1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 18 #include "nvmet.h" 19 20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 21 22 /* Define the socket priority to use for connections were it is desirable 23 * that the NIC consider performing optimized packet processing or filtering. 24 * A non-zero value being sufficient to indicate general consideration of any 25 * possible optimization. Making it a module param allows for alternative 26 * values that may be unique for some NIC implementations. 27 */ 28 static int so_priority; 29 module_param(so_priority, int, 0644); 30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority"); 31 32 /* Define a time period (in usecs) that io_work() shall sample an activated 33 * queue before determining it to be idle. This optional module behavior 34 * can enable NIC solutions that support socket optimized packet processing 35 * using advanced interrupt moderation techniques. 36 */ 37 static int idle_poll_period_usecs; 38 module_param(idle_poll_period_usecs, int, 0644); 39 MODULE_PARM_DESC(idle_poll_period_usecs, 40 "nvmet tcp io_work poll till idle time period in usecs"); 41 42 #define NVMET_TCP_RECV_BUDGET 8 43 #define NVMET_TCP_SEND_BUDGET 8 44 #define NVMET_TCP_IO_WORK_BUDGET 64 45 46 enum nvmet_tcp_send_state { 47 NVMET_TCP_SEND_DATA_PDU, 48 NVMET_TCP_SEND_DATA, 49 NVMET_TCP_SEND_R2T, 50 NVMET_TCP_SEND_DDGST, 51 NVMET_TCP_SEND_RESPONSE 52 }; 53 54 enum nvmet_tcp_recv_state { 55 NVMET_TCP_RECV_PDU, 56 NVMET_TCP_RECV_DATA, 57 NVMET_TCP_RECV_DDGST, 58 NVMET_TCP_RECV_ERR, 59 }; 60 61 enum { 62 NVMET_TCP_F_INIT_FAILED = (1 << 0), 63 }; 64 65 struct nvmet_tcp_cmd { 66 struct nvmet_tcp_queue *queue; 67 struct nvmet_req req; 68 69 struct nvme_tcp_cmd_pdu *cmd_pdu; 70 struct nvme_tcp_rsp_pdu *rsp_pdu; 71 struct nvme_tcp_data_pdu *data_pdu; 72 struct nvme_tcp_r2t_pdu *r2t_pdu; 73 74 u32 rbytes_done; 75 u32 wbytes_done; 76 77 u32 pdu_len; 78 u32 pdu_recv; 79 int sg_idx; 80 int nr_mapped; 81 struct msghdr recv_msg; 82 struct kvec *iov; 83 u32 flags; 84 85 struct list_head entry; 86 struct llist_node lentry; 87 88 /* send state */ 89 u32 offset; 90 struct scatterlist *cur_sg; 91 enum nvmet_tcp_send_state state; 92 93 __le32 exp_ddgst; 94 __le32 recv_ddgst; 95 }; 96 97 enum nvmet_tcp_queue_state { 98 NVMET_TCP_Q_CONNECTING, 99 NVMET_TCP_Q_LIVE, 100 NVMET_TCP_Q_DISCONNECTING, 101 }; 102 103 struct nvmet_tcp_queue { 104 struct socket *sock; 105 struct nvmet_tcp_port *port; 106 struct work_struct io_work; 107 struct nvmet_cq nvme_cq; 108 struct nvmet_sq nvme_sq; 109 110 /* send state */ 111 struct nvmet_tcp_cmd *cmds; 112 unsigned int nr_cmds; 113 struct list_head free_list; 114 struct llist_head resp_list; 115 struct list_head resp_send_list; 116 int send_list_len; 117 struct nvmet_tcp_cmd *snd_cmd; 118 119 /* recv state */ 120 int offset; 121 int left; 122 enum nvmet_tcp_recv_state rcv_state; 123 struct nvmet_tcp_cmd *cmd; 124 union nvme_tcp_pdu pdu; 125 126 /* digest state */ 127 bool hdr_digest; 128 bool data_digest; 129 struct ahash_request *snd_hash; 130 struct ahash_request *rcv_hash; 131 132 unsigned long poll_end; 133 134 spinlock_t state_lock; 135 enum nvmet_tcp_queue_state state; 136 137 struct sockaddr_storage sockaddr; 138 struct sockaddr_storage sockaddr_peer; 139 struct work_struct release_work; 140 141 int idx; 142 struct list_head queue_list; 143 144 struct nvmet_tcp_cmd connect; 145 146 struct page_frag_cache pf_cache; 147 148 void (*data_ready)(struct sock *); 149 void (*state_change)(struct sock *); 150 void (*write_space)(struct sock *); 151 }; 152 153 struct nvmet_tcp_port { 154 struct socket *sock; 155 struct work_struct accept_work; 156 struct nvmet_port *nport; 157 struct sockaddr_storage addr; 158 void (*data_ready)(struct sock *); 159 }; 160 161 static DEFINE_IDA(nvmet_tcp_queue_ida); 162 static LIST_HEAD(nvmet_tcp_queue_list); 163 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 164 165 static struct workqueue_struct *nvmet_tcp_wq; 166 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 167 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 168 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd); 169 170 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 171 struct nvmet_tcp_cmd *cmd) 172 { 173 if (unlikely(!queue->nr_cmds)) { 174 /* We didn't allocate cmds yet, send 0xffff */ 175 return USHRT_MAX; 176 } 177 178 return cmd - queue->cmds; 179 } 180 181 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 182 { 183 return nvme_is_write(cmd->req.cmd) && 184 cmd->rbytes_done < cmd->req.transfer_len; 185 } 186 187 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 188 { 189 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 190 } 191 192 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 193 { 194 return !nvme_is_write(cmd->req.cmd) && 195 cmd->req.transfer_len > 0 && 196 !cmd->req.cqe->status; 197 } 198 199 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 200 { 201 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 202 !cmd->rbytes_done; 203 } 204 205 static inline struct nvmet_tcp_cmd * 206 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 207 { 208 struct nvmet_tcp_cmd *cmd; 209 210 cmd = list_first_entry_or_null(&queue->free_list, 211 struct nvmet_tcp_cmd, entry); 212 if (!cmd) 213 return NULL; 214 list_del_init(&cmd->entry); 215 216 cmd->rbytes_done = cmd->wbytes_done = 0; 217 cmd->pdu_len = 0; 218 cmd->pdu_recv = 0; 219 cmd->iov = NULL; 220 cmd->flags = 0; 221 return cmd; 222 } 223 224 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 225 { 226 if (unlikely(cmd == &cmd->queue->connect)) 227 return; 228 229 list_add_tail(&cmd->entry, &cmd->queue->free_list); 230 } 231 232 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 233 { 234 return queue->sock->sk->sk_incoming_cpu; 235 } 236 237 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 238 { 239 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 240 } 241 242 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 243 { 244 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 245 } 246 247 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 248 void *pdu, size_t len) 249 { 250 struct scatterlist sg; 251 252 sg_init_one(&sg, pdu, len); 253 ahash_request_set_crypt(hash, &sg, pdu + len, len); 254 crypto_ahash_digest(hash); 255 } 256 257 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 258 void *pdu, size_t len) 259 { 260 struct nvme_tcp_hdr *hdr = pdu; 261 __le32 recv_digest; 262 __le32 exp_digest; 263 264 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 265 pr_err("queue %d: header digest enabled but no header digest\n", 266 queue->idx); 267 return -EPROTO; 268 } 269 270 recv_digest = *(__le32 *)(pdu + hdr->hlen); 271 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 272 exp_digest = *(__le32 *)(pdu + hdr->hlen); 273 if (recv_digest != exp_digest) { 274 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 275 queue->idx, le32_to_cpu(recv_digest), 276 le32_to_cpu(exp_digest)); 277 return -EPROTO; 278 } 279 280 return 0; 281 } 282 283 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 284 { 285 struct nvme_tcp_hdr *hdr = pdu; 286 u8 digest_len = nvmet_tcp_hdgst_len(queue); 287 u32 len; 288 289 len = le32_to_cpu(hdr->plen) - hdr->hlen - 290 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 291 292 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 293 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 294 return -EPROTO; 295 } 296 297 return 0; 298 } 299 300 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd) 301 { 302 struct scatterlist *sg; 303 int i; 304 305 sg = &cmd->req.sg[cmd->sg_idx]; 306 307 for (i = 0; i < cmd->nr_mapped; i++) 308 kunmap(sg_page(&sg[i])); 309 } 310 311 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd) 312 { 313 struct kvec *iov = cmd->iov; 314 struct scatterlist *sg; 315 u32 length, offset, sg_offset; 316 317 length = cmd->pdu_len; 318 cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE); 319 offset = cmd->rbytes_done; 320 cmd->sg_idx = offset / PAGE_SIZE; 321 sg_offset = offset % PAGE_SIZE; 322 sg = &cmd->req.sg[cmd->sg_idx]; 323 324 while (length) { 325 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 326 327 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset; 328 iov->iov_len = iov_len; 329 330 length -= iov_len; 331 sg = sg_next(sg); 332 iov++; 333 sg_offset = 0; 334 } 335 336 iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov, 337 cmd->nr_mapped, cmd->pdu_len); 338 } 339 340 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 341 { 342 queue->rcv_state = NVMET_TCP_RECV_ERR; 343 if (queue->nvme_sq.ctrl) 344 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 345 else 346 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 347 } 348 349 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 350 { 351 if (status == -EPIPE || status == -ECONNRESET) 352 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 353 else 354 nvmet_tcp_fatal_error(queue); 355 } 356 357 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 358 { 359 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 360 u32 len = le32_to_cpu(sgl->length); 361 362 if (!len) 363 return 0; 364 365 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 366 NVME_SGL_FMT_OFFSET)) { 367 if (!nvme_is_write(cmd->req.cmd)) 368 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 369 370 if (len > cmd->req.port->inline_data_size) 371 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 372 cmd->pdu_len = len; 373 } 374 cmd->req.transfer_len += len; 375 376 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 377 if (!cmd->req.sg) 378 return NVME_SC_INTERNAL; 379 cmd->cur_sg = cmd->req.sg; 380 381 if (nvmet_tcp_has_data_in(cmd)) { 382 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 383 sizeof(*cmd->iov), GFP_KERNEL); 384 if (!cmd->iov) 385 goto err; 386 } 387 388 return 0; 389 err: 390 sgl_free(cmd->req.sg); 391 return NVME_SC_INTERNAL; 392 } 393 394 static void nvmet_tcp_send_ddgst(struct ahash_request *hash, 395 struct nvmet_tcp_cmd *cmd) 396 { 397 ahash_request_set_crypt(hash, cmd->req.sg, 398 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 399 crypto_ahash_digest(hash); 400 } 401 402 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash, 403 struct nvmet_tcp_cmd *cmd) 404 { 405 struct scatterlist sg; 406 struct kvec *iov; 407 int i; 408 409 crypto_ahash_init(hash); 410 for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) { 411 sg_init_one(&sg, iov->iov_base, iov->iov_len); 412 ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len); 413 crypto_ahash_update(hash); 414 } 415 ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0); 416 crypto_ahash_final(hash); 417 } 418 419 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 420 { 421 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 422 struct nvmet_tcp_queue *queue = cmd->queue; 423 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 424 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 425 426 cmd->offset = 0; 427 cmd->state = NVMET_TCP_SEND_DATA_PDU; 428 429 pdu->hdr.type = nvme_tcp_c2h_data; 430 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 431 NVME_TCP_F_DATA_SUCCESS : 0); 432 pdu->hdr.hlen = sizeof(*pdu); 433 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 434 pdu->hdr.plen = 435 cpu_to_le32(pdu->hdr.hlen + hdgst + 436 cmd->req.transfer_len + ddgst); 437 pdu->command_id = cmd->req.cqe->command_id; 438 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 439 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 440 441 if (queue->data_digest) { 442 pdu->hdr.flags |= NVME_TCP_F_DDGST; 443 nvmet_tcp_send_ddgst(queue->snd_hash, cmd); 444 } 445 446 if (cmd->queue->hdr_digest) { 447 pdu->hdr.flags |= NVME_TCP_F_HDGST; 448 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 449 } 450 } 451 452 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 453 { 454 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 455 struct nvmet_tcp_queue *queue = cmd->queue; 456 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 457 458 cmd->offset = 0; 459 cmd->state = NVMET_TCP_SEND_R2T; 460 461 pdu->hdr.type = nvme_tcp_r2t; 462 pdu->hdr.flags = 0; 463 pdu->hdr.hlen = sizeof(*pdu); 464 pdu->hdr.pdo = 0; 465 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 466 467 pdu->command_id = cmd->req.cmd->common.command_id; 468 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 469 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 470 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 471 if (cmd->queue->hdr_digest) { 472 pdu->hdr.flags |= NVME_TCP_F_HDGST; 473 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 474 } 475 } 476 477 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 478 { 479 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 480 struct nvmet_tcp_queue *queue = cmd->queue; 481 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 482 483 cmd->offset = 0; 484 cmd->state = NVMET_TCP_SEND_RESPONSE; 485 486 pdu->hdr.type = nvme_tcp_rsp; 487 pdu->hdr.flags = 0; 488 pdu->hdr.hlen = sizeof(*pdu); 489 pdu->hdr.pdo = 0; 490 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 491 if (cmd->queue->hdr_digest) { 492 pdu->hdr.flags |= NVME_TCP_F_HDGST; 493 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 494 } 495 } 496 497 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 498 { 499 struct llist_node *node; 500 struct nvmet_tcp_cmd *cmd; 501 502 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 503 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 504 list_add(&cmd->entry, &queue->resp_send_list); 505 queue->send_list_len++; 506 } 507 } 508 509 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 510 { 511 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 512 struct nvmet_tcp_cmd, entry); 513 if (!queue->snd_cmd) { 514 nvmet_tcp_process_resp_list(queue); 515 queue->snd_cmd = 516 list_first_entry_or_null(&queue->resp_send_list, 517 struct nvmet_tcp_cmd, entry); 518 if (unlikely(!queue->snd_cmd)) 519 return NULL; 520 } 521 522 list_del_init(&queue->snd_cmd->entry); 523 queue->send_list_len--; 524 525 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 526 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 527 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 528 nvmet_setup_r2t_pdu(queue->snd_cmd); 529 else 530 nvmet_setup_response_pdu(queue->snd_cmd); 531 532 return queue->snd_cmd; 533 } 534 535 static void nvmet_tcp_queue_response(struct nvmet_req *req) 536 { 537 struct nvmet_tcp_cmd *cmd = 538 container_of(req, struct nvmet_tcp_cmd, req); 539 struct nvmet_tcp_queue *queue = cmd->queue; 540 struct nvme_sgl_desc *sgl; 541 u32 len; 542 543 if (unlikely(cmd == queue->cmd)) { 544 sgl = &cmd->req.cmd->common.dptr.sgl; 545 len = le32_to_cpu(sgl->length); 546 547 /* 548 * Wait for inline data before processing the response. 549 * Avoid using helpers, this might happen before 550 * nvmet_req_init is completed. 551 */ 552 if (queue->rcv_state == NVMET_TCP_RECV_PDU && 553 len && len <= cmd->req.port->inline_data_size && 554 nvme_is_write(cmd->req.cmd)) 555 return; 556 } 557 558 llist_add(&cmd->lentry, &queue->resp_list); 559 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 560 } 561 562 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 563 { 564 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 565 nvmet_tcp_queue_response(&cmd->req); 566 else 567 cmd->req.execute(&cmd->req); 568 } 569 570 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 571 { 572 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 573 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 574 int ret; 575 576 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu), 577 offset_in_page(cmd->data_pdu) + cmd->offset, 578 left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 579 if (ret <= 0) 580 return ret; 581 582 cmd->offset += ret; 583 left -= ret; 584 585 if (left) 586 return -EAGAIN; 587 588 cmd->state = NVMET_TCP_SEND_DATA; 589 cmd->offset = 0; 590 return 1; 591 } 592 593 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 594 { 595 struct nvmet_tcp_queue *queue = cmd->queue; 596 int ret; 597 598 while (cmd->cur_sg) { 599 struct page *page = sg_page(cmd->cur_sg); 600 u32 left = cmd->cur_sg->length - cmd->offset; 601 int flags = MSG_DONTWAIT; 602 603 if ((!last_in_batch && cmd->queue->send_list_len) || 604 cmd->wbytes_done + left < cmd->req.transfer_len || 605 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 606 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 607 608 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset, 609 left, flags); 610 if (ret <= 0) 611 return ret; 612 613 cmd->offset += ret; 614 cmd->wbytes_done += ret; 615 616 /* Done with sg?*/ 617 if (cmd->offset == cmd->cur_sg->length) { 618 cmd->cur_sg = sg_next(cmd->cur_sg); 619 cmd->offset = 0; 620 } 621 } 622 623 if (queue->data_digest) { 624 cmd->state = NVMET_TCP_SEND_DDGST; 625 cmd->offset = 0; 626 } else { 627 if (queue->nvme_sq.sqhd_disabled) { 628 cmd->queue->snd_cmd = NULL; 629 nvmet_tcp_put_cmd(cmd); 630 } else { 631 nvmet_setup_response_pdu(cmd); 632 } 633 } 634 635 if (queue->nvme_sq.sqhd_disabled) { 636 kfree(cmd->iov); 637 sgl_free(cmd->req.sg); 638 } 639 640 return 1; 641 642 } 643 644 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 645 bool last_in_batch) 646 { 647 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 648 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 649 int flags = MSG_DONTWAIT; 650 int ret; 651 652 if (!last_in_batch && cmd->queue->send_list_len) 653 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 654 else 655 flags |= MSG_EOR; 656 657 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu), 658 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags); 659 if (ret <= 0) 660 return ret; 661 cmd->offset += ret; 662 left -= ret; 663 664 if (left) 665 return -EAGAIN; 666 667 kfree(cmd->iov); 668 sgl_free(cmd->req.sg); 669 cmd->queue->snd_cmd = NULL; 670 nvmet_tcp_put_cmd(cmd); 671 return 1; 672 } 673 674 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 675 { 676 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 677 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 678 int flags = MSG_DONTWAIT; 679 int ret; 680 681 if (!last_in_batch && cmd->queue->send_list_len) 682 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 683 else 684 flags |= MSG_EOR; 685 686 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu), 687 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags); 688 if (ret <= 0) 689 return ret; 690 cmd->offset += ret; 691 left -= ret; 692 693 if (left) 694 return -EAGAIN; 695 696 cmd->queue->snd_cmd = NULL; 697 return 1; 698 } 699 700 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 701 { 702 struct nvmet_tcp_queue *queue = cmd->queue; 703 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 704 struct kvec iov = { 705 .iov_base = &cmd->exp_ddgst + cmd->offset, 706 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset 707 }; 708 int ret; 709 710 if (!last_in_batch && cmd->queue->send_list_len) 711 msg.msg_flags |= MSG_MORE; 712 else 713 msg.msg_flags |= MSG_EOR; 714 715 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 716 if (unlikely(ret <= 0)) 717 return ret; 718 719 cmd->offset += ret; 720 721 if (queue->nvme_sq.sqhd_disabled) { 722 cmd->queue->snd_cmd = NULL; 723 nvmet_tcp_put_cmd(cmd); 724 } else { 725 nvmet_setup_response_pdu(cmd); 726 } 727 return 1; 728 } 729 730 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 731 bool last_in_batch) 732 { 733 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 734 int ret = 0; 735 736 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 737 cmd = nvmet_tcp_fetch_cmd(queue); 738 if (unlikely(!cmd)) 739 return 0; 740 } 741 742 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 743 ret = nvmet_try_send_data_pdu(cmd); 744 if (ret <= 0) 745 goto done_send; 746 } 747 748 if (cmd->state == NVMET_TCP_SEND_DATA) { 749 ret = nvmet_try_send_data(cmd, last_in_batch); 750 if (ret <= 0) 751 goto done_send; 752 } 753 754 if (cmd->state == NVMET_TCP_SEND_DDGST) { 755 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 756 if (ret <= 0) 757 goto done_send; 758 } 759 760 if (cmd->state == NVMET_TCP_SEND_R2T) { 761 ret = nvmet_try_send_r2t(cmd, last_in_batch); 762 if (ret <= 0) 763 goto done_send; 764 } 765 766 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 767 ret = nvmet_try_send_response(cmd, last_in_batch); 768 769 done_send: 770 if (ret < 0) { 771 if (ret == -EAGAIN) 772 return 0; 773 return ret; 774 } 775 776 return 1; 777 } 778 779 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 780 int budget, int *sends) 781 { 782 int i, ret = 0; 783 784 for (i = 0; i < budget; i++) { 785 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 786 if (unlikely(ret < 0)) { 787 nvmet_tcp_socket_error(queue, ret); 788 goto done; 789 } else if (ret == 0) { 790 break; 791 } 792 (*sends)++; 793 } 794 done: 795 return ret; 796 } 797 798 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 799 { 800 queue->offset = 0; 801 queue->left = sizeof(struct nvme_tcp_hdr); 802 queue->cmd = NULL; 803 queue->rcv_state = NVMET_TCP_RECV_PDU; 804 } 805 806 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 807 { 808 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 809 810 ahash_request_free(queue->rcv_hash); 811 ahash_request_free(queue->snd_hash); 812 crypto_free_ahash(tfm); 813 } 814 815 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 816 { 817 struct crypto_ahash *tfm; 818 819 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 820 if (IS_ERR(tfm)) 821 return PTR_ERR(tfm); 822 823 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 824 if (!queue->snd_hash) 825 goto free_tfm; 826 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 827 828 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 829 if (!queue->rcv_hash) 830 goto free_snd_hash; 831 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 832 833 return 0; 834 free_snd_hash: 835 ahash_request_free(queue->snd_hash); 836 free_tfm: 837 crypto_free_ahash(tfm); 838 return -ENOMEM; 839 } 840 841 842 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 843 { 844 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 845 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 846 struct msghdr msg = {}; 847 struct kvec iov; 848 int ret; 849 850 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 851 pr_err("bad nvme-tcp pdu length (%d)\n", 852 le32_to_cpu(icreq->hdr.plen)); 853 nvmet_tcp_fatal_error(queue); 854 } 855 856 if (icreq->pfv != NVME_TCP_PFV_1_0) { 857 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 858 return -EPROTO; 859 } 860 861 if (icreq->hpda != 0) { 862 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 863 icreq->hpda); 864 return -EPROTO; 865 } 866 867 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 868 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 869 if (queue->hdr_digest || queue->data_digest) { 870 ret = nvmet_tcp_alloc_crypto(queue); 871 if (ret) 872 return ret; 873 } 874 875 memset(icresp, 0, sizeof(*icresp)); 876 icresp->hdr.type = nvme_tcp_icresp; 877 icresp->hdr.hlen = sizeof(*icresp); 878 icresp->hdr.pdo = 0; 879 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 880 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 881 icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */ 882 icresp->cpda = 0; 883 if (queue->hdr_digest) 884 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 885 if (queue->data_digest) 886 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 887 888 iov.iov_base = icresp; 889 iov.iov_len = sizeof(*icresp); 890 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 891 if (ret < 0) 892 goto free_crypto; 893 894 queue->state = NVMET_TCP_Q_LIVE; 895 nvmet_prepare_receive_pdu(queue); 896 return 0; 897 free_crypto: 898 if (queue->hdr_digest || queue->data_digest) 899 nvmet_tcp_free_crypto(queue); 900 return ret; 901 } 902 903 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 904 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 905 { 906 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 907 int ret; 908 909 if (!nvme_is_write(cmd->req.cmd) || 910 data_len > cmd->req.port->inline_data_size) { 911 nvmet_prepare_receive_pdu(queue); 912 return; 913 } 914 915 ret = nvmet_tcp_map_data(cmd); 916 if (unlikely(ret)) { 917 pr_err("queue %d: failed to map data\n", queue->idx); 918 nvmet_tcp_fatal_error(queue); 919 return; 920 } 921 922 queue->rcv_state = NVMET_TCP_RECV_DATA; 923 nvmet_tcp_map_pdu_iovec(cmd); 924 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 925 } 926 927 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 928 { 929 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 930 struct nvmet_tcp_cmd *cmd; 931 932 if (likely(queue->nr_cmds)) 933 cmd = &queue->cmds[data->ttag]; 934 else 935 cmd = &queue->connect; 936 937 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 938 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 939 data->ttag, le32_to_cpu(data->data_offset), 940 cmd->rbytes_done); 941 /* FIXME: use path and transport errors */ 942 nvmet_req_complete(&cmd->req, 943 NVME_SC_INVALID_FIELD | NVME_SC_DNR); 944 return -EPROTO; 945 } 946 947 cmd->pdu_len = le32_to_cpu(data->data_length); 948 cmd->pdu_recv = 0; 949 nvmet_tcp_map_pdu_iovec(cmd); 950 queue->cmd = cmd; 951 queue->rcv_state = NVMET_TCP_RECV_DATA; 952 953 return 0; 954 } 955 956 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 957 { 958 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 959 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 960 struct nvmet_req *req; 961 int ret; 962 963 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 964 if (hdr->type != nvme_tcp_icreq) { 965 pr_err("unexpected pdu type (%d) before icreq\n", 966 hdr->type); 967 nvmet_tcp_fatal_error(queue); 968 return -EPROTO; 969 } 970 return nvmet_tcp_handle_icreq(queue); 971 } 972 973 if (hdr->type == nvme_tcp_h2c_data) { 974 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 975 if (unlikely(ret)) 976 return ret; 977 return 0; 978 } 979 980 queue->cmd = nvmet_tcp_get_cmd(queue); 981 if (unlikely(!queue->cmd)) { 982 /* This should never happen */ 983 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 984 queue->idx, queue->nr_cmds, queue->send_list_len, 985 nvme_cmd->common.opcode); 986 nvmet_tcp_fatal_error(queue); 987 return -ENOMEM; 988 } 989 990 req = &queue->cmd->req; 991 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 992 993 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 994 &queue->nvme_sq, &nvmet_tcp_ops))) { 995 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 996 req->cmd, req->cmd->common.command_id, 997 req->cmd->common.opcode, 998 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 999 1000 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1001 return 0; 1002 } 1003 1004 ret = nvmet_tcp_map_data(queue->cmd); 1005 if (unlikely(ret)) { 1006 pr_err("queue %d: failed to map data\n", queue->idx); 1007 if (nvmet_tcp_has_inline_data(queue->cmd)) 1008 nvmet_tcp_fatal_error(queue); 1009 else 1010 nvmet_req_complete(req, ret); 1011 ret = -EAGAIN; 1012 goto out; 1013 } 1014 1015 if (nvmet_tcp_need_data_in(queue->cmd)) { 1016 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1017 queue->rcv_state = NVMET_TCP_RECV_DATA; 1018 nvmet_tcp_map_pdu_iovec(queue->cmd); 1019 return 0; 1020 } 1021 /* send back R2T */ 1022 nvmet_tcp_queue_response(&queue->cmd->req); 1023 goto out; 1024 } 1025 1026 queue->cmd->req.execute(&queue->cmd->req); 1027 out: 1028 nvmet_prepare_receive_pdu(queue); 1029 return ret; 1030 } 1031 1032 static const u8 nvme_tcp_pdu_sizes[] = { 1033 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1034 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1035 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1036 }; 1037 1038 static inline u8 nvmet_tcp_pdu_size(u8 type) 1039 { 1040 size_t idx = type; 1041 1042 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1043 nvme_tcp_pdu_sizes[idx]) ? 1044 nvme_tcp_pdu_sizes[idx] : 0; 1045 } 1046 1047 static inline bool nvmet_tcp_pdu_valid(u8 type) 1048 { 1049 switch (type) { 1050 case nvme_tcp_icreq: 1051 case nvme_tcp_cmd: 1052 case nvme_tcp_h2c_data: 1053 /* fallthru */ 1054 return true; 1055 } 1056 1057 return false; 1058 } 1059 1060 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1061 { 1062 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1063 int len; 1064 struct kvec iov; 1065 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1066 1067 recv: 1068 iov.iov_base = (void *)&queue->pdu + queue->offset; 1069 iov.iov_len = queue->left; 1070 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1071 iov.iov_len, msg.msg_flags); 1072 if (unlikely(len < 0)) 1073 return len; 1074 1075 queue->offset += len; 1076 queue->left -= len; 1077 if (queue->left) 1078 return -EAGAIN; 1079 1080 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1081 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1082 1083 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1084 pr_err("unexpected pdu type %d\n", hdr->type); 1085 nvmet_tcp_fatal_error(queue); 1086 return -EIO; 1087 } 1088 1089 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1090 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1091 return -EIO; 1092 } 1093 1094 queue->left = hdr->hlen - queue->offset + hdgst; 1095 goto recv; 1096 } 1097 1098 if (queue->hdr_digest && 1099 nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) { 1100 nvmet_tcp_fatal_error(queue); /* fatal */ 1101 return -EPROTO; 1102 } 1103 1104 if (queue->data_digest && 1105 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1106 nvmet_tcp_fatal_error(queue); /* fatal */ 1107 return -EPROTO; 1108 } 1109 1110 return nvmet_tcp_done_recv_pdu(queue); 1111 } 1112 1113 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1114 { 1115 struct nvmet_tcp_queue *queue = cmd->queue; 1116 1117 nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd); 1118 queue->offset = 0; 1119 queue->left = NVME_TCP_DIGEST_LENGTH; 1120 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1121 } 1122 1123 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1124 { 1125 struct nvmet_tcp_cmd *cmd = queue->cmd; 1126 int ret; 1127 1128 while (msg_data_left(&cmd->recv_msg)) { 1129 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1130 cmd->recv_msg.msg_flags); 1131 if (ret <= 0) 1132 return ret; 1133 1134 cmd->pdu_recv += ret; 1135 cmd->rbytes_done += ret; 1136 } 1137 1138 nvmet_tcp_unmap_pdu_iovec(cmd); 1139 if (queue->data_digest) { 1140 nvmet_tcp_prep_recv_ddgst(cmd); 1141 return 0; 1142 } 1143 1144 if (cmd->rbytes_done == cmd->req.transfer_len) 1145 nvmet_tcp_execute_request(cmd); 1146 1147 nvmet_prepare_receive_pdu(queue); 1148 return 0; 1149 } 1150 1151 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1152 { 1153 struct nvmet_tcp_cmd *cmd = queue->cmd; 1154 int ret; 1155 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1156 struct kvec iov = { 1157 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1158 .iov_len = queue->left 1159 }; 1160 1161 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1162 iov.iov_len, msg.msg_flags); 1163 if (unlikely(ret < 0)) 1164 return ret; 1165 1166 queue->offset += ret; 1167 queue->left -= ret; 1168 if (queue->left) 1169 return -EAGAIN; 1170 1171 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1172 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1173 queue->idx, cmd->req.cmd->common.command_id, 1174 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1175 le32_to_cpu(cmd->exp_ddgst)); 1176 nvmet_tcp_finish_cmd(cmd); 1177 nvmet_tcp_fatal_error(queue); 1178 ret = -EPROTO; 1179 goto out; 1180 } 1181 1182 if (cmd->rbytes_done == cmd->req.transfer_len) 1183 nvmet_tcp_execute_request(cmd); 1184 1185 ret = 0; 1186 out: 1187 nvmet_prepare_receive_pdu(queue); 1188 return ret; 1189 } 1190 1191 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1192 { 1193 int result = 0; 1194 1195 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1196 return 0; 1197 1198 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1199 result = nvmet_tcp_try_recv_pdu(queue); 1200 if (result != 0) 1201 goto done_recv; 1202 } 1203 1204 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1205 result = nvmet_tcp_try_recv_data(queue); 1206 if (result != 0) 1207 goto done_recv; 1208 } 1209 1210 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1211 result = nvmet_tcp_try_recv_ddgst(queue); 1212 if (result != 0) 1213 goto done_recv; 1214 } 1215 1216 done_recv: 1217 if (result < 0) { 1218 if (result == -EAGAIN) 1219 return 0; 1220 return result; 1221 } 1222 return 1; 1223 } 1224 1225 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1226 int budget, int *recvs) 1227 { 1228 int i, ret = 0; 1229 1230 for (i = 0; i < budget; i++) { 1231 ret = nvmet_tcp_try_recv_one(queue); 1232 if (unlikely(ret < 0)) { 1233 nvmet_tcp_socket_error(queue, ret); 1234 goto done; 1235 } else if (ret == 0) { 1236 break; 1237 } 1238 (*recvs)++; 1239 } 1240 done: 1241 return ret; 1242 } 1243 1244 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1245 { 1246 spin_lock(&queue->state_lock); 1247 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1248 queue->state = NVMET_TCP_Q_DISCONNECTING; 1249 schedule_work(&queue->release_work); 1250 } 1251 spin_unlock(&queue->state_lock); 1252 } 1253 1254 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1255 { 1256 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1257 } 1258 1259 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1260 int ops) 1261 { 1262 if (!idle_poll_period_usecs) 1263 return false; 1264 1265 if (ops) 1266 nvmet_tcp_arm_queue_deadline(queue); 1267 1268 return !time_after(jiffies, queue->poll_end); 1269 } 1270 1271 static void nvmet_tcp_io_work(struct work_struct *w) 1272 { 1273 struct nvmet_tcp_queue *queue = 1274 container_of(w, struct nvmet_tcp_queue, io_work); 1275 bool pending; 1276 int ret, ops = 0; 1277 1278 do { 1279 pending = false; 1280 1281 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1282 if (ret > 0) 1283 pending = true; 1284 else if (ret < 0) 1285 return; 1286 1287 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1288 if (ret > 0) 1289 pending = true; 1290 else if (ret < 0) 1291 return; 1292 1293 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1294 1295 /* 1296 * Requeue the worker if idle deadline period is in progress or any 1297 * ops activity was recorded during the do-while loop above. 1298 */ 1299 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1300 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1301 } 1302 1303 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1304 struct nvmet_tcp_cmd *c) 1305 { 1306 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1307 1308 c->queue = queue; 1309 c->req.port = queue->port->nport; 1310 1311 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1312 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1313 if (!c->cmd_pdu) 1314 return -ENOMEM; 1315 c->req.cmd = &c->cmd_pdu->cmd; 1316 1317 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1318 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1319 if (!c->rsp_pdu) 1320 goto out_free_cmd; 1321 c->req.cqe = &c->rsp_pdu->cqe; 1322 1323 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1324 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1325 if (!c->data_pdu) 1326 goto out_free_rsp; 1327 1328 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1329 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1330 if (!c->r2t_pdu) 1331 goto out_free_data; 1332 1333 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1334 1335 list_add_tail(&c->entry, &queue->free_list); 1336 1337 return 0; 1338 out_free_data: 1339 page_frag_free(c->data_pdu); 1340 out_free_rsp: 1341 page_frag_free(c->rsp_pdu); 1342 out_free_cmd: 1343 page_frag_free(c->cmd_pdu); 1344 return -ENOMEM; 1345 } 1346 1347 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1348 { 1349 page_frag_free(c->r2t_pdu); 1350 page_frag_free(c->data_pdu); 1351 page_frag_free(c->rsp_pdu); 1352 page_frag_free(c->cmd_pdu); 1353 } 1354 1355 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1356 { 1357 struct nvmet_tcp_cmd *cmds; 1358 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1359 1360 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1361 if (!cmds) 1362 goto out; 1363 1364 for (i = 0; i < nr_cmds; i++) { 1365 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1366 if (ret) 1367 goto out_free; 1368 } 1369 1370 queue->cmds = cmds; 1371 1372 return 0; 1373 out_free: 1374 while (--i >= 0) 1375 nvmet_tcp_free_cmd(cmds + i); 1376 kfree(cmds); 1377 out: 1378 return ret; 1379 } 1380 1381 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1382 { 1383 struct nvmet_tcp_cmd *cmds = queue->cmds; 1384 int i; 1385 1386 for (i = 0; i < queue->nr_cmds; i++) 1387 nvmet_tcp_free_cmd(cmds + i); 1388 1389 nvmet_tcp_free_cmd(&queue->connect); 1390 kfree(cmds); 1391 } 1392 1393 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1394 { 1395 struct socket *sock = queue->sock; 1396 1397 write_lock_bh(&sock->sk->sk_callback_lock); 1398 sock->sk->sk_data_ready = queue->data_ready; 1399 sock->sk->sk_state_change = queue->state_change; 1400 sock->sk->sk_write_space = queue->write_space; 1401 sock->sk->sk_user_data = NULL; 1402 write_unlock_bh(&sock->sk->sk_callback_lock); 1403 } 1404 1405 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd) 1406 { 1407 nvmet_req_uninit(&cmd->req); 1408 nvmet_tcp_unmap_pdu_iovec(cmd); 1409 kfree(cmd->iov); 1410 sgl_free(cmd->req.sg); 1411 } 1412 1413 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1414 { 1415 struct nvmet_tcp_cmd *cmd = queue->cmds; 1416 int i; 1417 1418 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1419 if (nvmet_tcp_need_data_in(cmd)) 1420 nvmet_tcp_finish_cmd(cmd); 1421 } 1422 1423 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1424 /* failed in connect */ 1425 nvmet_tcp_finish_cmd(&queue->connect); 1426 } 1427 } 1428 1429 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1430 { 1431 struct nvmet_tcp_queue *queue = 1432 container_of(w, struct nvmet_tcp_queue, release_work); 1433 1434 mutex_lock(&nvmet_tcp_queue_mutex); 1435 list_del_init(&queue->queue_list); 1436 mutex_unlock(&nvmet_tcp_queue_mutex); 1437 1438 nvmet_tcp_restore_socket_callbacks(queue); 1439 flush_work(&queue->io_work); 1440 1441 nvmet_tcp_uninit_data_in_cmds(queue); 1442 nvmet_sq_destroy(&queue->nvme_sq); 1443 cancel_work_sync(&queue->io_work); 1444 sock_release(queue->sock); 1445 nvmet_tcp_free_cmds(queue); 1446 if (queue->hdr_digest || queue->data_digest) 1447 nvmet_tcp_free_crypto(queue); 1448 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1449 1450 kfree(queue); 1451 } 1452 1453 static void nvmet_tcp_data_ready(struct sock *sk) 1454 { 1455 struct nvmet_tcp_queue *queue; 1456 1457 read_lock_bh(&sk->sk_callback_lock); 1458 queue = sk->sk_user_data; 1459 if (likely(queue)) 1460 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1461 read_unlock_bh(&sk->sk_callback_lock); 1462 } 1463 1464 static void nvmet_tcp_write_space(struct sock *sk) 1465 { 1466 struct nvmet_tcp_queue *queue; 1467 1468 read_lock_bh(&sk->sk_callback_lock); 1469 queue = sk->sk_user_data; 1470 if (unlikely(!queue)) 1471 goto out; 1472 1473 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1474 queue->write_space(sk); 1475 goto out; 1476 } 1477 1478 if (sk_stream_is_writeable(sk)) { 1479 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1480 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1481 } 1482 out: 1483 read_unlock_bh(&sk->sk_callback_lock); 1484 } 1485 1486 static void nvmet_tcp_state_change(struct sock *sk) 1487 { 1488 struct nvmet_tcp_queue *queue; 1489 1490 read_lock_bh(&sk->sk_callback_lock); 1491 queue = sk->sk_user_data; 1492 if (!queue) 1493 goto done; 1494 1495 switch (sk->sk_state) { 1496 case TCP_FIN_WAIT1: 1497 case TCP_CLOSE_WAIT: 1498 case TCP_CLOSE: 1499 /* FALLTHRU */ 1500 nvmet_tcp_schedule_release_queue(queue); 1501 break; 1502 default: 1503 pr_warn("queue %d unhandled state %d\n", 1504 queue->idx, sk->sk_state); 1505 } 1506 done: 1507 read_unlock_bh(&sk->sk_callback_lock); 1508 } 1509 1510 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1511 { 1512 struct socket *sock = queue->sock; 1513 struct inet_sock *inet = inet_sk(sock->sk); 1514 int ret; 1515 1516 ret = kernel_getsockname(sock, 1517 (struct sockaddr *)&queue->sockaddr); 1518 if (ret < 0) 1519 return ret; 1520 1521 ret = kernel_getpeername(sock, 1522 (struct sockaddr *)&queue->sockaddr_peer); 1523 if (ret < 0) 1524 return ret; 1525 1526 /* 1527 * Cleanup whatever is sitting in the TCP transmit queue on socket 1528 * close. This is done to prevent stale data from being sent should 1529 * the network connection be restored before TCP times out. 1530 */ 1531 sock_no_linger(sock->sk); 1532 1533 if (so_priority > 0) 1534 sock_set_priority(sock->sk, so_priority); 1535 1536 /* Set socket type of service */ 1537 if (inet->rcv_tos > 0) 1538 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1539 1540 ret = 0; 1541 write_lock_bh(&sock->sk->sk_callback_lock); 1542 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1543 /* 1544 * If the socket is already closing, don't even start 1545 * consuming it 1546 */ 1547 ret = -ENOTCONN; 1548 } else { 1549 sock->sk->sk_user_data = queue; 1550 queue->data_ready = sock->sk->sk_data_ready; 1551 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1552 queue->state_change = sock->sk->sk_state_change; 1553 sock->sk->sk_state_change = nvmet_tcp_state_change; 1554 queue->write_space = sock->sk->sk_write_space; 1555 sock->sk->sk_write_space = nvmet_tcp_write_space; 1556 if (idle_poll_period_usecs) 1557 nvmet_tcp_arm_queue_deadline(queue); 1558 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1559 } 1560 write_unlock_bh(&sock->sk->sk_callback_lock); 1561 1562 return ret; 1563 } 1564 1565 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1566 struct socket *newsock) 1567 { 1568 struct nvmet_tcp_queue *queue; 1569 int ret; 1570 1571 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1572 if (!queue) 1573 return -ENOMEM; 1574 1575 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1576 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1577 queue->sock = newsock; 1578 queue->port = port; 1579 queue->nr_cmds = 0; 1580 spin_lock_init(&queue->state_lock); 1581 queue->state = NVMET_TCP_Q_CONNECTING; 1582 INIT_LIST_HEAD(&queue->free_list); 1583 init_llist_head(&queue->resp_list); 1584 INIT_LIST_HEAD(&queue->resp_send_list); 1585 1586 queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL); 1587 if (queue->idx < 0) { 1588 ret = queue->idx; 1589 goto out_free_queue; 1590 } 1591 1592 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1593 if (ret) 1594 goto out_ida_remove; 1595 1596 ret = nvmet_sq_init(&queue->nvme_sq); 1597 if (ret) 1598 goto out_free_connect; 1599 1600 nvmet_prepare_receive_pdu(queue); 1601 1602 mutex_lock(&nvmet_tcp_queue_mutex); 1603 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1604 mutex_unlock(&nvmet_tcp_queue_mutex); 1605 1606 ret = nvmet_tcp_set_queue_sock(queue); 1607 if (ret) 1608 goto out_destroy_sq; 1609 1610 return 0; 1611 out_destroy_sq: 1612 mutex_lock(&nvmet_tcp_queue_mutex); 1613 list_del_init(&queue->queue_list); 1614 mutex_unlock(&nvmet_tcp_queue_mutex); 1615 nvmet_sq_destroy(&queue->nvme_sq); 1616 out_free_connect: 1617 nvmet_tcp_free_cmd(&queue->connect); 1618 out_ida_remove: 1619 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1620 out_free_queue: 1621 kfree(queue); 1622 return ret; 1623 } 1624 1625 static void nvmet_tcp_accept_work(struct work_struct *w) 1626 { 1627 struct nvmet_tcp_port *port = 1628 container_of(w, struct nvmet_tcp_port, accept_work); 1629 struct socket *newsock; 1630 int ret; 1631 1632 while (true) { 1633 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1634 if (ret < 0) { 1635 if (ret != -EAGAIN) 1636 pr_warn("failed to accept err=%d\n", ret); 1637 return; 1638 } 1639 ret = nvmet_tcp_alloc_queue(port, newsock); 1640 if (ret) { 1641 pr_err("failed to allocate queue\n"); 1642 sock_release(newsock); 1643 } 1644 } 1645 } 1646 1647 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1648 { 1649 struct nvmet_tcp_port *port; 1650 1651 read_lock_bh(&sk->sk_callback_lock); 1652 port = sk->sk_user_data; 1653 if (!port) 1654 goto out; 1655 1656 if (sk->sk_state == TCP_LISTEN) 1657 schedule_work(&port->accept_work); 1658 out: 1659 read_unlock_bh(&sk->sk_callback_lock); 1660 } 1661 1662 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1663 { 1664 struct nvmet_tcp_port *port; 1665 __kernel_sa_family_t af; 1666 int ret; 1667 1668 port = kzalloc(sizeof(*port), GFP_KERNEL); 1669 if (!port) 1670 return -ENOMEM; 1671 1672 switch (nport->disc_addr.adrfam) { 1673 case NVMF_ADDR_FAMILY_IP4: 1674 af = AF_INET; 1675 break; 1676 case NVMF_ADDR_FAMILY_IP6: 1677 af = AF_INET6; 1678 break; 1679 default: 1680 pr_err("address family %d not supported\n", 1681 nport->disc_addr.adrfam); 1682 ret = -EINVAL; 1683 goto err_port; 1684 } 1685 1686 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1687 nport->disc_addr.trsvcid, &port->addr); 1688 if (ret) { 1689 pr_err("malformed ip/port passed: %s:%s\n", 1690 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1691 goto err_port; 1692 } 1693 1694 port->nport = nport; 1695 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1696 if (port->nport->inline_data_size < 0) 1697 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1698 1699 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1700 IPPROTO_TCP, &port->sock); 1701 if (ret) { 1702 pr_err("failed to create a socket\n"); 1703 goto err_port; 1704 } 1705 1706 port->sock->sk->sk_user_data = port; 1707 port->data_ready = port->sock->sk->sk_data_ready; 1708 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1709 sock_set_reuseaddr(port->sock->sk); 1710 tcp_sock_set_nodelay(port->sock->sk); 1711 if (so_priority > 0) 1712 sock_set_priority(port->sock->sk, so_priority); 1713 1714 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1715 sizeof(port->addr)); 1716 if (ret) { 1717 pr_err("failed to bind port socket %d\n", ret); 1718 goto err_sock; 1719 } 1720 1721 ret = kernel_listen(port->sock, 128); 1722 if (ret) { 1723 pr_err("failed to listen %d on port sock\n", ret); 1724 goto err_sock; 1725 } 1726 1727 nport->priv = port; 1728 pr_info("enabling port %d (%pISpc)\n", 1729 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1730 1731 return 0; 1732 1733 err_sock: 1734 sock_release(port->sock); 1735 err_port: 1736 kfree(port); 1737 return ret; 1738 } 1739 1740 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1741 { 1742 struct nvmet_tcp_port *port = nport->priv; 1743 1744 write_lock_bh(&port->sock->sk->sk_callback_lock); 1745 port->sock->sk->sk_data_ready = port->data_ready; 1746 port->sock->sk->sk_user_data = NULL; 1747 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1748 cancel_work_sync(&port->accept_work); 1749 1750 sock_release(port->sock); 1751 kfree(port); 1752 } 1753 1754 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1755 { 1756 struct nvmet_tcp_queue *queue; 1757 1758 mutex_lock(&nvmet_tcp_queue_mutex); 1759 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1760 if (queue->nvme_sq.ctrl == ctrl) 1761 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1762 mutex_unlock(&nvmet_tcp_queue_mutex); 1763 } 1764 1765 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1766 { 1767 struct nvmet_tcp_queue *queue = 1768 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1769 1770 if (sq->qid == 0) { 1771 /* Let inflight controller teardown complete */ 1772 flush_scheduled_work(); 1773 } 1774 1775 queue->nr_cmds = sq->size * 2; 1776 if (nvmet_tcp_alloc_cmds(queue)) 1777 return NVME_SC_INTERNAL; 1778 return 0; 1779 } 1780 1781 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1782 struct nvmet_port *nport, char *traddr) 1783 { 1784 struct nvmet_tcp_port *port = nport->priv; 1785 1786 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1787 struct nvmet_tcp_cmd *cmd = 1788 container_of(req, struct nvmet_tcp_cmd, req); 1789 struct nvmet_tcp_queue *queue = cmd->queue; 1790 1791 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1792 } else { 1793 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1794 } 1795 } 1796 1797 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 1798 .owner = THIS_MODULE, 1799 .type = NVMF_TRTYPE_TCP, 1800 .msdbd = 1, 1801 .add_port = nvmet_tcp_add_port, 1802 .remove_port = nvmet_tcp_remove_port, 1803 .queue_response = nvmet_tcp_queue_response, 1804 .delete_ctrl = nvmet_tcp_delete_ctrl, 1805 .install_queue = nvmet_tcp_install_queue, 1806 .disc_traddr = nvmet_tcp_disc_port_addr, 1807 }; 1808 1809 static int __init nvmet_tcp_init(void) 1810 { 1811 int ret; 1812 1813 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0); 1814 if (!nvmet_tcp_wq) 1815 return -ENOMEM; 1816 1817 ret = nvmet_register_transport(&nvmet_tcp_ops); 1818 if (ret) 1819 goto err; 1820 1821 return 0; 1822 err: 1823 destroy_workqueue(nvmet_tcp_wq); 1824 return ret; 1825 } 1826 1827 static void __exit nvmet_tcp_exit(void) 1828 { 1829 struct nvmet_tcp_queue *queue; 1830 1831 nvmet_unregister_transport(&nvmet_tcp_ops); 1832 1833 flush_scheduled_work(); 1834 mutex_lock(&nvmet_tcp_queue_mutex); 1835 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1836 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1837 mutex_unlock(&nvmet_tcp_queue_mutex); 1838 flush_scheduled_work(); 1839 1840 destroy_workqueue(nvmet_tcp_wq); 1841 } 1842 1843 module_init(nvmet_tcp_init); 1844 module_exit(nvmet_tcp_exit); 1845 1846 MODULE_LICENSE("GPL v2"); 1847 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1848