1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 #include <trace/events/sock.h> 18 19 #include "nvmet.h" 20 21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 22 23 static int param_store_val(const char *str, int *val, int min, int max) 24 { 25 int ret, new_val; 26 27 ret = kstrtoint(str, 10, &new_val); 28 if (ret) 29 return -EINVAL; 30 31 if (new_val < min || new_val > max) 32 return -EINVAL; 33 34 *val = new_val; 35 return 0; 36 } 37 38 static int set_params(const char *str, const struct kernel_param *kp) 39 { 40 return param_store_val(str, kp->arg, 0, INT_MAX); 41 } 42 43 static const struct kernel_param_ops set_param_ops = { 44 .set = set_params, 45 .get = param_get_int, 46 }; 47 48 /* Define the socket priority to use for connections were it is desirable 49 * that the NIC consider performing optimized packet processing or filtering. 50 * A non-zero value being sufficient to indicate general consideration of any 51 * possible optimization. Making it a module param allows for alternative 52 * values that may be unique for some NIC implementations. 53 */ 54 static int so_priority; 55 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); 56 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); 57 58 /* Define a time period (in usecs) that io_work() shall sample an activated 59 * queue before determining it to be idle. This optional module behavior 60 * can enable NIC solutions that support socket optimized packet processing 61 * using advanced interrupt moderation techniques. 62 */ 63 static int idle_poll_period_usecs; 64 device_param_cb(idle_poll_period_usecs, &set_param_ops, 65 &idle_poll_period_usecs, 0644); 66 MODULE_PARM_DESC(idle_poll_period_usecs, 67 "nvmet tcp io_work poll till idle time period in usecs: Default 0"); 68 69 #define NVMET_TCP_RECV_BUDGET 8 70 #define NVMET_TCP_SEND_BUDGET 8 71 #define NVMET_TCP_IO_WORK_BUDGET 64 72 73 enum nvmet_tcp_send_state { 74 NVMET_TCP_SEND_DATA_PDU, 75 NVMET_TCP_SEND_DATA, 76 NVMET_TCP_SEND_R2T, 77 NVMET_TCP_SEND_DDGST, 78 NVMET_TCP_SEND_RESPONSE 79 }; 80 81 enum nvmet_tcp_recv_state { 82 NVMET_TCP_RECV_PDU, 83 NVMET_TCP_RECV_DATA, 84 NVMET_TCP_RECV_DDGST, 85 NVMET_TCP_RECV_ERR, 86 }; 87 88 enum { 89 NVMET_TCP_F_INIT_FAILED = (1 << 0), 90 }; 91 92 struct nvmet_tcp_cmd { 93 struct nvmet_tcp_queue *queue; 94 struct nvmet_req req; 95 96 struct nvme_tcp_cmd_pdu *cmd_pdu; 97 struct nvme_tcp_rsp_pdu *rsp_pdu; 98 struct nvme_tcp_data_pdu *data_pdu; 99 struct nvme_tcp_r2t_pdu *r2t_pdu; 100 101 u32 rbytes_done; 102 u32 wbytes_done; 103 104 u32 pdu_len; 105 u32 pdu_recv; 106 int sg_idx; 107 struct msghdr recv_msg; 108 struct bio_vec *iov; 109 u32 flags; 110 111 struct list_head entry; 112 struct llist_node lentry; 113 114 /* send state */ 115 u32 offset; 116 struct scatterlist *cur_sg; 117 enum nvmet_tcp_send_state state; 118 119 __le32 exp_ddgst; 120 __le32 recv_ddgst; 121 }; 122 123 enum nvmet_tcp_queue_state { 124 NVMET_TCP_Q_CONNECTING, 125 NVMET_TCP_Q_LIVE, 126 NVMET_TCP_Q_DISCONNECTING, 127 }; 128 129 struct nvmet_tcp_queue { 130 struct socket *sock; 131 struct nvmet_tcp_port *port; 132 struct work_struct io_work; 133 struct nvmet_cq nvme_cq; 134 struct nvmet_sq nvme_sq; 135 136 /* send state */ 137 struct nvmet_tcp_cmd *cmds; 138 unsigned int nr_cmds; 139 struct list_head free_list; 140 struct llist_head resp_list; 141 struct list_head resp_send_list; 142 int send_list_len; 143 struct nvmet_tcp_cmd *snd_cmd; 144 145 /* recv state */ 146 int offset; 147 int left; 148 enum nvmet_tcp_recv_state rcv_state; 149 struct nvmet_tcp_cmd *cmd; 150 union nvme_tcp_pdu pdu; 151 152 /* digest state */ 153 bool hdr_digest; 154 bool data_digest; 155 struct ahash_request *snd_hash; 156 struct ahash_request *rcv_hash; 157 158 unsigned long poll_end; 159 160 spinlock_t state_lock; 161 enum nvmet_tcp_queue_state state; 162 163 struct sockaddr_storage sockaddr; 164 struct sockaddr_storage sockaddr_peer; 165 struct work_struct release_work; 166 167 int idx; 168 struct list_head queue_list; 169 170 struct nvmet_tcp_cmd connect; 171 172 struct page_frag_cache pf_cache; 173 174 void (*data_ready)(struct sock *); 175 void (*state_change)(struct sock *); 176 void (*write_space)(struct sock *); 177 }; 178 179 struct nvmet_tcp_port { 180 struct socket *sock; 181 struct work_struct accept_work; 182 struct nvmet_port *nport; 183 struct sockaddr_storage addr; 184 void (*data_ready)(struct sock *); 185 }; 186 187 static DEFINE_IDA(nvmet_tcp_queue_ida); 188 static LIST_HEAD(nvmet_tcp_queue_list); 189 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 190 191 static struct workqueue_struct *nvmet_tcp_wq; 192 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 193 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 194 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); 195 196 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 197 struct nvmet_tcp_cmd *cmd) 198 { 199 if (unlikely(!queue->nr_cmds)) { 200 /* We didn't allocate cmds yet, send 0xffff */ 201 return USHRT_MAX; 202 } 203 204 return cmd - queue->cmds; 205 } 206 207 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 208 { 209 return nvme_is_write(cmd->req.cmd) && 210 cmd->rbytes_done < cmd->req.transfer_len; 211 } 212 213 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 214 { 215 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 216 } 217 218 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 219 { 220 return !nvme_is_write(cmd->req.cmd) && 221 cmd->req.transfer_len > 0 && 222 !cmd->req.cqe->status; 223 } 224 225 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 226 { 227 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 228 !cmd->rbytes_done; 229 } 230 231 static inline struct nvmet_tcp_cmd * 232 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 233 { 234 struct nvmet_tcp_cmd *cmd; 235 236 cmd = list_first_entry_or_null(&queue->free_list, 237 struct nvmet_tcp_cmd, entry); 238 if (!cmd) 239 return NULL; 240 list_del_init(&cmd->entry); 241 242 cmd->rbytes_done = cmd->wbytes_done = 0; 243 cmd->pdu_len = 0; 244 cmd->pdu_recv = 0; 245 cmd->iov = NULL; 246 cmd->flags = 0; 247 return cmd; 248 } 249 250 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 251 { 252 if (unlikely(cmd == &cmd->queue->connect)) 253 return; 254 255 list_add_tail(&cmd->entry, &cmd->queue->free_list); 256 } 257 258 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 259 { 260 return queue->sock->sk->sk_incoming_cpu; 261 } 262 263 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 264 { 265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 266 } 267 268 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 269 { 270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 271 } 272 273 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 274 void *pdu, size_t len) 275 { 276 struct scatterlist sg; 277 278 sg_init_one(&sg, pdu, len); 279 ahash_request_set_crypt(hash, &sg, pdu + len, len); 280 crypto_ahash_digest(hash); 281 } 282 283 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 284 void *pdu, size_t len) 285 { 286 struct nvme_tcp_hdr *hdr = pdu; 287 __le32 recv_digest; 288 __le32 exp_digest; 289 290 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 291 pr_err("queue %d: header digest enabled but no header digest\n", 292 queue->idx); 293 return -EPROTO; 294 } 295 296 recv_digest = *(__le32 *)(pdu + hdr->hlen); 297 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 298 exp_digest = *(__le32 *)(pdu + hdr->hlen); 299 if (recv_digest != exp_digest) { 300 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 301 queue->idx, le32_to_cpu(recv_digest), 302 le32_to_cpu(exp_digest)); 303 return -EPROTO; 304 } 305 306 return 0; 307 } 308 309 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 310 { 311 struct nvme_tcp_hdr *hdr = pdu; 312 u8 digest_len = nvmet_tcp_hdgst_len(queue); 313 u32 len; 314 315 len = le32_to_cpu(hdr->plen) - hdr->hlen - 316 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 317 318 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 319 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 320 return -EPROTO; 321 } 322 323 return 0; 324 } 325 326 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) 327 { 328 kfree(cmd->iov); 329 sgl_free(cmd->req.sg); 330 cmd->iov = NULL; 331 cmd->req.sg = NULL; 332 } 333 334 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) 335 { 336 struct bio_vec *iov = cmd->iov; 337 struct scatterlist *sg; 338 u32 length, offset, sg_offset; 339 int nr_pages; 340 341 length = cmd->pdu_len; 342 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); 343 offset = cmd->rbytes_done; 344 cmd->sg_idx = offset / PAGE_SIZE; 345 sg_offset = offset % PAGE_SIZE; 346 sg = &cmd->req.sg[cmd->sg_idx]; 347 348 while (length) { 349 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 350 351 bvec_set_page(iov, sg_page(sg), sg->length, 352 sg->offset + sg_offset); 353 354 length -= iov_len; 355 sg = sg_next(sg); 356 iov++; 357 sg_offset = 0; 358 } 359 360 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, 361 nr_pages, cmd->pdu_len); 362 } 363 364 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 365 { 366 queue->rcv_state = NVMET_TCP_RECV_ERR; 367 if (queue->nvme_sq.ctrl) 368 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 369 else 370 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 371 } 372 373 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 374 { 375 if (status == -EPIPE || status == -ECONNRESET) 376 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 377 else 378 nvmet_tcp_fatal_error(queue); 379 } 380 381 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 382 { 383 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 384 u32 len = le32_to_cpu(sgl->length); 385 386 if (!len) 387 return 0; 388 389 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 390 NVME_SGL_FMT_OFFSET)) { 391 if (!nvme_is_write(cmd->req.cmd)) 392 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 393 394 if (len > cmd->req.port->inline_data_size) 395 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 396 cmd->pdu_len = len; 397 } 398 cmd->req.transfer_len += len; 399 400 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 401 if (!cmd->req.sg) 402 return NVME_SC_INTERNAL; 403 cmd->cur_sg = cmd->req.sg; 404 405 if (nvmet_tcp_has_data_in(cmd)) { 406 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 407 sizeof(*cmd->iov), GFP_KERNEL); 408 if (!cmd->iov) 409 goto err; 410 } 411 412 return 0; 413 err: 414 nvmet_tcp_free_cmd_buffers(cmd); 415 return NVME_SC_INTERNAL; 416 } 417 418 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, 419 struct nvmet_tcp_cmd *cmd) 420 { 421 ahash_request_set_crypt(hash, cmd->req.sg, 422 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 423 crypto_ahash_digest(hash); 424 } 425 426 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 427 { 428 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 429 struct nvmet_tcp_queue *queue = cmd->queue; 430 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 431 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 432 433 cmd->offset = 0; 434 cmd->state = NVMET_TCP_SEND_DATA_PDU; 435 436 pdu->hdr.type = nvme_tcp_c2h_data; 437 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 438 NVME_TCP_F_DATA_SUCCESS : 0); 439 pdu->hdr.hlen = sizeof(*pdu); 440 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 441 pdu->hdr.plen = 442 cpu_to_le32(pdu->hdr.hlen + hdgst + 443 cmd->req.transfer_len + ddgst); 444 pdu->command_id = cmd->req.cqe->command_id; 445 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 446 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 447 448 if (queue->data_digest) { 449 pdu->hdr.flags |= NVME_TCP_F_DDGST; 450 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); 451 } 452 453 if (cmd->queue->hdr_digest) { 454 pdu->hdr.flags |= NVME_TCP_F_HDGST; 455 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 456 } 457 } 458 459 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 460 { 461 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 462 struct nvmet_tcp_queue *queue = cmd->queue; 463 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 464 465 cmd->offset = 0; 466 cmd->state = NVMET_TCP_SEND_R2T; 467 468 pdu->hdr.type = nvme_tcp_r2t; 469 pdu->hdr.flags = 0; 470 pdu->hdr.hlen = sizeof(*pdu); 471 pdu->hdr.pdo = 0; 472 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 473 474 pdu->command_id = cmd->req.cmd->common.command_id; 475 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 476 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 477 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 478 if (cmd->queue->hdr_digest) { 479 pdu->hdr.flags |= NVME_TCP_F_HDGST; 480 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 481 } 482 } 483 484 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 485 { 486 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 487 struct nvmet_tcp_queue *queue = cmd->queue; 488 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 489 490 cmd->offset = 0; 491 cmd->state = NVMET_TCP_SEND_RESPONSE; 492 493 pdu->hdr.type = nvme_tcp_rsp; 494 pdu->hdr.flags = 0; 495 pdu->hdr.hlen = sizeof(*pdu); 496 pdu->hdr.pdo = 0; 497 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 498 if (cmd->queue->hdr_digest) { 499 pdu->hdr.flags |= NVME_TCP_F_HDGST; 500 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 501 } 502 } 503 504 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 505 { 506 struct llist_node *node; 507 struct nvmet_tcp_cmd *cmd; 508 509 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 510 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 511 list_add(&cmd->entry, &queue->resp_send_list); 512 queue->send_list_len++; 513 } 514 } 515 516 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 517 { 518 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 519 struct nvmet_tcp_cmd, entry); 520 if (!queue->snd_cmd) { 521 nvmet_tcp_process_resp_list(queue); 522 queue->snd_cmd = 523 list_first_entry_or_null(&queue->resp_send_list, 524 struct nvmet_tcp_cmd, entry); 525 if (unlikely(!queue->snd_cmd)) 526 return NULL; 527 } 528 529 list_del_init(&queue->snd_cmd->entry); 530 queue->send_list_len--; 531 532 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 533 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 534 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 535 nvmet_setup_r2t_pdu(queue->snd_cmd); 536 else 537 nvmet_setup_response_pdu(queue->snd_cmd); 538 539 return queue->snd_cmd; 540 } 541 542 static void nvmet_tcp_queue_response(struct nvmet_req *req) 543 { 544 struct nvmet_tcp_cmd *cmd = 545 container_of(req, struct nvmet_tcp_cmd, req); 546 struct nvmet_tcp_queue *queue = cmd->queue; 547 struct nvme_sgl_desc *sgl; 548 u32 len; 549 550 if (unlikely(cmd == queue->cmd)) { 551 sgl = &cmd->req.cmd->common.dptr.sgl; 552 len = le32_to_cpu(sgl->length); 553 554 /* 555 * Wait for inline data before processing the response. 556 * Avoid using helpers, this might happen before 557 * nvmet_req_init is completed. 558 */ 559 if (queue->rcv_state == NVMET_TCP_RECV_PDU && 560 len && len <= cmd->req.port->inline_data_size && 561 nvme_is_write(cmd->req.cmd)) 562 return; 563 } 564 565 llist_add(&cmd->lentry, &queue->resp_list); 566 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 567 } 568 569 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 570 { 571 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 572 nvmet_tcp_queue_response(&cmd->req); 573 else 574 cmd->req.execute(&cmd->req); 575 } 576 577 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 578 { 579 struct msghdr msg = { 580 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, 581 }; 582 struct bio_vec bvec; 583 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 584 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 585 int ret; 586 587 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); 588 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 589 ret = sock_sendmsg(cmd->queue->sock, &msg); 590 if (ret <= 0) 591 return ret; 592 593 cmd->offset += ret; 594 left -= ret; 595 596 if (left) 597 return -EAGAIN; 598 599 cmd->state = NVMET_TCP_SEND_DATA; 600 cmd->offset = 0; 601 return 1; 602 } 603 604 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 605 { 606 struct nvmet_tcp_queue *queue = cmd->queue; 607 int ret; 608 609 while (cmd->cur_sg) { 610 struct msghdr msg = { 611 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 612 }; 613 struct page *page = sg_page(cmd->cur_sg); 614 struct bio_vec bvec; 615 u32 left = cmd->cur_sg->length - cmd->offset; 616 617 if ((!last_in_batch && cmd->queue->send_list_len) || 618 cmd->wbytes_done + left < cmd->req.transfer_len || 619 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 620 msg.msg_flags |= MSG_MORE; 621 622 bvec_set_page(&bvec, page, left, cmd->offset); 623 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 624 ret = sock_sendmsg(cmd->queue->sock, &msg); 625 if (ret <= 0) 626 return ret; 627 628 cmd->offset += ret; 629 cmd->wbytes_done += ret; 630 631 /* Done with sg?*/ 632 if (cmd->offset == cmd->cur_sg->length) { 633 cmd->cur_sg = sg_next(cmd->cur_sg); 634 cmd->offset = 0; 635 } 636 } 637 638 if (queue->data_digest) { 639 cmd->state = NVMET_TCP_SEND_DDGST; 640 cmd->offset = 0; 641 } else { 642 if (queue->nvme_sq.sqhd_disabled) { 643 cmd->queue->snd_cmd = NULL; 644 nvmet_tcp_put_cmd(cmd); 645 } else { 646 nvmet_setup_response_pdu(cmd); 647 } 648 } 649 650 if (queue->nvme_sq.sqhd_disabled) 651 nvmet_tcp_free_cmd_buffers(cmd); 652 653 return 1; 654 655 } 656 657 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 658 bool last_in_batch) 659 { 660 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 661 struct bio_vec bvec; 662 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 663 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 664 int ret; 665 666 if (!last_in_batch && cmd->queue->send_list_len) 667 msg.msg_flags |= MSG_MORE; 668 else 669 msg.msg_flags |= MSG_EOR; 670 671 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); 672 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 673 ret = sock_sendmsg(cmd->queue->sock, &msg); 674 if (ret <= 0) 675 return ret; 676 cmd->offset += ret; 677 left -= ret; 678 679 if (left) 680 return -EAGAIN; 681 682 nvmet_tcp_free_cmd_buffers(cmd); 683 cmd->queue->snd_cmd = NULL; 684 nvmet_tcp_put_cmd(cmd); 685 return 1; 686 } 687 688 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 689 { 690 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 691 struct bio_vec bvec; 692 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 693 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 694 int ret; 695 696 if (!last_in_batch && cmd->queue->send_list_len) 697 msg.msg_flags |= MSG_MORE; 698 else 699 msg.msg_flags |= MSG_EOR; 700 701 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); 702 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 703 ret = sock_sendmsg(cmd->queue->sock, &msg); 704 if (ret <= 0) 705 return ret; 706 cmd->offset += ret; 707 left -= ret; 708 709 if (left) 710 return -EAGAIN; 711 712 cmd->queue->snd_cmd = NULL; 713 return 1; 714 } 715 716 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 717 { 718 struct nvmet_tcp_queue *queue = cmd->queue; 719 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; 720 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 721 struct kvec iov = { 722 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, 723 .iov_len = left 724 }; 725 int ret; 726 727 if (!last_in_batch && cmd->queue->send_list_len) 728 msg.msg_flags |= MSG_MORE; 729 else 730 msg.msg_flags |= MSG_EOR; 731 732 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 733 if (unlikely(ret <= 0)) 734 return ret; 735 736 cmd->offset += ret; 737 left -= ret; 738 739 if (left) 740 return -EAGAIN; 741 742 if (queue->nvme_sq.sqhd_disabled) { 743 cmd->queue->snd_cmd = NULL; 744 nvmet_tcp_put_cmd(cmd); 745 } else { 746 nvmet_setup_response_pdu(cmd); 747 } 748 return 1; 749 } 750 751 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 752 bool last_in_batch) 753 { 754 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 755 int ret = 0; 756 757 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 758 cmd = nvmet_tcp_fetch_cmd(queue); 759 if (unlikely(!cmd)) 760 return 0; 761 } 762 763 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 764 ret = nvmet_try_send_data_pdu(cmd); 765 if (ret <= 0) 766 goto done_send; 767 } 768 769 if (cmd->state == NVMET_TCP_SEND_DATA) { 770 ret = nvmet_try_send_data(cmd, last_in_batch); 771 if (ret <= 0) 772 goto done_send; 773 } 774 775 if (cmd->state == NVMET_TCP_SEND_DDGST) { 776 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 777 if (ret <= 0) 778 goto done_send; 779 } 780 781 if (cmd->state == NVMET_TCP_SEND_R2T) { 782 ret = nvmet_try_send_r2t(cmd, last_in_batch); 783 if (ret <= 0) 784 goto done_send; 785 } 786 787 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 788 ret = nvmet_try_send_response(cmd, last_in_batch); 789 790 done_send: 791 if (ret < 0) { 792 if (ret == -EAGAIN) 793 return 0; 794 return ret; 795 } 796 797 return 1; 798 } 799 800 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 801 int budget, int *sends) 802 { 803 int i, ret = 0; 804 805 for (i = 0; i < budget; i++) { 806 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 807 if (unlikely(ret < 0)) { 808 nvmet_tcp_socket_error(queue, ret); 809 goto done; 810 } else if (ret == 0) { 811 break; 812 } 813 (*sends)++; 814 } 815 done: 816 return ret; 817 } 818 819 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 820 { 821 queue->offset = 0; 822 queue->left = sizeof(struct nvme_tcp_hdr); 823 queue->cmd = NULL; 824 queue->rcv_state = NVMET_TCP_RECV_PDU; 825 } 826 827 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 828 { 829 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 830 831 ahash_request_free(queue->rcv_hash); 832 ahash_request_free(queue->snd_hash); 833 crypto_free_ahash(tfm); 834 } 835 836 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 837 { 838 struct crypto_ahash *tfm; 839 840 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 841 if (IS_ERR(tfm)) 842 return PTR_ERR(tfm); 843 844 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 845 if (!queue->snd_hash) 846 goto free_tfm; 847 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 848 849 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 850 if (!queue->rcv_hash) 851 goto free_snd_hash; 852 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 853 854 return 0; 855 free_snd_hash: 856 ahash_request_free(queue->snd_hash); 857 free_tfm: 858 crypto_free_ahash(tfm); 859 return -ENOMEM; 860 } 861 862 863 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 864 { 865 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 866 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 867 struct msghdr msg = {}; 868 struct kvec iov; 869 int ret; 870 871 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 872 pr_err("bad nvme-tcp pdu length (%d)\n", 873 le32_to_cpu(icreq->hdr.plen)); 874 nvmet_tcp_fatal_error(queue); 875 } 876 877 if (icreq->pfv != NVME_TCP_PFV_1_0) { 878 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 879 return -EPROTO; 880 } 881 882 if (icreq->hpda != 0) { 883 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 884 icreq->hpda); 885 return -EPROTO; 886 } 887 888 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 889 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 890 if (queue->hdr_digest || queue->data_digest) { 891 ret = nvmet_tcp_alloc_crypto(queue); 892 if (ret) 893 return ret; 894 } 895 896 memset(icresp, 0, sizeof(*icresp)); 897 icresp->hdr.type = nvme_tcp_icresp; 898 icresp->hdr.hlen = sizeof(*icresp); 899 icresp->hdr.pdo = 0; 900 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 901 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 902 icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */ 903 icresp->cpda = 0; 904 if (queue->hdr_digest) 905 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 906 if (queue->data_digest) 907 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 908 909 iov.iov_base = icresp; 910 iov.iov_len = sizeof(*icresp); 911 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 912 if (ret < 0) 913 goto free_crypto; 914 915 queue->state = NVMET_TCP_Q_LIVE; 916 nvmet_prepare_receive_pdu(queue); 917 return 0; 918 free_crypto: 919 if (queue->hdr_digest || queue->data_digest) 920 nvmet_tcp_free_crypto(queue); 921 return ret; 922 } 923 924 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 925 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 926 { 927 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 928 int ret; 929 930 /* 931 * This command has not been processed yet, hence we are trying to 932 * figure out if there is still pending data left to receive. If 933 * we don't, we can simply prepare for the next pdu and bail out, 934 * otherwise we will need to prepare a buffer and receive the 935 * stale data before continuing forward. 936 */ 937 if (!nvme_is_write(cmd->req.cmd) || !data_len || 938 data_len > cmd->req.port->inline_data_size) { 939 nvmet_prepare_receive_pdu(queue); 940 return; 941 } 942 943 ret = nvmet_tcp_map_data(cmd); 944 if (unlikely(ret)) { 945 pr_err("queue %d: failed to map data\n", queue->idx); 946 nvmet_tcp_fatal_error(queue); 947 return; 948 } 949 950 queue->rcv_state = NVMET_TCP_RECV_DATA; 951 nvmet_tcp_build_pdu_iovec(cmd); 952 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 953 } 954 955 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 956 { 957 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 958 struct nvmet_tcp_cmd *cmd; 959 960 if (likely(queue->nr_cmds)) { 961 if (unlikely(data->ttag >= queue->nr_cmds)) { 962 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", 963 queue->idx, data->ttag, queue->nr_cmds); 964 nvmet_tcp_fatal_error(queue); 965 return -EPROTO; 966 } 967 cmd = &queue->cmds[data->ttag]; 968 } else { 969 cmd = &queue->connect; 970 } 971 972 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 973 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 974 data->ttag, le32_to_cpu(data->data_offset), 975 cmd->rbytes_done); 976 /* FIXME: use path and transport errors */ 977 nvmet_req_complete(&cmd->req, 978 NVME_SC_INVALID_FIELD | NVME_SC_DNR); 979 return -EPROTO; 980 } 981 982 cmd->pdu_len = le32_to_cpu(data->data_length); 983 cmd->pdu_recv = 0; 984 nvmet_tcp_build_pdu_iovec(cmd); 985 queue->cmd = cmd; 986 queue->rcv_state = NVMET_TCP_RECV_DATA; 987 988 return 0; 989 } 990 991 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 992 { 993 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 994 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 995 struct nvmet_req *req; 996 int ret; 997 998 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 999 if (hdr->type != nvme_tcp_icreq) { 1000 pr_err("unexpected pdu type (%d) before icreq\n", 1001 hdr->type); 1002 nvmet_tcp_fatal_error(queue); 1003 return -EPROTO; 1004 } 1005 return nvmet_tcp_handle_icreq(queue); 1006 } 1007 1008 if (unlikely(hdr->type == nvme_tcp_icreq)) { 1009 pr_err("queue %d: received icreq pdu in state %d\n", 1010 queue->idx, queue->state); 1011 nvmet_tcp_fatal_error(queue); 1012 return -EPROTO; 1013 } 1014 1015 if (hdr->type == nvme_tcp_h2c_data) { 1016 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 1017 if (unlikely(ret)) 1018 return ret; 1019 return 0; 1020 } 1021 1022 queue->cmd = nvmet_tcp_get_cmd(queue); 1023 if (unlikely(!queue->cmd)) { 1024 /* This should never happen */ 1025 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 1026 queue->idx, queue->nr_cmds, queue->send_list_len, 1027 nvme_cmd->common.opcode); 1028 nvmet_tcp_fatal_error(queue); 1029 return -ENOMEM; 1030 } 1031 1032 req = &queue->cmd->req; 1033 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 1034 1035 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 1036 &queue->nvme_sq, &nvmet_tcp_ops))) { 1037 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 1038 req->cmd, req->cmd->common.command_id, 1039 req->cmd->common.opcode, 1040 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 1041 1042 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1043 return 0; 1044 } 1045 1046 ret = nvmet_tcp_map_data(queue->cmd); 1047 if (unlikely(ret)) { 1048 pr_err("queue %d: failed to map data\n", queue->idx); 1049 if (nvmet_tcp_has_inline_data(queue->cmd)) 1050 nvmet_tcp_fatal_error(queue); 1051 else 1052 nvmet_req_complete(req, ret); 1053 ret = -EAGAIN; 1054 goto out; 1055 } 1056 1057 if (nvmet_tcp_need_data_in(queue->cmd)) { 1058 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1059 queue->rcv_state = NVMET_TCP_RECV_DATA; 1060 nvmet_tcp_build_pdu_iovec(queue->cmd); 1061 return 0; 1062 } 1063 /* send back R2T */ 1064 nvmet_tcp_queue_response(&queue->cmd->req); 1065 goto out; 1066 } 1067 1068 queue->cmd->req.execute(&queue->cmd->req); 1069 out: 1070 nvmet_prepare_receive_pdu(queue); 1071 return ret; 1072 } 1073 1074 static const u8 nvme_tcp_pdu_sizes[] = { 1075 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1076 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1077 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1078 }; 1079 1080 static inline u8 nvmet_tcp_pdu_size(u8 type) 1081 { 1082 size_t idx = type; 1083 1084 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1085 nvme_tcp_pdu_sizes[idx]) ? 1086 nvme_tcp_pdu_sizes[idx] : 0; 1087 } 1088 1089 static inline bool nvmet_tcp_pdu_valid(u8 type) 1090 { 1091 switch (type) { 1092 case nvme_tcp_icreq: 1093 case nvme_tcp_cmd: 1094 case nvme_tcp_h2c_data: 1095 /* fallthru */ 1096 return true; 1097 } 1098 1099 return false; 1100 } 1101 1102 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1103 { 1104 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1105 int len; 1106 struct kvec iov; 1107 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1108 1109 recv: 1110 iov.iov_base = (void *)&queue->pdu + queue->offset; 1111 iov.iov_len = queue->left; 1112 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1113 iov.iov_len, msg.msg_flags); 1114 if (unlikely(len < 0)) 1115 return len; 1116 1117 queue->offset += len; 1118 queue->left -= len; 1119 if (queue->left) 1120 return -EAGAIN; 1121 1122 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1123 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1124 1125 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1126 pr_err("unexpected pdu type %d\n", hdr->type); 1127 nvmet_tcp_fatal_error(queue); 1128 return -EIO; 1129 } 1130 1131 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1132 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1133 return -EIO; 1134 } 1135 1136 queue->left = hdr->hlen - queue->offset + hdgst; 1137 goto recv; 1138 } 1139 1140 if (queue->hdr_digest && 1141 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { 1142 nvmet_tcp_fatal_error(queue); /* fatal */ 1143 return -EPROTO; 1144 } 1145 1146 if (queue->data_digest && 1147 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1148 nvmet_tcp_fatal_error(queue); /* fatal */ 1149 return -EPROTO; 1150 } 1151 1152 return nvmet_tcp_done_recv_pdu(queue); 1153 } 1154 1155 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1156 { 1157 struct nvmet_tcp_queue *queue = cmd->queue; 1158 1159 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); 1160 queue->offset = 0; 1161 queue->left = NVME_TCP_DIGEST_LENGTH; 1162 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1163 } 1164 1165 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1166 { 1167 struct nvmet_tcp_cmd *cmd = queue->cmd; 1168 int ret; 1169 1170 while (msg_data_left(&cmd->recv_msg)) { 1171 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1172 cmd->recv_msg.msg_flags); 1173 if (ret <= 0) 1174 return ret; 1175 1176 cmd->pdu_recv += ret; 1177 cmd->rbytes_done += ret; 1178 } 1179 1180 if (queue->data_digest) { 1181 nvmet_tcp_prep_recv_ddgst(cmd); 1182 return 0; 1183 } 1184 1185 if (cmd->rbytes_done == cmd->req.transfer_len) 1186 nvmet_tcp_execute_request(cmd); 1187 1188 nvmet_prepare_receive_pdu(queue); 1189 return 0; 1190 } 1191 1192 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1193 { 1194 struct nvmet_tcp_cmd *cmd = queue->cmd; 1195 int ret; 1196 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1197 struct kvec iov = { 1198 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1199 .iov_len = queue->left 1200 }; 1201 1202 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1203 iov.iov_len, msg.msg_flags); 1204 if (unlikely(ret < 0)) 1205 return ret; 1206 1207 queue->offset += ret; 1208 queue->left -= ret; 1209 if (queue->left) 1210 return -EAGAIN; 1211 1212 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1213 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1214 queue->idx, cmd->req.cmd->common.command_id, 1215 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1216 le32_to_cpu(cmd->exp_ddgst)); 1217 nvmet_req_uninit(&cmd->req); 1218 nvmet_tcp_free_cmd_buffers(cmd); 1219 nvmet_tcp_fatal_error(queue); 1220 ret = -EPROTO; 1221 goto out; 1222 } 1223 1224 if (cmd->rbytes_done == cmd->req.transfer_len) 1225 nvmet_tcp_execute_request(cmd); 1226 1227 ret = 0; 1228 out: 1229 nvmet_prepare_receive_pdu(queue); 1230 return ret; 1231 } 1232 1233 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1234 { 1235 int result = 0; 1236 1237 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1238 return 0; 1239 1240 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1241 result = nvmet_tcp_try_recv_pdu(queue); 1242 if (result != 0) 1243 goto done_recv; 1244 } 1245 1246 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1247 result = nvmet_tcp_try_recv_data(queue); 1248 if (result != 0) 1249 goto done_recv; 1250 } 1251 1252 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1253 result = nvmet_tcp_try_recv_ddgst(queue); 1254 if (result != 0) 1255 goto done_recv; 1256 } 1257 1258 done_recv: 1259 if (result < 0) { 1260 if (result == -EAGAIN) 1261 return 0; 1262 return result; 1263 } 1264 return 1; 1265 } 1266 1267 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1268 int budget, int *recvs) 1269 { 1270 int i, ret = 0; 1271 1272 for (i = 0; i < budget; i++) { 1273 ret = nvmet_tcp_try_recv_one(queue); 1274 if (unlikely(ret < 0)) { 1275 nvmet_tcp_socket_error(queue, ret); 1276 goto done; 1277 } else if (ret == 0) { 1278 break; 1279 } 1280 (*recvs)++; 1281 } 1282 done: 1283 return ret; 1284 } 1285 1286 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1287 { 1288 spin_lock(&queue->state_lock); 1289 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1290 queue->state = NVMET_TCP_Q_DISCONNECTING; 1291 queue_work(nvmet_wq, &queue->release_work); 1292 } 1293 spin_unlock(&queue->state_lock); 1294 } 1295 1296 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1297 { 1298 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1299 } 1300 1301 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1302 int ops) 1303 { 1304 if (!idle_poll_period_usecs) 1305 return false; 1306 1307 if (ops) 1308 nvmet_tcp_arm_queue_deadline(queue); 1309 1310 return !time_after(jiffies, queue->poll_end); 1311 } 1312 1313 static void nvmet_tcp_io_work(struct work_struct *w) 1314 { 1315 struct nvmet_tcp_queue *queue = 1316 container_of(w, struct nvmet_tcp_queue, io_work); 1317 bool pending; 1318 int ret, ops = 0; 1319 1320 do { 1321 pending = false; 1322 1323 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1324 if (ret > 0) 1325 pending = true; 1326 else if (ret < 0) 1327 return; 1328 1329 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1330 if (ret > 0) 1331 pending = true; 1332 else if (ret < 0) 1333 return; 1334 1335 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1336 1337 /* 1338 * Requeue the worker if idle deadline period is in progress or any 1339 * ops activity was recorded during the do-while loop above. 1340 */ 1341 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1342 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1343 } 1344 1345 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1346 struct nvmet_tcp_cmd *c) 1347 { 1348 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1349 1350 c->queue = queue; 1351 c->req.port = queue->port->nport; 1352 1353 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1354 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1355 if (!c->cmd_pdu) 1356 return -ENOMEM; 1357 c->req.cmd = &c->cmd_pdu->cmd; 1358 1359 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1360 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1361 if (!c->rsp_pdu) 1362 goto out_free_cmd; 1363 c->req.cqe = &c->rsp_pdu->cqe; 1364 1365 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1366 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1367 if (!c->data_pdu) 1368 goto out_free_rsp; 1369 1370 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1371 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1372 if (!c->r2t_pdu) 1373 goto out_free_data; 1374 1375 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1376 1377 list_add_tail(&c->entry, &queue->free_list); 1378 1379 return 0; 1380 out_free_data: 1381 page_frag_free(c->data_pdu); 1382 out_free_rsp: 1383 page_frag_free(c->rsp_pdu); 1384 out_free_cmd: 1385 page_frag_free(c->cmd_pdu); 1386 return -ENOMEM; 1387 } 1388 1389 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1390 { 1391 page_frag_free(c->r2t_pdu); 1392 page_frag_free(c->data_pdu); 1393 page_frag_free(c->rsp_pdu); 1394 page_frag_free(c->cmd_pdu); 1395 } 1396 1397 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1398 { 1399 struct nvmet_tcp_cmd *cmds; 1400 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1401 1402 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1403 if (!cmds) 1404 goto out; 1405 1406 for (i = 0; i < nr_cmds; i++) { 1407 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1408 if (ret) 1409 goto out_free; 1410 } 1411 1412 queue->cmds = cmds; 1413 1414 return 0; 1415 out_free: 1416 while (--i >= 0) 1417 nvmet_tcp_free_cmd(cmds + i); 1418 kfree(cmds); 1419 out: 1420 return ret; 1421 } 1422 1423 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1424 { 1425 struct nvmet_tcp_cmd *cmds = queue->cmds; 1426 int i; 1427 1428 for (i = 0; i < queue->nr_cmds; i++) 1429 nvmet_tcp_free_cmd(cmds + i); 1430 1431 nvmet_tcp_free_cmd(&queue->connect); 1432 kfree(cmds); 1433 } 1434 1435 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1436 { 1437 struct socket *sock = queue->sock; 1438 1439 write_lock_bh(&sock->sk->sk_callback_lock); 1440 sock->sk->sk_data_ready = queue->data_ready; 1441 sock->sk->sk_state_change = queue->state_change; 1442 sock->sk->sk_write_space = queue->write_space; 1443 sock->sk->sk_user_data = NULL; 1444 write_unlock_bh(&sock->sk->sk_callback_lock); 1445 } 1446 1447 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1448 { 1449 struct nvmet_tcp_cmd *cmd = queue->cmds; 1450 int i; 1451 1452 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1453 if (nvmet_tcp_need_data_in(cmd)) 1454 nvmet_req_uninit(&cmd->req); 1455 } 1456 1457 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1458 /* failed in connect */ 1459 nvmet_req_uninit(&queue->connect.req); 1460 } 1461 } 1462 1463 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) 1464 { 1465 struct nvmet_tcp_cmd *cmd = queue->cmds; 1466 int i; 1467 1468 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1469 if (nvmet_tcp_need_data_in(cmd)) 1470 nvmet_tcp_free_cmd_buffers(cmd); 1471 } 1472 1473 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) 1474 nvmet_tcp_free_cmd_buffers(&queue->connect); 1475 } 1476 1477 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1478 { 1479 struct page *page; 1480 struct nvmet_tcp_queue *queue = 1481 container_of(w, struct nvmet_tcp_queue, release_work); 1482 1483 mutex_lock(&nvmet_tcp_queue_mutex); 1484 list_del_init(&queue->queue_list); 1485 mutex_unlock(&nvmet_tcp_queue_mutex); 1486 1487 nvmet_tcp_restore_socket_callbacks(queue); 1488 cancel_work_sync(&queue->io_work); 1489 /* stop accepting incoming data */ 1490 queue->rcv_state = NVMET_TCP_RECV_ERR; 1491 1492 nvmet_tcp_uninit_data_in_cmds(queue); 1493 nvmet_sq_destroy(&queue->nvme_sq); 1494 cancel_work_sync(&queue->io_work); 1495 nvmet_tcp_free_cmd_data_in_buffers(queue); 1496 sock_release(queue->sock); 1497 nvmet_tcp_free_cmds(queue); 1498 if (queue->hdr_digest || queue->data_digest) 1499 nvmet_tcp_free_crypto(queue); 1500 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1501 1502 page = virt_to_head_page(queue->pf_cache.va); 1503 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1504 kfree(queue); 1505 } 1506 1507 static void nvmet_tcp_data_ready(struct sock *sk) 1508 { 1509 struct nvmet_tcp_queue *queue; 1510 1511 trace_sk_data_ready(sk); 1512 1513 read_lock_bh(&sk->sk_callback_lock); 1514 queue = sk->sk_user_data; 1515 if (likely(queue)) 1516 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1517 read_unlock_bh(&sk->sk_callback_lock); 1518 } 1519 1520 static void nvmet_tcp_write_space(struct sock *sk) 1521 { 1522 struct nvmet_tcp_queue *queue; 1523 1524 read_lock_bh(&sk->sk_callback_lock); 1525 queue = sk->sk_user_data; 1526 if (unlikely(!queue)) 1527 goto out; 1528 1529 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1530 queue->write_space(sk); 1531 goto out; 1532 } 1533 1534 if (sk_stream_is_writeable(sk)) { 1535 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1536 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1537 } 1538 out: 1539 read_unlock_bh(&sk->sk_callback_lock); 1540 } 1541 1542 static void nvmet_tcp_state_change(struct sock *sk) 1543 { 1544 struct nvmet_tcp_queue *queue; 1545 1546 read_lock_bh(&sk->sk_callback_lock); 1547 queue = sk->sk_user_data; 1548 if (!queue) 1549 goto done; 1550 1551 switch (sk->sk_state) { 1552 case TCP_FIN_WAIT2: 1553 case TCP_LAST_ACK: 1554 break; 1555 case TCP_FIN_WAIT1: 1556 case TCP_CLOSE_WAIT: 1557 case TCP_CLOSE: 1558 /* FALLTHRU */ 1559 nvmet_tcp_schedule_release_queue(queue); 1560 break; 1561 default: 1562 pr_warn("queue %d unhandled state %d\n", 1563 queue->idx, sk->sk_state); 1564 } 1565 done: 1566 read_unlock_bh(&sk->sk_callback_lock); 1567 } 1568 1569 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1570 { 1571 struct socket *sock = queue->sock; 1572 struct inet_sock *inet = inet_sk(sock->sk); 1573 int ret; 1574 1575 ret = kernel_getsockname(sock, 1576 (struct sockaddr *)&queue->sockaddr); 1577 if (ret < 0) 1578 return ret; 1579 1580 ret = kernel_getpeername(sock, 1581 (struct sockaddr *)&queue->sockaddr_peer); 1582 if (ret < 0) 1583 return ret; 1584 1585 /* 1586 * Cleanup whatever is sitting in the TCP transmit queue on socket 1587 * close. This is done to prevent stale data from being sent should 1588 * the network connection be restored before TCP times out. 1589 */ 1590 sock_no_linger(sock->sk); 1591 1592 if (so_priority > 0) 1593 sock_set_priority(sock->sk, so_priority); 1594 1595 /* Set socket type of service */ 1596 if (inet->rcv_tos > 0) 1597 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1598 1599 ret = 0; 1600 write_lock_bh(&sock->sk->sk_callback_lock); 1601 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1602 /* 1603 * If the socket is already closing, don't even start 1604 * consuming it 1605 */ 1606 ret = -ENOTCONN; 1607 } else { 1608 sock->sk->sk_user_data = queue; 1609 queue->data_ready = sock->sk->sk_data_ready; 1610 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1611 queue->state_change = sock->sk->sk_state_change; 1612 sock->sk->sk_state_change = nvmet_tcp_state_change; 1613 queue->write_space = sock->sk->sk_write_space; 1614 sock->sk->sk_write_space = nvmet_tcp_write_space; 1615 if (idle_poll_period_usecs) 1616 nvmet_tcp_arm_queue_deadline(queue); 1617 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1618 } 1619 write_unlock_bh(&sock->sk->sk_callback_lock); 1620 1621 return ret; 1622 } 1623 1624 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1625 struct socket *newsock) 1626 { 1627 struct nvmet_tcp_queue *queue; 1628 int ret; 1629 1630 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1631 if (!queue) 1632 return -ENOMEM; 1633 1634 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1635 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1636 queue->sock = newsock; 1637 queue->port = port; 1638 queue->nr_cmds = 0; 1639 spin_lock_init(&queue->state_lock); 1640 queue->state = NVMET_TCP_Q_CONNECTING; 1641 INIT_LIST_HEAD(&queue->free_list); 1642 init_llist_head(&queue->resp_list); 1643 INIT_LIST_HEAD(&queue->resp_send_list); 1644 1645 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); 1646 if (queue->idx < 0) { 1647 ret = queue->idx; 1648 goto out_free_queue; 1649 } 1650 1651 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1652 if (ret) 1653 goto out_ida_remove; 1654 1655 ret = nvmet_sq_init(&queue->nvme_sq); 1656 if (ret) 1657 goto out_free_connect; 1658 1659 nvmet_prepare_receive_pdu(queue); 1660 1661 mutex_lock(&nvmet_tcp_queue_mutex); 1662 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1663 mutex_unlock(&nvmet_tcp_queue_mutex); 1664 1665 ret = nvmet_tcp_set_queue_sock(queue); 1666 if (ret) 1667 goto out_destroy_sq; 1668 1669 return 0; 1670 out_destroy_sq: 1671 mutex_lock(&nvmet_tcp_queue_mutex); 1672 list_del_init(&queue->queue_list); 1673 mutex_unlock(&nvmet_tcp_queue_mutex); 1674 nvmet_sq_destroy(&queue->nvme_sq); 1675 out_free_connect: 1676 nvmet_tcp_free_cmd(&queue->connect); 1677 out_ida_remove: 1678 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1679 out_free_queue: 1680 kfree(queue); 1681 return ret; 1682 } 1683 1684 static void nvmet_tcp_accept_work(struct work_struct *w) 1685 { 1686 struct nvmet_tcp_port *port = 1687 container_of(w, struct nvmet_tcp_port, accept_work); 1688 struct socket *newsock; 1689 int ret; 1690 1691 while (true) { 1692 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1693 if (ret < 0) { 1694 if (ret != -EAGAIN) 1695 pr_warn("failed to accept err=%d\n", ret); 1696 return; 1697 } 1698 ret = nvmet_tcp_alloc_queue(port, newsock); 1699 if (ret) { 1700 pr_err("failed to allocate queue\n"); 1701 sock_release(newsock); 1702 } 1703 } 1704 } 1705 1706 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1707 { 1708 struct nvmet_tcp_port *port; 1709 1710 trace_sk_data_ready(sk); 1711 1712 read_lock_bh(&sk->sk_callback_lock); 1713 port = sk->sk_user_data; 1714 if (!port) 1715 goto out; 1716 1717 if (sk->sk_state == TCP_LISTEN) 1718 queue_work(nvmet_wq, &port->accept_work); 1719 out: 1720 read_unlock_bh(&sk->sk_callback_lock); 1721 } 1722 1723 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1724 { 1725 struct nvmet_tcp_port *port; 1726 __kernel_sa_family_t af; 1727 int ret; 1728 1729 port = kzalloc(sizeof(*port), GFP_KERNEL); 1730 if (!port) 1731 return -ENOMEM; 1732 1733 switch (nport->disc_addr.adrfam) { 1734 case NVMF_ADDR_FAMILY_IP4: 1735 af = AF_INET; 1736 break; 1737 case NVMF_ADDR_FAMILY_IP6: 1738 af = AF_INET6; 1739 break; 1740 default: 1741 pr_err("address family %d not supported\n", 1742 nport->disc_addr.adrfam); 1743 ret = -EINVAL; 1744 goto err_port; 1745 } 1746 1747 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1748 nport->disc_addr.trsvcid, &port->addr); 1749 if (ret) { 1750 pr_err("malformed ip/port passed: %s:%s\n", 1751 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1752 goto err_port; 1753 } 1754 1755 port->nport = nport; 1756 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1757 if (port->nport->inline_data_size < 0) 1758 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1759 1760 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1761 IPPROTO_TCP, &port->sock); 1762 if (ret) { 1763 pr_err("failed to create a socket\n"); 1764 goto err_port; 1765 } 1766 1767 port->sock->sk->sk_user_data = port; 1768 port->data_ready = port->sock->sk->sk_data_ready; 1769 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1770 sock_set_reuseaddr(port->sock->sk); 1771 tcp_sock_set_nodelay(port->sock->sk); 1772 if (so_priority > 0) 1773 sock_set_priority(port->sock->sk, so_priority); 1774 1775 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1776 sizeof(port->addr)); 1777 if (ret) { 1778 pr_err("failed to bind port socket %d\n", ret); 1779 goto err_sock; 1780 } 1781 1782 ret = kernel_listen(port->sock, 128); 1783 if (ret) { 1784 pr_err("failed to listen %d on port sock\n", ret); 1785 goto err_sock; 1786 } 1787 1788 nport->priv = port; 1789 pr_info("enabling port %d (%pISpc)\n", 1790 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1791 1792 return 0; 1793 1794 err_sock: 1795 sock_release(port->sock); 1796 err_port: 1797 kfree(port); 1798 return ret; 1799 } 1800 1801 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) 1802 { 1803 struct nvmet_tcp_queue *queue; 1804 1805 mutex_lock(&nvmet_tcp_queue_mutex); 1806 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1807 if (queue->port == port) 1808 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1809 mutex_unlock(&nvmet_tcp_queue_mutex); 1810 } 1811 1812 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1813 { 1814 struct nvmet_tcp_port *port = nport->priv; 1815 1816 write_lock_bh(&port->sock->sk->sk_callback_lock); 1817 port->sock->sk->sk_data_ready = port->data_ready; 1818 port->sock->sk->sk_user_data = NULL; 1819 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1820 cancel_work_sync(&port->accept_work); 1821 /* 1822 * Destroy the remaining queues, which are not belong to any 1823 * controller yet. 1824 */ 1825 nvmet_tcp_destroy_port_queues(port); 1826 1827 sock_release(port->sock); 1828 kfree(port); 1829 } 1830 1831 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1832 { 1833 struct nvmet_tcp_queue *queue; 1834 1835 mutex_lock(&nvmet_tcp_queue_mutex); 1836 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1837 if (queue->nvme_sq.ctrl == ctrl) 1838 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1839 mutex_unlock(&nvmet_tcp_queue_mutex); 1840 } 1841 1842 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1843 { 1844 struct nvmet_tcp_queue *queue = 1845 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1846 1847 if (sq->qid == 0) { 1848 /* Let inflight controller teardown complete */ 1849 flush_workqueue(nvmet_wq); 1850 } 1851 1852 queue->nr_cmds = sq->size * 2; 1853 if (nvmet_tcp_alloc_cmds(queue)) 1854 return NVME_SC_INTERNAL; 1855 return 0; 1856 } 1857 1858 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1859 struct nvmet_port *nport, char *traddr) 1860 { 1861 struct nvmet_tcp_port *port = nport->priv; 1862 1863 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1864 struct nvmet_tcp_cmd *cmd = 1865 container_of(req, struct nvmet_tcp_cmd, req); 1866 struct nvmet_tcp_queue *queue = cmd->queue; 1867 1868 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1869 } else { 1870 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1871 } 1872 } 1873 1874 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 1875 .owner = THIS_MODULE, 1876 .type = NVMF_TRTYPE_TCP, 1877 .msdbd = 1, 1878 .add_port = nvmet_tcp_add_port, 1879 .remove_port = nvmet_tcp_remove_port, 1880 .queue_response = nvmet_tcp_queue_response, 1881 .delete_ctrl = nvmet_tcp_delete_ctrl, 1882 .install_queue = nvmet_tcp_install_queue, 1883 .disc_traddr = nvmet_tcp_disc_port_addr, 1884 }; 1885 1886 static int __init nvmet_tcp_init(void) 1887 { 1888 int ret; 1889 1890 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", 1891 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1892 if (!nvmet_tcp_wq) 1893 return -ENOMEM; 1894 1895 ret = nvmet_register_transport(&nvmet_tcp_ops); 1896 if (ret) 1897 goto err; 1898 1899 return 0; 1900 err: 1901 destroy_workqueue(nvmet_tcp_wq); 1902 return ret; 1903 } 1904 1905 static void __exit nvmet_tcp_exit(void) 1906 { 1907 struct nvmet_tcp_queue *queue; 1908 1909 nvmet_unregister_transport(&nvmet_tcp_ops); 1910 1911 flush_workqueue(nvmet_wq); 1912 mutex_lock(&nvmet_tcp_queue_mutex); 1913 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1914 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1915 mutex_unlock(&nvmet_tcp_queue_mutex); 1916 flush_workqueue(nvmet_wq); 1917 1918 destroy_workqueue(nvmet_tcp_wq); 1919 } 1920 1921 module_init(nvmet_tcp_init); 1922 module_exit(nvmet_tcp_exit); 1923 1924 MODULE_LICENSE("GPL v2"); 1925 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1926