1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/key.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/inet.h> 20 #include <linux/llist.h> 21 #include <crypto/hash.h> 22 #include <trace/events/sock.h> 23 24 #include "nvmet.h" 25 26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 27 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */ 28 #define NVMET_TCP_BACKLOG 128 29 30 static int param_store_val(const char *str, int *val, int min, int max) 31 { 32 int ret, new_val; 33 34 ret = kstrtoint(str, 10, &new_val); 35 if (ret) 36 return -EINVAL; 37 38 if (new_val < min || new_val > max) 39 return -EINVAL; 40 41 *val = new_val; 42 return 0; 43 } 44 45 static int set_params(const char *str, const struct kernel_param *kp) 46 { 47 return param_store_val(str, kp->arg, 0, INT_MAX); 48 } 49 50 static const struct kernel_param_ops set_param_ops = { 51 .set = set_params, 52 .get = param_get_int, 53 }; 54 55 /* Define the socket priority to use for connections were it is desirable 56 * that the NIC consider performing optimized packet processing or filtering. 57 * A non-zero value being sufficient to indicate general consideration of any 58 * possible optimization. Making it a module param allows for alternative 59 * values that may be unique for some NIC implementations. 60 */ 61 static int so_priority; 62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); 63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); 64 65 /* Define a time period (in usecs) that io_work() shall sample an activated 66 * queue before determining it to be idle. This optional module behavior 67 * can enable NIC solutions that support socket optimized packet processing 68 * using advanced interrupt moderation techniques. 69 */ 70 static int idle_poll_period_usecs; 71 device_param_cb(idle_poll_period_usecs, &set_param_ops, 72 &idle_poll_period_usecs, 0644); 73 MODULE_PARM_DESC(idle_poll_period_usecs, 74 "nvmet tcp io_work poll till idle time period in usecs: Default 0"); 75 76 #ifdef CONFIG_NVME_TARGET_TCP_TLS 77 /* 78 * TLS handshake timeout 79 */ 80 static int tls_handshake_timeout = 10; 81 module_param(tls_handshake_timeout, int, 0644); 82 MODULE_PARM_DESC(tls_handshake_timeout, 83 "nvme TLS handshake timeout in seconds (default 10)"); 84 #endif 85 86 #define NVMET_TCP_RECV_BUDGET 8 87 #define NVMET_TCP_SEND_BUDGET 8 88 #define NVMET_TCP_IO_WORK_BUDGET 64 89 90 enum nvmet_tcp_send_state { 91 NVMET_TCP_SEND_DATA_PDU, 92 NVMET_TCP_SEND_DATA, 93 NVMET_TCP_SEND_R2T, 94 NVMET_TCP_SEND_DDGST, 95 NVMET_TCP_SEND_RESPONSE 96 }; 97 98 enum nvmet_tcp_recv_state { 99 NVMET_TCP_RECV_PDU, 100 NVMET_TCP_RECV_DATA, 101 NVMET_TCP_RECV_DDGST, 102 NVMET_TCP_RECV_ERR, 103 }; 104 105 enum { 106 NVMET_TCP_F_INIT_FAILED = (1 << 0), 107 }; 108 109 struct nvmet_tcp_cmd { 110 struct nvmet_tcp_queue *queue; 111 struct nvmet_req req; 112 113 struct nvme_tcp_cmd_pdu *cmd_pdu; 114 struct nvme_tcp_rsp_pdu *rsp_pdu; 115 struct nvme_tcp_data_pdu *data_pdu; 116 struct nvme_tcp_r2t_pdu *r2t_pdu; 117 118 u32 rbytes_done; 119 u32 wbytes_done; 120 121 u32 pdu_len; 122 u32 pdu_recv; 123 int sg_idx; 124 char recv_cbuf[CMSG_LEN(sizeof(char))]; 125 struct msghdr recv_msg; 126 struct bio_vec *iov; 127 u32 flags; 128 129 struct list_head entry; 130 struct llist_node lentry; 131 132 /* send state */ 133 u32 offset; 134 struct scatterlist *cur_sg; 135 enum nvmet_tcp_send_state state; 136 137 __le32 exp_ddgst; 138 __le32 recv_ddgst; 139 }; 140 141 enum nvmet_tcp_queue_state { 142 NVMET_TCP_Q_CONNECTING, 143 NVMET_TCP_Q_TLS_HANDSHAKE, 144 NVMET_TCP_Q_LIVE, 145 NVMET_TCP_Q_DISCONNECTING, 146 NVMET_TCP_Q_FAILED, 147 }; 148 149 struct nvmet_tcp_queue { 150 struct socket *sock; 151 struct nvmet_tcp_port *port; 152 struct work_struct io_work; 153 struct nvmet_cq nvme_cq; 154 struct nvmet_sq nvme_sq; 155 struct kref kref; 156 157 /* send state */ 158 struct nvmet_tcp_cmd *cmds; 159 unsigned int nr_cmds; 160 struct list_head free_list; 161 struct llist_head resp_list; 162 struct list_head resp_send_list; 163 int send_list_len; 164 struct nvmet_tcp_cmd *snd_cmd; 165 166 /* recv state */ 167 int offset; 168 int left; 169 enum nvmet_tcp_recv_state rcv_state; 170 struct nvmet_tcp_cmd *cmd; 171 union nvme_tcp_pdu pdu; 172 173 /* digest state */ 174 bool hdr_digest; 175 bool data_digest; 176 struct ahash_request *snd_hash; 177 struct ahash_request *rcv_hash; 178 179 /* TLS state */ 180 key_serial_t tls_pskid; 181 struct delayed_work tls_handshake_tmo_work; 182 183 unsigned long poll_end; 184 185 spinlock_t state_lock; 186 enum nvmet_tcp_queue_state state; 187 188 struct sockaddr_storage sockaddr; 189 struct sockaddr_storage sockaddr_peer; 190 struct work_struct release_work; 191 192 int idx; 193 struct list_head queue_list; 194 195 struct nvmet_tcp_cmd connect; 196 197 struct page_frag_cache pf_cache; 198 199 void (*data_ready)(struct sock *); 200 void (*state_change)(struct sock *); 201 void (*write_space)(struct sock *); 202 }; 203 204 struct nvmet_tcp_port { 205 struct socket *sock; 206 struct work_struct accept_work; 207 struct nvmet_port *nport; 208 struct sockaddr_storage addr; 209 void (*data_ready)(struct sock *); 210 }; 211 212 static DEFINE_IDA(nvmet_tcp_queue_ida); 213 static LIST_HEAD(nvmet_tcp_queue_list); 214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 215 216 static struct workqueue_struct *nvmet_tcp_wq; 217 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); 220 221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 222 struct nvmet_tcp_cmd *cmd) 223 { 224 if (unlikely(!queue->nr_cmds)) { 225 /* We didn't allocate cmds yet, send 0xffff */ 226 return USHRT_MAX; 227 } 228 229 return cmd - queue->cmds; 230 } 231 232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 233 { 234 return nvme_is_write(cmd->req.cmd) && 235 cmd->rbytes_done < cmd->req.transfer_len; 236 } 237 238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 239 { 240 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 241 } 242 243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 244 { 245 return !nvme_is_write(cmd->req.cmd) && 246 cmd->req.transfer_len > 0 && 247 !cmd->req.cqe->status; 248 } 249 250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 251 { 252 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 253 !cmd->rbytes_done; 254 } 255 256 static inline struct nvmet_tcp_cmd * 257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 258 { 259 struct nvmet_tcp_cmd *cmd; 260 261 cmd = list_first_entry_or_null(&queue->free_list, 262 struct nvmet_tcp_cmd, entry); 263 if (!cmd) 264 return NULL; 265 list_del_init(&cmd->entry); 266 267 cmd->rbytes_done = cmd->wbytes_done = 0; 268 cmd->pdu_len = 0; 269 cmd->pdu_recv = 0; 270 cmd->iov = NULL; 271 cmd->flags = 0; 272 return cmd; 273 } 274 275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 276 { 277 if (unlikely(cmd == &cmd->queue->connect)) 278 return; 279 280 list_add_tail(&cmd->entry, &cmd->queue->free_list); 281 } 282 283 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 284 { 285 return queue->sock->sk->sk_incoming_cpu; 286 } 287 288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 289 { 290 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 291 } 292 293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 294 { 295 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 296 } 297 298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 299 void *pdu, size_t len) 300 { 301 struct scatterlist sg; 302 303 sg_init_one(&sg, pdu, len); 304 ahash_request_set_crypt(hash, &sg, pdu + len, len); 305 crypto_ahash_digest(hash); 306 } 307 308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 309 void *pdu, size_t len) 310 { 311 struct nvme_tcp_hdr *hdr = pdu; 312 __le32 recv_digest; 313 __le32 exp_digest; 314 315 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 316 pr_err("queue %d: header digest enabled but no header digest\n", 317 queue->idx); 318 return -EPROTO; 319 } 320 321 recv_digest = *(__le32 *)(pdu + hdr->hlen); 322 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 323 exp_digest = *(__le32 *)(pdu + hdr->hlen); 324 if (recv_digest != exp_digest) { 325 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 326 queue->idx, le32_to_cpu(recv_digest), 327 le32_to_cpu(exp_digest)); 328 return -EPROTO; 329 } 330 331 return 0; 332 } 333 334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 335 { 336 struct nvme_tcp_hdr *hdr = pdu; 337 u8 digest_len = nvmet_tcp_hdgst_len(queue); 338 u32 len; 339 340 len = le32_to_cpu(hdr->plen) - hdr->hlen - 341 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 342 343 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 344 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 345 return -EPROTO; 346 } 347 348 return 0; 349 } 350 351 /* If cmd buffers are NULL, no operation is performed */ 352 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) 353 { 354 kfree(cmd->iov); 355 sgl_free(cmd->req.sg); 356 cmd->iov = NULL; 357 cmd->req.sg = NULL; 358 } 359 360 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) 361 { 362 struct bio_vec *iov = cmd->iov; 363 struct scatterlist *sg; 364 u32 length, offset, sg_offset; 365 int nr_pages; 366 367 length = cmd->pdu_len; 368 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); 369 offset = cmd->rbytes_done; 370 cmd->sg_idx = offset / PAGE_SIZE; 371 sg_offset = offset % PAGE_SIZE; 372 sg = &cmd->req.sg[cmd->sg_idx]; 373 374 while (length) { 375 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 376 377 bvec_set_page(iov, sg_page(sg), iov_len, 378 sg->offset + sg_offset); 379 380 length -= iov_len; 381 sg = sg_next(sg); 382 iov++; 383 sg_offset = 0; 384 } 385 386 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, 387 nr_pages, cmd->pdu_len); 388 } 389 390 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 391 { 392 queue->rcv_state = NVMET_TCP_RECV_ERR; 393 if (queue->nvme_sq.ctrl) 394 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 395 else 396 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 397 } 398 399 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 400 { 401 queue->rcv_state = NVMET_TCP_RECV_ERR; 402 if (status == -EPIPE || status == -ECONNRESET) 403 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 404 else 405 nvmet_tcp_fatal_error(queue); 406 } 407 408 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 409 { 410 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 411 u32 len = le32_to_cpu(sgl->length); 412 413 if (!len) 414 return 0; 415 416 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 417 NVME_SGL_FMT_OFFSET)) { 418 if (!nvme_is_write(cmd->req.cmd)) 419 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 420 421 if (len > cmd->req.port->inline_data_size) 422 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR; 423 cmd->pdu_len = len; 424 } 425 cmd->req.transfer_len += len; 426 427 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 428 if (!cmd->req.sg) 429 return NVME_SC_INTERNAL; 430 cmd->cur_sg = cmd->req.sg; 431 432 if (nvmet_tcp_has_data_in(cmd)) { 433 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 434 sizeof(*cmd->iov), GFP_KERNEL); 435 if (!cmd->iov) 436 goto err; 437 } 438 439 return 0; 440 err: 441 nvmet_tcp_free_cmd_buffers(cmd); 442 return NVME_SC_INTERNAL; 443 } 444 445 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, 446 struct nvmet_tcp_cmd *cmd) 447 { 448 ahash_request_set_crypt(hash, cmd->req.sg, 449 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 450 crypto_ahash_digest(hash); 451 } 452 453 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 454 { 455 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 456 struct nvmet_tcp_queue *queue = cmd->queue; 457 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 458 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 459 460 cmd->offset = 0; 461 cmd->state = NVMET_TCP_SEND_DATA_PDU; 462 463 pdu->hdr.type = nvme_tcp_c2h_data; 464 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 465 NVME_TCP_F_DATA_SUCCESS : 0); 466 pdu->hdr.hlen = sizeof(*pdu); 467 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 468 pdu->hdr.plen = 469 cpu_to_le32(pdu->hdr.hlen + hdgst + 470 cmd->req.transfer_len + ddgst); 471 pdu->command_id = cmd->req.cqe->command_id; 472 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 473 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 474 475 if (queue->data_digest) { 476 pdu->hdr.flags |= NVME_TCP_F_DDGST; 477 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); 478 } 479 480 if (cmd->queue->hdr_digest) { 481 pdu->hdr.flags |= NVME_TCP_F_HDGST; 482 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 483 } 484 } 485 486 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 487 { 488 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 489 struct nvmet_tcp_queue *queue = cmd->queue; 490 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 491 492 cmd->offset = 0; 493 cmd->state = NVMET_TCP_SEND_R2T; 494 495 pdu->hdr.type = nvme_tcp_r2t; 496 pdu->hdr.flags = 0; 497 pdu->hdr.hlen = sizeof(*pdu); 498 pdu->hdr.pdo = 0; 499 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 500 501 pdu->command_id = cmd->req.cmd->common.command_id; 502 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 503 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 504 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 505 if (cmd->queue->hdr_digest) { 506 pdu->hdr.flags |= NVME_TCP_F_HDGST; 507 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 508 } 509 } 510 511 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 512 { 513 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 514 struct nvmet_tcp_queue *queue = cmd->queue; 515 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 516 517 cmd->offset = 0; 518 cmd->state = NVMET_TCP_SEND_RESPONSE; 519 520 pdu->hdr.type = nvme_tcp_rsp; 521 pdu->hdr.flags = 0; 522 pdu->hdr.hlen = sizeof(*pdu); 523 pdu->hdr.pdo = 0; 524 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 525 if (cmd->queue->hdr_digest) { 526 pdu->hdr.flags |= NVME_TCP_F_HDGST; 527 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 528 } 529 } 530 531 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 532 { 533 struct llist_node *node; 534 struct nvmet_tcp_cmd *cmd; 535 536 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 537 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 538 list_add(&cmd->entry, &queue->resp_send_list); 539 queue->send_list_len++; 540 } 541 } 542 543 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 544 { 545 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 546 struct nvmet_tcp_cmd, entry); 547 if (!queue->snd_cmd) { 548 nvmet_tcp_process_resp_list(queue); 549 queue->snd_cmd = 550 list_first_entry_or_null(&queue->resp_send_list, 551 struct nvmet_tcp_cmd, entry); 552 if (unlikely(!queue->snd_cmd)) 553 return NULL; 554 } 555 556 list_del_init(&queue->snd_cmd->entry); 557 queue->send_list_len--; 558 559 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 560 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 561 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 562 nvmet_setup_r2t_pdu(queue->snd_cmd); 563 else 564 nvmet_setup_response_pdu(queue->snd_cmd); 565 566 return queue->snd_cmd; 567 } 568 569 static void nvmet_tcp_queue_response(struct nvmet_req *req) 570 { 571 struct nvmet_tcp_cmd *cmd = 572 container_of(req, struct nvmet_tcp_cmd, req); 573 struct nvmet_tcp_queue *queue = cmd->queue; 574 struct nvme_sgl_desc *sgl; 575 u32 len; 576 577 if (unlikely(cmd == queue->cmd)) { 578 sgl = &cmd->req.cmd->common.dptr.sgl; 579 len = le32_to_cpu(sgl->length); 580 581 /* 582 * Wait for inline data before processing the response. 583 * Avoid using helpers, this might happen before 584 * nvmet_req_init is completed. 585 */ 586 if (queue->rcv_state == NVMET_TCP_RECV_PDU && 587 len && len <= cmd->req.port->inline_data_size && 588 nvme_is_write(cmd->req.cmd)) 589 return; 590 } 591 592 llist_add(&cmd->lentry, &queue->resp_list); 593 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 594 } 595 596 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 597 { 598 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 599 nvmet_tcp_queue_response(&cmd->req); 600 else 601 cmd->req.execute(&cmd->req); 602 } 603 604 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 605 { 606 struct msghdr msg = { 607 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, 608 }; 609 struct bio_vec bvec; 610 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 611 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 612 int ret; 613 614 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); 615 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 616 ret = sock_sendmsg(cmd->queue->sock, &msg); 617 if (ret <= 0) 618 return ret; 619 620 cmd->offset += ret; 621 left -= ret; 622 623 if (left) 624 return -EAGAIN; 625 626 cmd->state = NVMET_TCP_SEND_DATA; 627 cmd->offset = 0; 628 return 1; 629 } 630 631 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 632 { 633 struct nvmet_tcp_queue *queue = cmd->queue; 634 int ret; 635 636 while (cmd->cur_sg) { 637 struct msghdr msg = { 638 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 639 }; 640 struct page *page = sg_page(cmd->cur_sg); 641 struct bio_vec bvec; 642 u32 left = cmd->cur_sg->length - cmd->offset; 643 644 if ((!last_in_batch && cmd->queue->send_list_len) || 645 cmd->wbytes_done + left < cmd->req.transfer_len || 646 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 647 msg.msg_flags |= MSG_MORE; 648 649 bvec_set_page(&bvec, page, left, cmd->offset); 650 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 651 ret = sock_sendmsg(cmd->queue->sock, &msg); 652 if (ret <= 0) 653 return ret; 654 655 cmd->offset += ret; 656 cmd->wbytes_done += ret; 657 658 /* Done with sg?*/ 659 if (cmd->offset == cmd->cur_sg->length) { 660 cmd->cur_sg = sg_next(cmd->cur_sg); 661 cmd->offset = 0; 662 } 663 } 664 665 if (queue->data_digest) { 666 cmd->state = NVMET_TCP_SEND_DDGST; 667 cmd->offset = 0; 668 } else { 669 if (queue->nvme_sq.sqhd_disabled) { 670 cmd->queue->snd_cmd = NULL; 671 nvmet_tcp_put_cmd(cmd); 672 } else { 673 nvmet_setup_response_pdu(cmd); 674 } 675 } 676 677 if (queue->nvme_sq.sqhd_disabled) 678 nvmet_tcp_free_cmd_buffers(cmd); 679 680 return 1; 681 682 } 683 684 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 685 bool last_in_batch) 686 { 687 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 688 struct bio_vec bvec; 689 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 690 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 691 int ret; 692 693 if (!last_in_batch && cmd->queue->send_list_len) 694 msg.msg_flags |= MSG_MORE; 695 else 696 msg.msg_flags |= MSG_EOR; 697 698 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); 699 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 700 ret = sock_sendmsg(cmd->queue->sock, &msg); 701 if (ret <= 0) 702 return ret; 703 cmd->offset += ret; 704 left -= ret; 705 706 if (left) 707 return -EAGAIN; 708 709 nvmet_tcp_free_cmd_buffers(cmd); 710 cmd->queue->snd_cmd = NULL; 711 nvmet_tcp_put_cmd(cmd); 712 return 1; 713 } 714 715 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 716 { 717 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 718 struct bio_vec bvec; 719 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 720 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 721 int ret; 722 723 if (!last_in_batch && cmd->queue->send_list_len) 724 msg.msg_flags |= MSG_MORE; 725 else 726 msg.msg_flags |= MSG_EOR; 727 728 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); 729 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 730 ret = sock_sendmsg(cmd->queue->sock, &msg); 731 if (ret <= 0) 732 return ret; 733 cmd->offset += ret; 734 left -= ret; 735 736 if (left) 737 return -EAGAIN; 738 739 cmd->queue->snd_cmd = NULL; 740 return 1; 741 } 742 743 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 744 { 745 struct nvmet_tcp_queue *queue = cmd->queue; 746 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; 747 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 748 struct kvec iov = { 749 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, 750 .iov_len = left 751 }; 752 int ret; 753 754 if (!last_in_batch && cmd->queue->send_list_len) 755 msg.msg_flags |= MSG_MORE; 756 else 757 msg.msg_flags |= MSG_EOR; 758 759 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 760 if (unlikely(ret <= 0)) 761 return ret; 762 763 cmd->offset += ret; 764 left -= ret; 765 766 if (left) 767 return -EAGAIN; 768 769 if (queue->nvme_sq.sqhd_disabled) { 770 cmd->queue->snd_cmd = NULL; 771 nvmet_tcp_put_cmd(cmd); 772 } else { 773 nvmet_setup_response_pdu(cmd); 774 } 775 return 1; 776 } 777 778 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 779 bool last_in_batch) 780 { 781 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 782 int ret = 0; 783 784 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 785 cmd = nvmet_tcp_fetch_cmd(queue); 786 if (unlikely(!cmd)) 787 return 0; 788 } 789 790 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 791 ret = nvmet_try_send_data_pdu(cmd); 792 if (ret <= 0) 793 goto done_send; 794 } 795 796 if (cmd->state == NVMET_TCP_SEND_DATA) { 797 ret = nvmet_try_send_data(cmd, last_in_batch); 798 if (ret <= 0) 799 goto done_send; 800 } 801 802 if (cmd->state == NVMET_TCP_SEND_DDGST) { 803 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 804 if (ret <= 0) 805 goto done_send; 806 } 807 808 if (cmd->state == NVMET_TCP_SEND_R2T) { 809 ret = nvmet_try_send_r2t(cmd, last_in_batch); 810 if (ret <= 0) 811 goto done_send; 812 } 813 814 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 815 ret = nvmet_try_send_response(cmd, last_in_batch); 816 817 done_send: 818 if (ret < 0) { 819 if (ret == -EAGAIN) 820 return 0; 821 return ret; 822 } 823 824 return 1; 825 } 826 827 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 828 int budget, int *sends) 829 { 830 int i, ret = 0; 831 832 for (i = 0; i < budget; i++) { 833 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 834 if (unlikely(ret < 0)) { 835 nvmet_tcp_socket_error(queue, ret); 836 goto done; 837 } else if (ret == 0) { 838 break; 839 } 840 (*sends)++; 841 } 842 done: 843 return ret; 844 } 845 846 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 847 { 848 queue->offset = 0; 849 queue->left = sizeof(struct nvme_tcp_hdr); 850 queue->cmd = NULL; 851 queue->rcv_state = NVMET_TCP_RECV_PDU; 852 } 853 854 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 855 { 856 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 857 858 ahash_request_free(queue->rcv_hash); 859 ahash_request_free(queue->snd_hash); 860 crypto_free_ahash(tfm); 861 } 862 863 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 864 { 865 struct crypto_ahash *tfm; 866 867 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 868 if (IS_ERR(tfm)) 869 return PTR_ERR(tfm); 870 871 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 872 if (!queue->snd_hash) 873 goto free_tfm; 874 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 875 876 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 877 if (!queue->rcv_hash) 878 goto free_snd_hash; 879 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 880 881 return 0; 882 free_snd_hash: 883 ahash_request_free(queue->snd_hash); 884 free_tfm: 885 crypto_free_ahash(tfm); 886 return -ENOMEM; 887 } 888 889 890 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 891 { 892 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 893 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 894 struct msghdr msg = {}; 895 struct kvec iov; 896 int ret; 897 898 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 899 pr_err("bad nvme-tcp pdu length (%d)\n", 900 le32_to_cpu(icreq->hdr.plen)); 901 nvmet_tcp_fatal_error(queue); 902 return -EPROTO; 903 } 904 905 if (icreq->pfv != NVME_TCP_PFV_1_0) { 906 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 907 return -EPROTO; 908 } 909 910 if (icreq->hpda != 0) { 911 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 912 icreq->hpda); 913 return -EPROTO; 914 } 915 916 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 917 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 918 if (queue->hdr_digest || queue->data_digest) { 919 ret = nvmet_tcp_alloc_crypto(queue); 920 if (ret) 921 return ret; 922 } 923 924 memset(icresp, 0, sizeof(*icresp)); 925 icresp->hdr.type = nvme_tcp_icresp; 926 icresp->hdr.hlen = sizeof(*icresp); 927 icresp->hdr.pdo = 0; 928 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 929 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 930 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA); 931 icresp->cpda = 0; 932 if (queue->hdr_digest) 933 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 934 if (queue->data_digest) 935 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 936 937 iov.iov_base = icresp; 938 iov.iov_len = sizeof(*icresp); 939 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 940 if (ret < 0) { 941 queue->state = NVMET_TCP_Q_FAILED; 942 return ret; /* queue removal will cleanup */ 943 } 944 945 queue->state = NVMET_TCP_Q_LIVE; 946 nvmet_prepare_receive_pdu(queue); 947 return 0; 948 } 949 950 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 951 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 952 { 953 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 954 int ret; 955 956 /* 957 * This command has not been processed yet, hence we are trying to 958 * figure out if there is still pending data left to receive. If 959 * we don't, we can simply prepare for the next pdu and bail out, 960 * otherwise we will need to prepare a buffer and receive the 961 * stale data before continuing forward. 962 */ 963 if (!nvme_is_write(cmd->req.cmd) || !data_len || 964 data_len > cmd->req.port->inline_data_size) { 965 nvmet_prepare_receive_pdu(queue); 966 return; 967 } 968 969 ret = nvmet_tcp_map_data(cmd); 970 if (unlikely(ret)) { 971 pr_err("queue %d: failed to map data\n", queue->idx); 972 nvmet_tcp_fatal_error(queue); 973 return; 974 } 975 976 queue->rcv_state = NVMET_TCP_RECV_DATA; 977 nvmet_tcp_build_pdu_iovec(cmd); 978 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 979 } 980 981 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 982 { 983 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 984 struct nvmet_tcp_cmd *cmd; 985 unsigned int exp_data_len; 986 987 if (likely(queue->nr_cmds)) { 988 if (unlikely(data->ttag >= queue->nr_cmds)) { 989 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", 990 queue->idx, data->ttag, queue->nr_cmds); 991 goto err_proto; 992 } 993 cmd = &queue->cmds[data->ttag]; 994 } else { 995 cmd = &queue->connect; 996 } 997 998 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 999 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 1000 data->ttag, le32_to_cpu(data->data_offset), 1001 cmd->rbytes_done); 1002 goto err_proto; 1003 } 1004 1005 exp_data_len = le32_to_cpu(data->hdr.plen) - 1006 nvmet_tcp_hdgst_len(queue) - 1007 nvmet_tcp_ddgst_len(queue) - 1008 sizeof(*data); 1009 1010 cmd->pdu_len = le32_to_cpu(data->data_length); 1011 if (unlikely(cmd->pdu_len != exp_data_len || 1012 cmd->pdu_len == 0 || 1013 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) { 1014 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len); 1015 goto err_proto; 1016 } 1017 cmd->pdu_recv = 0; 1018 nvmet_tcp_build_pdu_iovec(cmd); 1019 queue->cmd = cmd; 1020 queue->rcv_state = NVMET_TCP_RECV_DATA; 1021 1022 return 0; 1023 1024 err_proto: 1025 /* FIXME: use proper transport errors */ 1026 nvmet_tcp_fatal_error(queue); 1027 return -EPROTO; 1028 } 1029 1030 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 1031 { 1032 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1033 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 1034 struct nvmet_req *req; 1035 int ret; 1036 1037 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1038 if (hdr->type != nvme_tcp_icreq) { 1039 pr_err("unexpected pdu type (%d) before icreq\n", 1040 hdr->type); 1041 nvmet_tcp_fatal_error(queue); 1042 return -EPROTO; 1043 } 1044 return nvmet_tcp_handle_icreq(queue); 1045 } 1046 1047 if (unlikely(hdr->type == nvme_tcp_icreq)) { 1048 pr_err("queue %d: received icreq pdu in state %d\n", 1049 queue->idx, queue->state); 1050 nvmet_tcp_fatal_error(queue); 1051 return -EPROTO; 1052 } 1053 1054 if (hdr->type == nvme_tcp_h2c_data) { 1055 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 1056 if (unlikely(ret)) 1057 return ret; 1058 return 0; 1059 } 1060 1061 queue->cmd = nvmet_tcp_get_cmd(queue); 1062 if (unlikely(!queue->cmd)) { 1063 /* This should never happen */ 1064 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 1065 queue->idx, queue->nr_cmds, queue->send_list_len, 1066 nvme_cmd->common.opcode); 1067 nvmet_tcp_fatal_error(queue); 1068 return -ENOMEM; 1069 } 1070 1071 req = &queue->cmd->req; 1072 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 1073 1074 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 1075 &queue->nvme_sq, &nvmet_tcp_ops))) { 1076 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 1077 req->cmd, req->cmd->common.command_id, 1078 req->cmd->common.opcode, 1079 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 1080 1081 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1082 return 0; 1083 } 1084 1085 ret = nvmet_tcp_map_data(queue->cmd); 1086 if (unlikely(ret)) { 1087 pr_err("queue %d: failed to map data\n", queue->idx); 1088 if (nvmet_tcp_has_inline_data(queue->cmd)) 1089 nvmet_tcp_fatal_error(queue); 1090 else 1091 nvmet_req_complete(req, ret); 1092 ret = -EAGAIN; 1093 goto out; 1094 } 1095 1096 if (nvmet_tcp_need_data_in(queue->cmd)) { 1097 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1098 queue->rcv_state = NVMET_TCP_RECV_DATA; 1099 nvmet_tcp_build_pdu_iovec(queue->cmd); 1100 return 0; 1101 } 1102 /* send back R2T */ 1103 nvmet_tcp_queue_response(&queue->cmd->req); 1104 goto out; 1105 } 1106 1107 queue->cmd->req.execute(&queue->cmd->req); 1108 out: 1109 nvmet_prepare_receive_pdu(queue); 1110 return ret; 1111 } 1112 1113 static const u8 nvme_tcp_pdu_sizes[] = { 1114 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1115 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1116 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1117 }; 1118 1119 static inline u8 nvmet_tcp_pdu_size(u8 type) 1120 { 1121 size_t idx = type; 1122 1123 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1124 nvme_tcp_pdu_sizes[idx]) ? 1125 nvme_tcp_pdu_sizes[idx] : 0; 1126 } 1127 1128 static inline bool nvmet_tcp_pdu_valid(u8 type) 1129 { 1130 switch (type) { 1131 case nvme_tcp_icreq: 1132 case nvme_tcp_cmd: 1133 case nvme_tcp_h2c_data: 1134 /* fallthru */ 1135 return true; 1136 } 1137 1138 return false; 1139 } 1140 1141 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue, 1142 struct msghdr *msg, char *cbuf) 1143 { 1144 struct cmsghdr *cmsg = (struct cmsghdr *)cbuf; 1145 u8 ctype, level, description; 1146 int ret = 0; 1147 1148 ctype = tls_get_record_type(queue->sock->sk, cmsg); 1149 switch (ctype) { 1150 case 0: 1151 break; 1152 case TLS_RECORD_TYPE_DATA: 1153 break; 1154 case TLS_RECORD_TYPE_ALERT: 1155 tls_alert_recv(queue->sock->sk, msg, &level, &description); 1156 if (level == TLS_ALERT_LEVEL_FATAL) { 1157 pr_err("queue %d: TLS Alert desc %u\n", 1158 queue->idx, description); 1159 ret = -ENOTCONN; 1160 } else { 1161 pr_warn("queue %d: TLS Alert desc %u\n", 1162 queue->idx, description); 1163 ret = -EAGAIN; 1164 } 1165 break; 1166 default: 1167 /* discard this record type */ 1168 pr_err("queue %d: TLS record %d unhandled\n", 1169 queue->idx, ctype); 1170 ret = -EAGAIN; 1171 break; 1172 } 1173 return ret; 1174 } 1175 1176 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1177 { 1178 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1179 int len, ret; 1180 struct kvec iov; 1181 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1182 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1183 1184 recv: 1185 iov.iov_base = (void *)&queue->pdu + queue->offset; 1186 iov.iov_len = queue->left; 1187 if (queue->tls_pskid) { 1188 msg.msg_control = cbuf; 1189 msg.msg_controllen = sizeof(cbuf); 1190 } 1191 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1192 iov.iov_len, msg.msg_flags); 1193 if (unlikely(len < 0)) 1194 return len; 1195 if (queue->tls_pskid) { 1196 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); 1197 if (ret < 0) 1198 return ret; 1199 } 1200 1201 queue->offset += len; 1202 queue->left -= len; 1203 if (queue->left) 1204 return -EAGAIN; 1205 1206 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1207 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1208 1209 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1210 pr_err("unexpected pdu type %d\n", hdr->type); 1211 nvmet_tcp_fatal_error(queue); 1212 return -EIO; 1213 } 1214 1215 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1216 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1217 return -EIO; 1218 } 1219 1220 queue->left = hdr->hlen - queue->offset + hdgst; 1221 goto recv; 1222 } 1223 1224 if (queue->hdr_digest && 1225 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { 1226 nvmet_tcp_fatal_error(queue); /* fatal */ 1227 return -EPROTO; 1228 } 1229 1230 if (queue->data_digest && 1231 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1232 nvmet_tcp_fatal_error(queue); /* fatal */ 1233 return -EPROTO; 1234 } 1235 1236 return nvmet_tcp_done_recv_pdu(queue); 1237 } 1238 1239 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1240 { 1241 struct nvmet_tcp_queue *queue = cmd->queue; 1242 1243 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); 1244 queue->offset = 0; 1245 queue->left = NVME_TCP_DIGEST_LENGTH; 1246 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1247 } 1248 1249 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1250 { 1251 struct nvmet_tcp_cmd *cmd = queue->cmd; 1252 int len, ret; 1253 1254 while (msg_data_left(&cmd->recv_msg)) { 1255 len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1256 cmd->recv_msg.msg_flags); 1257 if (len <= 0) 1258 return len; 1259 if (queue->tls_pskid) { 1260 ret = nvmet_tcp_tls_record_ok(cmd->queue, 1261 &cmd->recv_msg, cmd->recv_cbuf); 1262 if (ret < 0) 1263 return ret; 1264 } 1265 1266 cmd->pdu_recv += len; 1267 cmd->rbytes_done += len; 1268 } 1269 1270 if (queue->data_digest) { 1271 nvmet_tcp_prep_recv_ddgst(cmd); 1272 return 0; 1273 } 1274 1275 if (cmd->rbytes_done == cmd->req.transfer_len) 1276 nvmet_tcp_execute_request(cmd); 1277 1278 nvmet_prepare_receive_pdu(queue); 1279 return 0; 1280 } 1281 1282 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1283 { 1284 struct nvmet_tcp_cmd *cmd = queue->cmd; 1285 int ret, len; 1286 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1288 struct kvec iov = { 1289 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1290 .iov_len = queue->left 1291 }; 1292 1293 if (queue->tls_pskid) { 1294 msg.msg_control = cbuf; 1295 msg.msg_controllen = sizeof(cbuf); 1296 } 1297 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1298 iov.iov_len, msg.msg_flags); 1299 if (unlikely(len < 0)) 1300 return len; 1301 if (queue->tls_pskid) { 1302 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); 1303 if (ret < 0) 1304 return ret; 1305 } 1306 1307 queue->offset += len; 1308 queue->left -= len; 1309 if (queue->left) 1310 return -EAGAIN; 1311 1312 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1313 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1314 queue->idx, cmd->req.cmd->common.command_id, 1315 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1316 le32_to_cpu(cmd->exp_ddgst)); 1317 nvmet_req_uninit(&cmd->req); 1318 nvmet_tcp_free_cmd_buffers(cmd); 1319 nvmet_tcp_fatal_error(queue); 1320 ret = -EPROTO; 1321 goto out; 1322 } 1323 1324 if (cmd->rbytes_done == cmd->req.transfer_len) 1325 nvmet_tcp_execute_request(cmd); 1326 1327 ret = 0; 1328 out: 1329 nvmet_prepare_receive_pdu(queue); 1330 return ret; 1331 } 1332 1333 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1334 { 1335 int result = 0; 1336 1337 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1338 return 0; 1339 1340 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1341 result = nvmet_tcp_try_recv_pdu(queue); 1342 if (result != 0) 1343 goto done_recv; 1344 } 1345 1346 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1347 result = nvmet_tcp_try_recv_data(queue); 1348 if (result != 0) 1349 goto done_recv; 1350 } 1351 1352 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1353 result = nvmet_tcp_try_recv_ddgst(queue); 1354 if (result != 0) 1355 goto done_recv; 1356 } 1357 1358 done_recv: 1359 if (result < 0) { 1360 if (result == -EAGAIN) 1361 return 0; 1362 return result; 1363 } 1364 return 1; 1365 } 1366 1367 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1368 int budget, int *recvs) 1369 { 1370 int i, ret = 0; 1371 1372 for (i = 0; i < budget; i++) { 1373 ret = nvmet_tcp_try_recv_one(queue); 1374 if (unlikely(ret < 0)) { 1375 nvmet_tcp_socket_error(queue, ret); 1376 goto done; 1377 } else if (ret == 0) { 1378 break; 1379 } 1380 (*recvs)++; 1381 } 1382 done: 1383 return ret; 1384 } 1385 1386 static void nvmet_tcp_release_queue(struct kref *kref) 1387 { 1388 struct nvmet_tcp_queue *queue = 1389 container_of(kref, struct nvmet_tcp_queue, kref); 1390 1391 WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING); 1392 queue_work(nvmet_wq, &queue->release_work); 1393 } 1394 1395 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1396 { 1397 spin_lock_bh(&queue->state_lock); 1398 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { 1399 /* Socket closed during handshake */ 1400 tls_handshake_cancel(queue->sock->sk); 1401 } 1402 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1403 queue->state = NVMET_TCP_Q_DISCONNECTING; 1404 kref_put(&queue->kref, nvmet_tcp_release_queue); 1405 } 1406 spin_unlock_bh(&queue->state_lock); 1407 } 1408 1409 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1410 { 1411 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1412 } 1413 1414 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1415 int ops) 1416 { 1417 if (!idle_poll_period_usecs) 1418 return false; 1419 1420 if (ops) 1421 nvmet_tcp_arm_queue_deadline(queue); 1422 1423 return !time_after(jiffies, queue->poll_end); 1424 } 1425 1426 static void nvmet_tcp_io_work(struct work_struct *w) 1427 { 1428 struct nvmet_tcp_queue *queue = 1429 container_of(w, struct nvmet_tcp_queue, io_work); 1430 bool pending; 1431 int ret, ops = 0; 1432 1433 do { 1434 pending = false; 1435 1436 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1437 if (ret > 0) 1438 pending = true; 1439 else if (ret < 0) 1440 return; 1441 1442 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1443 if (ret > 0) 1444 pending = true; 1445 else if (ret < 0) 1446 return; 1447 1448 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1449 1450 /* 1451 * Requeue the worker if idle deadline period is in progress or any 1452 * ops activity was recorded during the do-while loop above. 1453 */ 1454 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1455 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1456 } 1457 1458 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1459 struct nvmet_tcp_cmd *c) 1460 { 1461 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1462 1463 c->queue = queue; 1464 c->req.port = queue->port->nport; 1465 1466 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1467 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1468 if (!c->cmd_pdu) 1469 return -ENOMEM; 1470 c->req.cmd = &c->cmd_pdu->cmd; 1471 1472 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1473 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1474 if (!c->rsp_pdu) 1475 goto out_free_cmd; 1476 c->req.cqe = &c->rsp_pdu->cqe; 1477 1478 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1479 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1480 if (!c->data_pdu) 1481 goto out_free_rsp; 1482 1483 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1484 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1485 if (!c->r2t_pdu) 1486 goto out_free_data; 1487 1488 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { 1489 c->recv_msg.msg_control = c->recv_cbuf; 1490 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf); 1491 } 1492 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1493 1494 list_add_tail(&c->entry, &queue->free_list); 1495 1496 return 0; 1497 out_free_data: 1498 page_frag_free(c->data_pdu); 1499 out_free_rsp: 1500 page_frag_free(c->rsp_pdu); 1501 out_free_cmd: 1502 page_frag_free(c->cmd_pdu); 1503 return -ENOMEM; 1504 } 1505 1506 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1507 { 1508 page_frag_free(c->r2t_pdu); 1509 page_frag_free(c->data_pdu); 1510 page_frag_free(c->rsp_pdu); 1511 page_frag_free(c->cmd_pdu); 1512 } 1513 1514 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1515 { 1516 struct nvmet_tcp_cmd *cmds; 1517 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1518 1519 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1520 if (!cmds) 1521 goto out; 1522 1523 for (i = 0; i < nr_cmds; i++) { 1524 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1525 if (ret) 1526 goto out_free; 1527 } 1528 1529 queue->cmds = cmds; 1530 1531 return 0; 1532 out_free: 1533 while (--i >= 0) 1534 nvmet_tcp_free_cmd(cmds + i); 1535 kfree(cmds); 1536 out: 1537 return ret; 1538 } 1539 1540 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1541 { 1542 struct nvmet_tcp_cmd *cmds = queue->cmds; 1543 int i; 1544 1545 for (i = 0; i < queue->nr_cmds; i++) 1546 nvmet_tcp_free_cmd(cmds + i); 1547 1548 nvmet_tcp_free_cmd(&queue->connect); 1549 kfree(cmds); 1550 } 1551 1552 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1553 { 1554 struct socket *sock = queue->sock; 1555 1556 write_lock_bh(&sock->sk->sk_callback_lock); 1557 sock->sk->sk_data_ready = queue->data_ready; 1558 sock->sk->sk_state_change = queue->state_change; 1559 sock->sk->sk_write_space = queue->write_space; 1560 sock->sk->sk_user_data = NULL; 1561 write_unlock_bh(&sock->sk->sk_callback_lock); 1562 } 1563 1564 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1565 { 1566 struct nvmet_tcp_cmd *cmd = queue->cmds; 1567 int i; 1568 1569 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1570 if (nvmet_tcp_need_data_in(cmd)) 1571 nvmet_req_uninit(&cmd->req); 1572 } 1573 1574 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1575 /* failed in connect */ 1576 nvmet_req_uninit(&queue->connect.req); 1577 } 1578 } 1579 1580 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) 1581 { 1582 struct nvmet_tcp_cmd *cmd = queue->cmds; 1583 int i; 1584 1585 for (i = 0; i < queue->nr_cmds; i++, cmd++) 1586 nvmet_tcp_free_cmd_buffers(cmd); 1587 nvmet_tcp_free_cmd_buffers(&queue->connect); 1588 } 1589 1590 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1591 { 1592 struct nvmet_tcp_queue *queue = 1593 container_of(w, struct nvmet_tcp_queue, release_work); 1594 1595 mutex_lock(&nvmet_tcp_queue_mutex); 1596 list_del_init(&queue->queue_list); 1597 mutex_unlock(&nvmet_tcp_queue_mutex); 1598 1599 nvmet_tcp_restore_socket_callbacks(queue); 1600 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); 1601 cancel_work_sync(&queue->io_work); 1602 /* stop accepting incoming data */ 1603 queue->rcv_state = NVMET_TCP_RECV_ERR; 1604 1605 nvmet_tcp_uninit_data_in_cmds(queue); 1606 nvmet_sq_destroy(&queue->nvme_sq); 1607 cancel_work_sync(&queue->io_work); 1608 nvmet_tcp_free_cmd_data_in_buffers(queue); 1609 /* ->sock will be released by fput() */ 1610 fput(queue->sock->file); 1611 nvmet_tcp_free_cmds(queue); 1612 if (queue->hdr_digest || queue->data_digest) 1613 nvmet_tcp_free_crypto(queue); 1614 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1615 page_frag_cache_drain(&queue->pf_cache); 1616 kfree(queue); 1617 } 1618 1619 static void nvmet_tcp_data_ready(struct sock *sk) 1620 { 1621 struct nvmet_tcp_queue *queue; 1622 1623 trace_sk_data_ready(sk); 1624 1625 read_lock_bh(&sk->sk_callback_lock); 1626 queue = sk->sk_user_data; 1627 if (likely(queue)) { 1628 if (queue->data_ready) 1629 queue->data_ready(sk); 1630 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) 1631 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, 1632 &queue->io_work); 1633 } 1634 read_unlock_bh(&sk->sk_callback_lock); 1635 } 1636 1637 static void nvmet_tcp_write_space(struct sock *sk) 1638 { 1639 struct nvmet_tcp_queue *queue; 1640 1641 read_lock_bh(&sk->sk_callback_lock); 1642 queue = sk->sk_user_data; 1643 if (unlikely(!queue)) 1644 goto out; 1645 1646 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1647 queue->write_space(sk); 1648 goto out; 1649 } 1650 1651 if (sk_stream_is_writeable(sk)) { 1652 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1653 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1654 } 1655 out: 1656 read_unlock_bh(&sk->sk_callback_lock); 1657 } 1658 1659 static void nvmet_tcp_state_change(struct sock *sk) 1660 { 1661 struct nvmet_tcp_queue *queue; 1662 1663 read_lock_bh(&sk->sk_callback_lock); 1664 queue = sk->sk_user_data; 1665 if (!queue) 1666 goto done; 1667 1668 switch (sk->sk_state) { 1669 case TCP_FIN_WAIT2: 1670 case TCP_LAST_ACK: 1671 break; 1672 case TCP_FIN_WAIT1: 1673 case TCP_CLOSE_WAIT: 1674 case TCP_CLOSE: 1675 /* FALLTHRU */ 1676 nvmet_tcp_schedule_release_queue(queue); 1677 break; 1678 default: 1679 pr_warn("queue %d unhandled state %d\n", 1680 queue->idx, sk->sk_state); 1681 } 1682 done: 1683 read_unlock_bh(&sk->sk_callback_lock); 1684 } 1685 1686 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1687 { 1688 struct socket *sock = queue->sock; 1689 struct inet_sock *inet = inet_sk(sock->sk); 1690 int ret; 1691 1692 ret = kernel_getsockname(sock, 1693 (struct sockaddr *)&queue->sockaddr); 1694 if (ret < 0) 1695 return ret; 1696 1697 ret = kernel_getpeername(sock, 1698 (struct sockaddr *)&queue->sockaddr_peer); 1699 if (ret < 0) 1700 return ret; 1701 1702 /* 1703 * Cleanup whatever is sitting in the TCP transmit queue on socket 1704 * close. This is done to prevent stale data from being sent should 1705 * the network connection be restored before TCP times out. 1706 */ 1707 sock_no_linger(sock->sk); 1708 1709 if (so_priority > 0) 1710 sock_set_priority(sock->sk, so_priority); 1711 1712 /* Set socket type of service */ 1713 if (inet->rcv_tos > 0) 1714 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1715 1716 ret = 0; 1717 write_lock_bh(&sock->sk->sk_callback_lock); 1718 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1719 /* 1720 * If the socket is already closing, don't even start 1721 * consuming it 1722 */ 1723 ret = -ENOTCONN; 1724 } else { 1725 sock->sk->sk_user_data = queue; 1726 queue->data_ready = sock->sk->sk_data_ready; 1727 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1728 queue->state_change = sock->sk->sk_state_change; 1729 sock->sk->sk_state_change = nvmet_tcp_state_change; 1730 queue->write_space = sock->sk->sk_write_space; 1731 sock->sk->sk_write_space = nvmet_tcp_write_space; 1732 if (idle_poll_period_usecs) 1733 nvmet_tcp_arm_queue_deadline(queue); 1734 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1735 } 1736 write_unlock_bh(&sock->sk->sk_callback_lock); 1737 1738 return ret; 1739 } 1740 1741 #ifdef CONFIG_NVME_TARGET_TCP_TLS 1742 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue) 1743 { 1744 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1745 int len, ret; 1746 struct kvec iov = { 1747 .iov_base = (u8 *)&queue->pdu + queue->offset, 1748 .iov_len = sizeof(struct nvme_tcp_hdr), 1749 }; 1750 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1751 struct msghdr msg = { 1752 .msg_control = cbuf, 1753 .msg_controllen = sizeof(cbuf), 1754 .msg_flags = MSG_PEEK, 1755 }; 1756 1757 if (nvmet_port_secure_channel_required(queue->port->nport)) 1758 return 0; 1759 1760 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1761 iov.iov_len, msg.msg_flags); 1762 if (unlikely(len < 0)) { 1763 pr_debug("queue %d: peek error %d\n", 1764 queue->idx, len); 1765 return len; 1766 } 1767 1768 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); 1769 if (ret < 0) 1770 return ret; 1771 1772 if (len < sizeof(struct nvme_tcp_hdr)) { 1773 pr_debug("queue %d: short read, %d bytes missing\n", 1774 queue->idx, (int)iov.iov_len - len); 1775 return -EAGAIN; 1776 } 1777 pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n", 1778 queue->idx, hdr->type, hdr->hlen, hdr->plen, 1779 (int)sizeof(struct nvme_tcp_icreq_pdu)); 1780 if (hdr->type == nvme_tcp_icreq && 1781 hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) && 1782 hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) { 1783 pr_debug("queue %d: icreq detected\n", 1784 queue->idx); 1785 return len; 1786 } 1787 return 0; 1788 } 1789 1790 static void nvmet_tcp_tls_handshake_done(void *data, int status, 1791 key_serial_t peerid) 1792 { 1793 struct nvmet_tcp_queue *queue = data; 1794 1795 pr_debug("queue %d: TLS handshake done, key %x, status %d\n", 1796 queue->idx, peerid, status); 1797 spin_lock_bh(&queue->state_lock); 1798 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { 1799 spin_unlock_bh(&queue->state_lock); 1800 return; 1801 } 1802 if (!status) { 1803 queue->tls_pskid = peerid; 1804 queue->state = NVMET_TCP_Q_CONNECTING; 1805 } else 1806 queue->state = NVMET_TCP_Q_FAILED; 1807 spin_unlock_bh(&queue->state_lock); 1808 1809 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); 1810 if (status) 1811 nvmet_tcp_schedule_release_queue(queue); 1812 else 1813 nvmet_tcp_set_queue_sock(queue); 1814 kref_put(&queue->kref, nvmet_tcp_release_queue); 1815 } 1816 1817 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) 1818 { 1819 struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w), 1820 struct nvmet_tcp_queue, tls_handshake_tmo_work); 1821 1822 pr_warn("queue %d: TLS handshake timeout\n", queue->idx); 1823 /* 1824 * If tls_handshake_cancel() fails we've lost the race with 1825 * nvmet_tcp_tls_handshake_done() */ 1826 if (!tls_handshake_cancel(queue->sock->sk)) 1827 return; 1828 spin_lock_bh(&queue->state_lock); 1829 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { 1830 spin_unlock_bh(&queue->state_lock); 1831 return; 1832 } 1833 queue->state = NVMET_TCP_Q_FAILED; 1834 spin_unlock_bh(&queue->state_lock); 1835 nvmet_tcp_schedule_release_queue(queue); 1836 kref_put(&queue->kref, nvmet_tcp_release_queue); 1837 } 1838 1839 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue) 1840 { 1841 int ret = -EOPNOTSUPP; 1842 struct tls_handshake_args args; 1843 1844 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) { 1845 pr_warn("cannot start TLS in state %d\n", queue->state); 1846 return -EINVAL; 1847 } 1848 1849 kref_get(&queue->kref); 1850 pr_debug("queue %d: TLS ServerHello\n", queue->idx); 1851 memset(&args, 0, sizeof(args)); 1852 args.ta_sock = queue->sock; 1853 args.ta_done = nvmet_tcp_tls_handshake_done; 1854 args.ta_data = queue; 1855 args.ta_keyring = key_serial(queue->port->nport->keyring); 1856 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1857 1858 ret = tls_server_hello_psk(&args, GFP_KERNEL); 1859 if (ret) { 1860 kref_put(&queue->kref, nvmet_tcp_release_queue); 1861 pr_err("failed to start TLS, err=%d\n", ret); 1862 } else { 1863 queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work, 1864 tls_handshake_timeout * HZ); 1865 } 1866 return ret; 1867 } 1868 #else 1869 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {} 1870 #endif 1871 1872 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1873 struct socket *newsock) 1874 { 1875 struct nvmet_tcp_queue *queue; 1876 struct file *sock_file = NULL; 1877 int ret; 1878 1879 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1880 if (!queue) { 1881 ret = -ENOMEM; 1882 goto out_release; 1883 } 1884 1885 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1886 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1887 kref_init(&queue->kref); 1888 queue->sock = newsock; 1889 queue->port = port; 1890 queue->nr_cmds = 0; 1891 spin_lock_init(&queue->state_lock); 1892 if (queue->port->nport->disc_addr.tsas.tcp.sectype == 1893 NVMF_TCP_SECTYPE_TLS13) 1894 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE; 1895 else 1896 queue->state = NVMET_TCP_Q_CONNECTING; 1897 INIT_LIST_HEAD(&queue->free_list); 1898 init_llist_head(&queue->resp_list); 1899 INIT_LIST_HEAD(&queue->resp_send_list); 1900 1901 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1902 if (IS_ERR(sock_file)) { 1903 ret = PTR_ERR(sock_file); 1904 goto out_free_queue; 1905 } 1906 1907 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); 1908 if (queue->idx < 0) { 1909 ret = queue->idx; 1910 goto out_sock; 1911 } 1912 1913 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1914 if (ret) 1915 goto out_ida_remove; 1916 1917 ret = nvmet_sq_init(&queue->nvme_sq); 1918 if (ret) 1919 goto out_free_connect; 1920 1921 nvmet_prepare_receive_pdu(queue); 1922 1923 mutex_lock(&nvmet_tcp_queue_mutex); 1924 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1925 mutex_unlock(&nvmet_tcp_queue_mutex); 1926 1927 INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work, 1928 nvmet_tcp_tls_handshake_timeout); 1929 #ifdef CONFIG_NVME_TARGET_TCP_TLS 1930 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { 1931 struct sock *sk = queue->sock->sk; 1932 1933 /* Restore the default callbacks before starting upcall */ 1934 read_lock_bh(&sk->sk_callback_lock); 1935 sk->sk_user_data = NULL; 1936 sk->sk_data_ready = port->data_ready; 1937 read_unlock_bh(&sk->sk_callback_lock); 1938 if (!nvmet_tcp_try_peek_pdu(queue)) { 1939 if (!nvmet_tcp_tls_handshake(queue)) 1940 return; 1941 /* TLS handshake failed, terminate the connection */ 1942 goto out_destroy_sq; 1943 } 1944 /* Not a TLS connection, continue with normal processing */ 1945 queue->state = NVMET_TCP_Q_CONNECTING; 1946 } 1947 #endif 1948 1949 ret = nvmet_tcp_set_queue_sock(queue); 1950 if (ret) 1951 goto out_destroy_sq; 1952 1953 return; 1954 out_destroy_sq: 1955 mutex_lock(&nvmet_tcp_queue_mutex); 1956 list_del_init(&queue->queue_list); 1957 mutex_unlock(&nvmet_tcp_queue_mutex); 1958 nvmet_sq_destroy(&queue->nvme_sq); 1959 out_free_connect: 1960 nvmet_tcp_free_cmd(&queue->connect); 1961 out_ida_remove: 1962 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1963 out_sock: 1964 fput(queue->sock->file); 1965 out_free_queue: 1966 kfree(queue); 1967 out_release: 1968 pr_err("failed to allocate queue, error %d\n", ret); 1969 if (!sock_file) 1970 sock_release(newsock); 1971 } 1972 1973 static void nvmet_tcp_accept_work(struct work_struct *w) 1974 { 1975 struct nvmet_tcp_port *port = 1976 container_of(w, struct nvmet_tcp_port, accept_work); 1977 struct socket *newsock; 1978 int ret; 1979 1980 while (true) { 1981 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1982 if (ret < 0) { 1983 if (ret != -EAGAIN) 1984 pr_warn("failed to accept err=%d\n", ret); 1985 return; 1986 } 1987 nvmet_tcp_alloc_queue(port, newsock); 1988 } 1989 } 1990 1991 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1992 { 1993 struct nvmet_tcp_port *port; 1994 1995 trace_sk_data_ready(sk); 1996 1997 read_lock_bh(&sk->sk_callback_lock); 1998 port = sk->sk_user_data; 1999 if (!port) 2000 goto out; 2001 2002 if (sk->sk_state == TCP_LISTEN) 2003 queue_work(nvmet_wq, &port->accept_work); 2004 out: 2005 read_unlock_bh(&sk->sk_callback_lock); 2006 } 2007 2008 static int nvmet_tcp_add_port(struct nvmet_port *nport) 2009 { 2010 struct nvmet_tcp_port *port; 2011 __kernel_sa_family_t af; 2012 int ret; 2013 2014 port = kzalloc(sizeof(*port), GFP_KERNEL); 2015 if (!port) 2016 return -ENOMEM; 2017 2018 switch (nport->disc_addr.adrfam) { 2019 case NVMF_ADDR_FAMILY_IP4: 2020 af = AF_INET; 2021 break; 2022 case NVMF_ADDR_FAMILY_IP6: 2023 af = AF_INET6; 2024 break; 2025 default: 2026 pr_err("address family %d not supported\n", 2027 nport->disc_addr.adrfam); 2028 ret = -EINVAL; 2029 goto err_port; 2030 } 2031 2032 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 2033 nport->disc_addr.trsvcid, &port->addr); 2034 if (ret) { 2035 pr_err("malformed ip/port passed: %s:%s\n", 2036 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 2037 goto err_port; 2038 } 2039 2040 port->nport = nport; 2041 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 2042 if (port->nport->inline_data_size < 0) 2043 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 2044 2045 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 2046 IPPROTO_TCP, &port->sock); 2047 if (ret) { 2048 pr_err("failed to create a socket\n"); 2049 goto err_port; 2050 } 2051 2052 port->sock->sk->sk_user_data = port; 2053 port->data_ready = port->sock->sk->sk_data_ready; 2054 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 2055 sock_set_reuseaddr(port->sock->sk); 2056 tcp_sock_set_nodelay(port->sock->sk); 2057 if (so_priority > 0) 2058 sock_set_priority(port->sock->sk, so_priority); 2059 2060 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 2061 sizeof(port->addr)); 2062 if (ret) { 2063 pr_err("failed to bind port socket %d\n", ret); 2064 goto err_sock; 2065 } 2066 2067 ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG); 2068 if (ret) { 2069 pr_err("failed to listen %d on port sock\n", ret); 2070 goto err_sock; 2071 } 2072 2073 nport->priv = port; 2074 pr_info("enabling port %d (%pISpc)\n", 2075 le16_to_cpu(nport->disc_addr.portid), &port->addr); 2076 2077 return 0; 2078 2079 err_sock: 2080 sock_release(port->sock); 2081 err_port: 2082 kfree(port); 2083 return ret; 2084 } 2085 2086 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) 2087 { 2088 struct nvmet_tcp_queue *queue; 2089 2090 mutex_lock(&nvmet_tcp_queue_mutex); 2091 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 2092 if (queue->port == port) 2093 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 2094 mutex_unlock(&nvmet_tcp_queue_mutex); 2095 } 2096 2097 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 2098 { 2099 struct nvmet_tcp_port *port = nport->priv; 2100 2101 write_lock_bh(&port->sock->sk->sk_callback_lock); 2102 port->sock->sk->sk_data_ready = port->data_ready; 2103 port->sock->sk->sk_user_data = NULL; 2104 write_unlock_bh(&port->sock->sk->sk_callback_lock); 2105 cancel_work_sync(&port->accept_work); 2106 /* 2107 * Destroy the remaining queues, which are not belong to any 2108 * controller yet. 2109 */ 2110 nvmet_tcp_destroy_port_queues(port); 2111 2112 sock_release(port->sock); 2113 kfree(port); 2114 } 2115 2116 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 2117 { 2118 struct nvmet_tcp_queue *queue; 2119 2120 mutex_lock(&nvmet_tcp_queue_mutex); 2121 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 2122 if (queue->nvme_sq.ctrl == ctrl) 2123 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 2124 mutex_unlock(&nvmet_tcp_queue_mutex); 2125 } 2126 2127 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 2128 { 2129 struct nvmet_tcp_queue *queue = 2130 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 2131 2132 if (sq->qid == 0) { 2133 struct nvmet_tcp_queue *q; 2134 int pending = 0; 2135 2136 /* Check for pending controller teardown */ 2137 mutex_lock(&nvmet_tcp_queue_mutex); 2138 list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) { 2139 if (q->nvme_sq.ctrl == sq->ctrl && 2140 q->state == NVMET_TCP_Q_DISCONNECTING) 2141 pending++; 2142 } 2143 mutex_unlock(&nvmet_tcp_queue_mutex); 2144 if (pending > NVMET_TCP_BACKLOG) 2145 return NVME_SC_CONNECT_CTRL_BUSY; 2146 } 2147 2148 queue->nr_cmds = sq->size * 2; 2149 if (nvmet_tcp_alloc_cmds(queue)) { 2150 queue->nr_cmds = 0; 2151 return NVME_SC_INTERNAL; 2152 } 2153 return 0; 2154 } 2155 2156 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 2157 struct nvmet_port *nport, char *traddr) 2158 { 2159 struct nvmet_tcp_port *port = nport->priv; 2160 2161 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 2162 struct nvmet_tcp_cmd *cmd = 2163 container_of(req, struct nvmet_tcp_cmd, req); 2164 struct nvmet_tcp_queue *queue = cmd->queue; 2165 2166 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 2167 } else { 2168 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 2169 } 2170 } 2171 2172 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl, 2173 char *traddr, size_t traddr_len) 2174 { 2175 struct nvmet_sq *sq = ctrl->sqs[0]; 2176 struct nvmet_tcp_queue *queue = 2177 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 2178 2179 if (queue->sockaddr_peer.ss_family == AF_UNSPEC) 2180 return -EINVAL; 2181 return snprintf(traddr, traddr_len, "%pISc", 2182 (struct sockaddr *)&queue->sockaddr_peer); 2183 } 2184 2185 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 2186 .owner = THIS_MODULE, 2187 .type = NVMF_TRTYPE_TCP, 2188 .msdbd = 1, 2189 .add_port = nvmet_tcp_add_port, 2190 .remove_port = nvmet_tcp_remove_port, 2191 .queue_response = nvmet_tcp_queue_response, 2192 .delete_ctrl = nvmet_tcp_delete_ctrl, 2193 .install_queue = nvmet_tcp_install_queue, 2194 .disc_traddr = nvmet_tcp_disc_port_addr, 2195 .host_traddr = nvmet_tcp_host_port_addr, 2196 }; 2197 2198 static int __init nvmet_tcp_init(void) 2199 { 2200 int ret; 2201 2202 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", 2203 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2204 if (!nvmet_tcp_wq) 2205 return -ENOMEM; 2206 2207 ret = nvmet_register_transport(&nvmet_tcp_ops); 2208 if (ret) 2209 goto err; 2210 2211 return 0; 2212 err: 2213 destroy_workqueue(nvmet_tcp_wq); 2214 return ret; 2215 } 2216 2217 static void __exit nvmet_tcp_exit(void) 2218 { 2219 struct nvmet_tcp_queue *queue; 2220 2221 nvmet_unregister_transport(&nvmet_tcp_ops); 2222 2223 flush_workqueue(nvmet_wq); 2224 mutex_lock(&nvmet_tcp_queue_mutex); 2225 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 2226 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 2227 mutex_unlock(&nvmet_tcp_queue_mutex); 2228 flush_workqueue(nvmet_wq); 2229 2230 destroy_workqueue(nvmet_tcp_wq); 2231 ida_destroy(&nvmet_tcp_queue_ida); 2232 } 2233 2234 module_init(nvmet_tcp_init); 2235 module_exit(nvmet_tcp_exit); 2236 2237 MODULE_DESCRIPTION("NVMe target TCP transport driver"); 2238 MODULE_LICENSE("GPL v2"); 2239 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 2240