xref: /linux/drivers/nvme/target/tcp.c (revision 56fb34d86e875dbb0d3e6a81c5d3d035db373031)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 
18 #include "nvmet.h"
19 
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
21 
22 #define NVMET_TCP_RECV_BUDGET		8
23 #define NVMET_TCP_SEND_BUDGET		8
24 #define NVMET_TCP_IO_WORK_BUDGET	64
25 
26 enum nvmet_tcp_send_state {
27 	NVMET_TCP_SEND_DATA_PDU,
28 	NVMET_TCP_SEND_DATA,
29 	NVMET_TCP_SEND_R2T,
30 	NVMET_TCP_SEND_DDGST,
31 	NVMET_TCP_SEND_RESPONSE
32 };
33 
34 enum nvmet_tcp_recv_state {
35 	NVMET_TCP_RECV_PDU,
36 	NVMET_TCP_RECV_DATA,
37 	NVMET_TCP_RECV_DDGST,
38 	NVMET_TCP_RECV_ERR,
39 };
40 
41 enum {
42 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
43 };
44 
45 struct nvmet_tcp_cmd {
46 	struct nvmet_tcp_queue		*queue;
47 	struct nvmet_req		req;
48 
49 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
50 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
51 	struct nvme_tcp_data_pdu	*data_pdu;
52 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
53 
54 	u32				rbytes_done;
55 	u32				wbytes_done;
56 
57 	u32				pdu_len;
58 	u32				pdu_recv;
59 	int				sg_idx;
60 	int				nr_mapped;
61 	struct msghdr			recv_msg;
62 	struct kvec			*iov;
63 	u32				flags;
64 
65 	struct list_head		entry;
66 	struct llist_node		lentry;
67 
68 	/* send state */
69 	u32				offset;
70 	struct scatterlist		*cur_sg;
71 	enum nvmet_tcp_send_state	state;
72 
73 	__le32				exp_ddgst;
74 	__le32				recv_ddgst;
75 };
76 
77 enum nvmet_tcp_queue_state {
78 	NVMET_TCP_Q_CONNECTING,
79 	NVMET_TCP_Q_LIVE,
80 	NVMET_TCP_Q_DISCONNECTING,
81 };
82 
83 struct nvmet_tcp_queue {
84 	struct socket		*sock;
85 	struct nvmet_tcp_port	*port;
86 	struct work_struct	io_work;
87 	int			cpu;
88 	struct nvmet_cq		nvme_cq;
89 	struct nvmet_sq		nvme_sq;
90 
91 	/* send state */
92 	struct nvmet_tcp_cmd	*cmds;
93 	unsigned int		nr_cmds;
94 	struct list_head	free_list;
95 	struct llist_head	resp_list;
96 	struct list_head	resp_send_list;
97 	int			send_list_len;
98 	struct nvmet_tcp_cmd	*snd_cmd;
99 
100 	/* recv state */
101 	int			offset;
102 	int			left;
103 	enum nvmet_tcp_recv_state rcv_state;
104 	struct nvmet_tcp_cmd	*cmd;
105 	union nvme_tcp_pdu	pdu;
106 
107 	/* digest state */
108 	bool			hdr_digest;
109 	bool			data_digest;
110 	struct ahash_request	*snd_hash;
111 	struct ahash_request	*rcv_hash;
112 
113 	spinlock_t		state_lock;
114 	enum nvmet_tcp_queue_state state;
115 
116 	struct sockaddr_storage	sockaddr;
117 	struct sockaddr_storage	sockaddr_peer;
118 	struct work_struct	release_work;
119 
120 	int			idx;
121 	struct list_head	queue_list;
122 
123 	struct nvmet_tcp_cmd	connect;
124 
125 	struct page_frag_cache	pf_cache;
126 
127 	void (*data_ready)(struct sock *);
128 	void (*state_change)(struct sock *);
129 	void (*write_space)(struct sock *);
130 };
131 
132 struct nvmet_tcp_port {
133 	struct socket		*sock;
134 	struct work_struct	accept_work;
135 	struct nvmet_port	*nport;
136 	struct sockaddr_storage addr;
137 	int			last_cpu;
138 	void (*data_ready)(struct sock *);
139 };
140 
141 static DEFINE_IDA(nvmet_tcp_queue_ida);
142 static LIST_HEAD(nvmet_tcp_queue_list);
143 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
144 
145 static struct workqueue_struct *nvmet_tcp_wq;
146 static struct nvmet_fabrics_ops nvmet_tcp_ops;
147 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
148 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
149 
150 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
151 		struct nvmet_tcp_cmd *cmd)
152 {
153 	return cmd - queue->cmds;
154 }
155 
156 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
157 {
158 	return nvme_is_write(cmd->req.cmd) &&
159 		cmd->rbytes_done < cmd->req.transfer_len;
160 }
161 
162 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
163 {
164 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
165 }
166 
167 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
168 {
169 	return !nvme_is_write(cmd->req.cmd) &&
170 		cmd->req.transfer_len > 0 &&
171 		!cmd->req.cqe->status;
172 }
173 
174 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
175 {
176 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
177 		!cmd->rbytes_done;
178 }
179 
180 static inline struct nvmet_tcp_cmd *
181 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
182 {
183 	struct nvmet_tcp_cmd *cmd;
184 
185 	cmd = list_first_entry_or_null(&queue->free_list,
186 				struct nvmet_tcp_cmd, entry);
187 	if (!cmd)
188 		return NULL;
189 	list_del_init(&cmd->entry);
190 
191 	cmd->rbytes_done = cmd->wbytes_done = 0;
192 	cmd->pdu_len = 0;
193 	cmd->pdu_recv = 0;
194 	cmd->iov = NULL;
195 	cmd->flags = 0;
196 	return cmd;
197 }
198 
199 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
200 {
201 	if (unlikely(cmd == &cmd->queue->connect))
202 		return;
203 
204 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
205 }
206 
207 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
208 {
209 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
210 }
211 
212 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
213 {
214 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
215 }
216 
217 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
218 		void *pdu, size_t len)
219 {
220 	struct scatterlist sg;
221 
222 	sg_init_one(&sg, pdu, len);
223 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
224 	crypto_ahash_digest(hash);
225 }
226 
227 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
228 	void *pdu, size_t len)
229 {
230 	struct nvme_tcp_hdr *hdr = pdu;
231 	__le32 recv_digest;
232 	__le32 exp_digest;
233 
234 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
235 		pr_err("queue %d: header digest enabled but no header digest\n",
236 			queue->idx);
237 		return -EPROTO;
238 	}
239 
240 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
241 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
242 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
243 	if (recv_digest != exp_digest) {
244 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
245 			queue->idx, le32_to_cpu(recv_digest),
246 			le32_to_cpu(exp_digest));
247 		return -EPROTO;
248 	}
249 
250 	return 0;
251 }
252 
253 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
254 {
255 	struct nvme_tcp_hdr *hdr = pdu;
256 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
257 	u32 len;
258 
259 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
260 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
261 
262 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
263 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
264 		return -EPROTO;
265 	}
266 
267 	return 0;
268 }
269 
270 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
271 {
272 	struct scatterlist *sg;
273 	int i;
274 
275 	sg = &cmd->req.sg[cmd->sg_idx];
276 
277 	for (i = 0; i < cmd->nr_mapped; i++)
278 		kunmap(sg_page(&sg[i]));
279 }
280 
281 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
282 {
283 	struct kvec *iov = cmd->iov;
284 	struct scatterlist *sg;
285 	u32 length, offset, sg_offset;
286 
287 	length = cmd->pdu_len;
288 	cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
289 	offset = cmd->rbytes_done;
290 	cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE);
291 	sg_offset = offset % PAGE_SIZE;
292 	sg = &cmd->req.sg[cmd->sg_idx];
293 
294 	while (length) {
295 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
296 
297 		iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
298 		iov->iov_len = iov_len;
299 
300 		length -= iov_len;
301 		sg = sg_next(sg);
302 		iov++;
303 	}
304 
305 	iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
306 		cmd->nr_mapped, cmd->pdu_len);
307 }
308 
309 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
310 {
311 	queue->rcv_state = NVMET_TCP_RECV_ERR;
312 	if (queue->nvme_sq.ctrl)
313 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
314 	else
315 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
316 }
317 
318 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
319 {
320 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
321 	u32 len = le32_to_cpu(sgl->length);
322 
323 	if (!cmd->req.data_len)
324 		return 0;
325 
326 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
327 			  NVME_SGL_FMT_OFFSET)) {
328 		if (!nvme_is_write(cmd->req.cmd))
329 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
330 
331 		if (len > cmd->req.port->inline_data_size)
332 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
333 		cmd->pdu_len = len;
334 	}
335 	cmd->req.transfer_len += len;
336 
337 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
338 	if (!cmd->req.sg)
339 		return NVME_SC_INTERNAL;
340 	cmd->cur_sg = cmd->req.sg;
341 
342 	if (nvmet_tcp_has_data_in(cmd)) {
343 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
344 				sizeof(*cmd->iov), GFP_KERNEL);
345 		if (!cmd->iov)
346 			goto err;
347 	}
348 
349 	return 0;
350 err:
351 	if (cmd->req.sg_cnt)
352 		sgl_free(cmd->req.sg);
353 	return NVME_SC_INTERNAL;
354 }
355 
356 static void nvmet_tcp_ddgst(struct ahash_request *hash,
357 		struct nvmet_tcp_cmd *cmd)
358 {
359 	ahash_request_set_crypt(hash, cmd->req.sg,
360 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
361 	crypto_ahash_digest(hash);
362 }
363 
364 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
365 {
366 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
367 	struct nvmet_tcp_queue *queue = cmd->queue;
368 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
369 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
370 
371 	cmd->offset = 0;
372 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
373 
374 	pdu->hdr.type = nvme_tcp_c2h_data;
375 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
376 						NVME_TCP_F_DATA_SUCCESS : 0);
377 	pdu->hdr.hlen = sizeof(*pdu);
378 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
379 	pdu->hdr.plen =
380 		cpu_to_le32(pdu->hdr.hlen + hdgst +
381 				cmd->req.transfer_len + ddgst);
382 	pdu->command_id = cmd->req.cqe->command_id;
383 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
384 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
385 
386 	if (queue->data_digest) {
387 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
388 		nvmet_tcp_ddgst(queue->snd_hash, cmd);
389 	}
390 
391 	if (cmd->queue->hdr_digest) {
392 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
393 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
394 	}
395 }
396 
397 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
398 {
399 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
400 	struct nvmet_tcp_queue *queue = cmd->queue;
401 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
402 
403 	cmd->offset = 0;
404 	cmd->state = NVMET_TCP_SEND_R2T;
405 
406 	pdu->hdr.type = nvme_tcp_r2t;
407 	pdu->hdr.flags = 0;
408 	pdu->hdr.hlen = sizeof(*pdu);
409 	pdu->hdr.pdo = 0;
410 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
411 
412 	pdu->command_id = cmd->req.cmd->common.command_id;
413 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
414 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
415 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
416 	if (cmd->queue->hdr_digest) {
417 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
418 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
419 	}
420 }
421 
422 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
423 {
424 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
425 	struct nvmet_tcp_queue *queue = cmd->queue;
426 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
427 
428 	cmd->offset = 0;
429 	cmd->state = NVMET_TCP_SEND_RESPONSE;
430 
431 	pdu->hdr.type = nvme_tcp_rsp;
432 	pdu->hdr.flags = 0;
433 	pdu->hdr.hlen = sizeof(*pdu);
434 	pdu->hdr.pdo = 0;
435 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
436 	if (cmd->queue->hdr_digest) {
437 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
438 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
439 	}
440 }
441 
442 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
443 {
444 	struct llist_node *node;
445 
446 	node = llist_del_all(&queue->resp_list);
447 	if (!node)
448 		return;
449 
450 	while (node) {
451 		struct nvmet_tcp_cmd *cmd = llist_entry(node,
452 					struct nvmet_tcp_cmd, lentry);
453 
454 		list_add(&cmd->entry, &queue->resp_send_list);
455 		node = node->next;
456 		queue->send_list_len++;
457 	}
458 }
459 
460 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
461 {
462 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
463 				struct nvmet_tcp_cmd, entry);
464 	if (!queue->snd_cmd) {
465 		nvmet_tcp_process_resp_list(queue);
466 		queue->snd_cmd =
467 			list_first_entry_or_null(&queue->resp_send_list,
468 					struct nvmet_tcp_cmd, entry);
469 		if (unlikely(!queue->snd_cmd))
470 			return NULL;
471 	}
472 
473 	list_del_init(&queue->snd_cmd->entry);
474 	queue->send_list_len--;
475 
476 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
477 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
478 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
479 		nvmet_setup_r2t_pdu(queue->snd_cmd);
480 	else
481 		nvmet_setup_response_pdu(queue->snd_cmd);
482 
483 	return queue->snd_cmd;
484 }
485 
486 static void nvmet_tcp_queue_response(struct nvmet_req *req)
487 {
488 	struct nvmet_tcp_cmd *cmd =
489 		container_of(req, struct nvmet_tcp_cmd, req);
490 	struct nvmet_tcp_queue	*queue = cmd->queue;
491 
492 	llist_add(&cmd->lentry, &queue->resp_list);
493 	queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work);
494 }
495 
496 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
497 {
498 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
499 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
500 	int ret;
501 
502 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
503 			offset_in_page(cmd->data_pdu) + cmd->offset,
504 			left, MSG_DONTWAIT | MSG_MORE);
505 	if (ret <= 0)
506 		return ret;
507 
508 	cmd->offset += ret;
509 	left -= ret;
510 
511 	if (left)
512 		return -EAGAIN;
513 
514 	cmd->state = NVMET_TCP_SEND_DATA;
515 	cmd->offset  = 0;
516 	return 1;
517 }
518 
519 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd)
520 {
521 	struct nvmet_tcp_queue *queue = cmd->queue;
522 	int ret;
523 
524 	while (cmd->cur_sg) {
525 		struct page *page = sg_page(cmd->cur_sg);
526 		u32 left = cmd->cur_sg->length - cmd->offset;
527 
528 		ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
529 					left, MSG_DONTWAIT | MSG_MORE);
530 		if (ret <= 0)
531 			return ret;
532 
533 		cmd->offset += ret;
534 		cmd->wbytes_done += ret;
535 
536 		/* Done with sg?*/
537 		if (cmd->offset == cmd->cur_sg->length) {
538 			cmd->cur_sg = sg_next(cmd->cur_sg);
539 			cmd->offset = 0;
540 		}
541 	}
542 
543 	if (queue->data_digest) {
544 		cmd->state = NVMET_TCP_SEND_DDGST;
545 		cmd->offset = 0;
546 	} else {
547 		if (queue->nvme_sq.sqhd_disabled) {
548 			cmd->queue->snd_cmd = NULL;
549 			nvmet_tcp_put_cmd(cmd);
550 		} else {
551 			nvmet_setup_response_pdu(cmd);
552 		}
553 	}
554 
555 	if (queue->nvme_sq.sqhd_disabled) {
556 		kfree(cmd->iov);
557 		if (cmd->req.sg_cnt)
558 			sgl_free(cmd->req.sg);
559 	}
560 
561 	return 1;
562 
563 }
564 
565 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
566 		bool last_in_batch)
567 {
568 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
569 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
570 	int flags = MSG_DONTWAIT;
571 	int ret;
572 
573 	if (!last_in_batch && cmd->queue->send_list_len)
574 		flags |= MSG_MORE;
575 	else
576 		flags |= MSG_EOR;
577 
578 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
579 		offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
580 	if (ret <= 0)
581 		return ret;
582 	cmd->offset += ret;
583 	left -= ret;
584 
585 	if (left)
586 		return -EAGAIN;
587 
588 	kfree(cmd->iov);
589 	if (cmd->req.sg_cnt)
590 		sgl_free(cmd->req.sg);
591 	cmd->queue->snd_cmd = NULL;
592 	nvmet_tcp_put_cmd(cmd);
593 	return 1;
594 }
595 
596 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
597 {
598 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
599 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
600 	int flags = MSG_DONTWAIT;
601 	int ret;
602 
603 	if (!last_in_batch && cmd->queue->send_list_len)
604 		flags |= MSG_MORE;
605 	else
606 		flags |= MSG_EOR;
607 
608 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
609 		offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
610 	if (ret <= 0)
611 		return ret;
612 	cmd->offset += ret;
613 	left -= ret;
614 
615 	if (left)
616 		return -EAGAIN;
617 
618 	cmd->queue->snd_cmd = NULL;
619 	return 1;
620 }
621 
622 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd)
623 {
624 	struct nvmet_tcp_queue *queue = cmd->queue;
625 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
626 	struct kvec iov = {
627 		.iov_base = &cmd->exp_ddgst + cmd->offset,
628 		.iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
629 	};
630 	int ret;
631 
632 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
633 	if (unlikely(ret <= 0))
634 		return ret;
635 
636 	cmd->offset += ret;
637 
638 	if (queue->nvme_sq.sqhd_disabled) {
639 		cmd->queue->snd_cmd = NULL;
640 		nvmet_tcp_put_cmd(cmd);
641 	} else {
642 		nvmet_setup_response_pdu(cmd);
643 	}
644 	return 1;
645 }
646 
647 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
648 		bool last_in_batch)
649 {
650 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
651 	int ret = 0;
652 
653 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
654 		cmd = nvmet_tcp_fetch_cmd(queue);
655 		if (unlikely(!cmd))
656 			return 0;
657 	}
658 
659 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
660 		ret = nvmet_try_send_data_pdu(cmd);
661 		if (ret <= 0)
662 			goto done_send;
663 	}
664 
665 	if (cmd->state == NVMET_TCP_SEND_DATA) {
666 		ret = nvmet_try_send_data(cmd);
667 		if (ret <= 0)
668 			goto done_send;
669 	}
670 
671 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
672 		ret = nvmet_try_send_ddgst(cmd);
673 		if (ret <= 0)
674 			goto done_send;
675 	}
676 
677 	if (cmd->state == NVMET_TCP_SEND_R2T) {
678 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
679 		if (ret <= 0)
680 			goto done_send;
681 	}
682 
683 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
684 		ret = nvmet_try_send_response(cmd, last_in_batch);
685 
686 done_send:
687 	if (ret < 0) {
688 		if (ret == -EAGAIN)
689 			return 0;
690 		return ret;
691 	}
692 
693 	return 1;
694 }
695 
696 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
697 		int budget, int *sends)
698 {
699 	int i, ret = 0;
700 
701 	for (i = 0; i < budget; i++) {
702 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
703 		if (ret <= 0)
704 			break;
705 		(*sends)++;
706 	}
707 
708 	return ret;
709 }
710 
711 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
712 {
713 	queue->offset = 0;
714 	queue->left = sizeof(struct nvme_tcp_hdr);
715 	queue->cmd = NULL;
716 	queue->rcv_state = NVMET_TCP_RECV_PDU;
717 }
718 
719 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
720 {
721 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
722 
723 	ahash_request_free(queue->rcv_hash);
724 	ahash_request_free(queue->snd_hash);
725 	crypto_free_ahash(tfm);
726 }
727 
728 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
729 {
730 	struct crypto_ahash *tfm;
731 
732 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
733 	if (IS_ERR(tfm))
734 		return PTR_ERR(tfm);
735 
736 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
737 	if (!queue->snd_hash)
738 		goto free_tfm;
739 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
740 
741 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
742 	if (!queue->rcv_hash)
743 		goto free_snd_hash;
744 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
745 
746 	return 0;
747 free_snd_hash:
748 	ahash_request_free(queue->snd_hash);
749 free_tfm:
750 	crypto_free_ahash(tfm);
751 	return -ENOMEM;
752 }
753 
754 
755 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
756 {
757 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
758 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
759 	struct msghdr msg = {};
760 	struct kvec iov;
761 	int ret;
762 
763 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
764 		pr_err("bad nvme-tcp pdu length (%d)\n",
765 			le32_to_cpu(icreq->hdr.plen));
766 		nvmet_tcp_fatal_error(queue);
767 	}
768 
769 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
770 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
771 		return -EPROTO;
772 	}
773 
774 	if (icreq->hpda != 0) {
775 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
776 			icreq->hpda);
777 		return -EPROTO;
778 	}
779 
780 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
781 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
782 	if (queue->hdr_digest || queue->data_digest) {
783 		ret = nvmet_tcp_alloc_crypto(queue);
784 		if (ret)
785 			return ret;
786 	}
787 
788 	memset(icresp, 0, sizeof(*icresp));
789 	icresp->hdr.type = nvme_tcp_icresp;
790 	icresp->hdr.hlen = sizeof(*icresp);
791 	icresp->hdr.pdo = 0;
792 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
793 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
794 	icresp->maxdata = cpu_to_le32(0xffff); /* FIXME: support r2t */
795 	icresp->cpda = 0;
796 	if (queue->hdr_digest)
797 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
798 	if (queue->data_digest)
799 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
800 
801 	iov.iov_base = icresp;
802 	iov.iov_len = sizeof(*icresp);
803 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
804 	if (ret < 0)
805 		goto free_crypto;
806 
807 	queue->state = NVMET_TCP_Q_LIVE;
808 	nvmet_prepare_receive_pdu(queue);
809 	return 0;
810 free_crypto:
811 	if (queue->hdr_digest || queue->data_digest)
812 		nvmet_tcp_free_crypto(queue);
813 	return ret;
814 }
815 
816 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
817 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
818 {
819 	int ret;
820 
821 	/* recover the expected data transfer length */
822 	req->data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
823 
824 	if (!nvme_is_write(cmd->req.cmd) ||
825 	    req->data_len > cmd->req.port->inline_data_size) {
826 		nvmet_prepare_receive_pdu(queue);
827 		return;
828 	}
829 
830 	ret = nvmet_tcp_map_data(cmd);
831 	if (unlikely(ret)) {
832 		pr_err("queue %d: failed to map data\n", queue->idx);
833 		nvmet_tcp_fatal_error(queue);
834 		return;
835 	}
836 
837 	queue->rcv_state = NVMET_TCP_RECV_DATA;
838 	nvmet_tcp_map_pdu_iovec(cmd);
839 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
840 }
841 
842 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
843 {
844 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
845 	struct nvmet_tcp_cmd *cmd;
846 
847 	cmd = &queue->cmds[data->ttag];
848 
849 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
850 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
851 			data->ttag, le32_to_cpu(data->data_offset),
852 			cmd->rbytes_done);
853 		/* FIXME: use path and transport errors */
854 		nvmet_req_complete(&cmd->req,
855 			NVME_SC_INVALID_FIELD | NVME_SC_DNR);
856 		return -EPROTO;
857 	}
858 
859 	cmd->pdu_len = le32_to_cpu(data->data_length);
860 	cmd->pdu_recv = 0;
861 	nvmet_tcp_map_pdu_iovec(cmd);
862 	queue->cmd = cmd;
863 	queue->rcv_state = NVMET_TCP_RECV_DATA;
864 
865 	return 0;
866 }
867 
868 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
869 {
870 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
871 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
872 	struct nvmet_req *req;
873 	int ret;
874 
875 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
876 		if (hdr->type != nvme_tcp_icreq) {
877 			pr_err("unexpected pdu type (%d) before icreq\n",
878 				hdr->type);
879 			nvmet_tcp_fatal_error(queue);
880 			return -EPROTO;
881 		}
882 		return nvmet_tcp_handle_icreq(queue);
883 	}
884 
885 	if (hdr->type == nvme_tcp_h2c_data) {
886 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
887 		if (unlikely(ret))
888 			return ret;
889 		return 0;
890 	}
891 
892 	queue->cmd = nvmet_tcp_get_cmd(queue);
893 	if (unlikely(!queue->cmd)) {
894 		/* This should never happen */
895 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
896 			queue->idx, queue->nr_cmds, queue->send_list_len,
897 			nvme_cmd->common.opcode);
898 		nvmet_tcp_fatal_error(queue);
899 		return -ENOMEM;
900 	}
901 
902 	req = &queue->cmd->req;
903 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
904 
905 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
906 			&queue->nvme_sq, &nvmet_tcp_ops))) {
907 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
908 			req->cmd, req->cmd->common.command_id,
909 			req->cmd->common.opcode,
910 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
911 
912 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
913 		return -EAGAIN;
914 	}
915 
916 	ret = nvmet_tcp_map_data(queue->cmd);
917 	if (unlikely(ret)) {
918 		pr_err("queue %d: failed to map data\n", queue->idx);
919 		if (nvmet_tcp_has_inline_data(queue->cmd))
920 			nvmet_tcp_fatal_error(queue);
921 		else
922 			nvmet_req_complete(req, ret);
923 		ret = -EAGAIN;
924 		goto out;
925 	}
926 
927 	if (nvmet_tcp_need_data_in(queue->cmd)) {
928 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
929 			queue->rcv_state = NVMET_TCP_RECV_DATA;
930 			nvmet_tcp_map_pdu_iovec(queue->cmd);
931 			return 0;
932 		}
933 		/* send back R2T */
934 		nvmet_tcp_queue_response(&queue->cmd->req);
935 		goto out;
936 	}
937 
938 	nvmet_req_execute(&queue->cmd->req);
939 out:
940 	nvmet_prepare_receive_pdu(queue);
941 	return ret;
942 }
943 
944 static const u8 nvme_tcp_pdu_sizes[] = {
945 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
946 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
947 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
948 };
949 
950 static inline u8 nvmet_tcp_pdu_size(u8 type)
951 {
952 	size_t idx = type;
953 
954 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
955 		nvme_tcp_pdu_sizes[idx]) ?
956 			nvme_tcp_pdu_sizes[idx] : 0;
957 }
958 
959 static inline bool nvmet_tcp_pdu_valid(u8 type)
960 {
961 	switch (type) {
962 	case nvme_tcp_icreq:
963 	case nvme_tcp_cmd:
964 	case nvme_tcp_h2c_data:
965 		/* fallthru */
966 		return true;
967 	}
968 
969 	return false;
970 }
971 
972 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
973 {
974 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
975 	int len;
976 	struct kvec iov;
977 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
978 
979 recv:
980 	iov.iov_base = (void *)&queue->pdu + queue->offset;
981 	iov.iov_len = queue->left;
982 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
983 			iov.iov_len, msg.msg_flags);
984 	if (unlikely(len < 0))
985 		return len;
986 
987 	queue->offset += len;
988 	queue->left -= len;
989 	if (queue->left)
990 		return -EAGAIN;
991 
992 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
993 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
994 
995 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
996 			pr_err("unexpected pdu type %d\n", hdr->type);
997 			nvmet_tcp_fatal_error(queue);
998 			return -EIO;
999 		}
1000 
1001 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1002 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1003 			return -EIO;
1004 		}
1005 
1006 		queue->left = hdr->hlen - queue->offset + hdgst;
1007 		goto recv;
1008 	}
1009 
1010 	if (queue->hdr_digest &&
1011 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
1012 		nvmet_tcp_fatal_error(queue); /* fatal */
1013 		return -EPROTO;
1014 	}
1015 
1016 	if (queue->data_digest &&
1017 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1018 		nvmet_tcp_fatal_error(queue); /* fatal */
1019 		return -EPROTO;
1020 	}
1021 
1022 	return nvmet_tcp_done_recv_pdu(queue);
1023 }
1024 
1025 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1026 {
1027 	struct nvmet_tcp_queue *queue = cmd->queue;
1028 
1029 	nvmet_tcp_ddgst(queue->rcv_hash, cmd);
1030 	queue->offset = 0;
1031 	queue->left = NVME_TCP_DIGEST_LENGTH;
1032 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1033 }
1034 
1035 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1036 {
1037 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1038 	int ret;
1039 
1040 	while (msg_data_left(&cmd->recv_msg)) {
1041 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1042 			cmd->recv_msg.msg_flags);
1043 		if (ret <= 0)
1044 			return ret;
1045 
1046 		cmd->pdu_recv += ret;
1047 		cmd->rbytes_done += ret;
1048 	}
1049 
1050 	nvmet_tcp_unmap_pdu_iovec(cmd);
1051 
1052 	if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1053 	    cmd->rbytes_done == cmd->req.transfer_len) {
1054 		if (queue->data_digest) {
1055 			nvmet_tcp_prep_recv_ddgst(cmd);
1056 			return 0;
1057 		}
1058 		nvmet_req_execute(&cmd->req);
1059 	}
1060 
1061 	nvmet_prepare_receive_pdu(queue);
1062 	return 0;
1063 }
1064 
1065 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1066 {
1067 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1068 	int ret;
1069 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1070 	struct kvec iov = {
1071 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1072 		.iov_len = queue->left
1073 	};
1074 
1075 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1076 			iov.iov_len, msg.msg_flags);
1077 	if (unlikely(ret < 0))
1078 		return ret;
1079 
1080 	queue->offset += ret;
1081 	queue->left -= ret;
1082 	if (queue->left)
1083 		return -EAGAIN;
1084 
1085 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1086 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1087 			queue->idx, cmd->req.cmd->common.command_id,
1088 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1089 			le32_to_cpu(cmd->exp_ddgst));
1090 		nvmet_tcp_finish_cmd(cmd);
1091 		nvmet_tcp_fatal_error(queue);
1092 		ret = -EPROTO;
1093 		goto out;
1094 	}
1095 
1096 	if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1097 	    cmd->rbytes_done == cmd->req.transfer_len)
1098 		nvmet_req_execute(&cmd->req);
1099 	ret = 0;
1100 out:
1101 	nvmet_prepare_receive_pdu(queue);
1102 	return ret;
1103 }
1104 
1105 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1106 {
1107 	int result = 0;
1108 
1109 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1110 		return 0;
1111 
1112 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1113 		result = nvmet_tcp_try_recv_pdu(queue);
1114 		if (result != 0)
1115 			goto done_recv;
1116 	}
1117 
1118 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1119 		result = nvmet_tcp_try_recv_data(queue);
1120 		if (result != 0)
1121 			goto done_recv;
1122 	}
1123 
1124 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1125 		result = nvmet_tcp_try_recv_ddgst(queue);
1126 		if (result != 0)
1127 			goto done_recv;
1128 	}
1129 
1130 done_recv:
1131 	if (result < 0) {
1132 		if (result == -EAGAIN)
1133 			return 0;
1134 		return result;
1135 	}
1136 	return 1;
1137 }
1138 
1139 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1140 		int budget, int *recvs)
1141 {
1142 	int i, ret = 0;
1143 
1144 	for (i = 0; i < budget; i++) {
1145 		ret = nvmet_tcp_try_recv_one(queue);
1146 		if (ret <= 0)
1147 			break;
1148 		(*recvs)++;
1149 	}
1150 
1151 	return ret;
1152 }
1153 
1154 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1155 {
1156 	spin_lock(&queue->state_lock);
1157 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1158 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1159 		schedule_work(&queue->release_work);
1160 	}
1161 	spin_unlock(&queue->state_lock);
1162 }
1163 
1164 static void nvmet_tcp_io_work(struct work_struct *w)
1165 {
1166 	struct nvmet_tcp_queue *queue =
1167 		container_of(w, struct nvmet_tcp_queue, io_work);
1168 	bool pending;
1169 	int ret, ops = 0;
1170 
1171 	do {
1172 		pending = false;
1173 
1174 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1175 		if (ret > 0) {
1176 			pending = true;
1177 		} else if (ret < 0) {
1178 			if (ret == -EPIPE || ret == -ECONNRESET)
1179 				kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1180 			else
1181 				nvmet_tcp_fatal_error(queue);
1182 			return;
1183 		}
1184 
1185 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1186 		if (ret > 0) {
1187 			/* transmitted message/data */
1188 			pending = true;
1189 		} else if (ret < 0) {
1190 			if (ret == -EPIPE || ret == -ECONNRESET)
1191 				kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1192 			else
1193 				nvmet_tcp_fatal_error(queue);
1194 			return;
1195 		}
1196 
1197 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1198 
1199 	/*
1200 	 * We exahusted our budget, requeue our selves
1201 	 */
1202 	if (pending)
1203 		queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1204 }
1205 
1206 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1207 		struct nvmet_tcp_cmd *c)
1208 {
1209 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1210 
1211 	c->queue = queue;
1212 	c->req.port = queue->port->nport;
1213 
1214 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1215 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1216 	if (!c->cmd_pdu)
1217 		return -ENOMEM;
1218 	c->req.cmd = &c->cmd_pdu->cmd;
1219 
1220 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1221 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1222 	if (!c->rsp_pdu)
1223 		goto out_free_cmd;
1224 	c->req.cqe = &c->rsp_pdu->cqe;
1225 
1226 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1227 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1228 	if (!c->data_pdu)
1229 		goto out_free_rsp;
1230 
1231 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1232 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1233 	if (!c->r2t_pdu)
1234 		goto out_free_data;
1235 
1236 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1237 
1238 	list_add_tail(&c->entry, &queue->free_list);
1239 
1240 	return 0;
1241 out_free_data:
1242 	page_frag_free(c->data_pdu);
1243 out_free_rsp:
1244 	page_frag_free(c->rsp_pdu);
1245 out_free_cmd:
1246 	page_frag_free(c->cmd_pdu);
1247 	return -ENOMEM;
1248 }
1249 
1250 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1251 {
1252 	page_frag_free(c->r2t_pdu);
1253 	page_frag_free(c->data_pdu);
1254 	page_frag_free(c->rsp_pdu);
1255 	page_frag_free(c->cmd_pdu);
1256 }
1257 
1258 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1259 {
1260 	struct nvmet_tcp_cmd *cmds;
1261 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1262 
1263 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1264 	if (!cmds)
1265 		goto out;
1266 
1267 	for (i = 0; i < nr_cmds; i++) {
1268 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1269 		if (ret)
1270 			goto out_free;
1271 	}
1272 
1273 	queue->cmds = cmds;
1274 
1275 	return 0;
1276 out_free:
1277 	while (--i >= 0)
1278 		nvmet_tcp_free_cmd(cmds + i);
1279 	kfree(cmds);
1280 out:
1281 	return ret;
1282 }
1283 
1284 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1285 {
1286 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1287 	int i;
1288 
1289 	for (i = 0; i < queue->nr_cmds; i++)
1290 		nvmet_tcp_free_cmd(cmds + i);
1291 
1292 	nvmet_tcp_free_cmd(&queue->connect);
1293 	kfree(cmds);
1294 }
1295 
1296 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1297 {
1298 	struct socket *sock = queue->sock;
1299 
1300 	write_lock_bh(&sock->sk->sk_callback_lock);
1301 	sock->sk->sk_data_ready =  queue->data_ready;
1302 	sock->sk->sk_state_change = queue->state_change;
1303 	sock->sk->sk_write_space = queue->write_space;
1304 	sock->sk->sk_user_data = NULL;
1305 	write_unlock_bh(&sock->sk->sk_callback_lock);
1306 }
1307 
1308 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1309 {
1310 	nvmet_req_uninit(&cmd->req);
1311 	nvmet_tcp_unmap_pdu_iovec(cmd);
1312 	kfree(cmd->iov);
1313 	if (cmd->req.sg_cnt)
1314 		sgl_free(cmd->req.sg);
1315 }
1316 
1317 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1318 {
1319 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1320 	int i;
1321 
1322 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1323 		if (nvmet_tcp_need_data_in(cmd))
1324 			nvmet_tcp_finish_cmd(cmd);
1325 	}
1326 
1327 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1328 		/* failed in connect */
1329 		nvmet_tcp_finish_cmd(&queue->connect);
1330 	}
1331 }
1332 
1333 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1334 {
1335 	struct nvmet_tcp_queue *queue =
1336 		container_of(w, struct nvmet_tcp_queue, release_work);
1337 
1338 	mutex_lock(&nvmet_tcp_queue_mutex);
1339 	list_del_init(&queue->queue_list);
1340 	mutex_unlock(&nvmet_tcp_queue_mutex);
1341 
1342 	nvmet_tcp_restore_socket_callbacks(queue);
1343 	flush_work(&queue->io_work);
1344 
1345 	nvmet_tcp_uninit_data_in_cmds(queue);
1346 	nvmet_sq_destroy(&queue->nvme_sq);
1347 	cancel_work_sync(&queue->io_work);
1348 	sock_release(queue->sock);
1349 	nvmet_tcp_free_cmds(queue);
1350 	if (queue->hdr_digest || queue->data_digest)
1351 		nvmet_tcp_free_crypto(queue);
1352 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1353 
1354 	kfree(queue);
1355 }
1356 
1357 static void nvmet_tcp_data_ready(struct sock *sk)
1358 {
1359 	struct nvmet_tcp_queue *queue;
1360 
1361 	read_lock_bh(&sk->sk_callback_lock);
1362 	queue = sk->sk_user_data;
1363 	if (likely(queue))
1364 		queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1365 	read_unlock_bh(&sk->sk_callback_lock);
1366 }
1367 
1368 static void nvmet_tcp_write_space(struct sock *sk)
1369 {
1370 	struct nvmet_tcp_queue *queue;
1371 
1372 	read_lock_bh(&sk->sk_callback_lock);
1373 	queue = sk->sk_user_data;
1374 	if (unlikely(!queue))
1375 		goto out;
1376 
1377 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1378 		queue->write_space(sk);
1379 		goto out;
1380 	}
1381 
1382 	if (sk_stream_is_writeable(sk)) {
1383 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1384 		queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1385 	}
1386 out:
1387 	read_unlock_bh(&sk->sk_callback_lock);
1388 }
1389 
1390 static void nvmet_tcp_state_change(struct sock *sk)
1391 {
1392 	struct nvmet_tcp_queue *queue;
1393 
1394 	write_lock_bh(&sk->sk_callback_lock);
1395 	queue = sk->sk_user_data;
1396 	if (!queue)
1397 		goto done;
1398 
1399 	switch (sk->sk_state) {
1400 	case TCP_FIN_WAIT1:
1401 	case TCP_CLOSE_WAIT:
1402 	case TCP_CLOSE:
1403 		/* FALLTHRU */
1404 		sk->sk_user_data = NULL;
1405 		nvmet_tcp_schedule_release_queue(queue);
1406 		break;
1407 	default:
1408 		pr_warn("queue %d unhandled state %d\n",
1409 			queue->idx, sk->sk_state);
1410 	}
1411 done:
1412 	write_unlock_bh(&sk->sk_callback_lock);
1413 }
1414 
1415 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1416 {
1417 	struct socket *sock = queue->sock;
1418 	struct inet_sock *inet = inet_sk(sock->sk);
1419 	struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1420 	int ret;
1421 
1422 	ret = kernel_getsockname(sock,
1423 		(struct sockaddr *)&queue->sockaddr);
1424 	if (ret < 0)
1425 		return ret;
1426 
1427 	ret = kernel_getpeername(sock,
1428 		(struct sockaddr *)&queue->sockaddr_peer);
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	/*
1433 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1434 	 * close. This is done to prevent stale data from being sent should
1435 	 * the network connection be restored before TCP times out.
1436 	 */
1437 	ret = kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
1438 			(char *)&sol, sizeof(sol));
1439 	if (ret)
1440 		return ret;
1441 
1442 	/* Set socket type of service */
1443 	if (inet->rcv_tos > 0) {
1444 		int tos = inet->rcv_tos;
1445 
1446 		ret = kernel_setsockopt(sock, SOL_IP, IP_TOS,
1447 				(char *)&tos, sizeof(tos));
1448 		if (ret)
1449 			return ret;
1450 	}
1451 
1452 	write_lock_bh(&sock->sk->sk_callback_lock);
1453 	sock->sk->sk_user_data = queue;
1454 	queue->data_ready = sock->sk->sk_data_ready;
1455 	sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1456 	queue->state_change = sock->sk->sk_state_change;
1457 	sock->sk->sk_state_change = nvmet_tcp_state_change;
1458 	queue->write_space = sock->sk->sk_write_space;
1459 	sock->sk->sk_write_space = nvmet_tcp_write_space;
1460 	write_unlock_bh(&sock->sk->sk_callback_lock);
1461 
1462 	return 0;
1463 }
1464 
1465 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1466 		struct socket *newsock)
1467 {
1468 	struct nvmet_tcp_queue *queue;
1469 	int ret;
1470 
1471 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1472 	if (!queue)
1473 		return -ENOMEM;
1474 
1475 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1476 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1477 	queue->sock = newsock;
1478 	queue->port = port;
1479 	queue->nr_cmds = 0;
1480 	spin_lock_init(&queue->state_lock);
1481 	queue->state = NVMET_TCP_Q_CONNECTING;
1482 	INIT_LIST_HEAD(&queue->free_list);
1483 	init_llist_head(&queue->resp_list);
1484 	INIT_LIST_HEAD(&queue->resp_send_list);
1485 
1486 	queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1487 	if (queue->idx < 0) {
1488 		ret = queue->idx;
1489 		goto out_free_queue;
1490 	}
1491 
1492 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1493 	if (ret)
1494 		goto out_ida_remove;
1495 
1496 	ret = nvmet_sq_init(&queue->nvme_sq);
1497 	if (ret)
1498 		goto out_free_connect;
1499 
1500 	port->last_cpu = cpumask_next_wrap(port->last_cpu,
1501 				cpu_online_mask, -1, false);
1502 	queue->cpu = port->last_cpu;
1503 	nvmet_prepare_receive_pdu(queue);
1504 
1505 	mutex_lock(&nvmet_tcp_queue_mutex);
1506 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1507 	mutex_unlock(&nvmet_tcp_queue_mutex);
1508 
1509 	ret = nvmet_tcp_set_queue_sock(queue);
1510 	if (ret)
1511 		goto out_destroy_sq;
1512 
1513 	queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1514 
1515 	return 0;
1516 out_destroy_sq:
1517 	mutex_lock(&nvmet_tcp_queue_mutex);
1518 	list_del_init(&queue->queue_list);
1519 	mutex_unlock(&nvmet_tcp_queue_mutex);
1520 	nvmet_sq_destroy(&queue->nvme_sq);
1521 out_free_connect:
1522 	nvmet_tcp_free_cmd(&queue->connect);
1523 out_ida_remove:
1524 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1525 out_free_queue:
1526 	kfree(queue);
1527 	return ret;
1528 }
1529 
1530 static void nvmet_tcp_accept_work(struct work_struct *w)
1531 {
1532 	struct nvmet_tcp_port *port =
1533 		container_of(w, struct nvmet_tcp_port, accept_work);
1534 	struct socket *newsock;
1535 	int ret;
1536 
1537 	while (true) {
1538 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1539 		if (ret < 0) {
1540 			if (ret != -EAGAIN)
1541 				pr_warn("failed to accept err=%d\n", ret);
1542 			return;
1543 		}
1544 		ret = nvmet_tcp_alloc_queue(port, newsock);
1545 		if (ret) {
1546 			pr_err("failed to allocate queue\n");
1547 			sock_release(newsock);
1548 		}
1549 	}
1550 }
1551 
1552 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1553 {
1554 	struct nvmet_tcp_port *port;
1555 
1556 	read_lock_bh(&sk->sk_callback_lock);
1557 	port = sk->sk_user_data;
1558 	if (!port)
1559 		goto out;
1560 
1561 	if (sk->sk_state == TCP_LISTEN)
1562 		schedule_work(&port->accept_work);
1563 out:
1564 	read_unlock_bh(&sk->sk_callback_lock);
1565 }
1566 
1567 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1568 {
1569 	struct nvmet_tcp_port *port;
1570 	__kernel_sa_family_t af;
1571 	int opt, ret;
1572 
1573 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1574 	if (!port)
1575 		return -ENOMEM;
1576 
1577 	switch (nport->disc_addr.adrfam) {
1578 	case NVMF_ADDR_FAMILY_IP4:
1579 		af = AF_INET;
1580 		break;
1581 	case NVMF_ADDR_FAMILY_IP6:
1582 		af = AF_INET6;
1583 		break;
1584 	default:
1585 		pr_err("address family %d not supported\n",
1586 				nport->disc_addr.adrfam);
1587 		ret = -EINVAL;
1588 		goto err_port;
1589 	}
1590 
1591 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1592 			nport->disc_addr.trsvcid, &port->addr);
1593 	if (ret) {
1594 		pr_err("malformed ip/port passed: %s:%s\n",
1595 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1596 		goto err_port;
1597 	}
1598 
1599 	port->nport = nport;
1600 	port->last_cpu = -1;
1601 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1602 	if (port->nport->inline_data_size < 0)
1603 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1604 
1605 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1606 				IPPROTO_TCP, &port->sock);
1607 	if (ret) {
1608 		pr_err("failed to create a socket\n");
1609 		goto err_port;
1610 	}
1611 
1612 	port->sock->sk->sk_user_data = port;
1613 	port->data_ready = port->sock->sk->sk_data_ready;
1614 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1615 
1616 	opt = 1;
1617 	ret = kernel_setsockopt(port->sock, IPPROTO_TCP,
1618 			TCP_NODELAY, (char *)&opt, sizeof(opt));
1619 	if (ret) {
1620 		pr_err("failed to set TCP_NODELAY sock opt %d\n", ret);
1621 		goto err_sock;
1622 	}
1623 
1624 	ret = kernel_setsockopt(port->sock, SOL_SOCKET, SO_REUSEADDR,
1625 			(char *)&opt, sizeof(opt));
1626 	if (ret) {
1627 		pr_err("failed to set SO_REUSEADDR sock opt %d\n", ret);
1628 		goto err_sock;
1629 	}
1630 
1631 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1632 			sizeof(port->addr));
1633 	if (ret) {
1634 		pr_err("failed to bind port socket %d\n", ret);
1635 		goto err_sock;
1636 	}
1637 
1638 	ret = kernel_listen(port->sock, 128);
1639 	if (ret) {
1640 		pr_err("failed to listen %d on port sock\n", ret);
1641 		goto err_sock;
1642 	}
1643 
1644 	nport->priv = port;
1645 	pr_info("enabling port %d (%pISpc)\n",
1646 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1647 
1648 	return 0;
1649 
1650 err_sock:
1651 	sock_release(port->sock);
1652 err_port:
1653 	kfree(port);
1654 	return ret;
1655 }
1656 
1657 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1658 {
1659 	struct nvmet_tcp_port *port = nport->priv;
1660 
1661 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1662 	port->sock->sk->sk_data_ready = port->data_ready;
1663 	port->sock->sk->sk_user_data = NULL;
1664 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1665 	cancel_work_sync(&port->accept_work);
1666 
1667 	sock_release(port->sock);
1668 	kfree(port);
1669 }
1670 
1671 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1672 {
1673 	struct nvmet_tcp_queue *queue;
1674 
1675 	mutex_lock(&nvmet_tcp_queue_mutex);
1676 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1677 		if (queue->nvme_sq.ctrl == ctrl)
1678 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1679 	mutex_unlock(&nvmet_tcp_queue_mutex);
1680 }
1681 
1682 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1683 {
1684 	struct nvmet_tcp_queue *queue =
1685 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1686 
1687 	if (sq->qid == 0) {
1688 		/* Let inflight controller teardown complete */
1689 		flush_scheduled_work();
1690 	}
1691 
1692 	queue->nr_cmds = sq->size * 2;
1693 	if (nvmet_tcp_alloc_cmds(queue))
1694 		return NVME_SC_INTERNAL;
1695 	return 0;
1696 }
1697 
1698 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1699 		struct nvmet_port *nport, char *traddr)
1700 {
1701 	struct nvmet_tcp_port *port = nport->priv;
1702 
1703 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1704 		struct nvmet_tcp_cmd *cmd =
1705 			container_of(req, struct nvmet_tcp_cmd, req);
1706 		struct nvmet_tcp_queue *queue = cmd->queue;
1707 
1708 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1709 	} else {
1710 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1711 	}
1712 }
1713 
1714 static struct nvmet_fabrics_ops nvmet_tcp_ops = {
1715 	.owner			= THIS_MODULE,
1716 	.type			= NVMF_TRTYPE_TCP,
1717 	.msdbd			= 1,
1718 	.has_keyed_sgls		= 0,
1719 	.add_port		= nvmet_tcp_add_port,
1720 	.remove_port		= nvmet_tcp_remove_port,
1721 	.queue_response		= nvmet_tcp_queue_response,
1722 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1723 	.install_queue		= nvmet_tcp_install_queue,
1724 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1725 };
1726 
1727 static int __init nvmet_tcp_init(void)
1728 {
1729 	int ret;
1730 
1731 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1732 	if (!nvmet_tcp_wq)
1733 		return -ENOMEM;
1734 
1735 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1736 	if (ret)
1737 		goto err;
1738 
1739 	return 0;
1740 err:
1741 	destroy_workqueue(nvmet_tcp_wq);
1742 	return ret;
1743 }
1744 
1745 static void __exit nvmet_tcp_exit(void)
1746 {
1747 	struct nvmet_tcp_queue *queue;
1748 
1749 	nvmet_unregister_transport(&nvmet_tcp_ops);
1750 
1751 	flush_scheduled_work();
1752 	mutex_lock(&nvmet_tcp_queue_mutex);
1753 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1754 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1755 	mutex_unlock(&nvmet_tcp_queue_mutex);
1756 	flush_scheduled_work();
1757 
1758 	destroy_workqueue(nvmet_tcp_wq);
1759 }
1760 
1761 module_init(nvmet_tcp_init);
1762 module_exit(nvmet_tcp_exit);
1763 
1764 MODULE_LICENSE("GPL v2");
1765 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1766