xref: /linux/drivers/nvmem/core.c (revision 1a562c0d44974d3cf89c6cc5c34c708c08af420e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
187 static struct attribute *nvmem_attrs[] = {
188 	&dev_attr_type.attr,
189 	NULL,
190 };
191 
192 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
193 				   struct bin_attribute *attr, char *buf,
194 				   loff_t pos, size_t count)
195 {
196 	struct device *dev;
197 	struct nvmem_device *nvmem;
198 	int rc;
199 
200 	if (attr->private)
201 		dev = attr->private;
202 	else
203 		dev = kobj_to_dev(kobj);
204 	nvmem = to_nvmem_device(dev);
205 
206 	/* Stop the user from reading */
207 	if (pos >= nvmem->size)
208 		return 0;
209 
210 	if (!IS_ALIGNED(pos, nvmem->stride))
211 		return -EINVAL;
212 
213 	if (count < nvmem->word_size)
214 		return -EINVAL;
215 
216 	if (pos + count > nvmem->size)
217 		count = nvmem->size - pos;
218 
219 	count = round_down(count, nvmem->word_size);
220 
221 	if (!nvmem->reg_read)
222 		return -EPERM;
223 
224 	rc = nvmem_reg_read(nvmem, pos, buf, count);
225 
226 	if (rc)
227 		return rc;
228 
229 	return count;
230 }
231 
232 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
233 				    struct bin_attribute *attr, char *buf,
234 				    loff_t pos, size_t count)
235 {
236 	struct device *dev;
237 	struct nvmem_device *nvmem;
238 	int rc;
239 
240 	if (attr->private)
241 		dev = attr->private;
242 	else
243 		dev = kobj_to_dev(kobj);
244 	nvmem = to_nvmem_device(dev);
245 
246 	/* Stop the user from writing */
247 	if (pos >= nvmem->size)
248 		return -EFBIG;
249 
250 	if (!IS_ALIGNED(pos, nvmem->stride))
251 		return -EINVAL;
252 
253 	if (count < nvmem->word_size)
254 		return -EINVAL;
255 
256 	if (pos + count > nvmem->size)
257 		count = nvmem->size - pos;
258 
259 	count = round_down(count, nvmem->word_size);
260 
261 	if (!nvmem->reg_write)
262 		return -EPERM;
263 
264 	rc = nvmem_reg_write(nvmem, pos, buf, count);
265 
266 	if (rc)
267 		return rc;
268 
269 	return count;
270 }
271 
272 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
273 {
274 	umode_t mode = 0400;
275 
276 	if (!nvmem->root_only)
277 		mode |= 0044;
278 
279 	if (!nvmem->read_only)
280 		mode |= 0200;
281 
282 	if (!nvmem->reg_write)
283 		mode &= ~0200;
284 
285 	if (!nvmem->reg_read)
286 		mode &= ~0444;
287 
288 	return mode;
289 }
290 
291 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
292 					 struct bin_attribute *attr, int i)
293 {
294 	struct device *dev = kobj_to_dev(kobj);
295 	struct nvmem_device *nvmem = to_nvmem_device(dev);
296 
297 	attr->size = nvmem->size;
298 
299 	return nvmem_bin_attr_get_umode(nvmem);
300 }
301 
302 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
303 					    const char *id, int index);
304 
305 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
306 				    struct bin_attribute *attr, char *buf,
307 				    loff_t pos, size_t count)
308 {
309 	struct nvmem_cell_entry *entry;
310 	struct nvmem_cell *cell = NULL;
311 	size_t cell_sz, read_len;
312 	void *content;
313 
314 	entry = attr->private;
315 	cell = nvmem_create_cell(entry, entry->name, 0);
316 	if (IS_ERR(cell))
317 		return PTR_ERR(cell);
318 
319 	if (!cell)
320 		return -EINVAL;
321 
322 	content = nvmem_cell_read(cell, &cell_sz);
323 	if (IS_ERR(content)) {
324 		read_len = PTR_ERR(content);
325 		goto destroy_cell;
326 	}
327 
328 	read_len = min_t(unsigned int, cell_sz - pos, count);
329 	memcpy(buf, content + pos, read_len);
330 	kfree(content);
331 
332 destroy_cell:
333 	kfree_const(cell->id);
334 	kfree(cell);
335 
336 	return read_len;
337 }
338 
339 /* default read/write permissions */
340 static struct bin_attribute bin_attr_rw_nvmem = {
341 	.attr	= {
342 		.name	= "nvmem",
343 		.mode	= 0644,
344 	},
345 	.read	= bin_attr_nvmem_read,
346 	.write	= bin_attr_nvmem_write,
347 };
348 
349 static struct bin_attribute *nvmem_bin_attributes[] = {
350 	&bin_attr_rw_nvmem,
351 	NULL,
352 };
353 
354 static const struct attribute_group nvmem_bin_group = {
355 	.bin_attrs	= nvmem_bin_attributes,
356 	.attrs		= nvmem_attrs,
357 	.is_bin_visible = nvmem_bin_attr_is_visible,
358 };
359 
360 /* Cell attributes will be dynamically allocated */
361 static struct attribute_group nvmem_cells_group = {
362 	.name		= "cells",
363 };
364 
365 static const struct attribute_group *nvmem_dev_groups[] = {
366 	&nvmem_bin_group,
367 	NULL,
368 };
369 
370 static const struct attribute_group *nvmem_cells_groups[] = {
371 	&nvmem_cells_group,
372 	NULL,
373 };
374 
375 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
376 	.attr	= {
377 		.name	= "eeprom",
378 	},
379 	.read	= bin_attr_nvmem_read,
380 	.write	= bin_attr_nvmem_write,
381 };
382 
383 /*
384  * nvmem_setup_compat() - Create an additional binary entry in
385  * drivers sys directory, to be backwards compatible with the older
386  * drivers/misc/eeprom drivers.
387  */
388 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
389 				    const struct nvmem_config *config)
390 {
391 	int rval;
392 
393 	if (!config->compat)
394 		return 0;
395 
396 	if (!config->base_dev)
397 		return -EINVAL;
398 
399 	if (config->type == NVMEM_TYPE_FRAM)
400 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
401 
402 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
403 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
404 	nvmem->eeprom.size = nvmem->size;
405 #ifdef CONFIG_DEBUG_LOCK_ALLOC
406 	nvmem->eeprom.attr.key = &eeprom_lock_key;
407 #endif
408 	nvmem->eeprom.private = &nvmem->dev;
409 	nvmem->base_dev = config->base_dev;
410 
411 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
412 	if (rval) {
413 		dev_err(&nvmem->dev,
414 			"Failed to create eeprom binary file %d\n", rval);
415 		return rval;
416 	}
417 
418 	nvmem->flags |= FLAG_COMPAT;
419 
420 	return 0;
421 }
422 
423 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
424 			      const struct nvmem_config *config)
425 {
426 	if (config->compat)
427 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
428 }
429 
430 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
431 {
432 	struct bin_attribute **cells_attrs, *attrs;
433 	struct nvmem_cell_entry *entry;
434 	unsigned int ncells = 0, i = 0;
435 	int ret = 0;
436 
437 	mutex_lock(&nvmem_mutex);
438 
439 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
440 		nvmem_cells_group.bin_attrs = NULL;
441 		goto unlock_mutex;
442 	}
443 
444 	/* Allocate an array of attributes with a sentinel */
445 	ncells = list_count_nodes(&nvmem->cells);
446 	cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
447 				   sizeof(struct bin_attribute *), GFP_KERNEL);
448 	if (!cells_attrs) {
449 		ret = -ENOMEM;
450 		goto unlock_mutex;
451 	}
452 
453 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
454 	if (!attrs) {
455 		ret = -ENOMEM;
456 		goto unlock_mutex;
457 	}
458 
459 	/* Initialize each attribute to take the name and size of the cell */
460 	list_for_each_entry(entry, &nvmem->cells, node) {
461 		sysfs_bin_attr_init(&attrs[i]);
462 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
463 						    "%s@%x", entry->name,
464 						    entry->offset);
465 		attrs[i].attr.mode = 0444;
466 		attrs[i].size = entry->bytes;
467 		attrs[i].read = &nvmem_cell_attr_read;
468 		attrs[i].private = entry;
469 		if (!attrs[i].attr.name) {
470 			ret = -ENOMEM;
471 			goto unlock_mutex;
472 		}
473 
474 		cells_attrs[i] = &attrs[i];
475 		i++;
476 	}
477 
478 	nvmem_cells_group.bin_attrs = cells_attrs;
479 
480 	ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
481 	if (ret)
482 		goto unlock_mutex;
483 
484 	nvmem->sysfs_cells_populated = true;
485 
486 unlock_mutex:
487 	mutex_unlock(&nvmem_mutex);
488 
489 	return ret;
490 }
491 
492 #else /* CONFIG_NVMEM_SYSFS */
493 
494 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
495 				    const struct nvmem_config *config)
496 {
497 	return -ENOSYS;
498 }
499 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
500 				      const struct nvmem_config *config)
501 {
502 }
503 
504 #endif /* CONFIG_NVMEM_SYSFS */
505 
506 static void nvmem_release(struct device *dev)
507 {
508 	struct nvmem_device *nvmem = to_nvmem_device(dev);
509 
510 	ida_free(&nvmem_ida, nvmem->id);
511 	gpiod_put(nvmem->wp_gpio);
512 	kfree(nvmem);
513 }
514 
515 static const struct device_type nvmem_provider_type = {
516 	.release	= nvmem_release,
517 };
518 
519 static struct bus_type nvmem_bus_type = {
520 	.name		= "nvmem",
521 };
522 
523 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
524 {
525 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
526 	mutex_lock(&nvmem_mutex);
527 	list_del(&cell->node);
528 	mutex_unlock(&nvmem_mutex);
529 	of_node_put(cell->np);
530 	kfree_const(cell->name);
531 	kfree(cell);
532 }
533 
534 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
535 {
536 	struct nvmem_cell_entry *cell, *p;
537 
538 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
539 		nvmem_cell_entry_drop(cell);
540 }
541 
542 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
543 {
544 	mutex_lock(&nvmem_mutex);
545 	list_add_tail(&cell->node, &cell->nvmem->cells);
546 	mutex_unlock(&nvmem_mutex);
547 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
548 }
549 
550 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
551 						     const struct nvmem_cell_info *info,
552 						     struct nvmem_cell_entry *cell)
553 {
554 	cell->nvmem = nvmem;
555 	cell->offset = info->offset;
556 	cell->raw_len = info->raw_len ?: info->bytes;
557 	cell->bytes = info->bytes;
558 	cell->name = info->name;
559 	cell->read_post_process = info->read_post_process;
560 	cell->priv = info->priv;
561 
562 	cell->bit_offset = info->bit_offset;
563 	cell->nbits = info->nbits;
564 	cell->np = info->np;
565 
566 	if (cell->nbits)
567 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
568 					   BITS_PER_BYTE);
569 
570 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
571 		dev_err(&nvmem->dev,
572 			"cell %s unaligned to nvmem stride %d\n",
573 			cell->name ?: "<unknown>", nvmem->stride);
574 		return -EINVAL;
575 	}
576 
577 	return 0;
578 }
579 
580 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
581 					       const struct nvmem_cell_info *info,
582 					       struct nvmem_cell_entry *cell)
583 {
584 	int err;
585 
586 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
587 	if (err)
588 		return err;
589 
590 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
591 	if (!cell->name)
592 		return -ENOMEM;
593 
594 	return 0;
595 }
596 
597 /**
598  * nvmem_add_one_cell() - Add one cell information to an nvmem device
599  *
600  * @nvmem: nvmem device to add cells to.
601  * @info: nvmem cell info to add to the device
602  *
603  * Return: 0 or negative error code on failure.
604  */
605 int nvmem_add_one_cell(struct nvmem_device *nvmem,
606 		       const struct nvmem_cell_info *info)
607 {
608 	struct nvmem_cell_entry *cell;
609 	int rval;
610 
611 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
612 	if (!cell)
613 		return -ENOMEM;
614 
615 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
616 	if (rval) {
617 		kfree(cell);
618 		return rval;
619 	}
620 
621 	nvmem_cell_entry_add(cell);
622 
623 	return 0;
624 }
625 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
626 
627 /**
628  * nvmem_add_cells() - Add cell information to an nvmem device
629  *
630  * @nvmem: nvmem device to add cells to.
631  * @info: nvmem cell info to add to the device
632  * @ncells: number of cells in info
633  *
634  * Return: 0 or negative error code on failure.
635  */
636 static int nvmem_add_cells(struct nvmem_device *nvmem,
637 		    const struct nvmem_cell_info *info,
638 		    int ncells)
639 {
640 	int i, rval;
641 
642 	for (i = 0; i < ncells; i++) {
643 		rval = nvmem_add_one_cell(nvmem, &info[i]);
644 		if (rval)
645 			return rval;
646 	}
647 
648 	return 0;
649 }
650 
651 /**
652  * nvmem_register_notifier() - Register a notifier block for nvmem events.
653  *
654  * @nb: notifier block to be called on nvmem events.
655  *
656  * Return: 0 on success, negative error number on failure.
657  */
658 int nvmem_register_notifier(struct notifier_block *nb)
659 {
660 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
661 }
662 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
663 
664 /**
665  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
666  *
667  * @nb: notifier block to be unregistered.
668  *
669  * Return: 0 on success, negative error number on failure.
670  */
671 int nvmem_unregister_notifier(struct notifier_block *nb)
672 {
673 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
674 }
675 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
676 
677 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
678 {
679 	const struct nvmem_cell_info *info;
680 	struct nvmem_cell_table *table;
681 	struct nvmem_cell_entry *cell;
682 	int rval = 0, i;
683 
684 	mutex_lock(&nvmem_cell_mutex);
685 	list_for_each_entry(table, &nvmem_cell_tables, node) {
686 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
687 			for (i = 0; i < table->ncells; i++) {
688 				info = &table->cells[i];
689 
690 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
691 				if (!cell) {
692 					rval = -ENOMEM;
693 					goto out;
694 				}
695 
696 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
697 				if (rval) {
698 					kfree(cell);
699 					goto out;
700 				}
701 
702 				nvmem_cell_entry_add(cell);
703 			}
704 		}
705 	}
706 
707 out:
708 	mutex_unlock(&nvmem_cell_mutex);
709 	return rval;
710 }
711 
712 static struct nvmem_cell_entry *
713 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
714 {
715 	struct nvmem_cell_entry *iter, *cell = NULL;
716 
717 	mutex_lock(&nvmem_mutex);
718 	list_for_each_entry(iter, &nvmem->cells, node) {
719 		if (strcmp(cell_id, iter->name) == 0) {
720 			cell = iter;
721 			break;
722 		}
723 	}
724 	mutex_unlock(&nvmem_mutex);
725 
726 	return cell;
727 }
728 
729 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
730 {
731 	unsigned int cur = 0;
732 	const struct nvmem_keepout *keepout = nvmem->keepout;
733 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
734 
735 	while (keepout < keepoutend) {
736 		/* Ensure keepouts are sorted and don't overlap. */
737 		if (keepout->start < cur) {
738 			dev_err(&nvmem->dev,
739 				"Keepout regions aren't sorted or overlap.\n");
740 
741 			return -ERANGE;
742 		}
743 
744 		if (keepout->end < keepout->start) {
745 			dev_err(&nvmem->dev,
746 				"Invalid keepout region.\n");
747 
748 			return -EINVAL;
749 		}
750 
751 		/*
752 		 * Validate keepouts (and holes between) don't violate
753 		 * word_size constraints.
754 		 */
755 		if ((keepout->end - keepout->start < nvmem->word_size) ||
756 		    ((keepout->start != cur) &&
757 		     (keepout->start - cur < nvmem->word_size))) {
758 
759 			dev_err(&nvmem->dev,
760 				"Keepout regions violate word_size constraints.\n");
761 
762 			return -ERANGE;
763 		}
764 
765 		/* Validate keepouts don't violate stride (alignment). */
766 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
767 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
768 
769 			dev_err(&nvmem->dev,
770 				"Keepout regions violate stride.\n");
771 
772 			return -EINVAL;
773 		}
774 
775 		cur = keepout->end;
776 		keepout++;
777 	}
778 
779 	return 0;
780 }
781 
782 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
783 {
784 	struct device *dev = &nvmem->dev;
785 	struct device_node *child;
786 	const __be32 *addr;
787 	int len, ret;
788 
789 	for_each_child_of_node(np, child) {
790 		struct nvmem_cell_info info = {0};
791 
792 		addr = of_get_property(child, "reg", &len);
793 		if (!addr)
794 			continue;
795 		if (len < 2 * sizeof(u32)) {
796 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
797 			of_node_put(child);
798 			return -EINVAL;
799 		}
800 
801 		info.offset = be32_to_cpup(addr++);
802 		info.bytes = be32_to_cpup(addr);
803 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
804 
805 		addr = of_get_property(child, "bits", &len);
806 		if (addr && len == (2 * sizeof(u32))) {
807 			info.bit_offset = be32_to_cpup(addr++);
808 			info.nbits = be32_to_cpup(addr);
809 		}
810 
811 		info.np = of_node_get(child);
812 
813 		if (nvmem->fixup_dt_cell_info)
814 			nvmem->fixup_dt_cell_info(nvmem, &info);
815 
816 		ret = nvmem_add_one_cell(nvmem, &info);
817 		kfree(info.name);
818 		if (ret) {
819 			of_node_put(child);
820 			return ret;
821 		}
822 	}
823 
824 	return 0;
825 }
826 
827 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
828 {
829 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
830 }
831 
832 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
833 {
834 	struct device_node *layout_np;
835 	int err = 0;
836 
837 	layout_np = of_nvmem_layout_get_container(nvmem);
838 	if (!layout_np)
839 		return 0;
840 
841 	if (of_device_is_compatible(layout_np, "fixed-layout"))
842 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
843 
844 	of_node_put(layout_np);
845 
846 	return err;
847 }
848 
849 int nvmem_layout_register(struct nvmem_layout *layout)
850 {
851 	int ret;
852 
853 	if (!layout->add_cells)
854 		return -EINVAL;
855 
856 	/* Populate the cells */
857 	ret = layout->add_cells(layout);
858 	if (ret)
859 		return ret;
860 
861 #ifdef CONFIG_NVMEM_SYSFS
862 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
863 	if (ret) {
864 		nvmem_device_remove_all_cells(layout->nvmem);
865 		return ret;
866 	}
867 #endif
868 
869 	return 0;
870 }
871 EXPORT_SYMBOL_GPL(nvmem_layout_register);
872 
873 void nvmem_layout_unregister(struct nvmem_layout *layout)
874 {
875 	/* Keep the API even with an empty stub in case we need it later */
876 }
877 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
878 
879 /**
880  * nvmem_register() - Register a nvmem device for given nvmem_config.
881  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
882  *
883  * @config: nvmem device configuration with which nvmem device is created.
884  *
885  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
886  * on success.
887  */
888 
889 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
890 {
891 	struct nvmem_device *nvmem;
892 	int rval;
893 
894 	if (!config->dev)
895 		return ERR_PTR(-EINVAL);
896 
897 	if (!config->reg_read && !config->reg_write)
898 		return ERR_PTR(-EINVAL);
899 
900 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
901 	if (!nvmem)
902 		return ERR_PTR(-ENOMEM);
903 
904 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
905 	if (rval < 0) {
906 		kfree(nvmem);
907 		return ERR_PTR(rval);
908 	}
909 
910 	nvmem->id = rval;
911 
912 	nvmem->dev.type = &nvmem_provider_type;
913 	nvmem->dev.bus = &nvmem_bus_type;
914 	nvmem->dev.parent = config->dev;
915 
916 	device_initialize(&nvmem->dev);
917 
918 	if (!config->ignore_wp)
919 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
920 						    GPIOD_OUT_HIGH);
921 	if (IS_ERR(nvmem->wp_gpio)) {
922 		rval = PTR_ERR(nvmem->wp_gpio);
923 		nvmem->wp_gpio = NULL;
924 		goto err_put_device;
925 	}
926 
927 	kref_init(&nvmem->refcnt);
928 	INIT_LIST_HEAD(&nvmem->cells);
929 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
930 
931 	nvmem->owner = config->owner;
932 	if (!nvmem->owner && config->dev->driver)
933 		nvmem->owner = config->dev->driver->owner;
934 	nvmem->stride = config->stride ?: 1;
935 	nvmem->word_size = config->word_size ?: 1;
936 	nvmem->size = config->size;
937 	nvmem->root_only = config->root_only;
938 	nvmem->priv = config->priv;
939 	nvmem->type = config->type;
940 	nvmem->reg_read = config->reg_read;
941 	nvmem->reg_write = config->reg_write;
942 	nvmem->keepout = config->keepout;
943 	nvmem->nkeepout = config->nkeepout;
944 	if (config->of_node)
945 		nvmem->dev.of_node = config->of_node;
946 	else
947 		nvmem->dev.of_node = config->dev->of_node;
948 
949 	switch (config->id) {
950 	case NVMEM_DEVID_NONE:
951 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
952 		break;
953 	case NVMEM_DEVID_AUTO:
954 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
955 		break;
956 	default:
957 		rval = dev_set_name(&nvmem->dev, "%s%d",
958 			     config->name ? : "nvmem",
959 			     config->name ? config->id : nvmem->id);
960 		break;
961 	}
962 
963 	if (rval)
964 		goto err_put_device;
965 
966 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
967 			   config->read_only || !nvmem->reg_write;
968 
969 #ifdef CONFIG_NVMEM_SYSFS
970 	nvmem->dev.groups = nvmem_dev_groups;
971 #endif
972 
973 	if (nvmem->nkeepout) {
974 		rval = nvmem_validate_keepouts(nvmem);
975 		if (rval)
976 			goto err_put_device;
977 	}
978 
979 	if (config->compat) {
980 		rval = nvmem_sysfs_setup_compat(nvmem, config);
981 		if (rval)
982 			goto err_put_device;
983 	}
984 
985 	if (config->cells) {
986 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
987 		if (rval)
988 			goto err_remove_cells;
989 	}
990 
991 	rval = nvmem_add_cells_from_table(nvmem);
992 	if (rval)
993 		goto err_remove_cells;
994 
995 	if (config->add_legacy_fixed_of_cells) {
996 		rval = nvmem_add_cells_from_legacy_of(nvmem);
997 		if (rval)
998 			goto err_remove_cells;
999 	}
1000 
1001 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1002 	if (rval)
1003 		goto err_remove_cells;
1004 
1005 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1006 
1007 	rval = device_add(&nvmem->dev);
1008 	if (rval)
1009 		goto err_remove_cells;
1010 
1011 	rval = nvmem_populate_layout(nvmem);
1012 	if (rval)
1013 		goto err_remove_dev;
1014 
1015 #ifdef CONFIG_NVMEM_SYSFS
1016 	rval = nvmem_populate_sysfs_cells(nvmem);
1017 	if (rval)
1018 		goto err_destroy_layout;
1019 #endif
1020 
1021 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1022 
1023 	return nvmem;
1024 
1025 #ifdef CONFIG_NVMEM_SYSFS
1026 err_destroy_layout:
1027 	nvmem_destroy_layout(nvmem);
1028 #endif
1029 err_remove_dev:
1030 	device_del(&nvmem->dev);
1031 err_remove_cells:
1032 	nvmem_device_remove_all_cells(nvmem);
1033 	if (config->compat)
1034 		nvmem_sysfs_remove_compat(nvmem, config);
1035 err_put_device:
1036 	put_device(&nvmem->dev);
1037 
1038 	return ERR_PTR(rval);
1039 }
1040 EXPORT_SYMBOL_GPL(nvmem_register);
1041 
1042 static void nvmem_device_release(struct kref *kref)
1043 {
1044 	struct nvmem_device *nvmem;
1045 
1046 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1047 
1048 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1049 
1050 	if (nvmem->flags & FLAG_COMPAT)
1051 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1052 
1053 	nvmem_device_remove_all_cells(nvmem);
1054 	nvmem_destroy_layout(nvmem);
1055 	device_unregister(&nvmem->dev);
1056 }
1057 
1058 /**
1059  * nvmem_unregister() - Unregister previously registered nvmem device
1060  *
1061  * @nvmem: Pointer to previously registered nvmem device.
1062  */
1063 void nvmem_unregister(struct nvmem_device *nvmem)
1064 {
1065 	if (nvmem)
1066 		kref_put(&nvmem->refcnt, nvmem_device_release);
1067 }
1068 EXPORT_SYMBOL_GPL(nvmem_unregister);
1069 
1070 static void devm_nvmem_unregister(void *nvmem)
1071 {
1072 	nvmem_unregister(nvmem);
1073 }
1074 
1075 /**
1076  * devm_nvmem_register() - Register a managed nvmem device for given
1077  * nvmem_config.
1078  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1079  *
1080  * @dev: Device that uses the nvmem device.
1081  * @config: nvmem device configuration with which nvmem device is created.
1082  *
1083  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1084  * on success.
1085  */
1086 struct nvmem_device *devm_nvmem_register(struct device *dev,
1087 					 const struct nvmem_config *config)
1088 {
1089 	struct nvmem_device *nvmem;
1090 	int ret;
1091 
1092 	nvmem = nvmem_register(config);
1093 	if (IS_ERR(nvmem))
1094 		return nvmem;
1095 
1096 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1097 	if (ret)
1098 		return ERR_PTR(ret);
1099 
1100 	return nvmem;
1101 }
1102 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1103 
1104 static struct nvmem_device *__nvmem_device_get(void *data,
1105 			int (*match)(struct device *dev, const void *data))
1106 {
1107 	struct nvmem_device *nvmem = NULL;
1108 	struct device *dev;
1109 
1110 	mutex_lock(&nvmem_mutex);
1111 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1112 	if (dev)
1113 		nvmem = to_nvmem_device(dev);
1114 	mutex_unlock(&nvmem_mutex);
1115 	if (!nvmem)
1116 		return ERR_PTR(-EPROBE_DEFER);
1117 
1118 	if (!try_module_get(nvmem->owner)) {
1119 		dev_err(&nvmem->dev,
1120 			"could not increase module refcount for cell %s\n",
1121 			nvmem_dev_name(nvmem));
1122 
1123 		put_device(&nvmem->dev);
1124 		return ERR_PTR(-EINVAL);
1125 	}
1126 
1127 	kref_get(&nvmem->refcnt);
1128 
1129 	return nvmem;
1130 }
1131 
1132 static void __nvmem_device_put(struct nvmem_device *nvmem)
1133 {
1134 	put_device(&nvmem->dev);
1135 	module_put(nvmem->owner);
1136 	kref_put(&nvmem->refcnt, nvmem_device_release);
1137 }
1138 
1139 #if IS_ENABLED(CONFIG_OF)
1140 /**
1141  * of_nvmem_device_get() - Get nvmem device from a given id
1142  *
1143  * @np: Device tree node that uses the nvmem device.
1144  * @id: nvmem name from nvmem-names property.
1145  *
1146  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1147  * on success.
1148  */
1149 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1150 {
1151 
1152 	struct device_node *nvmem_np;
1153 	struct nvmem_device *nvmem;
1154 	int index = 0;
1155 
1156 	if (id)
1157 		index = of_property_match_string(np, "nvmem-names", id);
1158 
1159 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1160 	if (!nvmem_np)
1161 		return ERR_PTR(-ENOENT);
1162 
1163 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1164 	of_node_put(nvmem_np);
1165 	return nvmem;
1166 }
1167 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1168 #endif
1169 
1170 /**
1171  * nvmem_device_get() - Get nvmem device from a given id
1172  *
1173  * @dev: Device that uses the nvmem device.
1174  * @dev_name: name of the requested nvmem device.
1175  *
1176  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1177  * on success.
1178  */
1179 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1180 {
1181 	if (dev->of_node) { /* try dt first */
1182 		struct nvmem_device *nvmem;
1183 
1184 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1185 
1186 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1187 			return nvmem;
1188 
1189 	}
1190 
1191 	return __nvmem_device_get((void *)dev_name, device_match_name);
1192 }
1193 EXPORT_SYMBOL_GPL(nvmem_device_get);
1194 
1195 /**
1196  * nvmem_device_find() - Find nvmem device with matching function
1197  *
1198  * @data: Data to pass to match function
1199  * @match: Callback function to check device
1200  *
1201  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1202  * on success.
1203  */
1204 struct nvmem_device *nvmem_device_find(void *data,
1205 			int (*match)(struct device *dev, const void *data))
1206 {
1207 	return __nvmem_device_get(data, match);
1208 }
1209 EXPORT_SYMBOL_GPL(nvmem_device_find);
1210 
1211 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1212 {
1213 	struct nvmem_device **nvmem = res;
1214 
1215 	if (WARN_ON(!nvmem || !*nvmem))
1216 		return 0;
1217 
1218 	return *nvmem == data;
1219 }
1220 
1221 static void devm_nvmem_device_release(struct device *dev, void *res)
1222 {
1223 	nvmem_device_put(*(struct nvmem_device **)res);
1224 }
1225 
1226 /**
1227  * devm_nvmem_device_put() - put alredy got nvmem device
1228  *
1229  * @dev: Device that uses the nvmem device.
1230  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1231  * that needs to be released.
1232  */
1233 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1234 {
1235 	int ret;
1236 
1237 	ret = devres_release(dev, devm_nvmem_device_release,
1238 			     devm_nvmem_device_match, nvmem);
1239 
1240 	WARN_ON(ret);
1241 }
1242 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1243 
1244 /**
1245  * nvmem_device_put() - put alredy got nvmem device
1246  *
1247  * @nvmem: pointer to nvmem device that needs to be released.
1248  */
1249 void nvmem_device_put(struct nvmem_device *nvmem)
1250 {
1251 	__nvmem_device_put(nvmem);
1252 }
1253 EXPORT_SYMBOL_GPL(nvmem_device_put);
1254 
1255 /**
1256  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1257  *
1258  * @dev: Device that requests the nvmem device.
1259  * @id: name id for the requested nvmem device.
1260  *
1261  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1262  * on success.  The nvmem_cell will be freed by the automatically once the
1263  * device is freed.
1264  */
1265 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1266 {
1267 	struct nvmem_device **ptr, *nvmem;
1268 
1269 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1270 	if (!ptr)
1271 		return ERR_PTR(-ENOMEM);
1272 
1273 	nvmem = nvmem_device_get(dev, id);
1274 	if (!IS_ERR(nvmem)) {
1275 		*ptr = nvmem;
1276 		devres_add(dev, ptr);
1277 	} else {
1278 		devres_free(ptr);
1279 	}
1280 
1281 	return nvmem;
1282 }
1283 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1284 
1285 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1286 					    const char *id, int index)
1287 {
1288 	struct nvmem_cell *cell;
1289 	const char *name = NULL;
1290 
1291 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1292 	if (!cell)
1293 		return ERR_PTR(-ENOMEM);
1294 
1295 	if (id) {
1296 		name = kstrdup_const(id, GFP_KERNEL);
1297 		if (!name) {
1298 			kfree(cell);
1299 			return ERR_PTR(-ENOMEM);
1300 		}
1301 	}
1302 
1303 	cell->id = name;
1304 	cell->entry = entry;
1305 	cell->index = index;
1306 
1307 	return cell;
1308 }
1309 
1310 static struct nvmem_cell *
1311 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1312 {
1313 	struct nvmem_cell_entry *cell_entry;
1314 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1315 	struct nvmem_cell_lookup *lookup;
1316 	struct nvmem_device *nvmem;
1317 	const char *dev_id;
1318 
1319 	if (!dev)
1320 		return ERR_PTR(-EINVAL);
1321 
1322 	dev_id = dev_name(dev);
1323 
1324 	mutex_lock(&nvmem_lookup_mutex);
1325 
1326 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1327 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1328 		    (strcmp(lookup->con_id, con_id) == 0)) {
1329 			/* This is the right entry. */
1330 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1331 						   device_match_name);
1332 			if (IS_ERR(nvmem)) {
1333 				/* Provider may not be registered yet. */
1334 				cell = ERR_CAST(nvmem);
1335 				break;
1336 			}
1337 
1338 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1339 								   lookup->cell_name);
1340 			if (!cell_entry) {
1341 				__nvmem_device_put(nvmem);
1342 				cell = ERR_PTR(-ENOENT);
1343 			} else {
1344 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1345 				if (IS_ERR(cell))
1346 					__nvmem_device_put(nvmem);
1347 			}
1348 			break;
1349 		}
1350 	}
1351 
1352 	mutex_unlock(&nvmem_lookup_mutex);
1353 	return cell;
1354 }
1355 
1356 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1357 {
1358 	if (nvmem->layout && nvmem->layout->dev.driver)
1359 		module_put(nvmem->layout->dev.driver->owner);
1360 }
1361 
1362 #if IS_ENABLED(CONFIG_OF)
1363 static struct nvmem_cell_entry *
1364 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1365 {
1366 	struct nvmem_cell_entry *iter, *cell = NULL;
1367 
1368 	mutex_lock(&nvmem_mutex);
1369 	list_for_each_entry(iter, &nvmem->cells, node) {
1370 		if (np == iter->np) {
1371 			cell = iter;
1372 			break;
1373 		}
1374 	}
1375 	mutex_unlock(&nvmem_mutex);
1376 
1377 	return cell;
1378 }
1379 
1380 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1381 {
1382 	if (!nvmem->layout)
1383 		return 0;
1384 
1385 	if (!nvmem->layout->dev.driver ||
1386 	    !try_module_get(nvmem->layout->dev.driver->owner))
1387 		return -EPROBE_DEFER;
1388 
1389 	return 0;
1390 }
1391 
1392 /**
1393  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1394  *
1395  * @np: Device tree node that uses the nvmem cell.
1396  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1397  *      for the cell at index 0 (the lone cell with no accompanying
1398  *      nvmem-cell-names property).
1399  *
1400  * Return: Will be an ERR_PTR() on error or a valid pointer
1401  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1402  * nvmem_cell_put().
1403  */
1404 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1405 {
1406 	struct device_node *cell_np, *nvmem_np;
1407 	struct nvmem_device *nvmem;
1408 	struct nvmem_cell_entry *cell_entry;
1409 	struct nvmem_cell *cell;
1410 	struct of_phandle_args cell_spec;
1411 	int index = 0;
1412 	int cell_index = 0;
1413 	int ret;
1414 
1415 	/* if cell name exists, find index to the name */
1416 	if (id)
1417 		index = of_property_match_string(np, "nvmem-cell-names", id);
1418 
1419 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1420 						  "#nvmem-cell-cells",
1421 						  index, &cell_spec);
1422 	if (ret)
1423 		return ERR_PTR(-ENOENT);
1424 
1425 	if (cell_spec.args_count > 1)
1426 		return ERR_PTR(-EINVAL);
1427 
1428 	cell_np = cell_spec.np;
1429 	if (cell_spec.args_count)
1430 		cell_index = cell_spec.args[0];
1431 
1432 	nvmem_np = of_get_parent(cell_np);
1433 	if (!nvmem_np) {
1434 		of_node_put(cell_np);
1435 		return ERR_PTR(-EINVAL);
1436 	}
1437 
1438 	/* nvmem layouts produce cells within the nvmem-layout container */
1439 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1440 		nvmem_np = of_get_next_parent(nvmem_np);
1441 		if (!nvmem_np) {
1442 			of_node_put(cell_np);
1443 			return ERR_PTR(-EINVAL);
1444 		}
1445 	}
1446 
1447 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1448 	of_node_put(nvmem_np);
1449 	if (IS_ERR(nvmem)) {
1450 		of_node_put(cell_np);
1451 		return ERR_CAST(nvmem);
1452 	}
1453 
1454 	ret = nvmem_layout_module_get_optional(nvmem);
1455 	if (ret) {
1456 		of_node_put(cell_np);
1457 		__nvmem_device_put(nvmem);
1458 		return ERR_PTR(ret);
1459 	}
1460 
1461 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1462 	of_node_put(cell_np);
1463 	if (!cell_entry) {
1464 		__nvmem_device_put(nvmem);
1465 		nvmem_layout_module_put(nvmem);
1466 		if (nvmem->layout)
1467 			return ERR_PTR(-EPROBE_DEFER);
1468 		else
1469 			return ERR_PTR(-ENOENT);
1470 	}
1471 
1472 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1473 	if (IS_ERR(cell)) {
1474 		__nvmem_device_put(nvmem);
1475 		nvmem_layout_module_put(nvmem);
1476 	}
1477 
1478 	return cell;
1479 }
1480 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1481 #endif
1482 
1483 /**
1484  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1485  *
1486  * @dev: Device that requests the nvmem cell.
1487  * @id: nvmem cell name to get (this corresponds with the name from the
1488  *      nvmem-cell-names property for DT systems and with the con_id from
1489  *      the lookup entry for non-DT systems).
1490  *
1491  * Return: Will be an ERR_PTR() on error or a valid pointer
1492  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1493  * nvmem_cell_put().
1494  */
1495 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1496 {
1497 	struct nvmem_cell *cell;
1498 
1499 	if (dev->of_node) { /* try dt first */
1500 		cell = of_nvmem_cell_get(dev->of_node, id);
1501 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1502 			return cell;
1503 	}
1504 
1505 	/* NULL cell id only allowed for device tree; invalid otherwise */
1506 	if (!id)
1507 		return ERR_PTR(-EINVAL);
1508 
1509 	return nvmem_cell_get_from_lookup(dev, id);
1510 }
1511 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1512 
1513 static void devm_nvmem_cell_release(struct device *dev, void *res)
1514 {
1515 	nvmem_cell_put(*(struct nvmem_cell **)res);
1516 }
1517 
1518 /**
1519  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1520  *
1521  * @dev: Device that requests the nvmem cell.
1522  * @id: nvmem cell name id to get.
1523  *
1524  * Return: Will be an ERR_PTR() on error or a valid pointer
1525  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1526  * automatically once the device is freed.
1527  */
1528 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1529 {
1530 	struct nvmem_cell **ptr, *cell;
1531 
1532 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1533 	if (!ptr)
1534 		return ERR_PTR(-ENOMEM);
1535 
1536 	cell = nvmem_cell_get(dev, id);
1537 	if (!IS_ERR(cell)) {
1538 		*ptr = cell;
1539 		devres_add(dev, ptr);
1540 	} else {
1541 		devres_free(ptr);
1542 	}
1543 
1544 	return cell;
1545 }
1546 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1547 
1548 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1549 {
1550 	struct nvmem_cell **c = res;
1551 
1552 	if (WARN_ON(!c || !*c))
1553 		return 0;
1554 
1555 	return *c == data;
1556 }
1557 
1558 /**
1559  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1560  * from devm_nvmem_cell_get.
1561  *
1562  * @dev: Device that requests the nvmem cell.
1563  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1564  */
1565 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1566 {
1567 	int ret;
1568 
1569 	ret = devres_release(dev, devm_nvmem_cell_release,
1570 				devm_nvmem_cell_match, cell);
1571 
1572 	WARN_ON(ret);
1573 }
1574 EXPORT_SYMBOL(devm_nvmem_cell_put);
1575 
1576 /**
1577  * nvmem_cell_put() - Release previously allocated nvmem cell.
1578  *
1579  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1580  */
1581 void nvmem_cell_put(struct nvmem_cell *cell)
1582 {
1583 	struct nvmem_device *nvmem = cell->entry->nvmem;
1584 
1585 	if (cell->id)
1586 		kfree_const(cell->id);
1587 
1588 	kfree(cell);
1589 	__nvmem_device_put(nvmem);
1590 	nvmem_layout_module_put(nvmem);
1591 }
1592 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1593 
1594 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1595 {
1596 	u8 *p, *b;
1597 	int i, extra, bit_offset = cell->bit_offset;
1598 
1599 	p = b = buf;
1600 	if (bit_offset) {
1601 		/* First shift */
1602 		*b++ >>= bit_offset;
1603 
1604 		/* setup rest of the bytes if any */
1605 		for (i = 1; i < cell->bytes; i++) {
1606 			/* Get bits from next byte and shift them towards msb */
1607 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1608 
1609 			p = b;
1610 			*b++ >>= bit_offset;
1611 		}
1612 	} else {
1613 		/* point to the msb */
1614 		p += cell->bytes - 1;
1615 	}
1616 
1617 	/* result fits in less bytes */
1618 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1619 	while (--extra >= 0)
1620 		*p-- = 0;
1621 
1622 	/* clear msb bits if any leftover in the last byte */
1623 	if (cell->nbits % BITS_PER_BYTE)
1624 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1625 }
1626 
1627 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1628 			     struct nvmem_cell_entry *cell,
1629 			     void *buf, size_t *len, const char *id, int index)
1630 {
1631 	int rc;
1632 
1633 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1634 
1635 	if (rc)
1636 		return rc;
1637 
1638 	/* shift bits in-place */
1639 	if (cell->bit_offset || cell->nbits)
1640 		nvmem_shift_read_buffer_in_place(cell, buf);
1641 
1642 	if (cell->read_post_process) {
1643 		rc = cell->read_post_process(cell->priv, id, index,
1644 					     cell->offset, buf, cell->raw_len);
1645 		if (rc)
1646 			return rc;
1647 	}
1648 
1649 	if (len)
1650 		*len = cell->bytes;
1651 
1652 	return 0;
1653 }
1654 
1655 /**
1656  * nvmem_cell_read() - Read a given nvmem cell
1657  *
1658  * @cell: nvmem cell to be read.
1659  * @len: pointer to length of cell which will be populated on successful read;
1660  *	 can be NULL.
1661  *
1662  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1663  * buffer should be freed by the consumer with a kfree().
1664  */
1665 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1666 {
1667 	struct nvmem_cell_entry *entry = cell->entry;
1668 	struct nvmem_device *nvmem = entry->nvmem;
1669 	u8 *buf;
1670 	int rc;
1671 
1672 	if (!nvmem)
1673 		return ERR_PTR(-EINVAL);
1674 
1675 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1676 	if (!buf)
1677 		return ERR_PTR(-ENOMEM);
1678 
1679 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1680 	if (rc) {
1681 		kfree(buf);
1682 		return ERR_PTR(rc);
1683 	}
1684 
1685 	return buf;
1686 }
1687 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1688 
1689 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1690 					     u8 *_buf, int len)
1691 {
1692 	struct nvmem_device *nvmem = cell->nvmem;
1693 	int i, rc, nbits, bit_offset = cell->bit_offset;
1694 	u8 v, *p, *buf, *b, pbyte, pbits;
1695 
1696 	nbits = cell->nbits;
1697 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1698 	if (!buf)
1699 		return ERR_PTR(-ENOMEM);
1700 
1701 	memcpy(buf, _buf, len);
1702 	p = b = buf;
1703 
1704 	if (bit_offset) {
1705 		pbyte = *b;
1706 		*b <<= bit_offset;
1707 
1708 		/* setup the first byte with lsb bits from nvmem */
1709 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1710 		if (rc)
1711 			goto err;
1712 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1713 
1714 		/* setup rest of the byte if any */
1715 		for (i = 1; i < cell->bytes; i++) {
1716 			/* Get last byte bits and shift them towards lsb */
1717 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1718 			pbyte = *b;
1719 			p = b;
1720 			*b <<= bit_offset;
1721 			*b++ |= pbits;
1722 		}
1723 	}
1724 
1725 	/* if it's not end on byte boundary */
1726 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1727 		/* setup the last byte with msb bits from nvmem */
1728 		rc = nvmem_reg_read(nvmem,
1729 				    cell->offset + cell->bytes - 1, &v, 1);
1730 		if (rc)
1731 			goto err;
1732 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1733 
1734 	}
1735 
1736 	return buf;
1737 err:
1738 	kfree(buf);
1739 	return ERR_PTR(rc);
1740 }
1741 
1742 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1743 {
1744 	struct nvmem_device *nvmem = cell->nvmem;
1745 	int rc;
1746 
1747 	if (!nvmem || nvmem->read_only ||
1748 	    (cell->bit_offset == 0 && len != cell->bytes))
1749 		return -EINVAL;
1750 
1751 	/*
1752 	 * Any cells which have a read_post_process hook are read-only because
1753 	 * we cannot reverse the operation and it might affect other cells,
1754 	 * too.
1755 	 */
1756 	if (cell->read_post_process)
1757 		return -EINVAL;
1758 
1759 	if (cell->bit_offset || cell->nbits) {
1760 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1761 		if (IS_ERR(buf))
1762 			return PTR_ERR(buf);
1763 	}
1764 
1765 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1766 
1767 	/* free the tmp buffer */
1768 	if (cell->bit_offset || cell->nbits)
1769 		kfree(buf);
1770 
1771 	if (rc)
1772 		return rc;
1773 
1774 	return len;
1775 }
1776 
1777 /**
1778  * nvmem_cell_write() - Write to a given nvmem cell
1779  *
1780  * @cell: nvmem cell to be written.
1781  * @buf: Buffer to be written.
1782  * @len: length of buffer to be written to nvmem cell.
1783  *
1784  * Return: length of bytes written or negative on failure.
1785  */
1786 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1787 {
1788 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1789 }
1790 
1791 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1792 
1793 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1794 				  void *val, size_t count)
1795 {
1796 	struct nvmem_cell *cell;
1797 	void *buf;
1798 	size_t len;
1799 
1800 	cell = nvmem_cell_get(dev, cell_id);
1801 	if (IS_ERR(cell))
1802 		return PTR_ERR(cell);
1803 
1804 	buf = nvmem_cell_read(cell, &len);
1805 	if (IS_ERR(buf)) {
1806 		nvmem_cell_put(cell);
1807 		return PTR_ERR(buf);
1808 	}
1809 	if (len != count) {
1810 		kfree(buf);
1811 		nvmem_cell_put(cell);
1812 		return -EINVAL;
1813 	}
1814 	memcpy(val, buf, count);
1815 	kfree(buf);
1816 	nvmem_cell_put(cell);
1817 
1818 	return 0;
1819 }
1820 
1821 /**
1822  * nvmem_cell_read_u8() - Read a cell value as a u8
1823  *
1824  * @dev: Device that requests the nvmem cell.
1825  * @cell_id: Name of nvmem cell to read.
1826  * @val: pointer to output value.
1827  *
1828  * Return: 0 on success or negative errno.
1829  */
1830 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1831 {
1832 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1833 }
1834 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1835 
1836 /**
1837  * nvmem_cell_read_u16() - Read a cell value as a u16
1838  *
1839  * @dev: Device that requests the nvmem cell.
1840  * @cell_id: Name of nvmem cell to read.
1841  * @val: pointer to output value.
1842  *
1843  * Return: 0 on success or negative errno.
1844  */
1845 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1846 {
1847 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1848 }
1849 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1850 
1851 /**
1852  * nvmem_cell_read_u32() - Read a cell value as a u32
1853  *
1854  * @dev: Device that requests the nvmem cell.
1855  * @cell_id: Name of nvmem cell to read.
1856  * @val: pointer to output value.
1857  *
1858  * Return: 0 on success or negative errno.
1859  */
1860 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1861 {
1862 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1863 }
1864 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1865 
1866 /**
1867  * nvmem_cell_read_u64() - Read a cell value as a u64
1868  *
1869  * @dev: Device that requests the nvmem cell.
1870  * @cell_id: Name of nvmem cell to read.
1871  * @val: pointer to output value.
1872  *
1873  * Return: 0 on success or negative errno.
1874  */
1875 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1876 {
1877 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1878 }
1879 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1880 
1881 static const void *nvmem_cell_read_variable_common(struct device *dev,
1882 						   const char *cell_id,
1883 						   size_t max_len, size_t *len)
1884 {
1885 	struct nvmem_cell *cell;
1886 	int nbits;
1887 	void *buf;
1888 
1889 	cell = nvmem_cell_get(dev, cell_id);
1890 	if (IS_ERR(cell))
1891 		return cell;
1892 
1893 	nbits = cell->entry->nbits;
1894 	buf = nvmem_cell_read(cell, len);
1895 	nvmem_cell_put(cell);
1896 	if (IS_ERR(buf))
1897 		return buf;
1898 
1899 	/*
1900 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1901 	 * the length of the real data. Throw away the extra junk.
1902 	 */
1903 	if (nbits)
1904 		*len = DIV_ROUND_UP(nbits, 8);
1905 
1906 	if (*len > max_len) {
1907 		kfree(buf);
1908 		return ERR_PTR(-ERANGE);
1909 	}
1910 
1911 	return buf;
1912 }
1913 
1914 /**
1915  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1916  *
1917  * @dev: Device that requests the nvmem cell.
1918  * @cell_id: Name of nvmem cell to read.
1919  * @val: pointer to output value.
1920  *
1921  * Return: 0 on success or negative errno.
1922  */
1923 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1924 				    u32 *val)
1925 {
1926 	size_t len;
1927 	const u8 *buf;
1928 	int i;
1929 
1930 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1931 	if (IS_ERR(buf))
1932 		return PTR_ERR(buf);
1933 
1934 	/* Copy w/ implicit endian conversion */
1935 	*val = 0;
1936 	for (i = 0; i < len; i++)
1937 		*val |= buf[i] << (8 * i);
1938 
1939 	kfree(buf);
1940 
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1944 
1945 /**
1946  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1947  *
1948  * @dev: Device that requests the nvmem cell.
1949  * @cell_id: Name of nvmem cell to read.
1950  * @val: pointer to output value.
1951  *
1952  * Return: 0 on success or negative errno.
1953  */
1954 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1955 				    u64 *val)
1956 {
1957 	size_t len;
1958 	const u8 *buf;
1959 	int i;
1960 
1961 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1962 	if (IS_ERR(buf))
1963 		return PTR_ERR(buf);
1964 
1965 	/* Copy w/ implicit endian conversion */
1966 	*val = 0;
1967 	for (i = 0; i < len; i++)
1968 		*val |= (uint64_t)buf[i] << (8 * i);
1969 
1970 	kfree(buf);
1971 
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1975 
1976 /**
1977  * nvmem_device_cell_read() - Read a given nvmem device and cell
1978  *
1979  * @nvmem: nvmem device to read from.
1980  * @info: nvmem cell info to be read.
1981  * @buf: buffer pointer which will be populated on successful read.
1982  *
1983  * Return: length of successful bytes read on success and negative
1984  * error code on error.
1985  */
1986 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1987 			   struct nvmem_cell_info *info, void *buf)
1988 {
1989 	struct nvmem_cell_entry cell;
1990 	int rc;
1991 	ssize_t len;
1992 
1993 	if (!nvmem)
1994 		return -EINVAL;
1995 
1996 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1997 	if (rc)
1998 		return rc;
1999 
2000 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2001 	if (rc)
2002 		return rc;
2003 
2004 	return len;
2005 }
2006 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2007 
2008 /**
2009  * nvmem_device_cell_write() - Write cell to a given nvmem device
2010  *
2011  * @nvmem: nvmem device to be written to.
2012  * @info: nvmem cell info to be written.
2013  * @buf: buffer to be written to cell.
2014  *
2015  * Return: length of bytes written or negative error code on failure.
2016  */
2017 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2018 			    struct nvmem_cell_info *info, void *buf)
2019 {
2020 	struct nvmem_cell_entry cell;
2021 	int rc;
2022 
2023 	if (!nvmem)
2024 		return -EINVAL;
2025 
2026 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2027 	if (rc)
2028 		return rc;
2029 
2030 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2031 }
2032 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2033 
2034 /**
2035  * nvmem_device_read() - Read from a given nvmem device
2036  *
2037  * @nvmem: nvmem device to read from.
2038  * @offset: offset in nvmem device.
2039  * @bytes: number of bytes to read.
2040  * @buf: buffer pointer which will be populated on successful read.
2041  *
2042  * Return: length of successful bytes read on success and negative
2043  * error code on error.
2044  */
2045 int nvmem_device_read(struct nvmem_device *nvmem,
2046 		      unsigned int offset,
2047 		      size_t bytes, void *buf)
2048 {
2049 	int rc;
2050 
2051 	if (!nvmem)
2052 		return -EINVAL;
2053 
2054 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2055 
2056 	if (rc)
2057 		return rc;
2058 
2059 	return bytes;
2060 }
2061 EXPORT_SYMBOL_GPL(nvmem_device_read);
2062 
2063 /**
2064  * nvmem_device_write() - Write cell to a given nvmem device
2065  *
2066  * @nvmem: nvmem device to be written to.
2067  * @offset: offset in nvmem device.
2068  * @bytes: number of bytes to write.
2069  * @buf: buffer to be written.
2070  *
2071  * Return: length of bytes written or negative error code on failure.
2072  */
2073 int nvmem_device_write(struct nvmem_device *nvmem,
2074 		       unsigned int offset,
2075 		       size_t bytes, void *buf)
2076 {
2077 	int rc;
2078 
2079 	if (!nvmem)
2080 		return -EINVAL;
2081 
2082 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2083 
2084 	if (rc)
2085 		return rc;
2086 
2087 
2088 	return bytes;
2089 }
2090 EXPORT_SYMBOL_GPL(nvmem_device_write);
2091 
2092 /**
2093  * nvmem_add_cell_table() - register a table of cell info entries
2094  *
2095  * @table: table of cell info entries
2096  */
2097 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2098 {
2099 	mutex_lock(&nvmem_cell_mutex);
2100 	list_add_tail(&table->node, &nvmem_cell_tables);
2101 	mutex_unlock(&nvmem_cell_mutex);
2102 }
2103 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2104 
2105 /**
2106  * nvmem_del_cell_table() - remove a previously registered cell info table
2107  *
2108  * @table: table of cell info entries
2109  */
2110 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2111 {
2112 	mutex_lock(&nvmem_cell_mutex);
2113 	list_del(&table->node);
2114 	mutex_unlock(&nvmem_cell_mutex);
2115 }
2116 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2117 
2118 /**
2119  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2120  *
2121  * @entries: array of cell lookup entries
2122  * @nentries: number of cell lookup entries in the array
2123  */
2124 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2125 {
2126 	int i;
2127 
2128 	mutex_lock(&nvmem_lookup_mutex);
2129 	for (i = 0; i < nentries; i++)
2130 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2131 	mutex_unlock(&nvmem_lookup_mutex);
2132 }
2133 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2134 
2135 /**
2136  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2137  *                            entries
2138  *
2139  * @entries: array of cell lookup entries
2140  * @nentries: number of cell lookup entries in the array
2141  */
2142 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2143 {
2144 	int i;
2145 
2146 	mutex_lock(&nvmem_lookup_mutex);
2147 	for (i = 0; i < nentries; i++)
2148 		list_del(&entries[i].node);
2149 	mutex_unlock(&nvmem_lookup_mutex);
2150 }
2151 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2152 
2153 /**
2154  * nvmem_dev_name() - Get the name of a given nvmem device.
2155  *
2156  * @nvmem: nvmem device.
2157  *
2158  * Return: name of the nvmem device.
2159  */
2160 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2161 {
2162 	return dev_name(&nvmem->dev);
2163 }
2164 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2165 
2166 /**
2167  * nvmem_dev_size() - Get the size of a given nvmem device.
2168  *
2169  * @nvmem: nvmem device.
2170  *
2171  * Return: size of the nvmem device.
2172  */
2173 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2174 {
2175 	return nvmem->size;
2176 }
2177 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2178 
2179 static int __init nvmem_init(void)
2180 {
2181 	int ret;
2182 
2183 	ret = bus_register(&nvmem_bus_type);
2184 	if (ret)
2185 		return ret;
2186 
2187 	ret = nvmem_layout_bus_register();
2188 	if (ret)
2189 		bus_unregister(&nvmem_bus_type);
2190 
2191 	return ret;
2192 }
2193 
2194 static void __exit nvmem_exit(void)
2195 {
2196 	nvmem_layout_bus_unregister();
2197 	bus_unregister(&nvmem_bus_type);
2198 }
2199 
2200 subsys_initcall(nvmem_init);
2201 module_exit(nvmem_exit);
2202 
2203 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2204 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2205 MODULE_DESCRIPTION("nvmem Driver Core");
2206