xref: /linux/drivers/nvme/target/tcp.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <crypto/hash.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvmet.h"
25 
26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
27 #define NVMET_TCP_MAXH2CDATA		0x400000 /* 16M arbitrary limit */
28 #define NVMET_TCP_BACKLOG 128
29 
30 static int param_store_val(const char *str, int *val, int min, int max)
31 {
32 	int ret, new_val;
33 
34 	ret = kstrtoint(str, 10, &new_val);
35 	if (ret)
36 		return -EINVAL;
37 
38 	if (new_val < min || new_val > max)
39 		return -EINVAL;
40 
41 	*val = new_val;
42 	return 0;
43 }
44 
45 static int set_params(const char *str, const struct kernel_param *kp)
46 {
47 	return param_store_val(str, kp->arg, 0, INT_MAX);
48 }
49 
50 static const struct kernel_param_ops set_param_ops = {
51 	.set	= set_params,
52 	.get	= param_get_int,
53 };
54 
55 /* Define the socket priority to use for connections were it is desirable
56  * that the NIC consider performing optimized packet processing or filtering.
57  * A non-zero value being sufficient to indicate general consideration of any
58  * possible optimization.  Making it a module param allows for alternative
59  * values that may be unique for some NIC implementations.
60  */
61 static int so_priority;
62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
64 
65 /* Define a time period (in usecs) that io_work() shall sample an activated
66  * queue before determining it to be idle.  This optional module behavior
67  * can enable NIC solutions that support socket optimized packet processing
68  * using advanced interrupt moderation techniques.
69  */
70 static int idle_poll_period_usecs;
71 device_param_cb(idle_poll_period_usecs, &set_param_ops,
72 		&idle_poll_period_usecs, 0644);
73 MODULE_PARM_DESC(idle_poll_period_usecs,
74 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
75 
76 #ifdef CONFIG_NVME_TARGET_TCP_TLS
77 /*
78  * TLS handshake timeout
79  */
80 static int tls_handshake_timeout = 10;
81 module_param(tls_handshake_timeout, int, 0644);
82 MODULE_PARM_DESC(tls_handshake_timeout,
83 		 "nvme TLS handshake timeout in seconds (default 10)");
84 #endif
85 
86 #define NVMET_TCP_RECV_BUDGET		8
87 #define NVMET_TCP_SEND_BUDGET		8
88 #define NVMET_TCP_IO_WORK_BUDGET	64
89 
90 enum nvmet_tcp_send_state {
91 	NVMET_TCP_SEND_DATA_PDU,
92 	NVMET_TCP_SEND_DATA,
93 	NVMET_TCP_SEND_R2T,
94 	NVMET_TCP_SEND_DDGST,
95 	NVMET_TCP_SEND_RESPONSE
96 };
97 
98 enum nvmet_tcp_recv_state {
99 	NVMET_TCP_RECV_PDU,
100 	NVMET_TCP_RECV_DATA,
101 	NVMET_TCP_RECV_DDGST,
102 	NVMET_TCP_RECV_ERR,
103 };
104 
105 enum {
106 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
107 };
108 
109 struct nvmet_tcp_cmd {
110 	struct nvmet_tcp_queue		*queue;
111 	struct nvmet_req		req;
112 
113 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
114 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
115 	struct nvme_tcp_data_pdu	*data_pdu;
116 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
117 
118 	u32				rbytes_done;
119 	u32				wbytes_done;
120 
121 	u32				pdu_len;
122 	u32				pdu_recv;
123 	int				sg_idx;
124 	char				recv_cbuf[CMSG_LEN(sizeof(char))];
125 	struct msghdr			recv_msg;
126 	struct bio_vec			*iov;
127 	u32				flags;
128 
129 	struct list_head		entry;
130 	struct llist_node		lentry;
131 
132 	/* send state */
133 	u32				offset;
134 	struct scatterlist		*cur_sg;
135 	enum nvmet_tcp_send_state	state;
136 
137 	__le32				exp_ddgst;
138 	__le32				recv_ddgst;
139 };
140 
141 enum nvmet_tcp_queue_state {
142 	NVMET_TCP_Q_CONNECTING,
143 	NVMET_TCP_Q_TLS_HANDSHAKE,
144 	NVMET_TCP_Q_LIVE,
145 	NVMET_TCP_Q_DISCONNECTING,
146 	NVMET_TCP_Q_FAILED,
147 };
148 
149 struct nvmet_tcp_queue {
150 	struct socket		*sock;
151 	struct nvmet_tcp_port	*port;
152 	struct work_struct	io_work;
153 	struct nvmet_cq		nvme_cq;
154 	struct nvmet_sq		nvme_sq;
155 	struct kref		kref;
156 
157 	/* send state */
158 	struct nvmet_tcp_cmd	*cmds;
159 	unsigned int		nr_cmds;
160 	struct list_head	free_list;
161 	struct llist_head	resp_list;
162 	struct list_head	resp_send_list;
163 	int			send_list_len;
164 	struct nvmet_tcp_cmd	*snd_cmd;
165 
166 	/* recv state */
167 	int			offset;
168 	int			left;
169 	enum nvmet_tcp_recv_state rcv_state;
170 	struct nvmet_tcp_cmd	*cmd;
171 	union nvme_tcp_pdu	pdu;
172 
173 	/* digest state */
174 	bool			hdr_digest;
175 	bool			data_digest;
176 	struct ahash_request	*snd_hash;
177 	struct ahash_request	*rcv_hash;
178 
179 	/* TLS state */
180 	key_serial_t		tls_pskid;
181 	struct delayed_work	tls_handshake_tmo_work;
182 
183 	unsigned long           poll_end;
184 
185 	spinlock_t		state_lock;
186 	enum nvmet_tcp_queue_state state;
187 
188 	struct sockaddr_storage	sockaddr;
189 	struct sockaddr_storage	sockaddr_peer;
190 	struct work_struct	release_work;
191 
192 	int			idx;
193 	struct list_head	queue_list;
194 
195 	struct nvmet_tcp_cmd	connect;
196 
197 	struct page_frag_cache	pf_cache;
198 
199 	void (*data_ready)(struct sock *);
200 	void (*state_change)(struct sock *);
201 	void (*write_space)(struct sock *);
202 };
203 
204 struct nvmet_tcp_port {
205 	struct socket		*sock;
206 	struct work_struct	accept_work;
207 	struct nvmet_port	*nport;
208 	struct sockaddr_storage addr;
209 	void (*data_ready)(struct sock *);
210 };
211 
212 static DEFINE_IDA(nvmet_tcp_queue_ida);
213 static LIST_HEAD(nvmet_tcp_queue_list);
214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
215 
216 static struct workqueue_struct *nvmet_tcp_wq;
217 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
220 
221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
222 		struct nvmet_tcp_cmd *cmd)
223 {
224 	if (unlikely(!queue->nr_cmds)) {
225 		/* We didn't allocate cmds yet, send 0xffff */
226 		return USHRT_MAX;
227 	}
228 
229 	return cmd - queue->cmds;
230 }
231 
232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
233 {
234 	return nvme_is_write(cmd->req.cmd) &&
235 		cmd->rbytes_done < cmd->req.transfer_len;
236 }
237 
238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
239 {
240 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
241 }
242 
243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
244 {
245 	return !nvme_is_write(cmd->req.cmd) &&
246 		cmd->req.transfer_len > 0 &&
247 		!cmd->req.cqe->status;
248 }
249 
250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
251 {
252 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
253 		!cmd->rbytes_done;
254 }
255 
256 static inline struct nvmet_tcp_cmd *
257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
258 {
259 	struct nvmet_tcp_cmd *cmd;
260 
261 	cmd = list_first_entry_or_null(&queue->free_list,
262 				struct nvmet_tcp_cmd, entry);
263 	if (!cmd)
264 		return NULL;
265 	list_del_init(&cmd->entry);
266 
267 	cmd->rbytes_done = cmd->wbytes_done = 0;
268 	cmd->pdu_len = 0;
269 	cmd->pdu_recv = 0;
270 	cmd->iov = NULL;
271 	cmd->flags = 0;
272 	return cmd;
273 }
274 
275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
276 {
277 	if (unlikely(cmd == &cmd->queue->connect))
278 		return;
279 
280 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
281 }
282 
283 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
284 {
285 	return queue->sock->sk->sk_incoming_cpu;
286 }
287 
288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
289 {
290 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
291 }
292 
293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
294 {
295 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
296 }
297 
298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
299 		void *pdu, size_t len)
300 {
301 	struct scatterlist sg;
302 
303 	sg_init_one(&sg, pdu, len);
304 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
305 	crypto_ahash_digest(hash);
306 }
307 
308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
309 	void *pdu, size_t len)
310 {
311 	struct nvme_tcp_hdr *hdr = pdu;
312 	__le32 recv_digest;
313 	__le32 exp_digest;
314 
315 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
316 		pr_err("queue %d: header digest enabled but no header digest\n",
317 			queue->idx);
318 		return -EPROTO;
319 	}
320 
321 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
322 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
323 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
324 	if (recv_digest != exp_digest) {
325 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
326 			queue->idx, le32_to_cpu(recv_digest),
327 			le32_to_cpu(exp_digest));
328 		return -EPROTO;
329 	}
330 
331 	return 0;
332 }
333 
334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
335 {
336 	struct nvme_tcp_hdr *hdr = pdu;
337 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
338 	u32 len;
339 
340 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
341 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
342 
343 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
344 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
345 		return -EPROTO;
346 	}
347 
348 	return 0;
349 }
350 
351 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
352 {
353 	kfree(cmd->iov);
354 	sgl_free(cmd->req.sg);
355 	cmd->iov = NULL;
356 	cmd->req.sg = NULL;
357 }
358 
359 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
360 {
361 	struct bio_vec *iov = cmd->iov;
362 	struct scatterlist *sg;
363 	u32 length, offset, sg_offset;
364 	int nr_pages;
365 
366 	length = cmd->pdu_len;
367 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
368 	offset = cmd->rbytes_done;
369 	cmd->sg_idx = offset / PAGE_SIZE;
370 	sg_offset = offset % PAGE_SIZE;
371 	sg = &cmd->req.sg[cmd->sg_idx];
372 
373 	while (length) {
374 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
375 
376 		bvec_set_page(iov, sg_page(sg), iov_len,
377 				sg->offset + sg_offset);
378 
379 		length -= iov_len;
380 		sg = sg_next(sg);
381 		iov++;
382 		sg_offset = 0;
383 	}
384 
385 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
386 		      nr_pages, cmd->pdu_len);
387 }
388 
389 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
390 {
391 	queue->rcv_state = NVMET_TCP_RECV_ERR;
392 	if (queue->nvme_sq.ctrl)
393 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
394 	else
395 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
396 }
397 
398 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
399 {
400 	queue->rcv_state = NVMET_TCP_RECV_ERR;
401 	if (status == -EPIPE || status == -ECONNRESET)
402 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
403 	else
404 		nvmet_tcp_fatal_error(queue);
405 }
406 
407 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
408 {
409 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
410 	u32 len = le32_to_cpu(sgl->length);
411 
412 	if (!len)
413 		return 0;
414 
415 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
416 			  NVME_SGL_FMT_OFFSET)) {
417 		if (!nvme_is_write(cmd->req.cmd))
418 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
419 
420 		if (len > cmd->req.port->inline_data_size)
421 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
422 		cmd->pdu_len = len;
423 	}
424 	cmd->req.transfer_len += len;
425 
426 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
427 	if (!cmd->req.sg)
428 		return NVME_SC_INTERNAL;
429 	cmd->cur_sg = cmd->req.sg;
430 
431 	if (nvmet_tcp_has_data_in(cmd)) {
432 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
433 				sizeof(*cmd->iov), GFP_KERNEL);
434 		if (!cmd->iov)
435 			goto err;
436 	}
437 
438 	return 0;
439 err:
440 	nvmet_tcp_free_cmd_buffers(cmd);
441 	return NVME_SC_INTERNAL;
442 }
443 
444 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
445 		struct nvmet_tcp_cmd *cmd)
446 {
447 	ahash_request_set_crypt(hash, cmd->req.sg,
448 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
449 	crypto_ahash_digest(hash);
450 }
451 
452 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
453 {
454 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
455 	struct nvmet_tcp_queue *queue = cmd->queue;
456 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
457 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
458 
459 	cmd->offset = 0;
460 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
461 
462 	pdu->hdr.type = nvme_tcp_c2h_data;
463 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
464 						NVME_TCP_F_DATA_SUCCESS : 0);
465 	pdu->hdr.hlen = sizeof(*pdu);
466 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
467 	pdu->hdr.plen =
468 		cpu_to_le32(pdu->hdr.hlen + hdgst +
469 				cmd->req.transfer_len + ddgst);
470 	pdu->command_id = cmd->req.cqe->command_id;
471 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
472 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
473 
474 	if (queue->data_digest) {
475 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
476 		nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
477 	}
478 
479 	if (cmd->queue->hdr_digest) {
480 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
481 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
482 	}
483 }
484 
485 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
486 {
487 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
488 	struct nvmet_tcp_queue *queue = cmd->queue;
489 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
490 
491 	cmd->offset = 0;
492 	cmd->state = NVMET_TCP_SEND_R2T;
493 
494 	pdu->hdr.type = nvme_tcp_r2t;
495 	pdu->hdr.flags = 0;
496 	pdu->hdr.hlen = sizeof(*pdu);
497 	pdu->hdr.pdo = 0;
498 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
499 
500 	pdu->command_id = cmd->req.cmd->common.command_id;
501 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
502 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
503 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
504 	if (cmd->queue->hdr_digest) {
505 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
506 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
507 	}
508 }
509 
510 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
511 {
512 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
513 	struct nvmet_tcp_queue *queue = cmd->queue;
514 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
515 
516 	cmd->offset = 0;
517 	cmd->state = NVMET_TCP_SEND_RESPONSE;
518 
519 	pdu->hdr.type = nvme_tcp_rsp;
520 	pdu->hdr.flags = 0;
521 	pdu->hdr.hlen = sizeof(*pdu);
522 	pdu->hdr.pdo = 0;
523 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
524 	if (cmd->queue->hdr_digest) {
525 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
526 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
527 	}
528 }
529 
530 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
531 {
532 	struct llist_node *node;
533 	struct nvmet_tcp_cmd *cmd;
534 
535 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
536 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
537 		list_add(&cmd->entry, &queue->resp_send_list);
538 		queue->send_list_len++;
539 	}
540 }
541 
542 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
543 {
544 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
545 				struct nvmet_tcp_cmd, entry);
546 	if (!queue->snd_cmd) {
547 		nvmet_tcp_process_resp_list(queue);
548 		queue->snd_cmd =
549 			list_first_entry_or_null(&queue->resp_send_list,
550 					struct nvmet_tcp_cmd, entry);
551 		if (unlikely(!queue->snd_cmd))
552 			return NULL;
553 	}
554 
555 	list_del_init(&queue->snd_cmd->entry);
556 	queue->send_list_len--;
557 
558 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
559 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
560 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
561 		nvmet_setup_r2t_pdu(queue->snd_cmd);
562 	else
563 		nvmet_setup_response_pdu(queue->snd_cmd);
564 
565 	return queue->snd_cmd;
566 }
567 
568 static void nvmet_tcp_queue_response(struct nvmet_req *req)
569 {
570 	struct nvmet_tcp_cmd *cmd =
571 		container_of(req, struct nvmet_tcp_cmd, req);
572 	struct nvmet_tcp_queue	*queue = cmd->queue;
573 	struct nvme_sgl_desc *sgl;
574 	u32 len;
575 
576 	if (unlikely(cmd == queue->cmd)) {
577 		sgl = &cmd->req.cmd->common.dptr.sgl;
578 		len = le32_to_cpu(sgl->length);
579 
580 		/*
581 		 * Wait for inline data before processing the response.
582 		 * Avoid using helpers, this might happen before
583 		 * nvmet_req_init is completed.
584 		 */
585 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
586 		    len && len <= cmd->req.port->inline_data_size &&
587 		    nvme_is_write(cmd->req.cmd))
588 			return;
589 	}
590 
591 	llist_add(&cmd->lentry, &queue->resp_list);
592 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
593 }
594 
595 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
596 {
597 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
598 		nvmet_tcp_queue_response(&cmd->req);
599 	else
600 		cmd->req.execute(&cmd->req);
601 }
602 
603 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
604 {
605 	struct msghdr msg = {
606 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
607 	};
608 	struct bio_vec bvec;
609 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
610 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
611 	int ret;
612 
613 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
614 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
615 	ret = sock_sendmsg(cmd->queue->sock, &msg);
616 	if (ret <= 0)
617 		return ret;
618 
619 	cmd->offset += ret;
620 	left -= ret;
621 
622 	if (left)
623 		return -EAGAIN;
624 
625 	cmd->state = NVMET_TCP_SEND_DATA;
626 	cmd->offset  = 0;
627 	return 1;
628 }
629 
630 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
631 {
632 	struct nvmet_tcp_queue *queue = cmd->queue;
633 	int ret;
634 
635 	while (cmd->cur_sg) {
636 		struct msghdr msg = {
637 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
638 		};
639 		struct page *page = sg_page(cmd->cur_sg);
640 		struct bio_vec bvec;
641 		u32 left = cmd->cur_sg->length - cmd->offset;
642 
643 		if ((!last_in_batch && cmd->queue->send_list_len) ||
644 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
645 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
646 			msg.msg_flags |= MSG_MORE;
647 
648 		bvec_set_page(&bvec, page, left, cmd->offset);
649 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
650 		ret = sock_sendmsg(cmd->queue->sock, &msg);
651 		if (ret <= 0)
652 			return ret;
653 
654 		cmd->offset += ret;
655 		cmd->wbytes_done += ret;
656 
657 		/* Done with sg?*/
658 		if (cmd->offset == cmd->cur_sg->length) {
659 			cmd->cur_sg = sg_next(cmd->cur_sg);
660 			cmd->offset = 0;
661 		}
662 	}
663 
664 	if (queue->data_digest) {
665 		cmd->state = NVMET_TCP_SEND_DDGST;
666 		cmd->offset = 0;
667 	} else {
668 		if (queue->nvme_sq.sqhd_disabled) {
669 			cmd->queue->snd_cmd = NULL;
670 			nvmet_tcp_put_cmd(cmd);
671 		} else {
672 			nvmet_setup_response_pdu(cmd);
673 		}
674 	}
675 
676 	if (queue->nvme_sq.sqhd_disabled)
677 		nvmet_tcp_free_cmd_buffers(cmd);
678 
679 	return 1;
680 
681 }
682 
683 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
684 		bool last_in_batch)
685 {
686 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
687 	struct bio_vec bvec;
688 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
689 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
690 	int ret;
691 
692 	if (!last_in_batch && cmd->queue->send_list_len)
693 		msg.msg_flags |= MSG_MORE;
694 	else
695 		msg.msg_flags |= MSG_EOR;
696 
697 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
698 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
699 	ret = sock_sendmsg(cmd->queue->sock, &msg);
700 	if (ret <= 0)
701 		return ret;
702 	cmd->offset += ret;
703 	left -= ret;
704 
705 	if (left)
706 		return -EAGAIN;
707 
708 	nvmet_tcp_free_cmd_buffers(cmd);
709 	cmd->queue->snd_cmd = NULL;
710 	nvmet_tcp_put_cmd(cmd);
711 	return 1;
712 }
713 
714 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
715 {
716 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
717 	struct bio_vec bvec;
718 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
719 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
720 	int ret;
721 
722 	if (!last_in_batch && cmd->queue->send_list_len)
723 		msg.msg_flags |= MSG_MORE;
724 	else
725 		msg.msg_flags |= MSG_EOR;
726 
727 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
728 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
729 	ret = sock_sendmsg(cmd->queue->sock, &msg);
730 	if (ret <= 0)
731 		return ret;
732 	cmd->offset += ret;
733 	left -= ret;
734 
735 	if (left)
736 		return -EAGAIN;
737 
738 	cmd->queue->snd_cmd = NULL;
739 	return 1;
740 }
741 
742 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
743 {
744 	struct nvmet_tcp_queue *queue = cmd->queue;
745 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
746 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
747 	struct kvec iov = {
748 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
749 		.iov_len = left
750 	};
751 	int ret;
752 
753 	if (!last_in_batch && cmd->queue->send_list_len)
754 		msg.msg_flags |= MSG_MORE;
755 	else
756 		msg.msg_flags |= MSG_EOR;
757 
758 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
759 	if (unlikely(ret <= 0))
760 		return ret;
761 
762 	cmd->offset += ret;
763 	left -= ret;
764 
765 	if (left)
766 		return -EAGAIN;
767 
768 	if (queue->nvme_sq.sqhd_disabled) {
769 		cmd->queue->snd_cmd = NULL;
770 		nvmet_tcp_put_cmd(cmd);
771 	} else {
772 		nvmet_setup_response_pdu(cmd);
773 	}
774 	return 1;
775 }
776 
777 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
778 		bool last_in_batch)
779 {
780 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
781 	int ret = 0;
782 
783 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
784 		cmd = nvmet_tcp_fetch_cmd(queue);
785 		if (unlikely(!cmd))
786 			return 0;
787 	}
788 
789 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
790 		ret = nvmet_try_send_data_pdu(cmd);
791 		if (ret <= 0)
792 			goto done_send;
793 	}
794 
795 	if (cmd->state == NVMET_TCP_SEND_DATA) {
796 		ret = nvmet_try_send_data(cmd, last_in_batch);
797 		if (ret <= 0)
798 			goto done_send;
799 	}
800 
801 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
802 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
803 		if (ret <= 0)
804 			goto done_send;
805 	}
806 
807 	if (cmd->state == NVMET_TCP_SEND_R2T) {
808 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
809 		if (ret <= 0)
810 			goto done_send;
811 	}
812 
813 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
814 		ret = nvmet_try_send_response(cmd, last_in_batch);
815 
816 done_send:
817 	if (ret < 0) {
818 		if (ret == -EAGAIN)
819 			return 0;
820 		return ret;
821 	}
822 
823 	return 1;
824 }
825 
826 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
827 		int budget, int *sends)
828 {
829 	int i, ret = 0;
830 
831 	for (i = 0; i < budget; i++) {
832 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
833 		if (unlikely(ret < 0)) {
834 			nvmet_tcp_socket_error(queue, ret);
835 			goto done;
836 		} else if (ret == 0) {
837 			break;
838 		}
839 		(*sends)++;
840 	}
841 done:
842 	return ret;
843 }
844 
845 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
846 {
847 	queue->offset = 0;
848 	queue->left = sizeof(struct nvme_tcp_hdr);
849 	queue->cmd = NULL;
850 	queue->rcv_state = NVMET_TCP_RECV_PDU;
851 }
852 
853 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
854 {
855 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
856 
857 	ahash_request_free(queue->rcv_hash);
858 	ahash_request_free(queue->snd_hash);
859 	crypto_free_ahash(tfm);
860 }
861 
862 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
863 {
864 	struct crypto_ahash *tfm;
865 
866 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
867 	if (IS_ERR(tfm))
868 		return PTR_ERR(tfm);
869 
870 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
871 	if (!queue->snd_hash)
872 		goto free_tfm;
873 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
874 
875 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
876 	if (!queue->rcv_hash)
877 		goto free_snd_hash;
878 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
879 
880 	return 0;
881 free_snd_hash:
882 	ahash_request_free(queue->snd_hash);
883 free_tfm:
884 	crypto_free_ahash(tfm);
885 	return -ENOMEM;
886 }
887 
888 
889 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
890 {
891 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
892 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
893 	struct msghdr msg = {};
894 	struct kvec iov;
895 	int ret;
896 
897 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
898 		pr_err("bad nvme-tcp pdu length (%d)\n",
899 			le32_to_cpu(icreq->hdr.plen));
900 		nvmet_tcp_fatal_error(queue);
901 	}
902 
903 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
904 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
905 		return -EPROTO;
906 	}
907 
908 	if (icreq->hpda != 0) {
909 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
910 			icreq->hpda);
911 		return -EPROTO;
912 	}
913 
914 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
915 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
916 	if (queue->hdr_digest || queue->data_digest) {
917 		ret = nvmet_tcp_alloc_crypto(queue);
918 		if (ret)
919 			return ret;
920 	}
921 
922 	memset(icresp, 0, sizeof(*icresp));
923 	icresp->hdr.type = nvme_tcp_icresp;
924 	icresp->hdr.hlen = sizeof(*icresp);
925 	icresp->hdr.pdo = 0;
926 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
927 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
928 	icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
929 	icresp->cpda = 0;
930 	if (queue->hdr_digest)
931 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
932 	if (queue->data_digest)
933 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
934 
935 	iov.iov_base = icresp;
936 	iov.iov_len = sizeof(*icresp);
937 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
938 	if (ret < 0) {
939 		queue->state = NVMET_TCP_Q_FAILED;
940 		return ret; /* queue removal will cleanup */
941 	}
942 
943 	queue->state = NVMET_TCP_Q_LIVE;
944 	nvmet_prepare_receive_pdu(queue);
945 	return 0;
946 }
947 
948 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
949 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
950 {
951 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
952 	int ret;
953 
954 	/*
955 	 * This command has not been processed yet, hence we are trying to
956 	 * figure out if there is still pending data left to receive. If
957 	 * we don't, we can simply prepare for the next pdu and bail out,
958 	 * otherwise we will need to prepare a buffer and receive the
959 	 * stale data before continuing forward.
960 	 */
961 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
962 	    data_len > cmd->req.port->inline_data_size) {
963 		nvmet_prepare_receive_pdu(queue);
964 		return;
965 	}
966 
967 	ret = nvmet_tcp_map_data(cmd);
968 	if (unlikely(ret)) {
969 		pr_err("queue %d: failed to map data\n", queue->idx);
970 		nvmet_tcp_fatal_error(queue);
971 		return;
972 	}
973 
974 	queue->rcv_state = NVMET_TCP_RECV_DATA;
975 	nvmet_tcp_build_pdu_iovec(cmd);
976 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
977 }
978 
979 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
980 {
981 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
982 	struct nvmet_tcp_cmd *cmd;
983 	unsigned int exp_data_len;
984 
985 	if (likely(queue->nr_cmds)) {
986 		if (unlikely(data->ttag >= queue->nr_cmds)) {
987 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
988 				queue->idx, data->ttag, queue->nr_cmds);
989 			goto err_proto;
990 		}
991 		cmd = &queue->cmds[data->ttag];
992 	} else {
993 		cmd = &queue->connect;
994 	}
995 
996 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
997 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
998 			data->ttag, le32_to_cpu(data->data_offset),
999 			cmd->rbytes_done);
1000 		goto err_proto;
1001 	}
1002 
1003 	exp_data_len = le32_to_cpu(data->hdr.plen) -
1004 			nvmet_tcp_hdgst_len(queue) -
1005 			nvmet_tcp_ddgst_len(queue) -
1006 			sizeof(*data);
1007 
1008 	cmd->pdu_len = le32_to_cpu(data->data_length);
1009 	if (unlikely(cmd->pdu_len != exp_data_len ||
1010 		     cmd->pdu_len == 0 ||
1011 		     cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1012 		pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1013 		goto err_proto;
1014 	}
1015 	cmd->pdu_recv = 0;
1016 	nvmet_tcp_build_pdu_iovec(cmd);
1017 	queue->cmd = cmd;
1018 	queue->rcv_state = NVMET_TCP_RECV_DATA;
1019 
1020 	return 0;
1021 
1022 err_proto:
1023 	/* FIXME: use proper transport errors */
1024 	nvmet_tcp_fatal_error(queue);
1025 	return -EPROTO;
1026 }
1027 
1028 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1029 {
1030 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1031 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1032 	struct nvmet_req *req;
1033 	int ret;
1034 
1035 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1036 		if (hdr->type != nvme_tcp_icreq) {
1037 			pr_err("unexpected pdu type (%d) before icreq\n",
1038 				hdr->type);
1039 			nvmet_tcp_fatal_error(queue);
1040 			return -EPROTO;
1041 		}
1042 		return nvmet_tcp_handle_icreq(queue);
1043 	}
1044 
1045 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1046 		pr_err("queue %d: received icreq pdu in state %d\n",
1047 			queue->idx, queue->state);
1048 		nvmet_tcp_fatal_error(queue);
1049 		return -EPROTO;
1050 	}
1051 
1052 	if (hdr->type == nvme_tcp_h2c_data) {
1053 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1054 		if (unlikely(ret))
1055 			return ret;
1056 		return 0;
1057 	}
1058 
1059 	queue->cmd = nvmet_tcp_get_cmd(queue);
1060 	if (unlikely(!queue->cmd)) {
1061 		/* This should never happen */
1062 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1063 			queue->idx, queue->nr_cmds, queue->send_list_len,
1064 			nvme_cmd->common.opcode);
1065 		nvmet_tcp_fatal_error(queue);
1066 		return -ENOMEM;
1067 	}
1068 
1069 	req = &queue->cmd->req;
1070 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1071 
1072 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1073 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1074 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1075 			req->cmd, req->cmd->common.command_id,
1076 			req->cmd->common.opcode,
1077 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
1078 
1079 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1080 		return 0;
1081 	}
1082 
1083 	ret = nvmet_tcp_map_data(queue->cmd);
1084 	if (unlikely(ret)) {
1085 		pr_err("queue %d: failed to map data\n", queue->idx);
1086 		if (nvmet_tcp_has_inline_data(queue->cmd))
1087 			nvmet_tcp_fatal_error(queue);
1088 		else
1089 			nvmet_req_complete(req, ret);
1090 		ret = -EAGAIN;
1091 		goto out;
1092 	}
1093 
1094 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1095 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1096 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1097 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1098 			return 0;
1099 		}
1100 		/* send back R2T */
1101 		nvmet_tcp_queue_response(&queue->cmd->req);
1102 		goto out;
1103 	}
1104 
1105 	queue->cmd->req.execute(&queue->cmd->req);
1106 out:
1107 	nvmet_prepare_receive_pdu(queue);
1108 	return ret;
1109 }
1110 
1111 static const u8 nvme_tcp_pdu_sizes[] = {
1112 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1113 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1114 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1115 };
1116 
1117 static inline u8 nvmet_tcp_pdu_size(u8 type)
1118 {
1119 	size_t idx = type;
1120 
1121 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1122 		nvme_tcp_pdu_sizes[idx]) ?
1123 			nvme_tcp_pdu_sizes[idx] : 0;
1124 }
1125 
1126 static inline bool nvmet_tcp_pdu_valid(u8 type)
1127 {
1128 	switch (type) {
1129 	case nvme_tcp_icreq:
1130 	case nvme_tcp_cmd:
1131 	case nvme_tcp_h2c_data:
1132 		/* fallthru */
1133 		return true;
1134 	}
1135 
1136 	return false;
1137 }
1138 
1139 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1140 		struct msghdr *msg, char *cbuf)
1141 {
1142 	struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1143 	u8 ctype, level, description;
1144 	int ret = 0;
1145 
1146 	ctype = tls_get_record_type(queue->sock->sk, cmsg);
1147 	switch (ctype) {
1148 	case 0:
1149 		break;
1150 	case TLS_RECORD_TYPE_DATA:
1151 		break;
1152 	case TLS_RECORD_TYPE_ALERT:
1153 		tls_alert_recv(queue->sock->sk, msg, &level, &description);
1154 		if (level == TLS_ALERT_LEVEL_FATAL) {
1155 			pr_err("queue %d: TLS Alert desc %u\n",
1156 			       queue->idx, description);
1157 			ret = -ENOTCONN;
1158 		} else {
1159 			pr_warn("queue %d: TLS Alert desc %u\n",
1160 			       queue->idx, description);
1161 			ret = -EAGAIN;
1162 		}
1163 		break;
1164 	default:
1165 		/* discard this record type */
1166 		pr_err("queue %d: TLS record %d unhandled\n",
1167 		       queue->idx, ctype);
1168 		ret = -EAGAIN;
1169 		break;
1170 	}
1171 	return ret;
1172 }
1173 
1174 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1175 {
1176 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1177 	int len, ret;
1178 	struct kvec iov;
1179 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1180 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1181 
1182 recv:
1183 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1184 	iov.iov_len = queue->left;
1185 	if (queue->tls_pskid) {
1186 		msg.msg_control = cbuf;
1187 		msg.msg_controllen = sizeof(cbuf);
1188 	}
1189 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1190 			iov.iov_len, msg.msg_flags);
1191 	if (unlikely(len < 0))
1192 		return len;
1193 	if (queue->tls_pskid) {
1194 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1195 		if (ret < 0)
1196 			return ret;
1197 	}
1198 
1199 	queue->offset += len;
1200 	queue->left -= len;
1201 	if (queue->left)
1202 		return -EAGAIN;
1203 
1204 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1205 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1206 
1207 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1208 			pr_err("unexpected pdu type %d\n", hdr->type);
1209 			nvmet_tcp_fatal_error(queue);
1210 			return -EIO;
1211 		}
1212 
1213 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1214 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1215 			return -EIO;
1216 		}
1217 
1218 		queue->left = hdr->hlen - queue->offset + hdgst;
1219 		goto recv;
1220 	}
1221 
1222 	if (queue->hdr_digest &&
1223 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1224 		nvmet_tcp_fatal_error(queue); /* fatal */
1225 		return -EPROTO;
1226 	}
1227 
1228 	if (queue->data_digest &&
1229 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1230 		nvmet_tcp_fatal_error(queue); /* fatal */
1231 		return -EPROTO;
1232 	}
1233 
1234 	return nvmet_tcp_done_recv_pdu(queue);
1235 }
1236 
1237 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1238 {
1239 	struct nvmet_tcp_queue *queue = cmd->queue;
1240 
1241 	nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1242 	queue->offset = 0;
1243 	queue->left = NVME_TCP_DIGEST_LENGTH;
1244 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1245 }
1246 
1247 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1248 {
1249 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1250 	int len, ret;
1251 
1252 	while (msg_data_left(&cmd->recv_msg)) {
1253 		len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1254 			cmd->recv_msg.msg_flags);
1255 		if (len <= 0)
1256 			return len;
1257 		if (queue->tls_pskid) {
1258 			ret = nvmet_tcp_tls_record_ok(cmd->queue,
1259 					&cmd->recv_msg, cmd->recv_cbuf);
1260 			if (ret < 0)
1261 				return ret;
1262 		}
1263 
1264 		cmd->pdu_recv += len;
1265 		cmd->rbytes_done += len;
1266 	}
1267 
1268 	if (queue->data_digest) {
1269 		nvmet_tcp_prep_recv_ddgst(cmd);
1270 		return 0;
1271 	}
1272 
1273 	if (cmd->rbytes_done == cmd->req.transfer_len)
1274 		nvmet_tcp_execute_request(cmd);
1275 
1276 	nvmet_prepare_receive_pdu(queue);
1277 	return 0;
1278 }
1279 
1280 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1281 {
1282 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1283 	int ret, len;
1284 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1285 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1286 	struct kvec iov = {
1287 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1288 		.iov_len = queue->left
1289 	};
1290 
1291 	if (queue->tls_pskid) {
1292 		msg.msg_control = cbuf;
1293 		msg.msg_controllen = sizeof(cbuf);
1294 	}
1295 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1296 			iov.iov_len, msg.msg_flags);
1297 	if (unlikely(len < 0))
1298 		return len;
1299 	if (queue->tls_pskid) {
1300 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1301 		if (ret < 0)
1302 			return ret;
1303 	}
1304 
1305 	queue->offset += len;
1306 	queue->left -= len;
1307 	if (queue->left)
1308 		return -EAGAIN;
1309 
1310 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1311 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1312 			queue->idx, cmd->req.cmd->common.command_id,
1313 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1314 			le32_to_cpu(cmd->exp_ddgst));
1315 		nvmet_req_uninit(&cmd->req);
1316 		nvmet_tcp_free_cmd_buffers(cmd);
1317 		nvmet_tcp_fatal_error(queue);
1318 		ret = -EPROTO;
1319 		goto out;
1320 	}
1321 
1322 	if (cmd->rbytes_done == cmd->req.transfer_len)
1323 		nvmet_tcp_execute_request(cmd);
1324 
1325 	ret = 0;
1326 out:
1327 	nvmet_prepare_receive_pdu(queue);
1328 	return ret;
1329 }
1330 
1331 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1332 {
1333 	int result = 0;
1334 
1335 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1336 		return 0;
1337 
1338 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1339 		result = nvmet_tcp_try_recv_pdu(queue);
1340 		if (result != 0)
1341 			goto done_recv;
1342 	}
1343 
1344 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1345 		result = nvmet_tcp_try_recv_data(queue);
1346 		if (result != 0)
1347 			goto done_recv;
1348 	}
1349 
1350 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1351 		result = nvmet_tcp_try_recv_ddgst(queue);
1352 		if (result != 0)
1353 			goto done_recv;
1354 	}
1355 
1356 done_recv:
1357 	if (result < 0) {
1358 		if (result == -EAGAIN)
1359 			return 0;
1360 		return result;
1361 	}
1362 	return 1;
1363 }
1364 
1365 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1366 		int budget, int *recvs)
1367 {
1368 	int i, ret = 0;
1369 
1370 	for (i = 0; i < budget; i++) {
1371 		ret = nvmet_tcp_try_recv_one(queue);
1372 		if (unlikely(ret < 0)) {
1373 			nvmet_tcp_socket_error(queue, ret);
1374 			goto done;
1375 		} else if (ret == 0) {
1376 			break;
1377 		}
1378 		(*recvs)++;
1379 	}
1380 done:
1381 	return ret;
1382 }
1383 
1384 static void nvmet_tcp_release_queue(struct kref *kref)
1385 {
1386 	struct nvmet_tcp_queue *queue =
1387 		container_of(kref, struct nvmet_tcp_queue, kref);
1388 
1389 	WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1390 	queue_work(nvmet_wq, &queue->release_work);
1391 }
1392 
1393 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1394 {
1395 	spin_lock_bh(&queue->state_lock);
1396 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1397 		/* Socket closed during handshake */
1398 		tls_handshake_cancel(queue->sock->sk);
1399 	}
1400 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1401 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1402 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1403 	}
1404 	spin_unlock_bh(&queue->state_lock);
1405 }
1406 
1407 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1408 {
1409 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1410 }
1411 
1412 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1413 		int ops)
1414 {
1415 	if (!idle_poll_period_usecs)
1416 		return false;
1417 
1418 	if (ops)
1419 		nvmet_tcp_arm_queue_deadline(queue);
1420 
1421 	return !time_after(jiffies, queue->poll_end);
1422 }
1423 
1424 static void nvmet_tcp_io_work(struct work_struct *w)
1425 {
1426 	struct nvmet_tcp_queue *queue =
1427 		container_of(w, struct nvmet_tcp_queue, io_work);
1428 	bool pending;
1429 	int ret, ops = 0;
1430 
1431 	do {
1432 		pending = false;
1433 
1434 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1435 		if (ret > 0)
1436 			pending = true;
1437 		else if (ret < 0)
1438 			return;
1439 
1440 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1441 		if (ret > 0)
1442 			pending = true;
1443 		else if (ret < 0)
1444 			return;
1445 
1446 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1447 
1448 	/*
1449 	 * Requeue the worker if idle deadline period is in progress or any
1450 	 * ops activity was recorded during the do-while loop above.
1451 	 */
1452 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1453 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1454 }
1455 
1456 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1457 		struct nvmet_tcp_cmd *c)
1458 {
1459 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1460 
1461 	c->queue = queue;
1462 	c->req.port = queue->port->nport;
1463 
1464 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1465 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1466 	if (!c->cmd_pdu)
1467 		return -ENOMEM;
1468 	c->req.cmd = &c->cmd_pdu->cmd;
1469 
1470 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1471 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1472 	if (!c->rsp_pdu)
1473 		goto out_free_cmd;
1474 	c->req.cqe = &c->rsp_pdu->cqe;
1475 
1476 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1477 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1478 	if (!c->data_pdu)
1479 		goto out_free_rsp;
1480 
1481 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1482 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1483 	if (!c->r2t_pdu)
1484 		goto out_free_data;
1485 
1486 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1487 		c->recv_msg.msg_control = c->recv_cbuf;
1488 		c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1489 	}
1490 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1491 
1492 	list_add_tail(&c->entry, &queue->free_list);
1493 
1494 	return 0;
1495 out_free_data:
1496 	page_frag_free(c->data_pdu);
1497 out_free_rsp:
1498 	page_frag_free(c->rsp_pdu);
1499 out_free_cmd:
1500 	page_frag_free(c->cmd_pdu);
1501 	return -ENOMEM;
1502 }
1503 
1504 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1505 {
1506 	page_frag_free(c->r2t_pdu);
1507 	page_frag_free(c->data_pdu);
1508 	page_frag_free(c->rsp_pdu);
1509 	page_frag_free(c->cmd_pdu);
1510 }
1511 
1512 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1513 {
1514 	struct nvmet_tcp_cmd *cmds;
1515 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1516 
1517 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1518 	if (!cmds)
1519 		goto out;
1520 
1521 	for (i = 0; i < nr_cmds; i++) {
1522 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1523 		if (ret)
1524 			goto out_free;
1525 	}
1526 
1527 	queue->cmds = cmds;
1528 
1529 	return 0;
1530 out_free:
1531 	while (--i >= 0)
1532 		nvmet_tcp_free_cmd(cmds + i);
1533 	kfree(cmds);
1534 out:
1535 	return ret;
1536 }
1537 
1538 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1539 {
1540 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1541 	int i;
1542 
1543 	for (i = 0; i < queue->nr_cmds; i++)
1544 		nvmet_tcp_free_cmd(cmds + i);
1545 
1546 	nvmet_tcp_free_cmd(&queue->connect);
1547 	kfree(cmds);
1548 }
1549 
1550 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1551 {
1552 	struct socket *sock = queue->sock;
1553 
1554 	write_lock_bh(&sock->sk->sk_callback_lock);
1555 	sock->sk->sk_data_ready =  queue->data_ready;
1556 	sock->sk->sk_state_change = queue->state_change;
1557 	sock->sk->sk_write_space = queue->write_space;
1558 	sock->sk->sk_user_data = NULL;
1559 	write_unlock_bh(&sock->sk->sk_callback_lock);
1560 }
1561 
1562 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1563 {
1564 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1565 	int i;
1566 
1567 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1568 		if (nvmet_tcp_need_data_in(cmd))
1569 			nvmet_req_uninit(&cmd->req);
1570 	}
1571 
1572 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1573 		/* failed in connect */
1574 		nvmet_req_uninit(&queue->connect.req);
1575 	}
1576 }
1577 
1578 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1579 {
1580 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1581 	int i;
1582 
1583 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1584 		if (nvmet_tcp_need_data_in(cmd))
1585 			nvmet_tcp_free_cmd_buffers(cmd);
1586 	}
1587 
1588 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
1589 		nvmet_tcp_free_cmd_buffers(&queue->connect);
1590 }
1591 
1592 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1593 {
1594 	struct page *page;
1595 	struct nvmet_tcp_queue *queue =
1596 		container_of(w, struct nvmet_tcp_queue, release_work);
1597 
1598 	mutex_lock(&nvmet_tcp_queue_mutex);
1599 	list_del_init(&queue->queue_list);
1600 	mutex_unlock(&nvmet_tcp_queue_mutex);
1601 
1602 	nvmet_tcp_restore_socket_callbacks(queue);
1603 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1604 	cancel_work_sync(&queue->io_work);
1605 	/* stop accepting incoming data */
1606 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1607 
1608 	nvmet_tcp_uninit_data_in_cmds(queue);
1609 	nvmet_sq_destroy(&queue->nvme_sq);
1610 	cancel_work_sync(&queue->io_work);
1611 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1612 	/* ->sock will be released by fput() */
1613 	fput(queue->sock->file);
1614 	nvmet_tcp_free_cmds(queue);
1615 	if (queue->hdr_digest || queue->data_digest)
1616 		nvmet_tcp_free_crypto(queue);
1617 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1618 	page = virt_to_head_page(queue->pf_cache.va);
1619 	__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1620 	kfree(queue);
1621 }
1622 
1623 static void nvmet_tcp_data_ready(struct sock *sk)
1624 {
1625 	struct nvmet_tcp_queue *queue;
1626 
1627 	trace_sk_data_ready(sk);
1628 
1629 	read_lock_bh(&sk->sk_callback_lock);
1630 	queue = sk->sk_user_data;
1631 	if (likely(queue)) {
1632 		if (queue->data_ready)
1633 			queue->data_ready(sk);
1634 		if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1635 			queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1636 				      &queue->io_work);
1637 	}
1638 	read_unlock_bh(&sk->sk_callback_lock);
1639 }
1640 
1641 static void nvmet_tcp_write_space(struct sock *sk)
1642 {
1643 	struct nvmet_tcp_queue *queue;
1644 
1645 	read_lock_bh(&sk->sk_callback_lock);
1646 	queue = sk->sk_user_data;
1647 	if (unlikely(!queue))
1648 		goto out;
1649 
1650 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1651 		queue->write_space(sk);
1652 		goto out;
1653 	}
1654 
1655 	if (sk_stream_is_writeable(sk)) {
1656 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1657 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1658 	}
1659 out:
1660 	read_unlock_bh(&sk->sk_callback_lock);
1661 }
1662 
1663 static void nvmet_tcp_state_change(struct sock *sk)
1664 {
1665 	struct nvmet_tcp_queue *queue;
1666 
1667 	read_lock_bh(&sk->sk_callback_lock);
1668 	queue = sk->sk_user_data;
1669 	if (!queue)
1670 		goto done;
1671 
1672 	switch (sk->sk_state) {
1673 	case TCP_FIN_WAIT2:
1674 	case TCP_LAST_ACK:
1675 		break;
1676 	case TCP_FIN_WAIT1:
1677 	case TCP_CLOSE_WAIT:
1678 	case TCP_CLOSE:
1679 		/* FALLTHRU */
1680 		nvmet_tcp_schedule_release_queue(queue);
1681 		break;
1682 	default:
1683 		pr_warn("queue %d unhandled state %d\n",
1684 			queue->idx, sk->sk_state);
1685 	}
1686 done:
1687 	read_unlock_bh(&sk->sk_callback_lock);
1688 }
1689 
1690 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1691 {
1692 	struct socket *sock = queue->sock;
1693 	struct inet_sock *inet = inet_sk(sock->sk);
1694 	int ret;
1695 
1696 	ret = kernel_getsockname(sock,
1697 		(struct sockaddr *)&queue->sockaddr);
1698 	if (ret < 0)
1699 		return ret;
1700 
1701 	ret = kernel_getpeername(sock,
1702 		(struct sockaddr *)&queue->sockaddr_peer);
1703 	if (ret < 0)
1704 		return ret;
1705 
1706 	/*
1707 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1708 	 * close. This is done to prevent stale data from being sent should
1709 	 * the network connection be restored before TCP times out.
1710 	 */
1711 	sock_no_linger(sock->sk);
1712 
1713 	if (so_priority > 0)
1714 		sock_set_priority(sock->sk, so_priority);
1715 
1716 	/* Set socket type of service */
1717 	if (inet->rcv_tos > 0)
1718 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1719 
1720 	ret = 0;
1721 	write_lock_bh(&sock->sk->sk_callback_lock);
1722 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1723 		/*
1724 		 * If the socket is already closing, don't even start
1725 		 * consuming it
1726 		 */
1727 		ret = -ENOTCONN;
1728 	} else {
1729 		sock->sk->sk_user_data = queue;
1730 		queue->data_ready = sock->sk->sk_data_ready;
1731 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1732 		queue->state_change = sock->sk->sk_state_change;
1733 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1734 		queue->write_space = sock->sk->sk_write_space;
1735 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1736 		if (idle_poll_period_usecs)
1737 			nvmet_tcp_arm_queue_deadline(queue);
1738 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1739 	}
1740 	write_unlock_bh(&sock->sk->sk_callback_lock);
1741 
1742 	return ret;
1743 }
1744 
1745 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1746 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1747 {
1748 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1749 	int len, ret;
1750 	struct kvec iov = {
1751 		.iov_base = (u8 *)&queue->pdu + queue->offset,
1752 		.iov_len = sizeof(struct nvme_tcp_hdr),
1753 	};
1754 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1755 	struct msghdr msg = {
1756 		.msg_control = cbuf,
1757 		.msg_controllen = sizeof(cbuf),
1758 		.msg_flags = MSG_PEEK,
1759 	};
1760 
1761 	if (nvmet_port_secure_channel_required(queue->port->nport))
1762 		return 0;
1763 
1764 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1765 			iov.iov_len, msg.msg_flags);
1766 	if (unlikely(len < 0)) {
1767 		pr_debug("queue %d: peek error %d\n",
1768 			 queue->idx, len);
1769 		return len;
1770 	}
1771 
1772 	ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1773 	if (ret < 0)
1774 		return ret;
1775 
1776 	if (len < sizeof(struct nvme_tcp_hdr)) {
1777 		pr_debug("queue %d: short read, %d bytes missing\n",
1778 			 queue->idx, (int)iov.iov_len - len);
1779 		return -EAGAIN;
1780 	}
1781 	pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1782 		 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1783 		 (int)sizeof(struct nvme_tcp_icreq_pdu));
1784 	if (hdr->type == nvme_tcp_icreq &&
1785 	    hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1786 	    hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1787 		pr_debug("queue %d: icreq detected\n",
1788 			 queue->idx);
1789 		return len;
1790 	}
1791 	return 0;
1792 }
1793 
1794 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1795 					 key_serial_t peerid)
1796 {
1797 	struct nvmet_tcp_queue *queue = data;
1798 
1799 	pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1800 		 queue->idx, peerid, status);
1801 	spin_lock_bh(&queue->state_lock);
1802 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1803 		spin_unlock_bh(&queue->state_lock);
1804 		return;
1805 	}
1806 	if (!status) {
1807 		queue->tls_pskid = peerid;
1808 		queue->state = NVMET_TCP_Q_CONNECTING;
1809 	} else
1810 		queue->state = NVMET_TCP_Q_FAILED;
1811 	spin_unlock_bh(&queue->state_lock);
1812 
1813 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1814 	if (status)
1815 		nvmet_tcp_schedule_release_queue(queue);
1816 	else
1817 		nvmet_tcp_set_queue_sock(queue);
1818 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1819 }
1820 
1821 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1822 {
1823 	struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1824 			struct nvmet_tcp_queue, tls_handshake_tmo_work);
1825 
1826 	pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1827 	/*
1828 	 * If tls_handshake_cancel() fails we've lost the race with
1829 	 * nvmet_tcp_tls_handshake_done() */
1830 	if (!tls_handshake_cancel(queue->sock->sk))
1831 		return;
1832 	spin_lock_bh(&queue->state_lock);
1833 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1834 		spin_unlock_bh(&queue->state_lock);
1835 		return;
1836 	}
1837 	queue->state = NVMET_TCP_Q_FAILED;
1838 	spin_unlock_bh(&queue->state_lock);
1839 	nvmet_tcp_schedule_release_queue(queue);
1840 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1841 }
1842 
1843 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1844 {
1845 	int ret = -EOPNOTSUPP;
1846 	struct tls_handshake_args args;
1847 
1848 	if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1849 		pr_warn("cannot start TLS in state %d\n", queue->state);
1850 		return -EINVAL;
1851 	}
1852 
1853 	kref_get(&queue->kref);
1854 	pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1855 	memset(&args, 0, sizeof(args));
1856 	args.ta_sock = queue->sock;
1857 	args.ta_done = nvmet_tcp_tls_handshake_done;
1858 	args.ta_data = queue;
1859 	args.ta_keyring = key_serial(queue->port->nport->keyring);
1860 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1861 
1862 	ret = tls_server_hello_psk(&args, GFP_KERNEL);
1863 	if (ret) {
1864 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1865 		pr_err("failed to start TLS, err=%d\n", ret);
1866 	} else {
1867 		queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1868 				   tls_handshake_timeout * HZ);
1869 	}
1870 	return ret;
1871 }
1872 #else
1873 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1874 #endif
1875 
1876 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1877 		struct socket *newsock)
1878 {
1879 	struct nvmet_tcp_queue *queue;
1880 	struct file *sock_file = NULL;
1881 	int ret;
1882 
1883 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1884 	if (!queue) {
1885 		ret = -ENOMEM;
1886 		goto out_release;
1887 	}
1888 
1889 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1890 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1891 	kref_init(&queue->kref);
1892 	queue->sock = newsock;
1893 	queue->port = port;
1894 	queue->nr_cmds = 0;
1895 	spin_lock_init(&queue->state_lock);
1896 	if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1897 	    NVMF_TCP_SECTYPE_TLS13)
1898 		queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1899 	else
1900 		queue->state = NVMET_TCP_Q_CONNECTING;
1901 	INIT_LIST_HEAD(&queue->free_list);
1902 	init_llist_head(&queue->resp_list);
1903 	INIT_LIST_HEAD(&queue->resp_send_list);
1904 
1905 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1906 	if (IS_ERR(sock_file)) {
1907 		ret = PTR_ERR(sock_file);
1908 		goto out_free_queue;
1909 	}
1910 
1911 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1912 	if (queue->idx < 0) {
1913 		ret = queue->idx;
1914 		goto out_sock;
1915 	}
1916 
1917 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1918 	if (ret)
1919 		goto out_ida_remove;
1920 
1921 	ret = nvmet_sq_init(&queue->nvme_sq);
1922 	if (ret)
1923 		goto out_free_connect;
1924 
1925 	nvmet_prepare_receive_pdu(queue);
1926 
1927 	mutex_lock(&nvmet_tcp_queue_mutex);
1928 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1929 	mutex_unlock(&nvmet_tcp_queue_mutex);
1930 
1931 	INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1932 			  nvmet_tcp_tls_handshake_timeout);
1933 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1934 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1935 		struct sock *sk = queue->sock->sk;
1936 
1937 		/* Restore the default callbacks before starting upcall */
1938 		read_lock_bh(&sk->sk_callback_lock);
1939 		sk->sk_user_data = NULL;
1940 		sk->sk_data_ready = port->data_ready;
1941 		read_unlock_bh(&sk->sk_callback_lock);
1942 		if (!nvmet_tcp_try_peek_pdu(queue)) {
1943 			if (!nvmet_tcp_tls_handshake(queue))
1944 				return;
1945 			/* TLS handshake failed, terminate the connection */
1946 			goto out_destroy_sq;
1947 		}
1948 		/* Not a TLS connection, continue with normal processing */
1949 		queue->state = NVMET_TCP_Q_CONNECTING;
1950 	}
1951 #endif
1952 
1953 	ret = nvmet_tcp_set_queue_sock(queue);
1954 	if (ret)
1955 		goto out_destroy_sq;
1956 
1957 	return;
1958 out_destroy_sq:
1959 	mutex_lock(&nvmet_tcp_queue_mutex);
1960 	list_del_init(&queue->queue_list);
1961 	mutex_unlock(&nvmet_tcp_queue_mutex);
1962 	nvmet_sq_destroy(&queue->nvme_sq);
1963 out_free_connect:
1964 	nvmet_tcp_free_cmd(&queue->connect);
1965 out_ida_remove:
1966 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1967 out_sock:
1968 	fput(queue->sock->file);
1969 out_free_queue:
1970 	kfree(queue);
1971 out_release:
1972 	pr_err("failed to allocate queue, error %d\n", ret);
1973 	if (!sock_file)
1974 		sock_release(newsock);
1975 }
1976 
1977 static void nvmet_tcp_accept_work(struct work_struct *w)
1978 {
1979 	struct nvmet_tcp_port *port =
1980 		container_of(w, struct nvmet_tcp_port, accept_work);
1981 	struct socket *newsock;
1982 	int ret;
1983 
1984 	while (true) {
1985 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1986 		if (ret < 0) {
1987 			if (ret != -EAGAIN)
1988 				pr_warn("failed to accept err=%d\n", ret);
1989 			return;
1990 		}
1991 		nvmet_tcp_alloc_queue(port, newsock);
1992 	}
1993 }
1994 
1995 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1996 {
1997 	struct nvmet_tcp_port *port;
1998 
1999 	trace_sk_data_ready(sk);
2000 
2001 	read_lock_bh(&sk->sk_callback_lock);
2002 	port = sk->sk_user_data;
2003 	if (!port)
2004 		goto out;
2005 
2006 	if (sk->sk_state == TCP_LISTEN)
2007 		queue_work(nvmet_wq, &port->accept_work);
2008 out:
2009 	read_unlock_bh(&sk->sk_callback_lock);
2010 }
2011 
2012 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2013 {
2014 	struct nvmet_tcp_port *port;
2015 	__kernel_sa_family_t af;
2016 	int ret;
2017 
2018 	port = kzalloc(sizeof(*port), GFP_KERNEL);
2019 	if (!port)
2020 		return -ENOMEM;
2021 
2022 	switch (nport->disc_addr.adrfam) {
2023 	case NVMF_ADDR_FAMILY_IP4:
2024 		af = AF_INET;
2025 		break;
2026 	case NVMF_ADDR_FAMILY_IP6:
2027 		af = AF_INET6;
2028 		break;
2029 	default:
2030 		pr_err("address family %d not supported\n",
2031 				nport->disc_addr.adrfam);
2032 		ret = -EINVAL;
2033 		goto err_port;
2034 	}
2035 
2036 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2037 			nport->disc_addr.trsvcid, &port->addr);
2038 	if (ret) {
2039 		pr_err("malformed ip/port passed: %s:%s\n",
2040 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2041 		goto err_port;
2042 	}
2043 
2044 	port->nport = nport;
2045 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2046 	if (port->nport->inline_data_size < 0)
2047 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2048 
2049 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2050 				IPPROTO_TCP, &port->sock);
2051 	if (ret) {
2052 		pr_err("failed to create a socket\n");
2053 		goto err_port;
2054 	}
2055 
2056 	port->sock->sk->sk_user_data = port;
2057 	port->data_ready = port->sock->sk->sk_data_ready;
2058 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2059 	sock_set_reuseaddr(port->sock->sk);
2060 	tcp_sock_set_nodelay(port->sock->sk);
2061 	if (so_priority > 0)
2062 		sock_set_priority(port->sock->sk, so_priority);
2063 
2064 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2065 			sizeof(port->addr));
2066 	if (ret) {
2067 		pr_err("failed to bind port socket %d\n", ret);
2068 		goto err_sock;
2069 	}
2070 
2071 	ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2072 	if (ret) {
2073 		pr_err("failed to listen %d on port sock\n", ret);
2074 		goto err_sock;
2075 	}
2076 
2077 	nport->priv = port;
2078 	pr_info("enabling port %d (%pISpc)\n",
2079 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
2080 
2081 	return 0;
2082 
2083 err_sock:
2084 	sock_release(port->sock);
2085 err_port:
2086 	kfree(port);
2087 	return ret;
2088 }
2089 
2090 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2091 {
2092 	struct nvmet_tcp_queue *queue;
2093 
2094 	mutex_lock(&nvmet_tcp_queue_mutex);
2095 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2096 		if (queue->port == port)
2097 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2098 	mutex_unlock(&nvmet_tcp_queue_mutex);
2099 }
2100 
2101 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2102 {
2103 	struct nvmet_tcp_port *port = nport->priv;
2104 
2105 	write_lock_bh(&port->sock->sk->sk_callback_lock);
2106 	port->sock->sk->sk_data_ready = port->data_ready;
2107 	port->sock->sk->sk_user_data = NULL;
2108 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
2109 	cancel_work_sync(&port->accept_work);
2110 	/*
2111 	 * Destroy the remaining queues, which are not belong to any
2112 	 * controller yet.
2113 	 */
2114 	nvmet_tcp_destroy_port_queues(port);
2115 
2116 	sock_release(port->sock);
2117 	kfree(port);
2118 }
2119 
2120 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2121 {
2122 	struct nvmet_tcp_queue *queue;
2123 
2124 	mutex_lock(&nvmet_tcp_queue_mutex);
2125 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2126 		if (queue->nvme_sq.ctrl == ctrl)
2127 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2128 	mutex_unlock(&nvmet_tcp_queue_mutex);
2129 }
2130 
2131 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2132 {
2133 	struct nvmet_tcp_queue *queue =
2134 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2135 
2136 	if (sq->qid == 0) {
2137 		struct nvmet_tcp_queue *q;
2138 		int pending = 0;
2139 
2140 		/* Check for pending controller teardown */
2141 		mutex_lock(&nvmet_tcp_queue_mutex);
2142 		list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2143 			if (q->nvme_sq.ctrl == sq->ctrl &&
2144 			    q->state == NVMET_TCP_Q_DISCONNECTING)
2145 				pending++;
2146 		}
2147 		mutex_unlock(&nvmet_tcp_queue_mutex);
2148 		if (pending > NVMET_TCP_BACKLOG)
2149 			return NVME_SC_CONNECT_CTRL_BUSY;
2150 	}
2151 
2152 	queue->nr_cmds = sq->size * 2;
2153 	if (nvmet_tcp_alloc_cmds(queue))
2154 		return NVME_SC_INTERNAL;
2155 	return 0;
2156 }
2157 
2158 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2159 		struct nvmet_port *nport, char *traddr)
2160 {
2161 	struct nvmet_tcp_port *port = nport->priv;
2162 
2163 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2164 		struct nvmet_tcp_cmd *cmd =
2165 			container_of(req, struct nvmet_tcp_cmd, req);
2166 		struct nvmet_tcp_queue *queue = cmd->queue;
2167 
2168 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2169 	} else {
2170 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2171 	}
2172 }
2173 
2174 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2175 	.owner			= THIS_MODULE,
2176 	.type			= NVMF_TRTYPE_TCP,
2177 	.msdbd			= 1,
2178 	.add_port		= nvmet_tcp_add_port,
2179 	.remove_port		= nvmet_tcp_remove_port,
2180 	.queue_response		= nvmet_tcp_queue_response,
2181 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
2182 	.install_queue		= nvmet_tcp_install_queue,
2183 	.disc_traddr		= nvmet_tcp_disc_port_addr,
2184 };
2185 
2186 static int __init nvmet_tcp_init(void)
2187 {
2188 	int ret;
2189 
2190 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2191 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2192 	if (!nvmet_tcp_wq)
2193 		return -ENOMEM;
2194 
2195 	ret = nvmet_register_transport(&nvmet_tcp_ops);
2196 	if (ret)
2197 		goto err;
2198 
2199 	return 0;
2200 err:
2201 	destroy_workqueue(nvmet_tcp_wq);
2202 	return ret;
2203 }
2204 
2205 static void __exit nvmet_tcp_exit(void)
2206 {
2207 	struct nvmet_tcp_queue *queue;
2208 
2209 	nvmet_unregister_transport(&nvmet_tcp_ops);
2210 
2211 	flush_workqueue(nvmet_wq);
2212 	mutex_lock(&nvmet_tcp_queue_mutex);
2213 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2214 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2215 	mutex_unlock(&nvmet_tcp_queue_mutex);
2216 	flush_workqueue(nvmet_wq);
2217 
2218 	destroy_workqueue(nvmet_tcp_wq);
2219 	ida_destroy(&nvmet_tcp_queue_ida);
2220 }
2221 
2222 module_init(nvmet_tcp_init);
2223 module_exit(nvmet_tcp_exit);
2224 
2225 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2226 MODULE_LICENSE("GPL v2");
2227 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2228