xref: /linux/drivers/nvmem/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27 
28 struct nvmem_device {
29 	const char		*name;
30 	struct module		*owner;
31 	struct device		dev;
32 	int			stride;
33 	int			word_size;
34 	int			ncells;
35 	int			id;
36 	int			users;
37 	size_t			size;
38 	bool			read_only;
39 	int			flags;
40 	struct bin_attribute	eeprom;
41 	struct device		*base_dev;
42 	nvmem_reg_read_t	reg_read;
43 	nvmem_reg_write_t	reg_write;
44 	void *priv;
45 };
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct nvmem_device	*nvmem;
56 	struct list_head	node;
57 };
58 
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61 
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68 
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 			  void *val, size_t bytes)
72 {
73 	if (nvmem->reg_read)
74 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75 
76 	return -EINVAL;
77 }
78 
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 			   void *val, size_t bytes)
81 {
82 	if (nvmem->reg_write)
83 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84 
85 	return -EINVAL;
86 }
87 
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 				    struct bin_attribute *attr,
90 				    char *buf, loff_t pos, size_t count)
91 {
92 	struct device *dev;
93 	struct nvmem_device *nvmem;
94 	int rc;
95 
96 	if (attr->private)
97 		dev = attr->private;
98 	else
99 		dev = container_of(kobj, struct device, kobj);
100 	nvmem = to_nvmem_device(dev);
101 
102 	/* Stop the user from reading */
103 	if (pos >= nvmem->size)
104 		return 0;
105 
106 	if (count < nvmem->word_size)
107 		return -EINVAL;
108 
109 	if (pos + count > nvmem->size)
110 		count = nvmem->size - pos;
111 
112 	count = round_down(count, nvmem->word_size);
113 
114 	rc = nvmem_reg_read(nvmem, pos, buf, count);
115 
116 	if (rc)
117 		return rc;
118 
119 	return count;
120 }
121 
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 				     struct bin_attribute *attr,
124 				     char *buf, loff_t pos, size_t count)
125 {
126 	struct device *dev;
127 	struct nvmem_device *nvmem;
128 	int rc;
129 
130 	if (attr->private)
131 		dev = attr->private;
132 	else
133 		dev = container_of(kobj, struct device, kobj);
134 	nvmem = to_nvmem_device(dev);
135 
136 	/* Stop the user from writing */
137 	if (pos >= nvmem->size)
138 		return 0;
139 
140 	if (count < nvmem->word_size)
141 		return -EINVAL;
142 
143 	if (pos + count > nvmem->size)
144 		count = nvmem->size - pos;
145 
146 	count = round_down(count, nvmem->word_size);
147 
148 	rc = nvmem_reg_write(nvmem, pos, buf, count);
149 
150 	if (rc)
151 		return rc;
152 
153 	return count;
154 }
155 
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 	.attr	= {
159 		.name	= "nvmem",
160 		.mode	= S_IWUSR | S_IRUGO,
161 	},
162 	.read	= bin_attr_nvmem_read,
163 	.write	= bin_attr_nvmem_write,
164 };
165 
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 	&bin_attr_rw_nvmem,
168 	NULL,
169 };
170 
171 static const struct attribute_group nvmem_bin_rw_group = {
172 	.bin_attrs	= nvmem_bin_rw_attributes,
173 };
174 
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 	&nvmem_bin_rw_group,
177 	NULL,
178 };
179 
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 	.attr	= {
183 		.name	= "nvmem",
184 		.mode	= S_IRUGO,
185 	},
186 	.read	= bin_attr_nvmem_read,
187 };
188 
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 	&bin_attr_ro_nvmem,
191 	NULL,
192 };
193 
194 static const struct attribute_group nvmem_bin_ro_group = {
195 	.bin_attrs	= nvmem_bin_ro_attributes,
196 };
197 
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 	&nvmem_bin_ro_group,
200 	NULL,
201 };
202 
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 	.attr	= {
206 		.name	= "nvmem",
207 		.mode	= S_IWUSR | S_IRUSR,
208 	},
209 	.read	= bin_attr_nvmem_read,
210 	.write	= bin_attr_nvmem_write,
211 };
212 
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 	&bin_attr_rw_root_nvmem,
215 	NULL,
216 };
217 
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 	.bin_attrs	= nvmem_bin_rw_root_attributes,
220 };
221 
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 	&nvmem_bin_rw_root_group,
224 	NULL,
225 };
226 
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 	.attr	= {
230 		.name	= "nvmem",
231 		.mode	= S_IRUSR,
232 	},
233 	.read	= bin_attr_nvmem_read,
234 };
235 
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 	&bin_attr_ro_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 	.bin_attrs	= nvmem_bin_ro_root_attributes,
243 };
244 
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 	&nvmem_bin_ro_root_group,
247 	NULL,
248 };
249 
250 static void nvmem_release(struct device *dev)
251 {
252 	struct nvmem_device *nvmem = to_nvmem_device(dev);
253 
254 	ida_simple_remove(&nvmem_ida, nvmem->id);
255 	kfree(nvmem);
256 }
257 
258 static const struct device_type nvmem_provider_type = {
259 	.release	= nvmem_release,
260 };
261 
262 static struct bus_type nvmem_bus_type = {
263 	.name		= "nvmem",
264 };
265 
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 	return dev->of_node == nvmem_np;
269 }
270 
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 	struct device *d;
274 
275 	if (!nvmem_np)
276 		return NULL;
277 
278 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279 
280 	if (!d)
281 		return NULL;
282 
283 	return to_nvmem_device(d);
284 }
285 
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 	struct nvmem_cell *p;
289 
290 	list_for_each_entry(p, &nvmem_cells, node)
291 		if (p && !strcmp(p->name, cell_id))
292 			return p;
293 
294 	return NULL;
295 }
296 
297 static void nvmem_cell_drop(struct nvmem_cell *cell)
298 {
299 	mutex_lock(&nvmem_cells_mutex);
300 	list_del(&cell->node);
301 	mutex_unlock(&nvmem_cells_mutex);
302 	kfree(cell);
303 }
304 
305 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
306 {
307 	struct nvmem_cell *cell;
308 	struct list_head *p, *n;
309 
310 	list_for_each_safe(p, n, &nvmem_cells) {
311 		cell = list_entry(p, struct nvmem_cell, node);
312 		if (cell->nvmem == nvmem)
313 			nvmem_cell_drop(cell);
314 	}
315 }
316 
317 static void nvmem_cell_add(struct nvmem_cell *cell)
318 {
319 	mutex_lock(&nvmem_cells_mutex);
320 	list_add_tail(&cell->node, &nvmem_cells);
321 	mutex_unlock(&nvmem_cells_mutex);
322 }
323 
324 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
325 				   const struct nvmem_cell_info *info,
326 				   struct nvmem_cell *cell)
327 {
328 	cell->nvmem = nvmem;
329 	cell->offset = info->offset;
330 	cell->bytes = info->bytes;
331 	cell->name = info->name;
332 
333 	cell->bit_offset = info->bit_offset;
334 	cell->nbits = info->nbits;
335 
336 	if (cell->nbits)
337 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
338 					   BITS_PER_BYTE);
339 
340 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
341 		dev_err(&nvmem->dev,
342 			"cell %s unaligned to nvmem stride %d\n",
343 			cell->name, nvmem->stride);
344 		return -EINVAL;
345 	}
346 
347 	return 0;
348 }
349 
350 static int nvmem_add_cells(struct nvmem_device *nvmem,
351 			   const struct nvmem_config *cfg)
352 {
353 	struct nvmem_cell **cells;
354 	const struct nvmem_cell_info *info = cfg->cells;
355 	int i, rval;
356 
357 	cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
358 	if (!cells)
359 		return -ENOMEM;
360 
361 	for (i = 0; i < cfg->ncells; i++) {
362 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
363 		if (!cells[i]) {
364 			rval = -ENOMEM;
365 			goto err;
366 		}
367 
368 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
369 		if (rval) {
370 			kfree(cells[i]);
371 			goto err;
372 		}
373 
374 		nvmem_cell_add(cells[i]);
375 	}
376 
377 	nvmem->ncells = cfg->ncells;
378 	/* remove tmp array */
379 	kfree(cells);
380 
381 	return 0;
382 err:
383 	while (i--)
384 		nvmem_cell_drop(cells[i]);
385 
386 	kfree(cells);
387 
388 	return rval;
389 }
390 
391 /*
392  * nvmem_setup_compat() - Create an additional binary entry in
393  * drivers sys directory, to be backwards compatible with the older
394  * drivers/misc/eeprom drivers.
395  */
396 static int nvmem_setup_compat(struct nvmem_device *nvmem,
397 			      const struct nvmem_config *config)
398 {
399 	int rval;
400 
401 	if (!config->base_dev)
402 		return -EINVAL;
403 
404 	if (nvmem->read_only)
405 		nvmem->eeprom = bin_attr_ro_root_nvmem;
406 	else
407 		nvmem->eeprom = bin_attr_rw_root_nvmem;
408 	nvmem->eeprom.attr.name = "eeprom";
409 	nvmem->eeprom.size = nvmem->size;
410 #ifdef CONFIG_DEBUG_LOCK_ALLOC
411 	nvmem->eeprom.attr.key = &eeprom_lock_key;
412 #endif
413 	nvmem->eeprom.private = &nvmem->dev;
414 	nvmem->base_dev = config->base_dev;
415 
416 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
417 	if (rval) {
418 		dev_err(&nvmem->dev,
419 			"Failed to create eeprom binary file %d\n", rval);
420 		return rval;
421 	}
422 
423 	nvmem->flags |= FLAG_COMPAT;
424 
425 	return 0;
426 }
427 
428 /**
429  * nvmem_register() - Register a nvmem device for given nvmem_config.
430  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
431  *
432  * @config: nvmem device configuration with which nvmem device is created.
433  *
434  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
435  * on success.
436  */
437 
438 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
439 {
440 	struct nvmem_device *nvmem;
441 	struct device_node *np;
442 	int rval;
443 
444 	if (!config->dev)
445 		return ERR_PTR(-EINVAL);
446 
447 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
448 	if (!nvmem)
449 		return ERR_PTR(-ENOMEM);
450 
451 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
452 	if (rval < 0) {
453 		kfree(nvmem);
454 		return ERR_PTR(rval);
455 	}
456 
457 	nvmem->id = rval;
458 	nvmem->owner = config->owner;
459 	nvmem->stride = config->stride;
460 	nvmem->word_size = config->word_size;
461 	nvmem->size = config->size;
462 	nvmem->dev.type = &nvmem_provider_type;
463 	nvmem->dev.bus = &nvmem_bus_type;
464 	nvmem->dev.parent = config->dev;
465 	nvmem->priv = config->priv;
466 	nvmem->reg_read = config->reg_read;
467 	nvmem->reg_write = config->reg_write;
468 	np = config->dev->of_node;
469 	nvmem->dev.of_node = np;
470 	dev_set_name(&nvmem->dev, "%s%d",
471 		     config->name ? : "nvmem", config->id);
472 
473 	nvmem->read_only = of_property_read_bool(np, "read-only") |
474 			   config->read_only;
475 
476 	if (config->root_only)
477 		nvmem->dev.groups = nvmem->read_only ?
478 			nvmem_ro_root_dev_groups :
479 			nvmem_rw_root_dev_groups;
480 	else
481 		nvmem->dev.groups = nvmem->read_only ?
482 			nvmem_ro_dev_groups :
483 			nvmem_rw_dev_groups;
484 
485 	device_initialize(&nvmem->dev);
486 
487 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
488 
489 	rval = device_add(&nvmem->dev);
490 	if (rval)
491 		goto out;
492 
493 	if (config->compat) {
494 		rval = nvmem_setup_compat(nvmem, config);
495 		if (rval)
496 			goto out;
497 	}
498 
499 	if (config->cells)
500 		nvmem_add_cells(nvmem, config);
501 
502 	return nvmem;
503 out:
504 	ida_simple_remove(&nvmem_ida, nvmem->id);
505 	kfree(nvmem);
506 	return ERR_PTR(rval);
507 }
508 EXPORT_SYMBOL_GPL(nvmem_register);
509 
510 /**
511  * nvmem_unregister() - Unregister previously registered nvmem device
512  *
513  * @nvmem: Pointer to previously registered nvmem device.
514  *
515  * Return: Will be an negative on error or a zero on success.
516  */
517 int nvmem_unregister(struct nvmem_device *nvmem)
518 {
519 	mutex_lock(&nvmem_mutex);
520 	if (nvmem->users) {
521 		mutex_unlock(&nvmem_mutex);
522 		return -EBUSY;
523 	}
524 	mutex_unlock(&nvmem_mutex);
525 
526 	if (nvmem->flags & FLAG_COMPAT)
527 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
528 
529 	nvmem_device_remove_all_cells(nvmem);
530 	device_del(&nvmem->dev);
531 
532 	return 0;
533 }
534 EXPORT_SYMBOL_GPL(nvmem_unregister);
535 
536 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
537 					       struct nvmem_cell **cellp,
538 					       const char *cell_id)
539 {
540 	struct nvmem_device *nvmem = NULL;
541 
542 	mutex_lock(&nvmem_mutex);
543 
544 	if (np) {
545 		nvmem = of_nvmem_find(np);
546 		if (!nvmem) {
547 			mutex_unlock(&nvmem_mutex);
548 			return ERR_PTR(-EPROBE_DEFER);
549 		}
550 	} else {
551 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
552 
553 		if (cell) {
554 			nvmem = cell->nvmem;
555 			*cellp = cell;
556 		}
557 
558 		if (!nvmem) {
559 			mutex_unlock(&nvmem_mutex);
560 			return ERR_PTR(-ENOENT);
561 		}
562 	}
563 
564 	nvmem->users++;
565 	mutex_unlock(&nvmem_mutex);
566 
567 	if (!try_module_get(nvmem->owner)) {
568 		dev_err(&nvmem->dev,
569 			"could not increase module refcount for cell %s\n",
570 			nvmem->name);
571 
572 		mutex_lock(&nvmem_mutex);
573 		nvmem->users--;
574 		mutex_unlock(&nvmem_mutex);
575 
576 		return ERR_PTR(-EINVAL);
577 	}
578 
579 	return nvmem;
580 }
581 
582 static void __nvmem_device_put(struct nvmem_device *nvmem)
583 {
584 	module_put(nvmem->owner);
585 	mutex_lock(&nvmem_mutex);
586 	nvmem->users--;
587 	mutex_unlock(&nvmem_mutex);
588 }
589 
590 static int nvmem_match(struct device *dev, void *data)
591 {
592 	return !strcmp(dev_name(dev), data);
593 }
594 
595 static struct nvmem_device *nvmem_find(const char *name)
596 {
597 	struct device *d;
598 
599 	d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
600 
601 	if (!d)
602 		return NULL;
603 
604 	return to_nvmem_device(d);
605 }
606 
607 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
608 /**
609  * of_nvmem_device_get() - Get nvmem device from a given id
610  *
611  * @dev node: Device tree node that uses the nvmem device
612  * @id: nvmem name from nvmem-names property.
613  *
614  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
615  * on success.
616  */
617 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
618 {
619 
620 	struct device_node *nvmem_np;
621 	int index;
622 
623 	index = of_property_match_string(np, "nvmem-names", id);
624 
625 	nvmem_np = of_parse_phandle(np, "nvmem", index);
626 	if (!nvmem_np)
627 		return ERR_PTR(-EINVAL);
628 
629 	return __nvmem_device_get(nvmem_np, NULL, NULL);
630 }
631 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
632 #endif
633 
634 /**
635  * nvmem_device_get() - Get nvmem device from a given id
636  *
637  * @dev : Device that uses the nvmem device
638  * @id: nvmem name from nvmem-names property.
639  *
640  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
641  * on success.
642  */
643 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
644 {
645 	if (dev->of_node) { /* try dt first */
646 		struct nvmem_device *nvmem;
647 
648 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
649 
650 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
651 			return nvmem;
652 
653 	}
654 
655 	return nvmem_find(dev_name);
656 }
657 EXPORT_SYMBOL_GPL(nvmem_device_get);
658 
659 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
660 {
661 	struct nvmem_device **nvmem = res;
662 
663 	if (WARN_ON(!nvmem || !*nvmem))
664 		return 0;
665 
666 	return *nvmem == data;
667 }
668 
669 static void devm_nvmem_device_release(struct device *dev, void *res)
670 {
671 	nvmem_device_put(*(struct nvmem_device **)res);
672 }
673 
674 /**
675  * devm_nvmem_device_put() - put alredy got nvmem device
676  *
677  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
678  * that needs to be released.
679  */
680 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
681 {
682 	int ret;
683 
684 	ret = devres_release(dev, devm_nvmem_device_release,
685 			     devm_nvmem_device_match, nvmem);
686 
687 	WARN_ON(ret);
688 }
689 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
690 
691 /**
692  * nvmem_device_put() - put alredy got nvmem device
693  *
694  * @nvmem: pointer to nvmem device that needs to be released.
695  */
696 void nvmem_device_put(struct nvmem_device *nvmem)
697 {
698 	__nvmem_device_put(nvmem);
699 }
700 EXPORT_SYMBOL_GPL(nvmem_device_put);
701 
702 /**
703  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
704  *
705  * @dev node: Device tree node that uses the nvmem cell
706  * @id: nvmem name in nvmems property.
707  *
708  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
709  * on success.  The nvmem_cell will be freed by the automatically once the
710  * device is freed.
711  */
712 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
713 {
714 	struct nvmem_device **ptr, *nvmem;
715 
716 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
717 	if (!ptr)
718 		return ERR_PTR(-ENOMEM);
719 
720 	nvmem = nvmem_device_get(dev, id);
721 	if (!IS_ERR(nvmem)) {
722 		*ptr = nvmem;
723 		devres_add(dev, ptr);
724 	} else {
725 		devres_free(ptr);
726 	}
727 
728 	return nvmem;
729 }
730 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
731 
732 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
733 {
734 	struct nvmem_cell *cell = NULL;
735 	struct nvmem_device *nvmem;
736 
737 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
738 	if (IS_ERR(nvmem))
739 		return ERR_CAST(nvmem);
740 
741 	return cell;
742 }
743 
744 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
745 /**
746  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
747  *
748  * @dev node: Device tree node that uses the nvmem cell
749  * @id: nvmem cell name from nvmem-cell-names property.
750  *
751  * Return: Will be an ERR_PTR() on error or a valid pointer
752  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
753  * nvmem_cell_put().
754  */
755 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
756 					    const char *name)
757 {
758 	struct device_node *cell_np, *nvmem_np;
759 	struct nvmem_cell *cell;
760 	struct nvmem_device *nvmem;
761 	const __be32 *addr;
762 	int rval, len, index;
763 
764 	index = of_property_match_string(np, "nvmem-cell-names", name);
765 
766 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
767 	if (!cell_np)
768 		return ERR_PTR(-EINVAL);
769 
770 	nvmem_np = of_get_next_parent(cell_np);
771 	if (!nvmem_np)
772 		return ERR_PTR(-EINVAL);
773 
774 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
775 	if (IS_ERR(nvmem))
776 		return ERR_CAST(nvmem);
777 
778 	addr = of_get_property(cell_np, "reg", &len);
779 	if (!addr || (len < 2 * sizeof(u32))) {
780 		dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
781 			cell_np->full_name);
782 		rval  = -EINVAL;
783 		goto err_mem;
784 	}
785 
786 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
787 	if (!cell) {
788 		rval = -ENOMEM;
789 		goto err_mem;
790 	}
791 
792 	cell->nvmem = nvmem;
793 	cell->offset = be32_to_cpup(addr++);
794 	cell->bytes = be32_to_cpup(addr);
795 	cell->name = cell_np->name;
796 
797 	addr = of_get_property(cell_np, "bits", &len);
798 	if (addr && len == (2 * sizeof(u32))) {
799 		cell->bit_offset = be32_to_cpup(addr++);
800 		cell->nbits = be32_to_cpup(addr);
801 	}
802 
803 	if (cell->nbits)
804 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
805 					   BITS_PER_BYTE);
806 
807 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
808 			dev_err(&nvmem->dev,
809 				"cell %s unaligned to nvmem stride %d\n",
810 				cell->name, nvmem->stride);
811 		rval  = -EINVAL;
812 		goto err_sanity;
813 	}
814 
815 	nvmem_cell_add(cell);
816 
817 	return cell;
818 
819 err_sanity:
820 	kfree(cell);
821 
822 err_mem:
823 	__nvmem_device_put(nvmem);
824 
825 	return ERR_PTR(rval);
826 }
827 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
828 #endif
829 
830 /**
831  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
832  *
833  * @dev node: Device tree node that uses the nvmem cell
834  * @id: nvmem cell name to get.
835  *
836  * Return: Will be an ERR_PTR() on error or a valid pointer
837  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
838  * nvmem_cell_put().
839  */
840 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
841 {
842 	struct nvmem_cell *cell;
843 
844 	if (dev->of_node) { /* try dt first */
845 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
846 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
847 			return cell;
848 	}
849 
850 	return nvmem_cell_get_from_list(cell_id);
851 }
852 EXPORT_SYMBOL_GPL(nvmem_cell_get);
853 
854 static void devm_nvmem_cell_release(struct device *dev, void *res)
855 {
856 	nvmem_cell_put(*(struct nvmem_cell **)res);
857 }
858 
859 /**
860  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
861  *
862  * @dev node: Device tree node that uses the nvmem cell
863  * @id: nvmem id in nvmem-names property.
864  *
865  * Return: Will be an ERR_PTR() on error or a valid pointer
866  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
867  * automatically once the device is freed.
868  */
869 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
870 {
871 	struct nvmem_cell **ptr, *cell;
872 
873 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
874 	if (!ptr)
875 		return ERR_PTR(-ENOMEM);
876 
877 	cell = nvmem_cell_get(dev, id);
878 	if (!IS_ERR(cell)) {
879 		*ptr = cell;
880 		devres_add(dev, ptr);
881 	} else {
882 		devres_free(ptr);
883 	}
884 
885 	return cell;
886 }
887 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
888 
889 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
890 {
891 	struct nvmem_cell **c = res;
892 
893 	if (WARN_ON(!c || !*c))
894 		return 0;
895 
896 	return *c == data;
897 }
898 
899 /**
900  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
901  * from devm_nvmem_cell_get.
902  *
903  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get()
904  */
905 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
906 {
907 	int ret;
908 
909 	ret = devres_release(dev, devm_nvmem_cell_release,
910 				devm_nvmem_cell_match, cell);
911 
912 	WARN_ON(ret);
913 }
914 EXPORT_SYMBOL(devm_nvmem_cell_put);
915 
916 /**
917  * nvmem_cell_put() - Release previously allocated nvmem cell.
918  *
919  * @cell: Previously allocated nvmem cell by nvmem_cell_get()
920  */
921 void nvmem_cell_put(struct nvmem_cell *cell)
922 {
923 	struct nvmem_device *nvmem = cell->nvmem;
924 
925 	__nvmem_device_put(nvmem);
926 	nvmem_cell_drop(cell);
927 }
928 EXPORT_SYMBOL_GPL(nvmem_cell_put);
929 
930 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
931 						    void *buf)
932 {
933 	u8 *p, *b;
934 	int i, bit_offset = cell->bit_offset;
935 
936 	p = b = buf;
937 	if (bit_offset) {
938 		/* First shift */
939 		*b++ >>= bit_offset;
940 
941 		/* setup rest of the bytes if any */
942 		for (i = 1; i < cell->bytes; i++) {
943 			/* Get bits from next byte and shift them towards msb */
944 			*p |= *b << (BITS_PER_BYTE - bit_offset);
945 
946 			p = b;
947 			*b++ >>= bit_offset;
948 		}
949 
950 		/* result fits in less bytes */
951 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
952 			*p-- = 0;
953 	}
954 	/* clear msb bits if any leftover in the last byte */
955 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
956 }
957 
958 static int __nvmem_cell_read(struct nvmem_device *nvmem,
959 		      struct nvmem_cell *cell,
960 		      void *buf, size_t *len)
961 {
962 	int rc;
963 
964 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
965 
966 	if (rc)
967 		return rc;
968 
969 	/* shift bits in-place */
970 	if (cell->bit_offset || cell->nbits)
971 		nvmem_shift_read_buffer_in_place(cell, buf);
972 
973 	*len = cell->bytes;
974 
975 	return 0;
976 }
977 
978 /**
979  * nvmem_cell_read() - Read a given nvmem cell
980  *
981  * @cell: nvmem cell to be read.
982  * @len: pointer to length of cell which will be populated on successful read.
983  *
984  * Return: ERR_PTR() on error or a valid pointer to a char * buffer on success.
985  * The buffer should be freed by the consumer with a kfree().
986  */
987 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
988 {
989 	struct nvmem_device *nvmem = cell->nvmem;
990 	u8 *buf;
991 	int rc;
992 
993 	if (!nvmem)
994 		return ERR_PTR(-EINVAL);
995 
996 	buf = kzalloc(cell->bytes, GFP_KERNEL);
997 	if (!buf)
998 		return ERR_PTR(-ENOMEM);
999 
1000 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1001 	if (rc) {
1002 		kfree(buf);
1003 		return ERR_PTR(rc);
1004 	}
1005 
1006 	return buf;
1007 }
1008 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1009 
1010 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1011 						    u8 *_buf, int len)
1012 {
1013 	struct nvmem_device *nvmem = cell->nvmem;
1014 	int i, rc, nbits, bit_offset = cell->bit_offset;
1015 	u8 v, *p, *buf, *b, pbyte, pbits;
1016 
1017 	nbits = cell->nbits;
1018 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1019 	if (!buf)
1020 		return ERR_PTR(-ENOMEM);
1021 
1022 	memcpy(buf, _buf, len);
1023 	p = b = buf;
1024 
1025 	if (bit_offset) {
1026 		pbyte = *b;
1027 		*b <<= bit_offset;
1028 
1029 		/* setup the first byte with lsb bits from nvmem */
1030 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1031 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1032 
1033 		/* setup rest of the byte if any */
1034 		for (i = 1; i < cell->bytes; i++) {
1035 			/* Get last byte bits and shift them towards lsb */
1036 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1037 			pbyte = *b;
1038 			p = b;
1039 			*b <<= bit_offset;
1040 			*b++ |= pbits;
1041 		}
1042 	}
1043 
1044 	/* if it's not end on byte boundary */
1045 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1046 		/* setup the last byte with msb bits from nvmem */
1047 		rc = nvmem_reg_read(nvmem,
1048 				    cell->offset + cell->bytes - 1, &v, 1);
1049 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1050 
1051 	}
1052 
1053 	return buf;
1054 }
1055 
1056 /**
1057  * nvmem_cell_write() - Write to a given nvmem cell
1058  *
1059  * @cell: nvmem cell to be written.
1060  * @buf: Buffer to be written.
1061  * @len: length of buffer to be written to nvmem cell.
1062  *
1063  * Return: length of bytes written or negative on failure.
1064  */
1065 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1066 {
1067 	struct nvmem_device *nvmem = cell->nvmem;
1068 	int rc;
1069 
1070 	if (!nvmem || nvmem->read_only ||
1071 	    (cell->bit_offset == 0 && len != cell->bytes))
1072 		return -EINVAL;
1073 
1074 	if (cell->bit_offset || cell->nbits) {
1075 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1076 		if (IS_ERR(buf))
1077 			return PTR_ERR(buf);
1078 	}
1079 
1080 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1081 
1082 	/* free the tmp buffer */
1083 	if (cell->bit_offset || cell->nbits)
1084 		kfree(buf);
1085 
1086 	if (rc)
1087 		return rc;
1088 
1089 	return len;
1090 }
1091 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1092 
1093 /**
1094  * nvmem_device_cell_read() - Read a given nvmem device and cell
1095  *
1096  * @nvmem: nvmem device to read from.
1097  * @info: nvmem cell info to be read.
1098  * @buf: buffer pointer which will be populated on successful read.
1099  *
1100  * Return: length of successful bytes read on success and negative
1101  * error code on error.
1102  */
1103 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1104 			   struct nvmem_cell_info *info, void *buf)
1105 {
1106 	struct nvmem_cell cell;
1107 	int rc;
1108 	ssize_t len;
1109 
1110 	if (!nvmem)
1111 		return -EINVAL;
1112 
1113 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1114 	if (rc)
1115 		return rc;
1116 
1117 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1118 	if (rc)
1119 		return rc;
1120 
1121 	return len;
1122 }
1123 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1124 
1125 /**
1126  * nvmem_device_cell_write() - Write cell to a given nvmem device
1127  *
1128  * @nvmem: nvmem device to be written to.
1129  * @info: nvmem cell info to be written
1130  * @buf: buffer to be written to cell.
1131  *
1132  * Return: length of bytes written or negative error code on failure.
1133  * */
1134 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1135 			    struct nvmem_cell_info *info, void *buf)
1136 {
1137 	struct nvmem_cell cell;
1138 	int rc;
1139 
1140 	if (!nvmem)
1141 		return -EINVAL;
1142 
1143 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1144 	if (rc)
1145 		return rc;
1146 
1147 	return nvmem_cell_write(&cell, buf, cell.bytes);
1148 }
1149 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1150 
1151 /**
1152  * nvmem_device_read() - Read from a given nvmem device
1153  *
1154  * @nvmem: nvmem device to read from.
1155  * @offset: offset in nvmem device.
1156  * @bytes: number of bytes to read.
1157  * @buf: buffer pointer which will be populated on successful read.
1158  *
1159  * Return: length of successful bytes read on success and negative
1160  * error code on error.
1161  */
1162 int nvmem_device_read(struct nvmem_device *nvmem,
1163 		      unsigned int offset,
1164 		      size_t bytes, void *buf)
1165 {
1166 	int rc;
1167 
1168 	if (!nvmem)
1169 		return -EINVAL;
1170 
1171 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1172 
1173 	if (rc)
1174 		return rc;
1175 
1176 	return bytes;
1177 }
1178 EXPORT_SYMBOL_GPL(nvmem_device_read);
1179 
1180 /**
1181  * nvmem_device_write() - Write cell to a given nvmem device
1182  *
1183  * @nvmem: nvmem device to be written to.
1184  * @offset: offset in nvmem device.
1185  * @bytes: number of bytes to write.
1186  * @buf: buffer to be written.
1187  *
1188  * Return: length of bytes written or negative error code on failure.
1189  * */
1190 int nvmem_device_write(struct nvmem_device *nvmem,
1191 		       unsigned int offset,
1192 		       size_t bytes, void *buf)
1193 {
1194 	int rc;
1195 
1196 	if (!nvmem)
1197 		return -EINVAL;
1198 
1199 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1200 
1201 	if (rc)
1202 		return rc;
1203 
1204 
1205 	return bytes;
1206 }
1207 EXPORT_SYMBOL_GPL(nvmem_device_write);
1208 
1209 static int __init nvmem_init(void)
1210 {
1211 	return bus_register(&nvmem_bus_type);
1212 }
1213 
1214 static void __exit nvmem_exit(void)
1215 {
1216 	bus_unregister(&nvmem_bus_type);
1217 }
1218 
1219 subsys_initcall(nvmem_init);
1220 module_exit(nvmem_exit);
1221 
1222 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1223 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1224 MODULE_DESCRIPTION("nvmem Driver Core");
1225 MODULE_LICENSE("GPL v2");
1226