xref: /linux/drivers/nvmem/core.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	struct nvmem_layout	*layout;
43 	void *priv;
44 };
45 
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47 
48 #define FLAG_COMPAT		BIT(0)
49 struct nvmem_cell_entry {
50 	const char		*name;
51 	int			offset;
52 	size_t			raw_len;
53 	int			bytes;
54 	int			bit_offset;
55 	int			nbits;
56 	nvmem_cell_post_process_t read_post_process;
57 	void			*priv;
58 	struct device_node	*np;
59 	struct nvmem_device	*nvmem;
60 	struct list_head	node;
61 };
62 
63 struct nvmem_cell {
64 	struct nvmem_cell_entry *entry;
65 	const char		*id;
66 	int			index;
67 };
68 
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71 
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74 
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77 
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79 
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82 
83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84 			    void *val, size_t bytes)
85 {
86 	if (nvmem->reg_read)
87 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88 
89 	return -EINVAL;
90 }
91 
92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93 			     void *val, size_t bytes)
94 {
95 	int ret;
96 
97 	if (nvmem->reg_write) {
98 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101 		return ret;
102 	}
103 
104 	return -EINVAL;
105 }
106 
107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108 				      unsigned int offset, void *val,
109 				      size_t bytes, int write)
110 {
111 
112 	unsigned int end = offset + bytes;
113 	unsigned int kend, ksize;
114 	const struct nvmem_keepout *keepout = nvmem->keepout;
115 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116 	int rc;
117 
118 	/*
119 	 * Skip all keepouts before the range being accessed.
120 	 * Keepouts are sorted.
121 	 */
122 	while ((keepout < keepoutend) && (keepout->end <= offset))
123 		keepout++;
124 
125 	while ((offset < end) && (keepout < keepoutend)) {
126 		/* Access the valid portion before the keepout. */
127 		if (offset < keepout->start) {
128 			kend = min(end, keepout->start);
129 			ksize = kend - offset;
130 			if (write)
131 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132 			else
133 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134 
135 			if (rc)
136 				return rc;
137 
138 			offset += ksize;
139 			val += ksize;
140 		}
141 
142 		/*
143 		 * Now we're aligned to the start of this keepout zone. Go
144 		 * through it.
145 		 */
146 		kend = min(end, keepout->end);
147 		ksize = kend - offset;
148 		if (!write)
149 			memset(val, keepout->value, ksize);
150 
151 		val += ksize;
152 		offset += ksize;
153 		keepout++;
154 	}
155 
156 	/*
157 	 * If we ran out of keepouts but there's still stuff to do, send it
158 	 * down directly
159 	 */
160 	if (offset < end) {
161 		ksize = end - offset;
162 		if (write)
163 			return __nvmem_reg_write(nvmem, offset, val, ksize);
164 		else
165 			return __nvmem_reg_read(nvmem, offset, val, ksize);
166 	}
167 
168 	return 0;
169 }
170 
171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172 			  void *val, size_t bytes)
173 {
174 	if (!nvmem->nkeepout)
175 		return __nvmem_reg_read(nvmem, offset, val, bytes);
176 
177 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179 
180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181 			   void *val, size_t bytes)
182 {
183 	if (!nvmem->nkeepout)
184 		return __nvmem_reg_write(nvmem, offset, val, bytes);
185 
186 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188 
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
192 	[NVMEM_TYPE_EEPROM] = "EEPROM",
193 	[NVMEM_TYPE_OTP] = "OTP",
194 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195 	[NVMEM_TYPE_FRAM] = "FRAM",
196 };
197 
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201 
202 static ssize_t type_show(struct device *dev,
203 			 struct device_attribute *attr, char *buf)
204 {
205 	struct nvmem_device *nvmem = to_nvmem_device(dev);
206 
207 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209 
210 static DEVICE_ATTR_RO(type);
211 
212 static struct attribute *nvmem_attrs[] = {
213 	&dev_attr_type.attr,
214 	NULL,
215 };
216 
217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218 				   struct bin_attribute *attr, char *buf,
219 				   loff_t pos, size_t count)
220 {
221 	struct device *dev;
222 	struct nvmem_device *nvmem;
223 	int rc;
224 
225 	if (attr->private)
226 		dev = attr->private;
227 	else
228 		dev = kobj_to_dev(kobj);
229 	nvmem = to_nvmem_device(dev);
230 
231 	/* Stop the user from reading */
232 	if (pos >= nvmem->size)
233 		return 0;
234 
235 	if (!IS_ALIGNED(pos, nvmem->stride))
236 		return -EINVAL;
237 
238 	if (count < nvmem->word_size)
239 		return -EINVAL;
240 
241 	if (pos + count > nvmem->size)
242 		count = nvmem->size - pos;
243 
244 	count = round_down(count, nvmem->word_size);
245 
246 	if (!nvmem->reg_read)
247 		return -EPERM;
248 
249 	rc = nvmem_reg_read(nvmem, pos, buf, count);
250 
251 	if (rc)
252 		return rc;
253 
254 	return count;
255 }
256 
257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258 				    struct bin_attribute *attr, char *buf,
259 				    loff_t pos, size_t count)
260 {
261 	struct device *dev;
262 	struct nvmem_device *nvmem;
263 	int rc;
264 
265 	if (attr->private)
266 		dev = attr->private;
267 	else
268 		dev = kobj_to_dev(kobj);
269 	nvmem = to_nvmem_device(dev);
270 
271 	/* Stop the user from writing */
272 	if (pos >= nvmem->size)
273 		return -EFBIG;
274 
275 	if (!IS_ALIGNED(pos, nvmem->stride))
276 		return -EINVAL;
277 
278 	if (count < nvmem->word_size)
279 		return -EINVAL;
280 
281 	if (pos + count > nvmem->size)
282 		count = nvmem->size - pos;
283 
284 	count = round_down(count, nvmem->word_size);
285 
286 	if (!nvmem->reg_write)
287 		return -EPERM;
288 
289 	rc = nvmem_reg_write(nvmem, pos, buf, count);
290 
291 	if (rc)
292 		return rc;
293 
294 	return count;
295 }
296 
297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299 	umode_t mode = 0400;
300 
301 	if (!nvmem->root_only)
302 		mode |= 0044;
303 
304 	if (!nvmem->read_only)
305 		mode |= 0200;
306 
307 	if (!nvmem->reg_write)
308 		mode &= ~0200;
309 
310 	if (!nvmem->reg_read)
311 		mode &= ~0444;
312 
313 	return mode;
314 }
315 
316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317 					 struct bin_attribute *attr, int i)
318 {
319 	struct device *dev = kobj_to_dev(kobj);
320 	struct nvmem_device *nvmem = to_nvmem_device(dev);
321 
322 	attr->size = nvmem->size;
323 
324 	return nvmem_bin_attr_get_umode(nvmem);
325 }
326 
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329 	.attr	= {
330 		.name	= "nvmem",
331 		.mode	= 0644,
332 	},
333 	.read	= bin_attr_nvmem_read,
334 	.write	= bin_attr_nvmem_write,
335 };
336 
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338 	&bin_attr_rw_nvmem,
339 	NULL,
340 };
341 
342 static const struct attribute_group nvmem_bin_group = {
343 	.bin_attrs	= nvmem_bin_attributes,
344 	.attrs		= nvmem_attrs,
345 	.is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347 
348 static const struct attribute_group *nvmem_dev_groups[] = {
349 	&nvmem_bin_group,
350 	NULL,
351 };
352 
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354 	.attr	= {
355 		.name	= "eeprom",
356 	},
357 	.read	= bin_attr_nvmem_read,
358 	.write	= bin_attr_nvmem_write,
359 };
360 
361 /*
362  * nvmem_setup_compat() - Create an additional binary entry in
363  * drivers sys directory, to be backwards compatible with the older
364  * drivers/misc/eeprom drivers.
365  */
366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367 				    const struct nvmem_config *config)
368 {
369 	int rval;
370 
371 	if (!config->compat)
372 		return 0;
373 
374 	if (!config->base_dev)
375 		return -EINVAL;
376 
377 	if (config->type == NVMEM_TYPE_FRAM)
378 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
379 
380 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
381 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
382 	nvmem->eeprom.size = nvmem->size;
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384 	nvmem->eeprom.attr.key = &eeprom_lock_key;
385 #endif
386 	nvmem->eeprom.private = &nvmem->dev;
387 	nvmem->base_dev = config->base_dev;
388 
389 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
390 	if (rval) {
391 		dev_err(&nvmem->dev,
392 			"Failed to create eeprom binary file %d\n", rval);
393 		return rval;
394 	}
395 
396 	nvmem->flags |= FLAG_COMPAT;
397 
398 	return 0;
399 }
400 
401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 			      const struct nvmem_config *config)
403 {
404 	if (config->compat)
405 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
406 }
407 
408 #else /* CONFIG_NVMEM_SYSFS */
409 
410 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
411 				    const struct nvmem_config *config)
412 {
413 	return -ENOSYS;
414 }
415 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
416 				      const struct nvmem_config *config)
417 {
418 }
419 
420 #endif /* CONFIG_NVMEM_SYSFS */
421 
422 static void nvmem_release(struct device *dev)
423 {
424 	struct nvmem_device *nvmem = to_nvmem_device(dev);
425 
426 	ida_free(&nvmem_ida, nvmem->id);
427 	gpiod_put(nvmem->wp_gpio);
428 	kfree(nvmem);
429 }
430 
431 static const struct device_type nvmem_provider_type = {
432 	.release	= nvmem_release,
433 };
434 
435 static struct bus_type nvmem_bus_type = {
436 	.name		= "nvmem",
437 };
438 
439 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
440 {
441 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
442 	mutex_lock(&nvmem_mutex);
443 	list_del(&cell->node);
444 	mutex_unlock(&nvmem_mutex);
445 	of_node_put(cell->np);
446 	kfree_const(cell->name);
447 	kfree(cell);
448 }
449 
450 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
451 {
452 	struct nvmem_cell_entry *cell, *p;
453 
454 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
455 		nvmem_cell_entry_drop(cell);
456 }
457 
458 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
459 {
460 	mutex_lock(&nvmem_mutex);
461 	list_add_tail(&cell->node, &cell->nvmem->cells);
462 	mutex_unlock(&nvmem_mutex);
463 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
464 }
465 
466 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
467 						     const struct nvmem_cell_info *info,
468 						     struct nvmem_cell_entry *cell)
469 {
470 	cell->nvmem = nvmem;
471 	cell->offset = info->offset;
472 	cell->raw_len = info->raw_len ?: info->bytes;
473 	cell->bytes = info->bytes;
474 	cell->name = info->name;
475 	cell->read_post_process = info->read_post_process;
476 	cell->priv = info->priv;
477 
478 	cell->bit_offset = info->bit_offset;
479 	cell->nbits = info->nbits;
480 	cell->np = info->np;
481 
482 	if (cell->nbits)
483 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
484 					   BITS_PER_BYTE);
485 
486 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
487 		dev_err(&nvmem->dev,
488 			"cell %s unaligned to nvmem stride %d\n",
489 			cell->name ?: "<unknown>", nvmem->stride);
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
497 					       const struct nvmem_cell_info *info,
498 					       struct nvmem_cell_entry *cell)
499 {
500 	int err;
501 
502 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
503 	if (err)
504 		return err;
505 
506 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
507 	if (!cell->name)
508 		return -ENOMEM;
509 
510 	return 0;
511 }
512 
513 /**
514  * nvmem_add_one_cell() - Add one cell information to an nvmem device
515  *
516  * @nvmem: nvmem device to add cells to.
517  * @info: nvmem cell info to add to the device
518  *
519  * Return: 0 or negative error code on failure.
520  */
521 int nvmem_add_one_cell(struct nvmem_device *nvmem,
522 		       const struct nvmem_cell_info *info)
523 {
524 	struct nvmem_cell_entry *cell;
525 	int rval;
526 
527 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
528 	if (!cell)
529 		return -ENOMEM;
530 
531 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
532 	if (rval) {
533 		kfree(cell);
534 		return rval;
535 	}
536 
537 	nvmem_cell_entry_add(cell);
538 
539 	return 0;
540 }
541 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
542 
543 /**
544  * nvmem_add_cells() - Add cell information to an nvmem device
545  *
546  * @nvmem: nvmem device to add cells to.
547  * @info: nvmem cell info to add to the device
548  * @ncells: number of cells in info
549  *
550  * Return: 0 or negative error code on failure.
551  */
552 static int nvmem_add_cells(struct nvmem_device *nvmem,
553 		    const struct nvmem_cell_info *info,
554 		    int ncells)
555 {
556 	int i, rval;
557 
558 	for (i = 0; i < ncells; i++) {
559 		rval = nvmem_add_one_cell(nvmem, &info[i]);
560 		if (rval)
561 			return rval;
562 	}
563 
564 	return 0;
565 }
566 
567 /**
568  * nvmem_register_notifier() - Register a notifier block for nvmem events.
569  *
570  * @nb: notifier block to be called on nvmem events.
571  *
572  * Return: 0 on success, negative error number on failure.
573  */
574 int nvmem_register_notifier(struct notifier_block *nb)
575 {
576 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
577 }
578 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
579 
580 /**
581  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
582  *
583  * @nb: notifier block to be unregistered.
584  *
585  * Return: 0 on success, negative error number on failure.
586  */
587 int nvmem_unregister_notifier(struct notifier_block *nb)
588 {
589 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
590 }
591 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
592 
593 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
594 {
595 	const struct nvmem_cell_info *info;
596 	struct nvmem_cell_table *table;
597 	struct nvmem_cell_entry *cell;
598 	int rval = 0, i;
599 
600 	mutex_lock(&nvmem_cell_mutex);
601 	list_for_each_entry(table, &nvmem_cell_tables, node) {
602 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
603 			for (i = 0; i < table->ncells; i++) {
604 				info = &table->cells[i];
605 
606 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
607 				if (!cell) {
608 					rval = -ENOMEM;
609 					goto out;
610 				}
611 
612 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
613 				if (rval) {
614 					kfree(cell);
615 					goto out;
616 				}
617 
618 				nvmem_cell_entry_add(cell);
619 			}
620 		}
621 	}
622 
623 out:
624 	mutex_unlock(&nvmem_cell_mutex);
625 	return rval;
626 }
627 
628 static struct nvmem_cell_entry *
629 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
630 {
631 	struct nvmem_cell_entry *iter, *cell = NULL;
632 
633 	mutex_lock(&nvmem_mutex);
634 	list_for_each_entry(iter, &nvmem->cells, node) {
635 		if (strcmp(cell_id, iter->name) == 0) {
636 			cell = iter;
637 			break;
638 		}
639 	}
640 	mutex_unlock(&nvmem_mutex);
641 
642 	return cell;
643 }
644 
645 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
646 {
647 	unsigned int cur = 0;
648 	const struct nvmem_keepout *keepout = nvmem->keepout;
649 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
650 
651 	while (keepout < keepoutend) {
652 		/* Ensure keepouts are sorted and don't overlap. */
653 		if (keepout->start < cur) {
654 			dev_err(&nvmem->dev,
655 				"Keepout regions aren't sorted or overlap.\n");
656 
657 			return -ERANGE;
658 		}
659 
660 		if (keepout->end < keepout->start) {
661 			dev_err(&nvmem->dev,
662 				"Invalid keepout region.\n");
663 
664 			return -EINVAL;
665 		}
666 
667 		/*
668 		 * Validate keepouts (and holes between) don't violate
669 		 * word_size constraints.
670 		 */
671 		if ((keepout->end - keepout->start < nvmem->word_size) ||
672 		    ((keepout->start != cur) &&
673 		     (keepout->start - cur < nvmem->word_size))) {
674 
675 			dev_err(&nvmem->dev,
676 				"Keepout regions violate word_size constraints.\n");
677 
678 			return -ERANGE;
679 		}
680 
681 		/* Validate keepouts don't violate stride (alignment). */
682 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
683 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
684 
685 			dev_err(&nvmem->dev,
686 				"Keepout regions violate stride.\n");
687 
688 			return -EINVAL;
689 		}
690 
691 		cur = keepout->end;
692 		keepout++;
693 	}
694 
695 	return 0;
696 }
697 
698 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
699 {
700 	struct nvmem_layout *layout = nvmem->layout;
701 	struct device *dev = &nvmem->dev;
702 	struct device_node *child;
703 	const __be32 *addr;
704 	int len, ret;
705 
706 	for_each_child_of_node(np, child) {
707 		struct nvmem_cell_info info = {0};
708 
709 		addr = of_get_property(child, "reg", &len);
710 		if (!addr)
711 			continue;
712 		if (len < 2 * sizeof(u32)) {
713 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
714 			of_node_put(child);
715 			return -EINVAL;
716 		}
717 
718 		info.offset = be32_to_cpup(addr++);
719 		info.bytes = be32_to_cpup(addr);
720 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
721 
722 		addr = of_get_property(child, "bits", &len);
723 		if (addr && len == (2 * sizeof(u32))) {
724 			info.bit_offset = be32_to_cpup(addr++);
725 			info.nbits = be32_to_cpup(addr);
726 		}
727 
728 		info.np = of_node_get(child);
729 
730 		if (layout && layout->fixup_cell_info)
731 			layout->fixup_cell_info(nvmem, layout, &info);
732 
733 		ret = nvmem_add_one_cell(nvmem, &info);
734 		kfree(info.name);
735 		if (ret) {
736 			of_node_put(child);
737 			return ret;
738 		}
739 	}
740 
741 	return 0;
742 }
743 
744 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
745 {
746 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
747 }
748 
749 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
750 {
751 	struct device_node *layout_np;
752 	int err = 0;
753 
754 	layout_np = of_nvmem_layout_get_container(nvmem);
755 	if (!layout_np)
756 		return 0;
757 
758 	if (of_device_is_compatible(layout_np, "fixed-layout"))
759 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
760 
761 	of_node_put(layout_np);
762 
763 	return err;
764 }
765 
766 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
767 {
768 	layout->owner = owner;
769 
770 	spin_lock(&nvmem_layout_lock);
771 	list_add(&layout->node, &nvmem_layouts);
772 	spin_unlock(&nvmem_layout_lock);
773 
774 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
775 
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
779 
780 void nvmem_layout_unregister(struct nvmem_layout *layout)
781 {
782 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
783 
784 	spin_lock(&nvmem_layout_lock);
785 	list_del(&layout->node);
786 	spin_unlock(&nvmem_layout_lock);
787 }
788 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
789 
790 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
791 {
792 	struct device_node *layout_np;
793 	struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
794 
795 	layout_np = of_nvmem_layout_get_container(nvmem);
796 	if (!layout_np)
797 		return NULL;
798 
799 	/*
800 	 * In case the nvmem device was built-in while the layout was built as a
801 	 * module, we shall manually request the layout driver loading otherwise
802 	 * we'll never have any match.
803 	 */
804 	of_request_module(layout_np);
805 
806 	spin_lock(&nvmem_layout_lock);
807 
808 	list_for_each_entry(l, &nvmem_layouts, node) {
809 		if (of_match_node(l->of_match_table, layout_np)) {
810 			if (try_module_get(l->owner))
811 				layout = l;
812 
813 			break;
814 		}
815 	}
816 
817 	spin_unlock(&nvmem_layout_lock);
818 	of_node_put(layout_np);
819 
820 	return layout;
821 }
822 
823 static void nvmem_layout_put(struct nvmem_layout *layout)
824 {
825 	if (layout)
826 		module_put(layout->owner);
827 }
828 
829 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
830 {
831 	struct nvmem_layout *layout = nvmem->layout;
832 	int ret;
833 
834 	if (layout && layout->add_cells) {
835 		ret = layout->add_cells(&nvmem->dev, nvmem, layout);
836 		if (ret)
837 			return ret;
838 	}
839 
840 	return 0;
841 }
842 
843 #if IS_ENABLED(CONFIG_OF)
844 /**
845  * of_nvmem_layout_get_container() - Get OF node to layout container.
846  *
847  * @nvmem: nvmem device.
848  *
849  * Return: a node pointer with refcount incremented or NULL if no
850  * container exists. Use of_node_put() on it when done.
851  */
852 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
853 {
854 	return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
855 }
856 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
857 #endif
858 
859 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
860 					struct nvmem_layout *layout)
861 {
862 	struct device_node __maybe_unused *layout_np;
863 	const struct of_device_id *match;
864 
865 	layout_np = of_nvmem_layout_get_container(nvmem);
866 	match = of_match_node(layout->of_match_table, layout_np);
867 
868 	return match ? match->data : NULL;
869 }
870 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
871 
872 /**
873  * nvmem_register() - Register a nvmem device for given nvmem_config.
874  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
875  *
876  * @config: nvmem device configuration with which nvmem device is created.
877  *
878  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
879  * on success.
880  */
881 
882 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
883 {
884 	struct nvmem_device *nvmem;
885 	int rval;
886 
887 	if (!config->dev)
888 		return ERR_PTR(-EINVAL);
889 
890 	if (!config->reg_read && !config->reg_write)
891 		return ERR_PTR(-EINVAL);
892 
893 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
894 	if (!nvmem)
895 		return ERR_PTR(-ENOMEM);
896 
897 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
898 	if (rval < 0) {
899 		kfree(nvmem);
900 		return ERR_PTR(rval);
901 	}
902 
903 	nvmem->id = rval;
904 
905 	nvmem->dev.type = &nvmem_provider_type;
906 	nvmem->dev.bus = &nvmem_bus_type;
907 	nvmem->dev.parent = config->dev;
908 
909 	device_initialize(&nvmem->dev);
910 
911 	if (!config->ignore_wp)
912 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
913 						    GPIOD_OUT_HIGH);
914 	if (IS_ERR(nvmem->wp_gpio)) {
915 		rval = PTR_ERR(nvmem->wp_gpio);
916 		nvmem->wp_gpio = NULL;
917 		goto err_put_device;
918 	}
919 
920 	kref_init(&nvmem->refcnt);
921 	INIT_LIST_HEAD(&nvmem->cells);
922 
923 	nvmem->owner = config->owner;
924 	if (!nvmem->owner && config->dev->driver)
925 		nvmem->owner = config->dev->driver->owner;
926 	nvmem->stride = config->stride ?: 1;
927 	nvmem->word_size = config->word_size ?: 1;
928 	nvmem->size = config->size;
929 	nvmem->root_only = config->root_only;
930 	nvmem->priv = config->priv;
931 	nvmem->type = config->type;
932 	nvmem->reg_read = config->reg_read;
933 	nvmem->reg_write = config->reg_write;
934 	nvmem->keepout = config->keepout;
935 	nvmem->nkeepout = config->nkeepout;
936 	if (config->of_node)
937 		nvmem->dev.of_node = config->of_node;
938 	else
939 		nvmem->dev.of_node = config->dev->of_node;
940 
941 	switch (config->id) {
942 	case NVMEM_DEVID_NONE:
943 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
944 		break;
945 	case NVMEM_DEVID_AUTO:
946 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
947 		break;
948 	default:
949 		rval = dev_set_name(&nvmem->dev, "%s%d",
950 			     config->name ? : "nvmem",
951 			     config->name ? config->id : nvmem->id);
952 		break;
953 	}
954 
955 	if (rval)
956 		goto err_put_device;
957 
958 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
959 			   config->read_only || !nvmem->reg_write;
960 
961 #ifdef CONFIG_NVMEM_SYSFS
962 	nvmem->dev.groups = nvmem_dev_groups;
963 #endif
964 
965 	if (nvmem->nkeepout) {
966 		rval = nvmem_validate_keepouts(nvmem);
967 		if (rval)
968 			goto err_put_device;
969 	}
970 
971 	if (config->compat) {
972 		rval = nvmem_sysfs_setup_compat(nvmem, config);
973 		if (rval)
974 			goto err_put_device;
975 	}
976 
977 	/*
978 	 * If the driver supplied a layout by config->layout, the module
979 	 * pointer will be NULL and nvmem_layout_put() will be a noop.
980 	 */
981 	nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
982 	if (IS_ERR(nvmem->layout)) {
983 		rval = PTR_ERR(nvmem->layout);
984 		nvmem->layout = NULL;
985 
986 		if (rval == -EPROBE_DEFER)
987 			goto err_teardown_compat;
988 	}
989 
990 	if (config->cells) {
991 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
992 		if (rval)
993 			goto err_remove_cells;
994 	}
995 
996 	rval = nvmem_add_cells_from_table(nvmem);
997 	if (rval)
998 		goto err_remove_cells;
999 
1000 	if (config->add_legacy_fixed_of_cells) {
1001 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1002 		if (rval)
1003 			goto err_remove_cells;
1004 	}
1005 
1006 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1007 	if (rval)
1008 		goto err_remove_cells;
1009 
1010 	rval = nvmem_add_cells_from_layout(nvmem);
1011 	if (rval)
1012 		goto err_remove_cells;
1013 
1014 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1015 
1016 	rval = device_add(&nvmem->dev);
1017 	if (rval)
1018 		goto err_remove_cells;
1019 
1020 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1021 
1022 	return nvmem;
1023 
1024 err_remove_cells:
1025 	nvmem_device_remove_all_cells(nvmem);
1026 	nvmem_layout_put(nvmem->layout);
1027 err_teardown_compat:
1028 	if (config->compat)
1029 		nvmem_sysfs_remove_compat(nvmem, config);
1030 err_put_device:
1031 	put_device(&nvmem->dev);
1032 
1033 	return ERR_PTR(rval);
1034 }
1035 EXPORT_SYMBOL_GPL(nvmem_register);
1036 
1037 static void nvmem_device_release(struct kref *kref)
1038 {
1039 	struct nvmem_device *nvmem;
1040 
1041 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1042 
1043 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1044 
1045 	if (nvmem->flags & FLAG_COMPAT)
1046 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1047 
1048 	nvmem_device_remove_all_cells(nvmem);
1049 	nvmem_layout_put(nvmem->layout);
1050 	device_unregister(&nvmem->dev);
1051 }
1052 
1053 /**
1054  * nvmem_unregister() - Unregister previously registered nvmem device
1055  *
1056  * @nvmem: Pointer to previously registered nvmem device.
1057  */
1058 void nvmem_unregister(struct nvmem_device *nvmem)
1059 {
1060 	if (nvmem)
1061 		kref_put(&nvmem->refcnt, nvmem_device_release);
1062 }
1063 EXPORT_SYMBOL_GPL(nvmem_unregister);
1064 
1065 static void devm_nvmem_unregister(void *nvmem)
1066 {
1067 	nvmem_unregister(nvmem);
1068 }
1069 
1070 /**
1071  * devm_nvmem_register() - Register a managed nvmem device for given
1072  * nvmem_config.
1073  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1074  *
1075  * @dev: Device that uses the nvmem device.
1076  * @config: nvmem device configuration with which nvmem device is created.
1077  *
1078  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1079  * on success.
1080  */
1081 struct nvmem_device *devm_nvmem_register(struct device *dev,
1082 					 const struct nvmem_config *config)
1083 {
1084 	struct nvmem_device *nvmem;
1085 	int ret;
1086 
1087 	nvmem = nvmem_register(config);
1088 	if (IS_ERR(nvmem))
1089 		return nvmem;
1090 
1091 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1092 	if (ret)
1093 		return ERR_PTR(ret);
1094 
1095 	return nvmem;
1096 }
1097 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1098 
1099 static struct nvmem_device *__nvmem_device_get(void *data,
1100 			int (*match)(struct device *dev, const void *data))
1101 {
1102 	struct nvmem_device *nvmem = NULL;
1103 	struct device *dev;
1104 
1105 	mutex_lock(&nvmem_mutex);
1106 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1107 	if (dev)
1108 		nvmem = to_nvmem_device(dev);
1109 	mutex_unlock(&nvmem_mutex);
1110 	if (!nvmem)
1111 		return ERR_PTR(-EPROBE_DEFER);
1112 
1113 	if (!try_module_get(nvmem->owner)) {
1114 		dev_err(&nvmem->dev,
1115 			"could not increase module refcount for cell %s\n",
1116 			nvmem_dev_name(nvmem));
1117 
1118 		put_device(&nvmem->dev);
1119 		return ERR_PTR(-EINVAL);
1120 	}
1121 
1122 	kref_get(&nvmem->refcnt);
1123 
1124 	return nvmem;
1125 }
1126 
1127 static void __nvmem_device_put(struct nvmem_device *nvmem)
1128 {
1129 	put_device(&nvmem->dev);
1130 	module_put(nvmem->owner);
1131 	kref_put(&nvmem->refcnt, nvmem_device_release);
1132 }
1133 
1134 #if IS_ENABLED(CONFIG_OF)
1135 /**
1136  * of_nvmem_device_get() - Get nvmem device from a given id
1137  *
1138  * @np: Device tree node that uses the nvmem device.
1139  * @id: nvmem name from nvmem-names property.
1140  *
1141  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1142  * on success.
1143  */
1144 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1145 {
1146 
1147 	struct device_node *nvmem_np;
1148 	struct nvmem_device *nvmem;
1149 	int index = 0;
1150 
1151 	if (id)
1152 		index = of_property_match_string(np, "nvmem-names", id);
1153 
1154 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1155 	if (!nvmem_np)
1156 		return ERR_PTR(-ENOENT);
1157 
1158 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1159 	of_node_put(nvmem_np);
1160 	return nvmem;
1161 }
1162 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1163 #endif
1164 
1165 /**
1166  * nvmem_device_get() - Get nvmem device from a given id
1167  *
1168  * @dev: Device that uses the nvmem device.
1169  * @dev_name: name of the requested nvmem device.
1170  *
1171  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1172  * on success.
1173  */
1174 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1175 {
1176 	if (dev->of_node) { /* try dt first */
1177 		struct nvmem_device *nvmem;
1178 
1179 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1180 
1181 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1182 			return nvmem;
1183 
1184 	}
1185 
1186 	return __nvmem_device_get((void *)dev_name, device_match_name);
1187 }
1188 EXPORT_SYMBOL_GPL(nvmem_device_get);
1189 
1190 /**
1191  * nvmem_device_find() - Find nvmem device with matching function
1192  *
1193  * @data: Data to pass to match function
1194  * @match: Callback function to check device
1195  *
1196  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1197  * on success.
1198  */
1199 struct nvmem_device *nvmem_device_find(void *data,
1200 			int (*match)(struct device *dev, const void *data))
1201 {
1202 	return __nvmem_device_get(data, match);
1203 }
1204 EXPORT_SYMBOL_GPL(nvmem_device_find);
1205 
1206 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1207 {
1208 	struct nvmem_device **nvmem = res;
1209 
1210 	if (WARN_ON(!nvmem || !*nvmem))
1211 		return 0;
1212 
1213 	return *nvmem == data;
1214 }
1215 
1216 static void devm_nvmem_device_release(struct device *dev, void *res)
1217 {
1218 	nvmem_device_put(*(struct nvmem_device **)res);
1219 }
1220 
1221 /**
1222  * devm_nvmem_device_put() - put alredy got nvmem device
1223  *
1224  * @dev: Device that uses the nvmem device.
1225  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1226  * that needs to be released.
1227  */
1228 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1229 {
1230 	int ret;
1231 
1232 	ret = devres_release(dev, devm_nvmem_device_release,
1233 			     devm_nvmem_device_match, nvmem);
1234 
1235 	WARN_ON(ret);
1236 }
1237 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1238 
1239 /**
1240  * nvmem_device_put() - put alredy got nvmem device
1241  *
1242  * @nvmem: pointer to nvmem device that needs to be released.
1243  */
1244 void nvmem_device_put(struct nvmem_device *nvmem)
1245 {
1246 	__nvmem_device_put(nvmem);
1247 }
1248 EXPORT_SYMBOL_GPL(nvmem_device_put);
1249 
1250 /**
1251  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1252  *
1253  * @dev: Device that requests the nvmem device.
1254  * @id: name id for the requested nvmem device.
1255  *
1256  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1257  * on success.  The nvmem_cell will be freed by the automatically once the
1258  * device is freed.
1259  */
1260 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1261 {
1262 	struct nvmem_device **ptr, *nvmem;
1263 
1264 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1265 	if (!ptr)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	nvmem = nvmem_device_get(dev, id);
1269 	if (!IS_ERR(nvmem)) {
1270 		*ptr = nvmem;
1271 		devres_add(dev, ptr);
1272 	} else {
1273 		devres_free(ptr);
1274 	}
1275 
1276 	return nvmem;
1277 }
1278 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1279 
1280 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1281 					    const char *id, int index)
1282 {
1283 	struct nvmem_cell *cell;
1284 	const char *name = NULL;
1285 
1286 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1287 	if (!cell)
1288 		return ERR_PTR(-ENOMEM);
1289 
1290 	if (id) {
1291 		name = kstrdup_const(id, GFP_KERNEL);
1292 		if (!name) {
1293 			kfree(cell);
1294 			return ERR_PTR(-ENOMEM);
1295 		}
1296 	}
1297 
1298 	cell->id = name;
1299 	cell->entry = entry;
1300 	cell->index = index;
1301 
1302 	return cell;
1303 }
1304 
1305 static struct nvmem_cell *
1306 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1307 {
1308 	struct nvmem_cell_entry *cell_entry;
1309 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1310 	struct nvmem_cell_lookup *lookup;
1311 	struct nvmem_device *nvmem;
1312 	const char *dev_id;
1313 
1314 	if (!dev)
1315 		return ERR_PTR(-EINVAL);
1316 
1317 	dev_id = dev_name(dev);
1318 
1319 	mutex_lock(&nvmem_lookup_mutex);
1320 
1321 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1322 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1323 		    (strcmp(lookup->con_id, con_id) == 0)) {
1324 			/* This is the right entry. */
1325 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1326 						   device_match_name);
1327 			if (IS_ERR(nvmem)) {
1328 				/* Provider may not be registered yet. */
1329 				cell = ERR_CAST(nvmem);
1330 				break;
1331 			}
1332 
1333 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1334 								   lookup->cell_name);
1335 			if (!cell_entry) {
1336 				__nvmem_device_put(nvmem);
1337 				cell = ERR_PTR(-ENOENT);
1338 			} else {
1339 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1340 				if (IS_ERR(cell))
1341 					__nvmem_device_put(nvmem);
1342 			}
1343 			break;
1344 		}
1345 	}
1346 
1347 	mutex_unlock(&nvmem_lookup_mutex);
1348 	return cell;
1349 }
1350 
1351 #if IS_ENABLED(CONFIG_OF)
1352 static struct nvmem_cell_entry *
1353 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1354 {
1355 	struct nvmem_cell_entry *iter, *cell = NULL;
1356 
1357 	mutex_lock(&nvmem_mutex);
1358 	list_for_each_entry(iter, &nvmem->cells, node) {
1359 		if (np == iter->np) {
1360 			cell = iter;
1361 			break;
1362 		}
1363 	}
1364 	mutex_unlock(&nvmem_mutex);
1365 
1366 	return cell;
1367 }
1368 
1369 /**
1370  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1371  *
1372  * @np: Device tree node that uses the nvmem cell.
1373  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1374  *      for the cell at index 0 (the lone cell with no accompanying
1375  *      nvmem-cell-names property).
1376  *
1377  * Return: Will be an ERR_PTR() on error or a valid pointer
1378  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1379  * nvmem_cell_put().
1380  */
1381 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1382 {
1383 	struct device_node *cell_np, *nvmem_np;
1384 	struct nvmem_device *nvmem;
1385 	struct nvmem_cell_entry *cell_entry;
1386 	struct nvmem_cell *cell;
1387 	struct of_phandle_args cell_spec;
1388 	int index = 0;
1389 	int cell_index = 0;
1390 	int ret;
1391 
1392 	/* if cell name exists, find index to the name */
1393 	if (id)
1394 		index = of_property_match_string(np, "nvmem-cell-names", id);
1395 
1396 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1397 						  "#nvmem-cell-cells",
1398 						  index, &cell_spec);
1399 	if (ret)
1400 		return ERR_PTR(-ENOENT);
1401 
1402 	if (cell_spec.args_count > 1)
1403 		return ERR_PTR(-EINVAL);
1404 
1405 	cell_np = cell_spec.np;
1406 	if (cell_spec.args_count)
1407 		cell_index = cell_spec.args[0];
1408 
1409 	nvmem_np = of_get_parent(cell_np);
1410 	if (!nvmem_np) {
1411 		of_node_put(cell_np);
1412 		return ERR_PTR(-EINVAL);
1413 	}
1414 
1415 	/* nvmem layouts produce cells within the nvmem-layout container */
1416 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1417 		nvmem_np = of_get_next_parent(nvmem_np);
1418 		if (!nvmem_np) {
1419 			of_node_put(cell_np);
1420 			return ERR_PTR(-EINVAL);
1421 		}
1422 	}
1423 
1424 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1425 	of_node_put(nvmem_np);
1426 	if (IS_ERR(nvmem)) {
1427 		of_node_put(cell_np);
1428 		return ERR_CAST(nvmem);
1429 	}
1430 
1431 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1432 	of_node_put(cell_np);
1433 	if (!cell_entry) {
1434 		__nvmem_device_put(nvmem);
1435 		return ERR_PTR(-ENOENT);
1436 	}
1437 
1438 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1439 	if (IS_ERR(cell))
1440 		__nvmem_device_put(nvmem);
1441 
1442 	return cell;
1443 }
1444 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1445 #endif
1446 
1447 /**
1448  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1449  *
1450  * @dev: Device that requests the nvmem cell.
1451  * @id: nvmem cell name to get (this corresponds with the name from the
1452  *      nvmem-cell-names property for DT systems and with the con_id from
1453  *      the lookup entry for non-DT systems).
1454  *
1455  * Return: Will be an ERR_PTR() on error or a valid pointer
1456  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1457  * nvmem_cell_put().
1458  */
1459 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1460 {
1461 	struct nvmem_cell *cell;
1462 
1463 	if (dev->of_node) { /* try dt first */
1464 		cell = of_nvmem_cell_get(dev->of_node, id);
1465 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1466 			return cell;
1467 	}
1468 
1469 	/* NULL cell id only allowed for device tree; invalid otherwise */
1470 	if (!id)
1471 		return ERR_PTR(-EINVAL);
1472 
1473 	return nvmem_cell_get_from_lookup(dev, id);
1474 }
1475 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1476 
1477 static void devm_nvmem_cell_release(struct device *dev, void *res)
1478 {
1479 	nvmem_cell_put(*(struct nvmem_cell **)res);
1480 }
1481 
1482 /**
1483  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1484  *
1485  * @dev: Device that requests the nvmem cell.
1486  * @id: nvmem cell name id to get.
1487  *
1488  * Return: Will be an ERR_PTR() on error or a valid pointer
1489  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1490  * automatically once the device is freed.
1491  */
1492 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1493 {
1494 	struct nvmem_cell **ptr, *cell;
1495 
1496 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1497 	if (!ptr)
1498 		return ERR_PTR(-ENOMEM);
1499 
1500 	cell = nvmem_cell_get(dev, id);
1501 	if (!IS_ERR(cell)) {
1502 		*ptr = cell;
1503 		devres_add(dev, ptr);
1504 	} else {
1505 		devres_free(ptr);
1506 	}
1507 
1508 	return cell;
1509 }
1510 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1511 
1512 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1513 {
1514 	struct nvmem_cell **c = res;
1515 
1516 	if (WARN_ON(!c || !*c))
1517 		return 0;
1518 
1519 	return *c == data;
1520 }
1521 
1522 /**
1523  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1524  * from devm_nvmem_cell_get.
1525  *
1526  * @dev: Device that requests the nvmem cell.
1527  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1528  */
1529 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1530 {
1531 	int ret;
1532 
1533 	ret = devres_release(dev, devm_nvmem_cell_release,
1534 				devm_nvmem_cell_match, cell);
1535 
1536 	WARN_ON(ret);
1537 }
1538 EXPORT_SYMBOL(devm_nvmem_cell_put);
1539 
1540 /**
1541  * nvmem_cell_put() - Release previously allocated nvmem cell.
1542  *
1543  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1544  */
1545 void nvmem_cell_put(struct nvmem_cell *cell)
1546 {
1547 	struct nvmem_device *nvmem = cell->entry->nvmem;
1548 
1549 	if (cell->id)
1550 		kfree_const(cell->id);
1551 
1552 	kfree(cell);
1553 	__nvmem_device_put(nvmem);
1554 }
1555 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1556 
1557 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1558 {
1559 	u8 *p, *b;
1560 	int i, extra, bit_offset = cell->bit_offset;
1561 
1562 	p = b = buf;
1563 	if (bit_offset) {
1564 		/* First shift */
1565 		*b++ >>= bit_offset;
1566 
1567 		/* setup rest of the bytes if any */
1568 		for (i = 1; i < cell->bytes; i++) {
1569 			/* Get bits from next byte and shift them towards msb */
1570 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1571 
1572 			p = b;
1573 			*b++ >>= bit_offset;
1574 		}
1575 	} else {
1576 		/* point to the msb */
1577 		p += cell->bytes - 1;
1578 	}
1579 
1580 	/* result fits in less bytes */
1581 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1582 	while (--extra >= 0)
1583 		*p-- = 0;
1584 
1585 	/* clear msb bits if any leftover in the last byte */
1586 	if (cell->nbits % BITS_PER_BYTE)
1587 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1588 }
1589 
1590 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1591 			     struct nvmem_cell_entry *cell,
1592 			     void *buf, size_t *len, const char *id, int index)
1593 {
1594 	int rc;
1595 
1596 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1597 
1598 	if (rc)
1599 		return rc;
1600 
1601 	/* shift bits in-place */
1602 	if (cell->bit_offset || cell->nbits)
1603 		nvmem_shift_read_buffer_in_place(cell, buf);
1604 
1605 	if (cell->read_post_process) {
1606 		rc = cell->read_post_process(cell->priv, id, index,
1607 					     cell->offset, buf, cell->raw_len);
1608 		if (rc)
1609 			return rc;
1610 	}
1611 
1612 	if (len)
1613 		*len = cell->bytes;
1614 
1615 	return 0;
1616 }
1617 
1618 /**
1619  * nvmem_cell_read() - Read a given nvmem cell
1620  *
1621  * @cell: nvmem cell to be read.
1622  * @len: pointer to length of cell which will be populated on successful read;
1623  *	 can be NULL.
1624  *
1625  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1626  * buffer should be freed by the consumer with a kfree().
1627  */
1628 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1629 {
1630 	struct nvmem_cell_entry *entry = cell->entry;
1631 	struct nvmem_device *nvmem = entry->nvmem;
1632 	u8 *buf;
1633 	int rc;
1634 
1635 	if (!nvmem)
1636 		return ERR_PTR(-EINVAL);
1637 
1638 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1639 	if (!buf)
1640 		return ERR_PTR(-ENOMEM);
1641 
1642 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1643 	if (rc) {
1644 		kfree(buf);
1645 		return ERR_PTR(rc);
1646 	}
1647 
1648 	return buf;
1649 }
1650 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1651 
1652 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1653 					     u8 *_buf, int len)
1654 {
1655 	struct nvmem_device *nvmem = cell->nvmem;
1656 	int i, rc, nbits, bit_offset = cell->bit_offset;
1657 	u8 v, *p, *buf, *b, pbyte, pbits;
1658 
1659 	nbits = cell->nbits;
1660 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1661 	if (!buf)
1662 		return ERR_PTR(-ENOMEM);
1663 
1664 	memcpy(buf, _buf, len);
1665 	p = b = buf;
1666 
1667 	if (bit_offset) {
1668 		pbyte = *b;
1669 		*b <<= bit_offset;
1670 
1671 		/* setup the first byte with lsb bits from nvmem */
1672 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1673 		if (rc)
1674 			goto err;
1675 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1676 
1677 		/* setup rest of the byte if any */
1678 		for (i = 1; i < cell->bytes; i++) {
1679 			/* Get last byte bits and shift them towards lsb */
1680 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1681 			pbyte = *b;
1682 			p = b;
1683 			*b <<= bit_offset;
1684 			*b++ |= pbits;
1685 		}
1686 	}
1687 
1688 	/* if it's not end on byte boundary */
1689 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1690 		/* setup the last byte with msb bits from nvmem */
1691 		rc = nvmem_reg_read(nvmem,
1692 				    cell->offset + cell->bytes - 1, &v, 1);
1693 		if (rc)
1694 			goto err;
1695 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1696 
1697 	}
1698 
1699 	return buf;
1700 err:
1701 	kfree(buf);
1702 	return ERR_PTR(rc);
1703 }
1704 
1705 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1706 {
1707 	struct nvmem_device *nvmem = cell->nvmem;
1708 	int rc;
1709 
1710 	if (!nvmem || nvmem->read_only ||
1711 	    (cell->bit_offset == 0 && len != cell->bytes))
1712 		return -EINVAL;
1713 
1714 	/*
1715 	 * Any cells which have a read_post_process hook are read-only because
1716 	 * we cannot reverse the operation and it might affect other cells,
1717 	 * too.
1718 	 */
1719 	if (cell->read_post_process)
1720 		return -EINVAL;
1721 
1722 	if (cell->bit_offset || cell->nbits) {
1723 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1724 		if (IS_ERR(buf))
1725 			return PTR_ERR(buf);
1726 	}
1727 
1728 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1729 
1730 	/* free the tmp buffer */
1731 	if (cell->bit_offset || cell->nbits)
1732 		kfree(buf);
1733 
1734 	if (rc)
1735 		return rc;
1736 
1737 	return len;
1738 }
1739 
1740 /**
1741  * nvmem_cell_write() - Write to a given nvmem cell
1742  *
1743  * @cell: nvmem cell to be written.
1744  * @buf: Buffer to be written.
1745  * @len: length of buffer to be written to nvmem cell.
1746  *
1747  * Return: length of bytes written or negative on failure.
1748  */
1749 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1750 {
1751 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1752 }
1753 
1754 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1755 
1756 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1757 				  void *val, size_t count)
1758 {
1759 	struct nvmem_cell *cell;
1760 	void *buf;
1761 	size_t len;
1762 
1763 	cell = nvmem_cell_get(dev, cell_id);
1764 	if (IS_ERR(cell))
1765 		return PTR_ERR(cell);
1766 
1767 	buf = nvmem_cell_read(cell, &len);
1768 	if (IS_ERR(buf)) {
1769 		nvmem_cell_put(cell);
1770 		return PTR_ERR(buf);
1771 	}
1772 	if (len != count) {
1773 		kfree(buf);
1774 		nvmem_cell_put(cell);
1775 		return -EINVAL;
1776 	}
1777 	memcpy(val, buf, count);
1778 	kfree(buf);
1779 	nvmem_cell_put(cell);
1780 
1781 	return 0;
1782 }
1783 
1784 /**
1785  * nvmem_cell_read_u8() - Read a cell value as a u8
1786  *
1787  * @dev: Device that requests the nvmem cell.
1788  * @cell_id: Name of nvmem cell to read.
1789  * @val: pointer to output value.
1790  *
1791  * Return: 0 on success or negative errno.
1792  */
1793 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1794 {
1795 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1796 }
1797 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1798 
1799 /**
1800  * nvmem_cell_read_u16() - Read a cell value as a u16
1801  *
1802  * @dev: Device that requests the nvmem cell.
1803  * @cell_id: Name of nvmem cell to read.
1804  * @val: pointer to output value.
1805  *
1806  * Return: 0 on success or negative errno.
1807  */
1808 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1809 {
1810 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1811 }
1812 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1813 
1814 /**
1815  * nvmem_cell_read_u32() - Read a cell value as a u32
1816  *
1817  * @dev: Device that requests the nvmem cell.
1818  * @cell_id: Name of nvmem cell to read.
1819  * @val: pointer to output value.
1820  *
1821  * Return: 0 on success or negative errno.
1822  */
1823 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1824 {
1825 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1826 }
1827 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1828 
1829 /**
1830  * nvmem_cell_read_u64() - Read a cell value as a u64
1831  *
1832  * @dev: Device that requests the nvmem cell.
1833  * @cell_id: Name of nvmem cell to read.
1834  * @val: pointer to output value.
1835  *
1836  * Return: 0 on success or negative errno.
1837  */
1838 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1839 {
1840 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1841 }
1842 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1843 
1844 static const void *nvmem_cell_read_variable_common(struct device *dev,
1845 						   const char *cell_id,
1846 						   size_t max_len, size_t *len)
1847 {
1848 	struct nvmem_cell *cell;
1849 	int nbits;
1850 	void *buf;
1851 
1852 	cell = nvmem_cell_get(dev, cell_id);
1853 	if (IS_ERR(cell))
1854 		return cell;
1855 
1856 	nbits = cell->entry->nbits;
1857 	buf = nvmem_cell_read(cell, len);
1858 	nvmem_cell_put(cell);
1859 	if (IS_ERR(buf))
1860 		return buf;
1861 
1862 	/*
1863 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1864 	 * the length of the real data. Throw away the extra junk.
1865 	 */
1866 	if (nbits)
1867 		*len = DIV_ROUND_UP(nbits, 8);
1868 
1869 	if (*len > max_len) {
1870 		kfree(buf);
1871 		return ERR_PTR(-ERANGE);
1872 	}
1873 
1874 	return buf;
1875 }
1876 
1877 /**
1878  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1879  *
1880  * @dev: Device that requests the nvmem cell.
1881  * @cell_id: Name of nvmem cell to read.
1882  * @val: pointer to output value.
1883  *
1884  * Return: 0 on success or negative errno.
1885  */
1886 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1887 				    u32 *val)
1888 {
1889 	size_t len;
1890 	const u8 *buf;
1891 	int i;
1892 
1893 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1894 	if (IS_ERR(buf))
1895 		return PTR_ERR(buf);
1896 
1897 	/* Copy w/ implicit endian conversion */
1898 	*val = 0;
1899 	for (i = 0; i < len; i++)
1900 		*val |= buf[i] << (8 * i);
1901 
1902 	kfree(buf);
1903 
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1907 
1908 /**
1909  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1910  *
1911  * @dev: Device that requests the nvmem cell.
1912  * @cell_id: Name of nvmem cell to read.
1913  * @val: pointer to output value.
1914  *
1915  * Return: 0 on success or negative errno.
1916  */
1917 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1918 				    u64 *val)
1919 {
1920 	size_t len;
1921 	const u8 *buf;
1922 	int i;
1923 
1924 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1925 	if (IS_ERR(buf))
1926 		return PTR_ERR(buf);
1927 
1928 	/* Copy w/ implicit endian conversion */
1929 	*val = 0;
1930 	for (i = 0; i < len; i++)
1931 		*val |= (uint64_t)buf[i] << (8 * i);
1932 
1933 	kfree(buf);
1934 
1935 	return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1938 
1939 /**
1940  * nvmem_device_cell_read() - Read a given nvmem device and cell
1941  *
1942  * @nvmem: nvmem device to read from.
1943  * @info: nvmem cell info to be read.
1944  * @buf: buffer pointer which will be populated on successful read.
1945  *
1946  * Return: length of successful bytes read on success and negative
1947  * error code on error.
1948  */
1949 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1950 			   struct nvmem_cell_info *info, void *buf)
1951 {
1952 	struct nvmem_cell_entry cell;
1953 	int rc;
1954 	ssize_t len;
1955 
1956 	if (!nvmem)
1957 		return -EINVAL;
1958 
1959 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1960 	if (rc)
1961 		return rc;
1962 
1963 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1964 	if (rc)
1965 		return rc;
1966 
1967 	return len;
1968 }
1969 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1970 
1971 /**
1972  * nvmem_device_cell_write() - Write cell to a given nvmem device
1973  *
1974  * @nvmem: nvmem device to be written to.
1975  * @info: nvmem cell info to be written.
1976  * @buf: buffer to be written to cell.
1977  *
1978  * Return: length of bytes written or negative error code on failure.
1979  */
1980 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1981 			    struct nvmem_cell_info *info, void *buf)
1982 {
1983 	struct nvmem_cell_entry cell;
1984 	int rc;
1985 
1986 	if (!nvmem)
1987 		return -EINVAL;
1988 
1989 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1990 	if (rc)
1991 		return rc;
1992 
1993 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1994 }
1995 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1996 
1997 /**
1998  * nvmem_device_read() - Read from a given nvmem device
1999  *
2000  * @nvmem: nvmem device to read from.
2001  * @offset: offset in nvmem device.
2002  * @bytes: number of bytes to read.
2003  * @buf: buffer pointer which will be populated on successful read.
2004  *
2005  * Return: length of successful bytes read on success and negative
2006  * error code on error.
2007  */
2008 int nvmem_device_read(struct nvmem_device *nvmem,
2009 		      unsigned int offset,
2010 		      size_t bytes, void *buf)
2011 {
2012 	int rc;
2013 
2014 	if (!nvmem)
2015 		return -EINVAL;
2016 
2017 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2018 
2019 	if (rc)
2020 		return rc;
2021 
2022 	return bytes;
2023 }
2024 EXPORT_SYMBOL_GPL(nvmem_device_read);
2025 
2026 /**
2027  * nvmem_device_write() - Write cell to a given nvmem device
2028  *
2029  * @nvmem: nvmem device to be written to.
2030  * @offset: offset in nvmem device.
2031  * @bytes: number of bytes to write.
2032  * @buf: buffer to be written.
2033  *
2034  * Return: length of bytes written or negative error code on failure.
2035  */
2036 int nvmem_device_write(struct nvmem_device *nvmem,
2037 		       unsigned int offset,
2038 		       size_t bytes, void *buf)
2039 {
2040 	int rc;
2041 
2042 	if (!nvmem)
2043 		return -EINVAL;
2044 
2045 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2046 
2047 	if (rc)
2048 		return rc;
2049 
2050 
2051 	return bytes;
2052 }
2053 EXPORT_SYMBOL_GPL(nvmem_device_write);
2054 
2055 /**
2056  * nvmem_add_cell_table() - register a table of cell info entries
2057  *
2058  * @table: table of cell info entries
2059  */
2060 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2061 {
2062 	mutex_lock(&nvmem_cell_mutex);
2063 	list_add_tail(&table->node, &nvmem_cell_tables);
2064 	mutex_unlock(&nvmem_cell_mutex);
2065 }
2066 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2067 
2068 /**
2069  * nvmem_del_cell_table() - remove a previously registered cell info table
2070  *
2071  * @table: table of cell info entries
2072  */
2073 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2074 {
2075 	mutex_lock(&nvmem_cell_mutex);
2076 	list_del(&table->node);
2077 	mutex_unlock(&nvmem_cell_mutex);
2078 }
2079 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2080 
2081 /**
2082  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2083  *
2084  * @entries: array of cell lookup entries
2085  * @nentries: number of cell lookup entries in the array
2086  */
2087 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2088 {
2089 	int i;
2090 
2091 	mutex_lock(&nvmem_lookup_mutex);
2092 	for (i = 0; i < nentries; i++)
2093 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2094 	mutex_unlock(&nvmem_lookup_mutex);
2095 }
2096 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2097 
2098 /**
2099  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2100  *                            entries
2101  *
2102  * @entries: array of cell lookup entries
2103  * @nentries: number of cell lookup entries in the array
2104  */
2105 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2106 {
2107 	int i;
2108 
2109 	mutex_lock(&nvmem_lookup_mutex);
2110 	for (i = 0; i < nentries; i++)
2111 		list_del(&entries[i].node);
2112 	mutex_unlock(&nvmem_lookup_mutex);
2113 }
2114 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2115 
2116 /**
2117  * nvmem_dev_name() - Get the name of a given nvmem device.
2118  *
2119  * @nvmem: nvmem device.
2120  *
2121  * Return: name of the nvmem device.
2122  */
2123 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2124 {
2125 	return dev_name(&nvmem->dev);
2126 }
2127 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2128 
2129 static int __init nvmem_init(void)
2130 {
2131 	return bus_register(&nvmem_bus_type);
2132 }
2133 
2134 static void __exit nvmem_exit(void)
2135 {
2136 	bus_unregister(&nvmem_bus_type);
2137 }
2138 
2139 subsys_initcall(nvmem_init);
2140 module_exit(nvmem_exit);
2141 
2142 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2143 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2144 MODULE_DESCRIPTION("nvmem Driver Core");
2145