xref: /linux/drivers/nvme/target/tcp.c (revision 52990390f91c1c39ca742fc8f390b29891d95127)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 #include <trace/events/sock.h>
18 
19 #include "nvmet.h"
20 
21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
22 
23 static int param_store_val(const char *str, int *val, int min, int max)
24 {
25 	int ret, new_val;
26 
27 	ret = kstrtoint(str, 10, &new_val);
28 	if (ret)
29 		return -EINVAL;
30 
31 	if (new_val < min || new_val > max)
32 		return -EINVAL;
33 
34 	*val = new_val;
35 	return 0;
36 }
37 
38 static int set_params(const char *str, const struct kernel_param *kp)
39 {
40 	return param_store_val(str, kp->arg, 0, INT_MAX);
41 }
42 
43 static const struct kernel_param_ops set_param_ops = {
44 	.set	= set_params,
45 	.get	= param_get_int,
46 };
47 
48 /* Define the socket priority to use for connections were it is desirable
49  * that the NIC consider performing optimized packet processing or filtering.
50  * A non-zero value being sufficient to indicate general consideration of any
51  * possible optimization.  Making it a module param allows for alternative
52  * values that may be unique for some NIC implementations.
53  */
54 static int so_priority;
55 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
56 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
57 
58 /* Define a time period (in usecs) that io_work() shall sample an activated
59  * queue before determining it to be idle.  This optional module behavior
60  * can enable NIC solutions that support socket optimized packet processing
61  * using advanced interrupt moderation techniques.
62  */
63 static int idle_poll_period_usecs;
64 device_param_cb(idle_poll_period_usecs, &set_param_ops,
65 		&idle_poll_period_usecs, 0644);
66 MODULE_PARM_DESC(idle_poll_period_usecs,
67 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
68 
69 #define NVMET_TCP_RECV_BUDGET		8
70 #define NVMET_TCP_SEND_BUDGET		8
71 #define NVMET_TCP_IO_WORK_BUDGET	64
72 
73 enum nvmet_tcp_send_state {
74 	NVMET_TCP_SEND_DATA_PDU,
75 	NVMET_TCP_SEND_DATA,
76 	NVMET_TCP_SEND_R2T,
77 	NVMET_TCP_SEND_DDGST,
78 	NVMET_TCP_SEND_RESPONSE
79 };
80 
81 enum nvmet_tcp_recv_state {
82 	NVMET_TCP_RECV_PDU,
83 	NVMET_TCP_RECV_DATA,
84 	NVMET_TCP_RECV_DDGST,
85 	NVMET_TCP_RECV_ERR,
86 };
87 
88 enum {
89 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
90 };
91 
92 struct nvmet_tcp_cmd {
93 	struct nvmet_tcp_queue		*queue;
94 	struct nvmet_req		req;
95 
96 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
97 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
98 	struct nvme_tcp_data_pdu	*data_pdu;
99 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
100 
101 	u32				rbytes_done;
102 	u32				wbytes_done;
103 
104 	u32				pdu_len;
105 	u32				pdu_recv;
106 	int				sg_idx;
107 	struct msghdr			recv_msg;
108 	struct bio_vec			*iov;
109 	u32				flags;
110 
111 	struct list_head		entry;
112 	struct llist_node		lentry;
113 
114 	/* send state */
115 	u32				offset;
116 	struct scatterlist		*cur_sg;
117 	enum nvmet_tcp_send_state	state;
118 
119 	__le32				exp_ddgst;
120 	__le32				recv_ddgst;
121 };
122 
123 enum nvmet_tcp_queue_state {
124 	NVMET_TCP_Q_CONNECTING,
125 	NVMET_TCP_Q_LIVE,
126 	NVMET_TCP_Q_DISCONNECTING,
127 };
128 
129 struct nvmet_tcp_queue {
130 	struct socket		*sock;
131 	struct nvmet_tcp_port	*port;
132 	struct work_struct	io_work;
133 	struct nvmet_cq		nvme_cq;
134 	struct nvmet_sq		nvme_sq;
135 
136 	/* send state */
137 	struct nvmet_tcp_cmd	*cmds;
138 	unsigned int		nr_cmds;
139 	struct list_head	free_list;
140 	struct llist_head	resp_list;
141 	struct list_head	resp_send_list;
142 	int			send_list_len;
143 	struct nvmet_tcp_cmd	*snd_cmd;
144 
145 	/* recv state */
146 	int			offset;
147 	int			left;
148 	enum nvmet_tcp_recv_state rcv_state;
149 	struct nvmet_tcp_cmd	*cmd;
150 	union nvme_tcp_pdu	pdu;
151 
152 	/* digest state */
153 	bool			hdr_digest;
154 	bool			data_digest;
155 	struct ahash_request	*snd_hash;
156 	struct ahash_request	*rcv_hash;
157 
158 	unsigned long           poll_end;
159 
160 	spinlock_t		state_lock;
161 	enum nvmet_tcp_queue_state state;
162 
163 	struct sockaddr_storage	sockaddr;
164 	struct sockaddr_storage	sockaddr_peer;
165 	struct work_struct	release_work;
166 
167 	int			idx;
168 	struct list_head	queue_list;
169 
170 	struct nvmet_tcp_cmd	connect;
171 
172 	struct page_frag_cache	pf_cache;
173 
174 	void (*data_ready)(struct sock *);
175 	void (*state_change)(struct sock *);
176 	void (*write_space)(struct sock *);
177 };
178 
179 struct nvmet_tcp_port {
180 	struct socket		*sock;
181 	struct work_struct	accept_work;
182 	struct nvmet_port	*nport;
183 	struct sockaddr_storage addr;
184 	void (*data_ready)(struct sock *);
185 };
186 
187 static DEFINE_IDA(nvmet_tcp_queue_ida);
188 static LIST_HEAD(nvmet_tcp_queue_list);
189 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
190 
191 static struct workqueue_struct *nvmet_tcp_wq;
192 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
193 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
194 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
195 
196 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
197 		struct nvmet_tcp_cmd *cmd)
198 {
199 	if (unlikely(!queue->nr_cmds)) {
200 		/* We didn't allocate cmds yet, send 0xffff */
201 		return USHRT_MAX;
202 	}
203 
204 	return cmd - queue->cmds;
205 }
206 
207 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
208 {
209 	return nvme_is_write(cmd->req.cmd) &&
210 		cmd->rbytes_done < cmd->req.transfer_len;
211 }
212 
213 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
214 {
215 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
216 }
217 
218 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
219 {
220 	return !nvme_is_write(cmd->req.cmd) &&
221 		cmd->req.transfer_len > 0 &&
222 		!cmd->req.cqe->status;
223 }
224 
225 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
226 {
227 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
228 		!cmd->rbytes_done;
229 }
230 
231 static inline struct nvmet_tcp_cmd *
232 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
233 {
234 	struct nvmet_tcp_cmd *cmd;
235 
236 	cmd = list_first_entry_or_null(&queue->free_list,
237 				struct nvmet_tcp_cmd, entry);
238 	if (!cmd)
239 		return NULL;
240 	list_del_init(&cmd->entry);
241 
242 	cmd->rbytes_done = cmd->wbytes_done = 0;
243 	cmd->pdu_len = 0;
244 	cmd->pdu_recv = 0;
245 	cmd->iov = NULL;
246 	cmd->flags = 0;
247 	return cmd;
248 }
249 
250 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
251 {
252 	if (unlikely(cmd == &cmd->queue->connect))
253 		return;
254 
255 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
256 }
257 
258 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
259 {
260 	return queue->sock->sk->sk_incoming_cpu;
261 }
262 
263 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
264 {
265 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
266 }
267 
268 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
269 {
270 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
271 }
272 
273 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
274 		void *pdu, size_t len)
275 {
276 	struct scatterlist sg;
277 
278 	sg_init_one(&sg, pdu, len);
279 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
280 	crypto_ahash_digest(hash);
281 }
282 
283 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
284 	void *pdu, size_t len)
285 {
286 	struct nvme_tcp_hdr *hdr = pdu;
287 	__le32 recv_digest;
288 	__le32 exp_digest;
289 
290 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
291 		pr_err("queue %d: header digest enabled but no header digest\n",
292 			queue->idx);
293 		return -EPROTO;
294 	}
295 
296 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
297 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
298 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
299 	if (recv_digest != exp_digest) {
300 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
301 			queue->idx, le32_to_cpu(recv_digest),
302 			le32_to_cpu(exp_digest));
303 		return -EPROTO;
304 	}
305 
306 	return 0;
307 }
308 
309 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
310 {
311 	struct nvme_tcp_hdr *hdr = pdu;
312 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
313 	u32 len;
314 
315 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
316 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
317 
318 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
319 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
320 		return -EPROTO;
321 	}
322 
323 	return 0;
324 }
325 
326 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
327 {
328 	kfree(cmd->iov);
329 	sgl_free(cmd->req.sg);
330 	cmd->iov = NULL;
331 	cmd->req.sg = NULL;
332 }
333 
334 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
335 {
336 	struct bio_vec *iov = cmd->iov;
337 	struct scatterlist *sg;
338 	u32 length, offset, sg_offset;
339 	int nr_pages;
340 
341 	length = cmd->pdu_len;
342 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
343 	offset = cmd->rbytes_done;
344 	cmd->sg_idx = offset / PAGE_SIZE;
345 	sg_offset = offset % PAGE_SIZE;
346 	sg = &cmd->req.sg[cmd->sg_idx];
347 
348 	while (length) {
349 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
350 
351 		bvec_set_page(iov, sg_page(sg), sg->length,
352 				sg->offset + sg_offset);
353 
354 		length -= iov_len;
355 		sg = sg_next(sg);
356 		iov++;
357 		sg_offset = 0;
358 	}
359 
360 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
361 		      nr_pages, cmd->pdu_len);
362 }
363 
364 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
365 {
366 	queue->rcv_state = NVMET_TCP_RECV_ERR;
367 	if (queue->nvme_sq.ctrl)
368 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
369 	else
370 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
371 }
372 
373 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
374 {
375 	if (status == -EPIPE || status == -ECONNRESET)
376 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
377 	else
378 		nvmet_tcp_fatal_error(queue);
379 }
380 
381 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
382 {
383 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
384 	u32 len = le32_to_cpu(sgl->length);
385 
386 	if (!len)
387 		return 0;
388 
389 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
390 			  NVME_SGL_FMT_OFFSET)) {
391 		if (!nvme_is_write(cmd->req.cmd))
392 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
393 
394 		if (len > cmd->req.port->inline_data_size)
395 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
396 		cmd->pdu_len = len;
397 	}
398 	cmd->req.transfer_len += len;
399 
400 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
401 	if (!cmd->req.sg)
402 		return NVME_SC_INTERNAL;
403 	cmd->cur_sg = cmd->req.sg;
404 
405 	if (nvmet_tcp_has_data_in(cmd)) {
406 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
407 				sizeof(*cmd->iov), GFP_KERNEL);
408 		if (!cmd->iov)
409 			goto err;
410 	}
411 
412 	return 0;
413 err:
414 	nvmet_tcp_free_cmd_buffers(cmd);
415 	return NVME_SC_INTERNAL;
416 }
417 
418 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
419 		struct nvmet_tcp_cmd *cmd)
420 {
421 	ahash_request_set_crypt(hash, cmd->req.sg,
422 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
423 	crypto_ahash_digest(hash);
424 }
425 
426 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
427 {
428 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
429 	struct nvmet_tcp_queue *queue = cmd->queue;
430 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
431 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
432 
433 	cmd->offset = 0;
434 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
435 
436 	pdu->hdr.type = nvme_tcp_c2h_data;
437 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
438 						NVME_TCP_F_DATA_SUCCESS : 0);
439 	pdu->hdr.hlen = sizeof(*pdu);
440 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
441 	pdu->hdr.plen =
442 		cpu_to_le32(pdu->hdr.hlen + hdgst +
443 				cmd->req.transfer_len + ddgst);
444 	pdu->command_id = cmd->req.cqe->command_id;
445 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
446 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
447 
448 	if (queue->data_digest) {
449 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
450 		nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
451 	}
452 
453 	if (cmd->queue->hdr_digest) {
454 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
455 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
456 	}
457 }
458 
459 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
460 {
461 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
462 	struct nvmet_tcp_queue *queue = cmd->queue;
463 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
464 
465 	cmd->offset = 0;
466 	cmd->state = NVMET_TCP_SEND_R2T;
467 
468 	pdu->hdr.type = nvme_tcp_r2t;
469 	pdu->hdr.flags = 0;
470 	pdu->hdr.hlen = sizeof(*pdu);
471 	pdu->hdr.pdo = 0;
472 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
473 
474 	pdu->command_id = cmd->req.cmd->common.command_id;
475 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
476 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
477 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
478 	if (cmd->queue->hdr_digest) {
479 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
480 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
481 	}
482 }
483 
484 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
485 {
486 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
487 	struct nvmet_tcp_queue *queue = cmd->queue;
488 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
489 
490 	cmd->offset = 0;
491 	cmd->state = NVMET_TCP_SEND_RESPONSE;
492 
493 	pdu->hdr.type = nvme_tcp_rsp;
494 	pdu->hdr.flags = 0;
495 	pdu->hdr.hlen = sizeof(*pdu);
496 	pdu->hdr.pdo = 0;
497 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
498 	if (cmd->queue->hdr_digest) {
499 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
500 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
501 	}
502 }
503 
504 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
505 {
506 	struct llist_node *node;
507 	struct nvmet_tcp_cmd *cmd;
508 
509 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
510 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
511 		list_add(&cmd->entry, &queue->resp_send_list);
512 		queue->send_list_len++;
513 	}
514 }
515 
516 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
517 {
518 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
519 				struct nvmet_tcp_cmd, entry);
520 	if (!queue->snd_cmd) {
521 		nvmet_tcp_process_resp_list(queue);
522 		queue->snd_cmd =
523 			list_first_entry_or_null(&queue->resp_send_list,
524 					struct nvmet_tcp_cmd, entry);
525 		if (unlikely(!queue->snd_cmd))
526 			return NULL;
527 	}
528 
529 	list_del_init(&queue->snd_cmd->entry);
530 	queue->send_list_len--;
531 
532 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
533 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
534 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
535 		nvmet_setup_r2t_pdu(queue->snd_cmd);
536 	else
537 		nvmet_setup_response_pdu(queue->snd_cmd);
538 
539 	return queue->snd_cmd;
540 }
541 
542 static void nvmet_tcp_queue_response(struct nvmet_req *req)
543 {
544 	struct nvmet_tcp_cmd *cmd =
545 		container_of(req, struct nvmet_tcp_cmd, req);
546 	struct nvmet_tcp_queue	*queue = cmd->queue;
547 	struct nvme_sgl_desc *sgl;
548 	u32 len;
549 
550 	if (unlikely(cmd == queue->cmd)) {
551 		sgl = &cmd->req.cmd->common.dptr.sgl;
552 		len = le32_to_cpu(sgl->length);
553 
554 		/*
555 		 * Wait for inline data before processing the response.
556 		 * Avoid using helpers, this might happen before
557 		 * nvmet_req_init is completed.
558 		 */
559 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
560 		    len && len <= cmd->req.port->inline_data_size &&
561 		    nvme_is_write(cmd->req.cmd))
562 			return;
563 	}
564 
565 	llist_add(&cmd->lentry, &queue->resp_list);
566 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
567 }
568 
569 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
570 {
571 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
572 		nvmet_tcp_queue_response(&cmd->req);
573 	else
574 		cmd->req.execute(&cmd->req);
575 }
576 
577 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
578 {
579 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
580 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
581 	int ret;
582 
583 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
584 			offset_in_page(cmd->data_pdu) + cmd->offset,
585 			left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
586 	if (ret <= 0)
587 		return ret;
588 
589 	cmd->offset += ret;
590 	left -= ret;
591 
592 	if (left)
593 		return -EAGAIN;
594 
595 	cmd->state = NVMET_TCP_SEND_DATA;
596 	cmd->offset  = 0;
597 	return 1;
598 }
599 
600 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
601 {
602 	struct nvmet_tcp_queue *queue = cmd->queue;
603 	int ret;
604 
605 	while (cmd->cur_sg) {
606 		struct page *page = sg_page(cmd->cur_sg);
607 		u32 left = cmd->cur_sg->length - cmd->offset;
608 		int flags = MSG_DONTWAIT;
609 
610 		if ((!last_in_batch && cmd->queue->send_list_len) ||
611 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
612 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
613 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
614 
615 		ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
616 					left, flags);
617 		if (ret <= 0)
618 			return ret;
619 
620 		cmd->offset += ret;
621 		cmd->wbytes_done += ret;
622 
623 		/* Done with sg?*/
624 		if (cmd->offset == cmd->cur_sg->length) {
625 			cmd->cur_sg = sg_next(cmd->cur_sg);
626 			cmd->offset = 0;
627 		}
628 	}
629 
630 	if (queue->data_digest) {
631 		cmd->state = NVMET_TCP_SEND_DDGST;
632 		cmd->offset = 0;
633 	} else {
634 		if (queue->nvme_sq.sqhd_disabled) {
635 			cmd->queue->snd_cmd = NULL;
636 			nvmet_tcp_put_cmd(cmd);
637 		} else {
638 			nvmet_setup_response_pdu(cmd);
639 		}
640 	}
641 
642 	if (queue->nvme_sq.sqhd_disabled)
643 		nvmet_tcp_free_cmd_buffers(cmd);
644 
645 	return 1;
646 
647 }
648 
649 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
650 		bool last_in_batch)
651 {
652 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
653 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
654 	int flags = MSG_DONTWAIT;
655 	int ret;
656 
657 	if (!last_in_batch && cmd->queue->send_list_len)
658 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
659 	else
660 		flags |= MSG_EOR;
661 
662 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
663 		offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
664 	if (ret <= 0)
665 		return ret;
666 	cmd->offset += ret;
667 	left -= ret;
668 
669 	if (left)
670 		return -EAGAIN;
671 
672 	nvmet_tcp_free_cmd_buffers(cmd);
673 	cmd->queue->snd_cmd = NULL;
674 	nvmet_tcp_put_cmd(cmd);
675 	return 1;
676 }
677 
678 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
679 {
680 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
681 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
682 	int flags = MSG_DONTWAIT;
683 	int ret;
684 
685 	if (!last_in_batch && cmd->queue->send_list_len)
686 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
687 	else
688 		flags |= MSG_EOR;
689 
690 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
691 		offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
692 	if (ret <= 0)
693 		return ret;
694 	cmd->offset += ret;
695 	left -= ret;
696 
697 	if (left)
698 		return -EAGAIN;
699 
700 	cmd->queue->snd_cmd = NULL;
701 	return 1;
702 }
703 
704 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
705 {
706 	struct nvmet_tcp_queue *queue = cmd->queue;
707 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
708 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
709 	struct kvec iov = {
710 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
711 		.iov_len = left
712 	};
713 	int ret;
714 
715 	if (!last_in_batch && cmd->queue->send_list_len)
716 		msg.msg_flags |= MSG_MORE;
717 	else
718 		msg.msg_flags |= MSG_EOR;
719 
720 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
721 	if (unlikely(ret <= 0))
722 		return ret;
723 
724 	cmd->offset += ret;
725 	left -= ret;
726 
727 	if (left)
728 		return -EAGAIN;
729 
730 	if (queue->nvme_sq.sqhd_disabled) {
731 		cmd->queue->snd_cmd = NULL;
732 		nvmet_tcp_put_cmd(cmd);
733 	} else {
734 		nvmet_setup_response_pdu(cmd);
735 	}
736 	return 1;
737 }
738 
739 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
740 		bool last_in_batch)
741 {
742 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
743 	int ret = 0;
744 
745 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
746 		cmd = nvmet_tcp_fetch_cmd(queue);
747 		if (unlikely(!cmd))
748 			return 0;
749 	}
750 
751 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
752 		ret = nvmet_try_send_data_pdu(cmd);
753 		if (ret <= 0)
754 			goto done_send;
755 	}
756 
757 	if (cmd->state == NVMET_TCP_SEND_DATA) {
758 		ret = nvmet_try_send_data(cmd, last_in_batch);
759 		if (ret <= 0)
760 			goto done_send;
761 	}
762 
763 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
764 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
765 		if (ret <= 0)
766 			goto done_send;
767 	}
768 
769 	if (cmd->state == NVMET_TCP_SEND_R2T) {
770 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
771 		if (ret <= 0)
772 			goto done_send;
773 	}
774 
775 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
776 		ret = nvmet_try_send_response(cmd, last_in_batch);
777 
778 done_send:
779 	if (ret < 0) {
780 		if (ret == -EAGAIN)
781 			return 0;
782 		return ret;
783 	}
784 
785 	return 1;
786 }
787 
788 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
789 		int budget, int *sends)
790 {
791 	int i, ret = 0;
792 
793 	for (i = 0; i < budget; i++) {
794 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
795 		if (unlikely(ret < 0)) {
796 			nvmet_tcp_socket_error(queue, ret);
797 			goto done;
798 		} else if (ret == 0) {
799 			break;
800 		}
801 		(*sends)++;
802 	}
803 done:
804 	return ret;
805 }
806 
807 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
808 {
809 	queue->offset = 0;
810 	queue->left = sizeof(struct nvme_tcp_hdr);
811 	queue->cmd = NULL;
812 	queue->rcv_state = NVMET_TCP_RECV_PDU;
813 }
814 
815 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
816 {
817 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
818 
819 	ahash_request_free(queue->rcv_hash);
820 	ahash_request_free(queue->snd_hash);
821 	crypto_free_ahash(tfm);
822 }
823 
824 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
825 {
826 	struct crypto_ahash *tfm;
827 
828 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
829 	if (IS_ERR(tfm))
830 		return PTR_ERR(tfm);
831 
832 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
833 	if (!queue->snd_hash)
834 		goto free_tfm;
835 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
836 
837 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
838 	if (!queue->rcv_hash)
839 		goto free_snd_hash;
840 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
841 
842 	return 0;
843 free_snd_hash:
844 	ahash_request_free(queue->snd_hash);
845 free_tfm:
846 	crypto_free_ahash(tfm);
847 	return -ENOMEM;
848 }
849 
850 
851 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
852 {
853 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
854 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
855 	struct msghdr msg = {};
856 	struct kvec iov;
857 	int ret;
858 
859 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
860 		pr_err("bad nvme-tcp pdu length (%d)\n",
861 			le32_to_cpu(icreq->hdr.plen));
862 		nvmet_tcp_fatal_error(queue);
863 	}
864 
865 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
866 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
867 		return -EPROTO;
868 	}
869 
870 	if (icreq->hpda != 0) {
871 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
872 			icreq->hpda);
873 		return -EPROTO;
874 	}
875 
876 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
877 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
878 	if (queue->hdr_digest || queue->data_digest) {
879 		ret = nvmet_tcp_alloc_crypto(queue);
880 		if (ret)
881 			return ret;
882 	}
883 
884 	memset(icresp, 0, sizeof(*icresp));
885 	icresp->hdr.type = nvme_tcp_icresp;
886 	icresp->hdr.hlen = sizeof(*icresp);
887 	icresp->hdr.pdo = 0;
888 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
889 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
890 	icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
891 	icresp->cpda = 0;
892 	if (queue->hdr_digest)
893 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
894 	if (queue->data_digest)
895 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
896 
897 	iov.iov_base = icresp;
898 	iov.iov_len = sizeof(*icresp);
899 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
900 	if (ret < 0)
901 		goto free_crypto;
902 
903 	queue->state = NVMET_TCP_Q_LIVE;
904 	nvmet_prepare_receive_pdu(queue);
905 	return 0;
906 free_crypto:
907 	if (queue->hdr_digest || queue->data_digest)
908 		nvmet_tcp_free_crypto(queue);
909 	return ret;
910 }
911 
912 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
913 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
914 {
915 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
916 	int ret;
917 
918 	/*
919 	 * This command has not been processed yet, hence we are trying to
920 	 * figure out if there is still pending data left to receive. If
921 	 * we don't, we can simply prepare for the next pdu and bail out,
922 	 * otherwise we will need to prepare a buffer and receive the
923 	 * stale data before continuing forward.
924 	 */
925 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
926 	    data_len > cmd->req.port->inline_data_size) {
927 		nvmet_prepare_receive_pdu(queue);
928 		return;
929 	}
930 
931 	ret = nvmet_tcp_map_data(cmd);
932 	if (unlikely(ret)) {
933 		pr_err("queue %d: failed to map data\n", queue->idx);
934 		nvmet_tcp_fatal_error(queue);
935 		return;
936 	}
937 
938 	queue->rcv_state = NVMET_TCP_RECV_DATA;
939 	nvmet_tcp_build_pdu_iovec(cmd);
940 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
941 }
942 
943 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
944 {
945 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
946 	struct nvmet_tcp_cmd *cmd;
947 
948 	if (likely(queue->nr_cmds)) {
949 		if (unlikely(data->ttag >= queue->nr_cmds)) {
950 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
951 				queue->idx, data->ttag, queue->nr_cmds);
952 			nvmet_tcp_fatal_error(queue);
953 			return -EPROTO;
954 		}
955 		cmd = &queue->cmds[data->ttag];
956 	} else {
957 		cmd = &queue->connect;
958 	}
959 
960 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
961 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
962 			data->ttag, le32_to_cpu(data->data_offset),
963 			cmd->rbytes_done);
964 		/* FIXME: use path and transport errors */
965 		nvmet_req_complete(&cmd->req,
966 			NVME_SC_INVALID_FIELD | NVME_SC_DNR);
967 		return -EPROTO;
968 	}
969 
970 	cmd->pdu_len = le32_to_cpu(data->data_length);
971 	cmd->pdu_recv = 0;
972 	nvmet_tcp_build_pdu_iovec(cmd);
973 	queue->cmd = cmd;
974 	queue->rcv_state = NVMET_TCP_RECV_DATA;
975 
976 	return 0;
977 }
978 
979 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
980 {
981 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
982 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
983 	struct nvmet_req *req;
984 	int ret;
985 
986 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
987 		if (hdr->type != nvme_tcp_icreq) {
988 			pr_err("unexpected pdu type (%d) before icreq\n",
989 				hdr->type);
990 			nvmet_tcp_fatal_error(queue);
991 			return -EPROTO;
992 		}
993 		return nvmet_tcp_handle_icreq(queue);
994 	}
995 
996 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
997 		pr_err("queue %d: received icreq pdu in state %d\n",
998 			queue->idx, queue->state);
999 		nvmet_tcp_fatal_error(queue);
1000 		return -EPROTO;
1001 	}
1002 
1003 	if (hdr->type == nvme_tcp_h2c_data) {
1004 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1005 		if (unlikely(ret))
1006 			return ret;
1007 		return 0;
1008 	}
1009 
1010 	queue->cmd = nvmet_tcp_get_cmd(queue);
1011 	if (unlikely(!queue->cmd)) {
1012 		/* This should never happen */
1013 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1014 			queue->idx, queue->nr_cmds, queue->send_list_len,
1015 			nvme_cmd->common.opcode);
1016 		nvmet_tcp_fatal_error(queue);
1017 		return -ENOMEM;
1018 	}
1019 
1020 	req = &queue->cmd->req;
1021 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1022 
1023 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1024 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1025 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1026 			req->cmd, req->cmd->common.command_id,
1027 			req->cmd->common.opcode,
1028 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
1029 
1030 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1031 		return 0;
1032 	}
1033 
1034 	ret = nvmet_tcp_map_data(queue->cmd);
1035 	if (unlikely(ret)) {
1036 		pr_err("queue %d: failed to map data\n", queue->idx);
1037 		if (nvmet_tcp_has_inline_data(queue->cmd))
1038 			nvmet_tcp_fatal_error(queue);
1039 		else
1040 			nvmet_req_complete(req, ret);
1041 		ret = -EAGAIN;
1042 		goto out;
1043 	}
1044 
1045 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1046 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1047 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1048 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1049 			return 0;
1050 		}
1051 		/* send back R2T */
1052 		nvmet_tcp_queue_response(&queue->cmd->req);
1053 		goto out;
1054 	}
1055 
1056 	queue->cmd->req.execute(&queue->cmd->req);
1057 out:
1058 	nvmet_prepare_receive_pdu(queue);
1059 	return ret;
1060 }
1061 
1062 static const u8 nvme_tcp_pdu_sizes[] = {
1063 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1064 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1065 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1066 };
1067 
1068 static inline u8 nvmet_tcp_pdu_size(u8 type)
1069 {
1070 	size_t idx = type;
1071 
1072 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1073 		nvme_tcp_pdu_sizes[idx]) ?
1074 			nvme_tcp_pdu_sizes[idx] : 0;
1075 }
1076 
1077 static inline bool nvmet_tcp_pdu_valid(u8 type)
1078 {
1079 	switch (type) {
1080 	case nvme_tcp_icreq:
1081 	case nvme_tcp_cmd:
1082 	case nvme_tcp_h2c_data:
1083 		/* fallthru */
1084 		return true;
1085 	}
1086 
1087 	return false;
1088 }
1089 
1090 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1091 {
1092 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1093 	int len;
1094 	struct kvec iov;
1095 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1096 
1097 recv:
1098 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1099 	iov.iov_len = queue->left;
1100 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1101 			iov.iov_len, msg.msg_flags);
1102 	if (unlikely(len < 0))
1103 		return len;
1104 
1105 	queue->offset += len;
1106 	queue->left -= len;
1107 	if (queue->left)
1108 		return -EAGAIN;
1109 
1110 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1111 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1112 
1113 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1114 			pr_err("unexpected pdu type %d\n", hdr->type);
1115 			nvmet_tcp_fatal_error(queue);
1116 			return -EIO;
1117 		}
1118 
1119 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1120 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1121 			return -EIO;
1122 		}
1123 
1124 		queue->left = hdr->hlen - queue->offset + hdgst;
1125 		goto recv;
1126 	}
1127 
1128 	if (queue->hdr_digest &&
1129 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1130 		nvmet_tcp_fatal_error(queue); /* fatal */
1131 		return -EPROTO;
1132 	}
1133 
1134 	if (queue->data_digest &&
1135 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1136 		nvmet_tcp_fatal_error(queue); /* fatal */
1137 		return -EPROTO;
1138 	}
1139 
1140 	return nvmet_tcp_done_recv_pdu(queue);
1141 }
1142 
1143 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1144 {
1145 	struct nvmet_tcp_queue *queue = cmd->queue;
1146 
1147 	nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1148 	queue->offset = 0;
1149 	queue->left = NVME_TCP_DIGEST_LENGTH;
1150 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1151 }
1152 
1153 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1154 {
1155 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1156 	int ret;
1157 
1158 	while (msg_data_left(&cmd->recv_msg)) {
1159 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1160 			cmd->recv_msg.msg_flags);
1161 		if (ret <= 0)
1162 			return ret;
1163 
1164 		cmd->pdu_recv += ret;
1165 		cmd->rbytes_done += ret;
1166 	}
1167 
1168 	if (queue->data_digest) {
1169 		nvmet_tcp_prep_recv_ddgst(cmd);
1170 		return 0;
1171 	}
1172 
1173 	if (cmd->rbytes_done == cmd->req.transfer_len)
1174 		nvmet_tcp_execute_request(cmd);
1175 
1176 	nvmet_prepare_receive_pdu(queue);
1177 	return 0;
1178 }
1179 
1180 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1181 {
1182 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1183 	int ret;
1184 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1185 	struct kvec iov = {
1186 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1187 		.iov_len = queue->left
1188 	};
1189 
1190 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1191 			iov.iov_len, msg.msg_flags);
1192 	if (unlikely(ret < 0))
1193 		return ret;
1194 
1195 	queue->offset += ret;
1196 	queue->left -= ret;
1197 	if (queue->left)
1198 		return -EAGAIN;
1199 
1200 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1201 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1202 			queue->idx, cmd->req.cmd->common.command_id,
1203 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1204 			le32_to_cpu(cmd->exp_ddgst));
1205 		nvmet_req_uninit(&cmd->req);
1206 		nvmet_tcp_free_cmd_buffers(cmd);
1207 		nvmet_tcp_fatal_error(queue);
1208 		ret = -EPROTO;
1209 		goto out;
1210 	}
1211 
1212 	if (cmd->rbytes_done == cmd->req.transfer_len)
1213 		nvmet_tcp_execute_request(cmd);
1214 
1215 	ret = 0;
1216 out:
1217 	nvmet_prepare_receive_pdu(queue);
1218 	return ret;
1219 }
1220 
1221 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1222 {
1223 	int result = 0;
1224 
1225 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1226 		return 0;
1227 
1228 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1229 		result = nvmet_tcp_try_recv_pdu(queue);
1230 		if (result != 0)
1231 			goto done_recv;
1232 	}
1233 
1234 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1235 		result = nvmet_tcp_try_recv_data(queue);
1236 		if (result != 0)
1237 			goto done_recv;
1238 	}
1239 
1240 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1241 		result = nvmet_tcp_try_recv_ddgst(queue);
1242 		if (result != 0)
1243 			goto done_recv;
1244 	}
1245 
1246 done_recv:
1247 	if (result < 0) {
1248 		if (result == -EAGAIN)
1249 			return 0;
1250 		return result;
1251 	}
1252 	return 1;
1253 }
1254 
1255 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1256 		int budget, int *recvs)
1257 {
1258 	int i, ret = 0;
1259 
1260 	for (i = 0; i < budget; i++) {
1261 		ret = nvmet_tcp_try_recv_one(queue);
1262 		if (unlikely(ret < 0)) {
1263 			nvmet_tcp_socket_error(queue, ret);
1264 			goto done;
1265 		} else if (ret == 0) {
1266 			break;
1267 		}
1268 		(*recvs)++;
1269 	}
1270 done:
1271 	return ret;
1272 }
1273 
1274 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1275 {
1276 	spin_lock(&queue->state_lock);
1277 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1278 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1279 		queue_work(nvmet_wq, &queue->release_work);
1280 	}
1281 	spin_unlock(&queue->state_lock);
1282 }
1283 
1284 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1285 {
1286 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1287 }
1288 
1289 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1290 		int ops)
1291 {
1292 	if (!idle_poll_period_usecs)
1293 		return false;
1294 
1295 	if (ops)
1296 		nvmet_tcp_arm_queue_deadline(queue);
1297 
1298 	return !time_after(jiffies, queue->poll_end);
1299 }
1300 
1301 static void nvmet_tcp_io_work(struct work_struct *w)
1302 {
1303 	struct nvmet_tcp_queue *queue =
1304 		container_of(w, struct nvmet_tcp_queue, io_work);
1305 	bool pending;
1306 	int ret, ops = 0;
1307 
1308 	do {
1309 		pending = false;
1310 
1311 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1312 		if (ret > 0)
1313 			pending = true;
1314 		else if (ret < 0)
1315 			return;
1316 
1317 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1318 		if (ret > 0)
1319 			pending = true;
1320 		else if (ret < 0)
1321 			return;
1322 
1323 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1324 
1325 	/*
1326 	 * Requeue the worker if idle deadline period is in progress or any
1327 	 * ops activity was recorded during the do-while loop above.
1328 	 */
1329 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1330 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1331 }
1332 
1333 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1334 		struct nvmet_tcp_cmd *c)
1335 {
1336 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1337 
1338 	c->queue = queue;
1339 	c->req.port = queue->port->nport;
1340 
1341 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1342 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1343 	if (!c->cmd_pdu)
1344 		return -ENOMEM;
1345 	c->req.cmd = &c->cmd_pdu->cmd;
1346 
1347 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1348 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1349 	if (!c->rsp_pdu)
1350 		goto out_free_cmd;
1351 	c->req.cqe = &c->rsp_pdu->cqe;
1352 
1353 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1354 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1355 	if (!c->data_pdu)
1356 		goto out_free_rsp;
1357 
1358 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1359 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1360 	if (!c->r2t_pdu)
1361 		goto out_free_data;
1362 
1363 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1364 
1365 	list_add_tail(&c->entry, &queue->free_list);
1366 
1367 	return 0;
1368 out_free_data:
1369 	page_frag_free(c->data_pdu);
1370 out_free_rsp:
1371 	page_frag_free(c->rsp_pdu);
1372 out_free_cmd:
1373 	page_frag_free(c->cmd_pdu);
1374 	return -ENOMEM;
1375 }
1376 
1377 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1378 {
1379 	page_frag_free(c->r2t_pdu);
1380 	page_frag_free(c->data_pdu);
1381 	page_frag_free(c->rsp_pdu);
1382 	page_frag_free(c->cmd_pdu);
1383 }
1384 
1385 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1386 {
1387 	struct nvmet_tcp_cmd *cmds;
1388 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1389 
1390 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1391 	if (!cmds)
1392 		goto out;
1393 
1394 	for (i = 0; i < nr_cmds; i++) {
1395 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1396 		if (ret)
1397 			goto out_free;
1398 	}
1399 
1400 	queue->cmds = cmds;
1401 
1402 	return 0;
1403 out_free:
1404 	while (--i >= 0)
1405 		nvmet_tcp_free_cmd(cmds + i);
1406 	kfree(cmds);
1407 out:
1408 	return ret;
1409 }
1410 
1411 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1412 {
1413 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1414 	int i;
1415 
1416 	for (i = 0; i < queue->nr_cmds; i++)
1417 		nvmet_tcp_free_cmd(cmds + i);
1418 
1419 	nvmet_tcp_free_cmd(&queue->connect);
1420 	kfree(cmds);
1421 }
1422 
1423 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1424 {
1425 	struct socket *sock = queue->sock;
1426 
1427 	write_lock_bh(&sock->sk->sk_callback_lock);
1428 	sock->sk->sk_data_ready =  queue->data_ready;
1429 	sock->sk->sk_state_change = queue->state_change;
1430 	sock->sk->sk_write_space = queue->write_space;
1431 	sock->sk->sk_user_data = NULL;
1432 	write_unlock_bh(&sock->sk->sk_callback_lock);
1433 }
1434 
1435 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1436 {
1437 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1438 	int i;
1439 
1440 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1441 		if (nvmet_tcp_need_data_in(cmd))
1442 			nvmet_req_uninit(&cmd->req);
1443 	}
1444 
1445 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1446 		/* failed in connect */
1447 		nvmet_req_uninit(&queue->connect.req);
1448 	}
1449 }
1450 
1451 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1452 {
1453 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1454 	int i;
1455 
1456 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1457 		if (nvmet_tcp_need_data_in(cmd))
1458 			nvmet_tcp_free_cmd_buffers(cmd);
1459 	}
1460 
1461 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
1462 		nvmet_tcp_free_cmd_buffers(&queue->connect);
1463 }
1464 
1465 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1466 {
1467 	struct page *page;
1468 	struct nvmet_tcp_queue *queue =
1469 		container_of(w, struct nvmet_tcp_queue, release_work);
1470 
1471 	mutex_lock(&nvmet_tcp_queue_mutex);
1472 	list_del_init(&queue->queue_list);
1473 	mutex_unlock(&nvmet_tcp_queue_mutex);
1474 
1475 	nvmet_tcp_restore_socket_callbacks(queue);
1476 	cancel_work_sync(&queue->io_work);
1477 	/* stop accepting incoming data */
1478 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1479 
1480 	nvmet_tcp_uninit_data_in_cmds(queue);
1481 	nvmet_sq_destroy(&queue->nvme_sq);
1482 	cancel_work_sync(&queue->io_work);
1483 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1484 	sock_release(queue->sock);
1485 	nvmet_tcp_free_cmds(queue);
1486 	if (queue->hdr_digest || queue->data_digest)
1487 		nvmet_tcp_free_crypto(queue);
1488 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1489 
1490 	page = virt_to_head_page(queue->pf_cache.va);
1491 	__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1492 	kfree(queue);
1493 }
1494 
1495 static void nvmet_tcp_data_ready(struct sock *sk)
1496 {
1497 	struct nvmet_tcp_queue *queue;
1498 
1499 	trace_sk_data_ready(sk);
1500 
1501 	read_lock_bh(&sk->sk_callback_lock);
1502 	queue = sk->sk_user_data;
1503 	if (likely(queue))
1504 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1505 	read_unlock_bh(&sk->sk_callback_lock);
1506 }
1507 
1508 static void nvmet_tcp_write_space(struct sock *sk)
1509 {
1510 	struct nvmet_tcp_queue *queue;
1511 
1512 	read_lock_bh(&sk->sk_callback_lock);
1513 	queue = sk->sk_user_data;
1514 	if (unlikely(!queue))
1515 		goto out;
1516 
1517 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1518 		queue->write_space(sk);
1519 		goto out;
1520 	}
1521 
1522 	if (sk_stream_is_writeable(sk)) {
1523 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1524 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1525 	}
1526 out:
1527 	read_unlock_bh(&sk->sk_callback_lock);
1528 }
1529 
1530 static void nvmet_tcp_state_change(struct sock *sk)
1531 {
1532 	struct nvmet_tcp_queue *queue;
1533 
1534 	read_lock_bh(&sk->sk_callback_lock);
1535 	queue = sk->sk_user_data;
1536 	if (!queue)
1537 		goto done;
1538 
1539 	switch (sk->sk_state) {
1540 	case TCP_FIN_WAIT2:
1541 	case TCP_LAST_ACK:
1542 		break;
1543 	case TCP_FIN_WAIT1:
1544 	case TCP_CLOSE_WAIT:
1545 	case TCP_CLOSE:
1546 		/* FALLTHRU */
1547 		nvmet_tcp_schedule_release_queue(queue);
1548 		break;
1549 	default:
1550 		pr_warn("queue %d unhandled state %d\n",
1551 			queue->idx, sk->sk_state);
1552 	}
1553 done:
1554 	read_unlock_bh(&sk->sk_callback_lock);
1555 }
1556 
1557 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1558 {
1559 	struct socket *sock = queue->sock;
1560 	struct inet_sock *inet = inet_sk(sock->sk);
1561 	int ret;
1562 
1563 	ret = kernel_getsockname(sock,
1564 		(struct sockaddr *)&queue->sockaddr);
1565 	if (ret < 0)
1566 		return ret;
1567 
1568 	ret = kernel_getpeername(sock,
1569 		(struct sockaddr *)&queue->sockaddr_peer);
1570 	if (ret < 0)
1571 		return ret;
1572 
1573 	/*
1574 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1575 	 * close. This is done to prevent stale data from being sent should
1576 	 * the network connection be restored before TCP times out.
1577 	 */
1578 	sock_no_linger(sock->sk);
1579 
1580 	if (so_priority > 0)
1581 		sock_set_priority(sock->sk, so_priority);
1582 
1583 	/* Set socket type of service */
1584 	if (inet->rcv_tos > 0)
1585 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1586 
1587 	ret = 0;
1588 	write_lock_bh(&sock->sk->sk_callback_lock);
1589 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1590 		/*
1591 		 * If the socket is already closing, don't even start
1592 		 * consuming it
1593 		 */
1594 		ret = -ENOTCONN;
1595 	} else {
1596 		sock->sk->sk_user_data = queue;
1597 		queue->data_ready = sock->sk->sk_data_ready;
1598 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1599 		queue->state_change = sock->sk->sk_state_change;
1600 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1601 		queue->write_space = sock->sk->sk_write_space;
1602 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1603 		if (idle_poll_period_usecs)
1604 			nvmet_tcp_arm_queue_deadline(queue);
1605 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1606 	}
1607 	write_unlock_bh(&sock->sk->sk_callback_lock);
1608 
1609 	return ret;
1610 }
1611 
1612 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1613 		struct socket *newsock)
1614 {
1615 	struct nvmet_tcp_queue *queue;
1616 	int ret;
1617 
1618 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1619 	if (!queue)
1620 		return -ENOMEM;
1621 
1622 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1623 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1624 	queue->sock = newsock;
1625 	queue->port = port;
1626 	queue->nr_cmds = 0;
1627 	spin_lock_init(&queue->state_lock);
1628 	queue->state = NVMET_TCP_Q_CONNECTING;
1629 	INIT_LIST_HEAD(&queue->free_list);
1630 	init_llist_head(&queue->resp_list);
1631 	INIT_LIST_HEAD(&queue->resp_send_list);
1632 
1633 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1634 	if (queue->idx < 0) {
1635 		ret = queue->idx;
1636 		goto out_free_queue;
1637 	}
1638 
1639 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1640 	if (ret)
1641 		goto out_ida_remove;
1642 
1643 	ret = nvmet_sq_init(&queue->nvme_sq);
1644 	if (ret)
1645 		goto out_free_connect;
1646 
1647 	nvmet_prepare_receive_pdu(queue);
1648 
1649 	mutex_lock(&nvmet_tcp_queue_mutex);
1650 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1651 	mutex_unlock(&nvmet_tcp_queue_mutex);
1652 
1653 	ret = nvmet_tcp_set_queue_sock(queue);
1654 	if (ret)
1655 		goto out_destroy_sq;
1656 
1657 	return 0;
1658 out_destroy_sq:
1659 	mutex_lock(&nvmet_tcp_queue_mutex);
1660 	list_del_init(&queue->queue_list);
1661 	mutex_unlock(&nvmet_tcp_queue_mutex);
1662 	nvmet_sq_destroy(&queue->nvme_sq);
1663 out_free_connect:
1664 	nvmet_tcp_free_cmd(&queue->connect);
1665 out_ida_remove:
1666 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1667 out_free_queue:
1668 	kfree(queue);
1669 	return ret;
1670 }
1671 
1672 static void nvmet_tcp_accept_work(struct work_struct *w)
1673 {
1674 	struct nvmet_tcp_port *port =
1675 		container_of(w, struct nvmet_tcp_port, accept_work);
1676 	struct socket *newsock;
1677 	int ret;
1678 
1679 	while (true) {
1680 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1681 		if (ret < 0) {
1682 			if (ret != -EAGAIN)
1683 				pr_warn("failed to accept err=%d\n", ret);
1684 			return;
1685 		}
1686 		ret = nvmet_tcp_alloc_queue(port, newsock);
1687 		if (ret) {
1688 			pr_err("failed to allocate queue\n");
1689 			sock_release(newsock);
1690 		}
1691 	}
1692 }
1693 
1694 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1695 {
1696 	struct nvmet_tcp_port *port;
1697 
1698 	trace_sk_data_ready(sk);
1699 
1700 	read_lock_bh(&sk->sk_callback_lock);
1701 	port = sk->sk_user_data;
1702 	if (!port)
1703 		goto out;
1704 
1705 	if (sk->sk_state == TCP_LISTEN)
1706 		queue_work(nvmet_wq, &port->accept_work);
1707 out:
1708 	read_unlock_bh(&sk->sk_callback_lock);
1709 }
1710 
1711 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1712 {
1713 	struct nvmet_tcp_port *port;
1714 	__kernel_sa_family_t af;
1715 	int ret;
1716 
1717 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1718 	if (!port)
1719 		return -ENOMEM;
1720 
1721 	switch (nport->disc_addr.adrfam) {
1722 	case NVMF_ADDR_FAMILY_IP4:
1723 		af = AF_INET;
1724 		break;
1725 	case NVMF_ADDR_FAMILY_IP6:
1726 		af = AF_INET6;
1727 		break;
1728 	default:
1729 		pr_err("address family %d not supported\n",
1730 				nport->disc_addr.adrfam);
1731 		ret = -EINVAL;
1732 		goto err_port;
1733 	}
1734 
1735 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1736 			nport->disc_addr.trsvcid, &port->addr);
1737 	if (ret) {
1738 		pr_err("malformed ip/port passed: %s:%s\n",
1739 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1740 		goto err_port;
1741 	}
1742 
1743 	port->nport = nport;
1744 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1745 	if (port->nport->inline_data_size < 0)
1746 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1747 
1748 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1749 				IPPROTO_TCP, &port->sock);
1750 	if (ret) {
1751 		pr_err("failed to create a socket\n");
1752 		goto err_port;
1753 	}
1754 
1755 	port->sock->sk->sk_user_data = port;
1756 	port->data_ready = port->sock->sk->sk_data_ready;
1757 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1758 	sock_set_reuseaddr(port->sock->sk);
1759 	tcp_sock_set_nodelay(port->sock->sk);
1760 	if (so_priority > 0)
1761 		sock_set_priority(port->sock->sk, so_priority);
1762 
1763 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1764 			sizeof(port->addr));
1765 	if (ret) {
1766 		pr_err("failed to bind port socket %d\n", ret);
1767 		goto err_sock;
1768 	}
1769 
1770 	ret = kernel_listen(port->sock, 128);
1771 	if (ret) {
1772 		pr_err("failed to listen %d on port sock\n", ret);
1773 		goto err_sock;
1774 	}
1775 
1776 	nport->priv = port;
1777 	pr_info("enabling port %d (%pISpc)\n",
1778 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1779 
1780 	return 0;
1781 
1782 err_sock:
1783 	sock_release(port->sock);
1784 err_port:
1785 	kfree(port);
1786 	return ret;
1787 }
1788 
1789 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1790 {
1791 	struct nvmet_tcp_queue *queue;
1792 
1793 	mutex_lock(&nvmet_tcp_queue_mutex);
1794 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1795 		if (queue->port == port)
1796 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1797 	mutex_unlock(&nvmet_tcp_queue_mutex);
1798 }
1799 
1800 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1801 {
1802 	struct nvmet_tcp_port *port = nport->priv;
1803 
1804 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1805 	port->sock->sk->sk_data_ready = port->data_ready;
1806 	port->sock->sk->sk_user_data = NULL;
1807 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1808 	cancel_work_sync(&port->accept_work);
1809 	/*
1810 	 * Destroy the remaining queues, which are not belong to any
1811 	 * controller yet.
1812 	 */
1813 	nvmet_tcp_destroy_port_queues(port);
1814 
1815 	sock_release(port->sock);
1816 	kfree(port);
1817 }
1818 
1819 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1820 {
1821 	struct nvmet_tcp_queue *queue;
1822 
1823 	mutex_lock(&nvmet_tcp_queue_mutex);
1824 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1825 		if (queue->nvme_sq.ctrl == ctrl)
1826 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1827 	mutex_unlock(&nvmet_tcp_queue_mutex);
1828 }
1829 
1830 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1831 {
1832 	struct nvmet_tcp_queue *queue =
1833 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1834 
1835 	if (sq->qid == 0) {
1836 		/* Let inflight controller teardown complete */
1837 		flush_workqueue(nvmet_wq);
1838 	}
1839 
1840 	queue->nr_cmds = sq->size * 2;
1841 	if (nvmet_tcp_alloc_cmds(queue))
1842 		return NVME_SC_INTERNAL;
1843 	return 0;
1844 }
1845 
1846 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1847 		struct nvmet_port *nport, char *traddr)
1848 {
1849 	struct nvmet_tcp_port *port = nport->priv;
1850 
1851 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1852 		struct nvmet_tcp_cmd *cmd =
1853 			container_of(req, struct nvmet_tcp_cmd, req);
1854 		struct nvmet_tcp_queue *queue = cmd->queue;
1855 
1856 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1857 	} else {
1858 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1859 	}
1860 }
1861 
1862 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1863 	.owner			= THIS_MODULE,
1864 	.type			= NVMF_TRTYPE_TCP,
1865 	.msdbd			= 1,
1866 	.add_port		= nvmet_tcp_add_port,
1867 	.remove_port		= nvmet_tcp_remove_port,
1868 	.queue_response		= nvmet_tcp_queue_response,
1869 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1870 	.install_queue		= nvmet_tcp_install_queue,
1871 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1872 };
1873 
1874 static int __init nvmet_tcp_init(void)
1875 {
1876 	int ret;
1877 
1878 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1879 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1880 	if (!nvmet_tcp_wq)
1881 		return -ENOMEM;
1882 
1883 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1884 	if (ret)
1885 		goto err;
1886 
1887 	return 0;
1888 err:
1889 	destroy_workqueue(nvmet_tcp_wq);
1890 	return ret;
1891 }
1892 
1893 static void __exit nvmet_tcp_exit(void)
1894 {
1895 	struct nvmet_tcp_queue *queue;
1896 
1897 	nvmet_unregister_transport(&nvmet_tcp_ops);
1898 
1899 	flush_workqueue(nvmet_wq);
1900 	mutex_lock(&nvmet_tcp_queue_mutex);
1901 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1902 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1903 	mutex_unlock(&nvmet_tcp_queue_mutex);
1904 	flush_workqueue(nvmet_wq);
1905 
1906 	destroy_workqueue(nvmet_tcp_wq);
1907 }
1908 
1909 module_init(nvmet_tcp_init);
1910 module_exit(nvmet_tcp_exit);
1911 
1912 MODULE_LICENSE("GPL v2");
1913 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1914