYSFS
1022 	rval = nvmem_populate_sysfs_cells(nvmem);
1023 	if (rval)
1024 		goto err_destroy_layout;
1025 #endif
1026 
1027 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1028 
1029 	return nvmem;
1030 
1031 #ifdef CONFIG_NVMEM_SYSFS
1032 err_destroy_layout:
1033 	nvmem_destroy_layout(nvmem);
1034 #endif
1035 err_remove_dev:
1036 	device_del(&nvmem->dev);
1037 err_remove_cells:
1038 	nvmem_device_remove_all_cells(nvmem);
1039 	if (config->compat)
1040 		nvmem_sysfs_remove_compat(nvmem, config);
1041 err_put_device:
1042 	put_device(&nvmem->dev);
1043 
1044 	return ERR_PTR(rval);
1045 }
1046 EXPORT_SYMBOL_GPL(nvmem_register);
1047 
1048 static void nvmem_device_release(struct kref *kref)
1049 {
1050 	struct nvmem_device *nvmem;
1051 
1052 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1053 
1054 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1055 
1056 	if (nvmem->flags & FLAG_COMPAT)
1057 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1058 
1059 	nvmem_device_remove_all_cells(nvmem);
1060 	nvmem_destroy_layout(nvmem);
1061 	device_unregister(&nvmem->dev);
1062 }
1063 
1064 /**
1065  * nvmem_unregister() - Unregister previously registered nvmem device
1066  *
1067  * @nvmem: Pointer to previously registered nvmem device.
1068  */
1069 void nvmem_unregister(struct nvmem_device *nvmem)
1070 {
1071 	if (nvmem)
1072 		kref_put(&nvmem->refcnt, nvmem_device_release);
1073 }
1074 EXPORT_SYMBOL_GPL(nvmem_unregister);
1075 
1076 static void devm_nvmem_unregister(void *nvmem)
1077 {
1078 	nvmem_unregister(nvmem);
1079 }
1080 
1081 /**
1082  * devm_nvmem_register() - Register a managed nvmem device for given
1083  * nvmem_config.
1084  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1085  *
1086  * @dev: Device that uses the nvmem device.
1087  * @config: nvmem device configuration with which nvmem device is created.
1088  *
1089  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1090  * on success.
1091  */
1092 struct nvmem_device *devm_nvmem_register(struct device *dev,
1093 					 const struct nvmem_config *config)
1094 {
1095 	struct nvmem_device *nvmem;
1096 	int ret;
1097 
1098 	nvmem = nvmem_register(config);
1099 	if (IS_ERR(nvmem))
1100 		return nvmem;
1101 
1102 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1103 	if (ret)
1104 		return ERR_PTR(ret);
1105 
1106 	return nvmem;
1107 }
1108 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1109 
1110 static struct nvmem_device *__nvmem_device_get(void *data,
1111 			int (*match)(struct device *dev, const void *data))
1112 {
1113 	struct nvmem_device *nvmem = NULL;
1114 	struct device *dev;
1115 
1116 	mutex_lock(&nvmem_mutex);
1117 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1118 	if (dev)
1119 		nvmem = to_nvmem_device(dev);
1120 	mutex_unlock(&nvmem_mutex);
1121 	if (!nvmem)
1122 		return ERR_PTR(-EPROBE_DEFER);
1123 
1124 	if (!try_module_get(nvmem->owner)) {
1125 		dev_err(&nvmem->dev,
1126 			"could not increase module refcount for cell %s\n",
1127 			nvmem_dev_name(nvmem));
1128 
1129 		put_device(&nvmem->dev);
1130 		return ERR_PTR(-EINVAL);
1131 	}
1132 
1133 	kref_get(&nvmem->refcnt);
1134 
1135 	return nvmem;
1136 }
1137 
1138 static void __nvmem_device_put(struct nvmem_device *nvmem)
1139 {
1140 	put_device(&nvmem->dev);
1141 	module_put(nvmem->owner);
1142 	kref_put(&nvmem->refcnt, nvmem_device_release);
1143 }
1144 
1145 #if IS_ENABLED(CONFIG_OF)
1146 /**
1147  * of_nvmem_device_get() - Get nvmem device from a given id
1148  *
1149  * @np: Device tree node that uses the nvmem device.
1150  * @id: nvmem name from nvmem-names property.
1151  *
1152  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1153  * on success.
1154  */
1155 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1156 {
1157 
1158 	struct device_node *nvmem_np;
1159 	struct nvmem_device *nvmem;
1160 	int index = 0;
1161 
1162 	if (id)
1163 		index = of_property_match_string(np, "nvmem-names", id);
1164 
1165 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1166 	if (!nvmem_np)
1167 		return ERR_PTR(-ENOENT);
1168 
1169 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1170 	of_node_put(nvmem_np);
1171 	return nvmem;
1172 }
1173 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1174 #endif
1175 
1176 /**
1177  * nvmem_device_get() - Get nvmem device from a given id
1178  *
1179  * @dev: Device that uses the nvmem device.
1180  * @dev_name: name of the requested nvmem device.
1181  *
1182  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1183  * on success.
1184  */
1185 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1186 {
1187 	if (dev->of_node) { /* try dt first */
1188 		struct nvmem_device *nvmem;
1189 
1190 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1191 
1192 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1193 			return nvmem;
1194 
1195 	}
1196 
1197 	return __nvmem_device_get((void *)dev_name, device_match_name);
1198 }
1199 EXPORT_SYMBOL_GPL(nvmem_device_get);
1200 
1201 /**
1202  * nvmem_device_find() - Find nvmem device with matching function
1203  *
1204  * @data: Data to pass to match function
1205  * @match: Callback function to check device
1206  *
1207  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1208  * on success.
1209  */
1210 struct nvmem_device *nvmem_device_find(void *data,
1211 			int (*match)(struct device *dev, const void *data))
1212 {
1213 	return __nvmem_device_get(data, match);
1214 }
1215 EXPORT_SYMBOL_GPL(nvmem_device_find);
1216 
1217 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1218 {
1219 	struct nvmem_device **nvmem = res;
1220 
1221 	if (WARN_ON(!nvmem || !*nvmem))
1222 		return 0;
1223 
1224 	return *nvmem == data;
1225 }
1226 
1227 static void devm_nvmem_device_release(struct device *dev, void *res)
1228 {
1229 	nvmem_device_put(*(struct nvmem_device **)res);
1230 }
1231 
1232 /**
1233  * devm_nvmem_device_put() - put alredy got nvmem device
1234  *
1235  * @dev: Device that uses the nvmem device.
1236  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1237  * that needs to be released.
1238  */
1239 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1240 {
1241 	int ret;
1242 
1243 	ret = devres_release(dev, devm_nvmem_device_release,
1244 			     devm_nvmem_device_match, nvmem);
1245 
1246 	WARN_ON(ret);
1247 }
1248 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1249 
1250 /**
1251  * nvmem_device_put() - put alredy got nvmem device
1252  *
1253  * @nvmem: pointer to nvmem device that needs to be released.
1254  */
1255 void nvmem_device_put(struct nvmem_device *nvmem)
1256 {
1257 	__nvmem_device_put(nvmem);
1258 }
1259 EXPORT_SYMBOL_GPL(nvmem_device_put);
1260 
1261 /**
1262  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1263  *
1264  * @dev: Device that requests the nvmem device.
1265  * @id: name id for the requested nvmem device.
1266  *
1267  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1268  * on success.  The nvmem_cell will be freed by the automatically once the
1269  * device is freed.
1270  */
1271 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1272 {
1273 	struct nvmem_device **ptr, *nvmem;
1274 
1275 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1276 	if (!ptr)
1277 		return ERR_PTR(-ENOMEM);
1278 
1279 	nvmem = nvmem_device_get(dev, id);
1280 	if (!IS_ERR(nvmem)) {
1281 		*ptr = nvmem;
1282 		devres_add(dev, ptr);
1283 	} else {
1284 		devres_free(ptr);
1285 	}
1286 
1287 	return nvmem;
1288 }
1289 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1290 
1291 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1292 					    const char *id, int index)
1293 {
1294 	struct nvmem_cell *cell;
1295 	const char *name = NULL;
1296 
1297 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1298 	if (!cell)
1299 		return ERR_PTR(-ENOMEM);
1300 
1301 	if (id) {
1302 		name = kstrdup_const(id, GFP_KERNEL);
1303 		if (!name) {
1304 			kfree(cell);
1305 			return ERR_PTR(-ENOMEM);
1306 		}
1307 	}
1308 
1309 	cell->id = name;
1310 	cell->entry = entry;
1311 	cell->index = index;
1312 
1313 	return cell;
1314 }
1315 
1316 static struct nvmem_cell *
1317 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1318 {
1319 	struct nvmem_cell_entry *cell_entry;
1320 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1321 	struct nvmem_cell_lookup *lookup;
1322 	struct nvmem_device *nvmem;
1323 	const char *dev_id;
1324 
1325 	if (!dev)
1326 		return ERR_PTR(-EINVAL);
1327 
1328 	dev_id = dev_name(dev);
1329 
1330 	mutex_lock(&nvmem_lookup_mutex);
1331 
1332 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1333 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1334 		    (strcmp(lookup->con_id, con_id) == 0)) {
1335 			/* This is the right entry. */
1336 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1337 						   device_match_name);
1338 			if (IS_ERR(nvmem)) {
1339 				/* Provider may not be registered yet. */
1340 				cell = ERR_CAST(nvmem);
1341 				break;
1342 			}
1343 
1344 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1345 								   lookup->cell_name);
1346 			if (!cell_entry) {
1347 				__nvmem_device_put(nvmem);
1348 				cell = ERR_PTR(-ENOENT);
1349 			} else {
1350 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1351 				if (IS_ERR(cell))
1352 					__nvmem_device_put(nvmem);
1353 			}
1354 			break;
1355 		}
1356 	}
1357 
1358 	mutex_unlock(&nvmem_lookup_mutex);
1359 	return cell;
1360 }
1361 
1362 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1363 {
1364 	if (nvmem->layout && nvmem->layout->dev.driver)
1365 		module_put(nvmem->layout->dev.driver->owner);
1366 }
1367 
1368 #if IS_ENABLED(CONFIG_OF)
1369 static struct nvmem_cell_entry *
1370 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1371 {
1372 	struct nvmem_cell_entry *iter, *cell = NULL;
1373 
1374 	mutex_lock(&nvmem_mutex);
1375 	list_for_each_entry(iter, &nvmem->cells, node) {
1376 		if (np == iter->np) {
1377 			cell = iter;
1378 			break;
1379 		}
1380 	}
1381 	mutex_unlock(&nvmem_mutex);
1382 
1383 	return cell;
1384 }
1385 
1386 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1387 {
1388 	if (!nvmem->layout)
1389 		return 0;
1390 
1391 	if (!nvmem->layout->dev.driver ||
1392 	    !try_module_get(nvmem->layout->dev.driver->owner))
1393 		return -EPROBE_DEFER;
1394 
1395 	return 0;
1396 }
1397 
1398 /**
1399  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1400  *
1401  * @np: Device tree node that uses the nvmem cell.
1402  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1403  *      for the cell at index 0 (the lone cell with no accompanying
1404  *      nvmem-cell-names property).
1405  *
1406  * Return: Will be an ERR_PTR() on error or a valid pointer
1407  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1408  * nvmem_cell_put().
1409  */
1410 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1411 {
1412 	struct device_node *cell_np, *nvmem_np;
1413 	struct nvmem_device *nvmem;
1414 	struct nvmem_cell_entry *cell_entry;
1415 	struct nvmem_cell *cell;
1416 	struct of_phandle_args cell_spec;
1417 	int index = 0;
1418 	int cell_index = 0;
1419 	int ret;
1420 
1421 	/* if cell name exists, find index to the name */
1422 	if (id)
1423 		index = of_property_match_string(np, "nvmem-cell-names", id);
1424 
1425 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1426 						  "#nvmem-cell-cells",
1427 						  index, &cell_spec);
1428 	if (ret)
1429 		return ERR_PTR(-ENOENT);
1430 
1431 	if (cell_spec.args_count > 1)
1432 		return ERR_PTR(-EINVAL);
1433 
1434 	cell_np = cell_spec.np;
1435 	if (cell_spec.args_count)
1436 		cell_index = cell_spec.args[0];
1437 
1438 	nvmem_np = of_get_parent(cell_np);
1439 	if (!nvmem_np) {
1440 		of_node_put(cell_np);
1441 		return ERR_PTR(-EINVAL);
1442 	}
1443 
1444 	/* nvmem layouts produce cells within the nvmem-layout container */
1445 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1446 		nvmem_np = of_get_next_parent(nvmem_np);
1447 		if (!nvmem_np) {
1448 			of_node_put(cell_np);
1449 			return ERR_PTR(-EINVAL);
1450 		}
1451 	}
1452 
1453 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1454 	of_node_put(nvmem_np);
1455 	if (IS_ERR(nvmem)) {
1456 		of_node_put(cell_np);
1457 		return ERR_CAST(nvmem);
1458 	}
1459 
1460 	ret = nvmem_layout_module_get_optional(nvmem);
1461 	if (ret) {
1462 		of_node_put(cell_np);
1463 		__nvmem_device_put(nvmem);
1464 		return ERR_PTR(ret);
1465 	}
1466 
1467 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1468 	of_node_put(cell_np);
1469 	if (!cell_entry) {
1470 		__nvmem_device_put(nvmem);
1471 		nvmem_layout_module_put(nvmem);
1472 		if (nvmem->layout)
1473 			return ERR_PTR(-EPROBE_DEFER);
1474 		else
1475 			return ERR_PTR(-ENOENT);
1476 	}
1477 
1478 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1479 	if (IS_ERR(cell)) {
1480 		__nvmem_device_put(nvmem);
1481 		nvmem_layout_module_put(nvmem);
1482 	}
1483 
1484 	return cell;
1485 }
1486 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1487 #endif
1488 
1489 /**
1490  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1491  *
1492  * @dev: Device that requests the nvmem cell.
1493  * @id: nvmem cell name to get (this corresponds with the name from the
1494  *      nvmem-cell-names property for DT systems and with the con_id from
1495  *      the lookup entry for non-DT systems).
1496  *
1497  * Return: Will be an ERR_PTR() on error or a valid pointer
1498  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1499  * nvmem_cell_put().
1500  */
1501 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1502 {
1503 	struct nvmem_cell *cell;
1504 
1505 	if (dev->of_node) { /* try dt first */
1506 		cell = of_nvmem_cell_get(dev->of_node, id);
1507 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1508 			return cell;
1509 	}
1510 
1511 	/* NULL cell id only allowed for device tree; invalid otherwise */
1512 	if (!id)
1513 		return ERR_PTR(-EINVAL);
1514 
1515 	return nvmem_cell_get_from_lookup(dev, id);
1516 }
1517 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1518 
1519 static void devm_nvmem_cell_release(struct device *dev, void *res)
1520 {
1521 	nvmem_cell_put(*(struct nvmem_cell **)res);
1522 }
1523 
1524 /**
1525  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1526  *
1527  * @dev: Device that requests the nvmem cell.
1528  * @id: nvmem cell name id to get.
1529  *
1530  * Return: Will be an ERR_PTR() on error or a valid pointer
1531  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1532  * automatically once the device is freed.
1533  */
1534 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1535 {
1536 	struct nvmem_cell **ptr, *cell;
1537 
1538 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1539 	if (!ptr)
1540 		return ERR_PTR(-ENOMEM);
1541 
1542 	cell = nvmem_cell_get(dev, id);
1543 	if (!IS_ERR(cell)) {
1544 		*ptr = cell;
1545 		devres_add(dev, ptr);
1546 	} else {
1547 		devres_free(ptr);
1548 	}
1549 
1550 	return cell;
1551 }
1552 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1553 
1554 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1555 {
1556 	struct nvmem_cell **c = res;
1557 
1558 	if (WARN_ON(!c || !*c))
1559 		return 0;
1560 
1561 	return *c == data;
1562 }
1563 
1564 /**
1565  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1566  * from devm_nvmem_cell_get.
1567  *
1568  * @dev: Device that requests the nvmem cell.
1569  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1570  */
1571 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1572 {
1573 	int ret;
1574 
1575 	ret = devres_release(dev, devm_nvmem_cell_release,
1576 				devm_nvmem_cell_match, cell);
1577 
1578 	WARN_ON(ret);
1579 }
1580 EXPORT_SYMBOL(devm_nvmem_cell_put);
1581 
1582 /**
1583  * nvmem_cell_put() - Release previously allocated nvmem cell.
1584  *
1585  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1586  */
1587 void nvmem_cell_put(struct nvmem_cell *cell)
1588 {
1589 	struct nvmem_device *nvmem = cell->entry->nvmem;
1590 
1591 	if (cell->id)
1592 		kfree_const(cell->id);
1593 
1594 	kfree(cell);
1595 	__nvmem_device_put(nvmem);
1596 	nvmem_layout_module_put(nvmem);
1597 }
1598 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1599 
1600 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1601 {
1602 	u8 *p, *b;
1603 	int i, extra, bit_offset = cell->bit_offset;
1604 
1605 	p = b = buf;
1606 	if (bit_offset) {
1607 		/* First shift */
1608 		*b++ >>= bit_offset;
1609 
1610 		/* setup rest of the bytes if any */
1611 		for (i = 1; i < cell->bytes; i++) {
1612 			/* Get bits from next byte and shift them towards msb */
1613 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1614 
1615 			p = b;
1616 			*b++ >>= bit_offset;
1617 		}
1618 	} else {
1619 		/* point to the msb */
1620 		p += cell->bytes - 1;
1621 	}
1622 
1623 	/* result fits in less bytes */
1624 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1625 	while (--extra >= 0)
1626 		*p-- = 0;
1627 
1628 	/* clear msb bits if any leftover in the last byte */
1629 	if (cell->nbits % BITS_PER_BYTE)
1630 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1631 }
1632 
1633 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1634 			     struct nvmem_cell_entry *cell,
1635 			     void *buf, size_t *len, const char *id, int index)
1636 {
1637 	int rc;
1638 
1639 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1640 
1641 	if (rc)
1642 		return rc;
1643 
1644 	/* shift bits in-place */
1645 	if (cell->bit_offset || cell->nbits)
1646 		nvmem_shift_read_buffer_in_place(cell, buf);
1647 
1648 	if (cell->read_post_process) {
1649 		rc = cell->read_post_process(cell->priv, id, index,
1650 					     cell->offset, buf, cell->raw_len);
1651 		if (rc)
1652 			return rc;
1653 	}
1654 
1655 	if (len)
1656 		*len = cell->bytes;
1657 
1658 	return 0;
1659 }
1660 
1661 /**
1662  * nvmem_cell_read() - Read a given nvmem cell
1663  *
1664  * @cell: nvmem cell to be read.
1665  * @len: pointer to length of cell which will be populated on successful read;
1666  *	 can be NULL.
1667  *
1668  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1669  * buffer should be freed by the consumer with a kfree().
1670  */
1671 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1672 {
1673 	struct nvmem_cell_entry *entry = cell->entry;
1674 	struct nvmem_device *nvmem = entry->nvmem;
1675 	u8 *buf;
1676 	int rc;
1677 
1678 	if (!nvmem)
1679 		return ERR_PTR(-EINVAL);
1680 
1681 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1682 	if (!buf)
1683 		return ERR_PTR(-ENOMEM);
1684 
1685 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1686 	if (rc) {
1687 		kfree(buf);
1688 		return ERR_PTR(rc);
1689 	}
1690 
1691 	return buf;
1692 }
1693 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1694 
1695 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1696 					     u8 *_buf, int len)
1697 {
1698 	struct nvmem_device *nvmem = cell->nvmem;
1699 	int i, rc, nbits, bit_offset = cell->bit_offset;
1700 	u8 v, *p, *buf, *b, pbyte, pbits;
1701 
1702 	nbits = cell->nbits;
1703 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1704 	if (!buf)
1705 		return ERR_PTR(-ENOMEM);
1706 
1707 	memcpy(buf, _buf, len);
1708 	p = b = buf;
1709 
1710 	if (bit_offset) {
1711 		pbyte = *b;
1712 		*b <<= bit_offset;
1713 
1714 		/* setup the first byte with lsb bits from nvmem */
1715 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1716 		if (rc)
1717 			goto err;
1718 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1719 
1720 		/* setup rest of the byte if any */
1721 		for (i = 1; i < cell->bytes; i++) {
1722 			/* Get last byte bits and shift them towards lsb */
1723 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1724 			pbyte = *b;
1725 			p = b;
1726 			*b <<= bit_offset;
1727 			*b++ |= pbits;
1728 		}
1729 	}
1730 
1731 	/* if it's not end on byte boundary */
1732 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1733 		/* setup the last byte with msb bits from nvmem */
1734 		rc = nvmem_reg_read(nvmem,
1735 				    cell->offset + cell->bytes - 1, &v, 1);
1736 		if (rc)
1737 			goto err;
1738 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1739 
1740 	}
1741 
1742 	return buf;
1743 err:
1744 	kfree(buf);
1745 	return ERR_PTR(rc);
1746 }
1747 
1748 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1749 {
1750 	struct nvmem_device *nvmem = cell->nvmem;
1751 	int rc;
1752 
1753 	if (!nvmem || nvmem->read_only ||
1754 	    (cell->bit_offset == 0 && len != cell->bytes))
1755 		return -EINVAL;
1756 
1757 	/*
1758 	 * Any cells which have a read_post_process hook are read-only because
1759 	 * we cannot reverse the operation and it might affect other cells,
1760 	 * too.
1761 	 */
1762 	if (cell->read_post_process)
1763 		return -EINVAL;
1764 
1765 	if (cell->bit_offset || cell->nbits) {
1766 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1767 		if (IS_ERR(buf))
1768 			return PTR_ERR(buf);
1769 	}
1770 
1771 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1772 
1773 	/* free the tmp buffer */
1774 	if (cell->bit_offset || cell->nbits)
1775 		kfree(buf);
1776 
1777 	if (rc)
1778 		return rc;
1779 
1780 	return len;
1781 }
1782 
1783 /**
1784  * nvmem_cell_write() - Write to a given nvmem cell
1785  *
1786  * @cell: nvmem cell to be written.
1787  * @buf: Buffer to be written.
1788  * @len: length of buffer to be written to nvmem cell.
1789  *
1790  * Return: length of bytes written or negative on failure.
1791  */
1792 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1793 {
1794 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1795 }
1796 
1797 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1798 
1799 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1800 				  void *val, size_t count)
1801 {
1802 	struct nvmem_cell *cell;
1803 	void *buf;
1804 	size_t len;
1805 
1806 	cell = nvmem_cell_get(dev, cell_id);
1807 	if (IS_ERR(cell))
1808 		return PTR_ERR(cell);
1809 
1810 	buf = nvmem_cell_read(cell, &len);
1811 	if (IS_ERR(buf)) {
1812 		nvmem_cell_put(cell);
1813 		return PTR_ERR(buf);
1814 	}
1815 	if (len != count) {
1816 		kfree(buf);
1817 		nvmem_cell_put(cell);
1818 		return -EINVAL;
1819 	}
1820 	memcpy(val, buf, count);
1821 	kfree(buf);
1822 	nvmem_cell_put(cell);
1823 
1824 	return 0;
1825 }
1826 
1827 /**
1828  * nvmem_cell_read_u8() - Read a cell value as a u8
1829  *
1830  * @dev: Device that requests the nvmem cell.
1831  * @cell_id: Name of nvmem cell to read.
1832  * @val: pointer to output value.
1833  *
1834  * Return: 0 on success or negative errno.
1835  */
1836 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1837 {
1838 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1839 }
1840 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1841 
1842 /**
1843  * nvmem_cell_read_u16() - Read a cell value as a u16
1844  *
1845  * @dev: Device that requests the nvmem cell.
1846  * @cell_id: Name of nvmem cell to read.
1847  * @val: pointer to output value.
1848  *
1849  * Return: 0 on success or negative errno.
1850  */
1851 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1852 {
1853 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1854 }
1855 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1856 
1857 /**
1858  * nvmem_cell_read_u32() - Read a cell value as a u32
1859  *
1860  * @dev: Device that requests the nvmem cell.
1861  * @cell_id: Name of nvmem cell to read.
1862  * @val: pointer to output value.
1863  *
1864  * Return: 0 on success or negative errno.
1865  */
1866 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1867 {
1868 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1869 }
1870 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1871 
1872 /**
1873  * nvmem_cell_read_u64() - Read a cell value as a u64
1874  *
1875  * @dev: Device that requests the nvmem cell.
1876  * @cell_id: Name of nvmem cell to read.
1877  * @val: pointer to output value.
1878  *
1879  * Return: 0 on success or negative errno.
1880  */
1881 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1882 {
1883 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1884 }
1885 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1886 
1887 static const void *nvmem_cell_read_variable_common(struct device *dev,
1888 						   const char *cell_id,
1889 						   size_t max_len, size_t *len)
1890 {
1891 	struct nvmem_cell *cell;
1892 	int nbits;
1893 	void *buf;
1894 
1895 	cell = nvmem_cell_get(dev, cell_id);
1896 	if (IS_ERR(cell))
1897 		return cell;
1898 
1899 	nbits = cell->entry->nbits;
1900 	buf = nvmem_cell_read(cell, len);
1901 	nvmem_cell_put(cell);
1902 	if (IS_ERR(buf))
1903 		return buf;
1904 
1905 	/*
1906 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1907 	 * the length of the real data. Throw away the extra junk.
1908 	 */
1909 	if (nbits)
1910 		*len = DIV_ROUND_UP(nbits, 8);
1911 
1912 	if (*len > max_len) {
1913 		kfree(buf);
1914 		return ERR_PTR(-ERANGE);
1915 	}
1916 
1917 	return buf;
1918 }
1919 
1920 /**
1921  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1922  *
1923  * @dev: Device that requests the nvmem cell.
1924  * @cell_id: Name of nvmem cell to read.
1925  * @val: pointer to output value.
1926  *
1927  * Return: 0 on success or negative errno.
1928  */
1929 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1930 				    u32 *val)
1931 {
1932 	size_t len;
1933 	const u8 *buf;
1934 	int i;
1935 
1936 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1937 	if (IS_ERR(buf))
1938 		return PTR_ERR(buf);
1939 
1940 	/* Copy w/ implicit endian conversion */
1941 	*val = 0;
1942 	for (i = 0; i < len; i++)
1943 		*val |= buf[i] << (8 * i);
1944 
1945 	kfree(buf);
1946 
1947 	return 0;
1948 }
1949 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1950 
1951 /**
1952  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1953  *
1954  * @dev: Device that requests the nvmem cell.
1955  * @cell_id: Name of nvmem cell to read.
1956  * @val: pointer to output value.
1957  *
1958  * Return: 0 on success or negative errno.
1959  */
1960 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1961 				    u64 *val)
1962 {
1963 	size_t len;
1964 	const u8 *buf;
1965 	int i;
1966 
1967 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1968 	if (IS_ERR(buf))
1969 		return PTR_ERR(buf);
1970 
1971 	/* Copy w/ implicit endian conversion */
1972 	*val = 0;
1973 	for (i = 0; i < len; i++)
1974 		*val |= (uint64_t)buf[i] << (8 * i);
1975 
1976 	kfree(buf);
1977 
1978 	return 0;
1979 }
1980 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1981 
1982 /**
1983  * nvmem_device_cell_read() - Read a given nvmem device and cell
1984  *
1985  * @nvmem: nvmem device to read from.
1986  * @info: nvmem cell info to be read.
1987  * @buf: buffer pointer which will be populated on successful read.
1988  *
1989  * Return: length of successful bytes read on success and negative
1990  * error code on error.
1991  */
1992 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1993 			   struct nvmem_cell_info *info, void *buf)
1994 {
1995 	struct nvmem_cell_entry cell;
1996 	int rc;
1997 	ssize_t len;
1998 
1999 	if (!nvmem)
2000 		return -EINVAL;
2001 
2002 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2003 	if (rc)
2004 		return rc;
2005 
2006 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2007 	if (rc)
2008 		return rc;
2009 
2010 	return len;
2011 }
2012 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2013 
2014 /**
2015  * nvmem_device_cell_write() - Write cell to a given nvmem device
2016  *
2017  * @nvmem: nvmem device to be written to.
2018  * @info: nvmem cell info to be written.
2019  * @buf: buffer to be written to cell.
2020  *
2021  * Return: length of bytes written or negative error code on failure.
2022  */
2023 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2024 			    struct nvmem_cell_info *info, void *buf)
2025 {
2026 	struct nvmem_cell_entry cell;
2027 	int rc;
2028 
2029 	if (!nvmem)
2030 		return -EINVAL;
2031 
2032 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2033 	if (rc)
2034 		return rc;
2035 
2036 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2037 }
2038 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2039 
2040 /**
2041  * nvmem_device_read() - Read from a given nvmem device
2042  *
2043  * @nvmem: nvmem device to read from.
2044  * @offset: offset in nvmem device.
2045  * @bytes: number of bytes to read.
2046  * @buf: buffer pointer which will be populated on successful read.
2047  *
2048  * Return: length of successful bytes read on success and negative
2049  * error code on error.
2050  */
2051 int nvmem_device_read(struct nvmem_device *nvmem,
2052 		      unsigned int offset,
2053 		      size_t bytes, void *buf)
2054 {
2055 	int rc;
2056 
2057 	if (!nvmem)
2058 		return -EINVAL;
2059 
2060 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2061 
2062 	if (rc)
2063 		return rc;
2064 
2065 	return bytes;
2066 }
2067 EXPORT_SYMBOL_GPL(nvmem_device_read);
2068 
2069 /**
2070  * nvmem_device_write() - Write cell to a given nvmem device
2071  *
2072  * @nvmem: nvmem device to be written to.
2073  * @offset: offset in nvmem device.
2074  * @bytes: number of bytes to write.
2075  * @buf: buffer to be written.
2076  *
2077  * Return: length of bytes written or negative error code on failure.
2078  */
2079 int nvmem_device_write(struct nvmem_device *nvmem,
2080 		       unsigned int offset,
2081 		       size_t bytes, void *buf)
2082 {
2083 	int rc;
2084 
2085 	if (!nvmem)
2086 		return -EINVAL;
2087 
2088 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2089 
2090 	if (rc)
2091 		return rc;
2092 
2093 
2094 	return bytes;
2095 }
2096 EXPORT_SYMBOL_GPL(nvmem_device_write);
2097 
2098 /**
2099  * nvmem_add_cell_table() - register a table of cell info entries
2100  *
2101  * @table: table of cell info entries
2102  */
2103 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2104 {
2105 	mutex_lock(&nvmem_cell_mutex);
2106 	list_add_tail(&table->node, &nvmem_cell_tables);
2107 	mutex_unlock(&nvmem_cell_mutex);
2108 }
2109 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2110 
2111 /**
2112  * nvmem_del_cell_table() - remove a previously registered cell info table
2113  *
2114  * @table: table of cell info entries
2115  */
2116 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2117 {
2118 	mutex_lock(&nvmem_cell_mutex);
2119 	list_del(&table->node);
2120 	mutex_unlock(&nvmem_cell_mutex);
2121 }
2122 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2123 
2124 /**
2125  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2126  *
2127  * @entries: array of cell lookup entries
2128  * @nentries: number of cell lookup entries in the array
2129  */
2130 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2131 {
2132 	int i;
2133 
2134 	mutex_lock(&nvmem_lookup_mutex);
2135 	for (i = 0; i < nentries; i++)
2136 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2137 	mutex_unlock(&nvmem_lookup_mutex);
2138 }
2139 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2140 
2141 /**
2142  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2143  *                            entries
2144  *
2145  * @entries: array of cell lookup entries
2146  * @nentries: number of cell lookup entries in the array
2147  */
2148 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2149 {
2150 	int i;
2151 
2152 	mutex_lock(&nvmem_lookup_mutex);
2153 	for (i = 0; i < nentries; i++)
2154 		list_del(&entries[i].node);
2155 	mutex_unlock(&nvmem_lookup_mutex);
2156 }
2157 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2158 
2159 /**
2160  * nvmem_dev_name() - Get the name of a given nvmem device.
2161  *
2162  * @nvmem: nvmem device.
2163  *
2164  * Return: name of the nvmem device.
2165  */
2166 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2167 {
2168 	return dev_name(&nvmem->dev);
2169 }
2170 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2171 
2172 /**
2173  * nvmem_dev_size() - Get the size of a given nvmem device.
2174  *
2175  * @nvmem: nvmem device.
2176  *
2177  * Return: size of the nvmem device.
2178  */
2179 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2180 {
2181 	return nvmem->size;
2182 }
2183 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2184 
2185 static int __init nvmem_init(void)
2186 {
2187 	int ret;
2188 
2189 	ret = bus_register(&nvmem_bus_type);
2190 	if (ret)
2191 		return ret;
2192 
2193 	ret = nvmem_layout_bus_register();
2194 	if (ret)
2195 		bus_unregister(&nvmem_bus_type);
2196 
2197 	return ret;
2198 }
2199 
2200 static void __exit nvmem_exit(void)
2201 {
2202 	nvmem_layout_bus_unregister();
2203 	bus_unregister(&nvmem_bus_type);
2204 }
2205 
2206 subsys_initcall(nvmem_init);
2207 module_exit(nvmem_exit);
2208 
2209 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2210 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2211 MODULE_DESCRIPTION("nvmem Driver Core");
2212