xref: /linux/drivers/nvme/target/tcp.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <crypto/hash.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvmet.h"
25 
26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
27 #define NVMET_TCP_MAXH2CDATA		0x400000 /* 16M arbitrary limit */
28 #define NVMET_TCP_BACKLOG 128
29 
30 static int param_store_val(const char *str, int *val, int min, int max)
31 {
32 	int ret, new_val;
33 
34 	ret = kstrtoint(str, 10, &new_val);
35 	if (ret)
36 		return -EINVAL;
37 
38 	if (new_val < min || new_val > max)
39 		return -EINVAL;
40 
41 	*val = new_val;
42 	return 0;
43 }
44 
45 static int set_params(const char *str, const struct kernel_param *kp)
46 {
47 	return param_store_val(str, kp->arg, 0, INT_MAX);
48 }
49 
50 static const struct kernel_param_ops set_param_ops = {
51 	.set	= set_params,
52 	.get	= param_get_int,
53 };
54 
55 /* Define the socket priority to use for connections were it is desirable
56  * that the NIC consider performing optimized packet processing or filtering.
57  * A non-zero value being sufficient to indicate general consideration of any
58  * possible optimization.  Making it a module param allows for alternative
59  * values that may be unique for some NIC implementations.
60  */
61 static int so_priority;
62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
64 
65 /* Define a time period (in usecs) that io_work() shall sample an activated
66  * queue before determining it to be idle.  This optional module behavior
67  * can enable NIC solutions that support socket optimized packet processing
68  * using advanced interrupt moderation techniques.
69  */
70 static int idle_poll_period_usecs;
71 device_param_cb(idle_poll_period_usecs, &set_param_ops,
72 		&idle_poll_period_usecs, 0644);
73 MODULE_PARM_DESC(idle_poll_period_usecs,
74 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
75 
76 #ifdef CONFIG_NVME_TARGET_TCP_TLS
77 /*
78  * TLS handshake timeout
79  */
80 static int tls_handshake_timeout = 10;
81 module_param(tls_handshake_timeout, int, 0644);
82 MODULE_PARM_DESC(tls_handshake_timeout,
83 		 "nvme TLS handshake timeout in seconds (default 10)");
84 #endif
85 
86 #define NVMET_TCP_RECV_BUDGET		8
87 #define NVMET_TCP_SEND_BUDGET		8
88 #define NVMET_TCP_IO_WORK_BUDGET	64
89 
90 enum nvmet_tcp_send_state {
91 	NVMET_TCP_SEND_DATA_PDU,
92 	NVMET_TCP_SEND_DATA,
93 	NVMET_TCP_SEND_R2T,
94 	NVMET_TCP_SEND_DDGST,
95 	NVMET_TCP_SEND_RESPONSE
96 };
97 
98 enum nvmet_tcp_recv_state {
99 	NVMET_TCP_RECV_PDU,
100 	NVMET_TCP_RECV_DATA,
101 	NVMET_TCP_RECV_DDGST,
102 	NVMET_TCP_RECV_ERR,
103 };
104 
105 enum {
106 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
107 };
108 
109 struct nvmet_tcp_cmd {
110 	struct nvmet_tcp_queue		*queue;
111 	struct nvmet_req		req;
112 
113 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
114 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
115 	struct nvme_tcp_data_pdu	*data_pdu;
116 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
117 
118 	u32				rbytes_done;
119 	u32				wbytes_done;
120 
121 	u32				pdu_len;
122 	u32				pdu_recv;
123 	int				sg_idx;
124 	char				recv_cbuf[CMSG_LEN(sizeof(char))];
125 	struct msghdr			recv_msg;
126 	struct bio_vec			*iov;
127 	u32				flags;
128 
129 	struct list_head		entry;
130 	struct llist_node		lentry;
131 
132 	/* send state */
133 	u32				offset;
134 	struct scatterlist		*cur_sg;
135 	enum nvmet_tcp_send_state	state;
136 
137 	__le32				exp_ddgst;
138 	__le32				recv_ddgst;
139 };
140 
141 enum nvmet_tcp_queue_state {
142 	NVMET_TCP_Q_CONNECTING,
143 	NVMET_TCP_Q_TLS_HANDSHAKE,
144 	NVMET_TCP_Q_LIVE,
145 	NVMET_TCP_Q_DISCONNECTING,
146 	NVMET_TCP_Q_FAILED,
147 };
148 
149 struct nvmet_tcp_queue {
150 	struct socket		*sock;
151 	struct nvmet_tcp_port	*port;
152 	struct work_struct	io_work;
153 	struct nvmet_cq		nvme_cq;
154 	struct nvmet_sq		nvme_sq;
155 	struct kref		kref;
156 
157 	/* send state */
158 	struct nvmet_tcp_cmd	*cmds;
159 	unsigned int		nr_cmds;
160 	struct list_head	free_list;
161 	struct llist_head	resp_list;
162 	struct list_head	resp_send_list;
163 	int			send_list_len;
164 	struct nvmet_tcp_cmd	*snd_cmd;
165 
166 	/* recv state */
167 	int			offset;
168 	int			left;
169 	enum nvmet_tcp_recv_state rcv_state;
170 	struct nvmet_tcp_cmd	*cmd;
171 	union nvme_tcp_pdu	pdu;
172 
173 	/* digest state */
174 	bool			hdr_digest;
175 	bool			data_digest;
176 	struct ahash_request	*snd_hash;
177 	struct ahash_request	*rcv_hash;
178 
179 	/* TLS state */
180 	key_serial_t		tls_pskid;
181 	struct delayed_work	tls_handshake_tmo_work;
182 
183 	unsigned long           poll_end;
184 
185 	spinlock_t		state_lock;
186 	enum nvmet_tcp_queue_state state;
187 
188 	struct sockaddr_storage	sockaddr;
189 	struct sockaddr_storage	sockaddr_peer;
190 	struct work_struct	release_work;
191 
192 	int			idx;
193 	struct list_head	queue_list;
194 
195 	struct nvmet_tcp_cmd	connect;
196 
197 	struct page_frag_cache	pf_cache;
198 
199 	void (*data_ready)(struct sock *);
200 	void (*state_change)(struct sock *);
201 	void (*write_space)(struct sock *);
202 };
203 
204 struct nvmet_tcp_port {
205 	struct socket		*sock;
206 	struct work_struct	accept_work;
207 	struct nvmet_port	*nport;
208 	struct sockaddr_storage addr;
209 	void (*data_ready)(struct sock *);
210 };
211 
212 static DEFINE_IDA(nvmet_tcp_queue_ida);
213 static LIST_HEAD(nvmet_tcp_queue_list);
214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
215 
216 static struct workqueue_struct *nvmet_tcp_wq;
217 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
220 
221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
222 		struct nvmet_tcp_cmd *cmd)
223 {
224 	if (unlikely(!queue->nr_cmds)) {
225 		/* We didn't allocate cmds yet, send 0xffff */
226 		return USHRT_MAX;
227 	}
228 
229 	return cmd - queue->cmds;
230 }
231 
232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
233 {
234 	return nvme_is_write(cmd->req.cmd) &&
235 		cmd->rbytes_done < cmd->req.transfer_len;
236 }
237 
238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
239 {
240 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
241 }
242 
243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
244 {
245 	return !nvme_is_write(cmd->req.cmd) &&
246 		cmd->req.transfer_len > 0 &&
247 		!cmd->req.cqe->status;
248 }
249 
250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
251 {
252 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
253 		!cmd->rbytes_done;
254 }
255 
256 static inline struct nvmet_tcp_cmd *
257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
258 {
259 	struct nvmet_tcp_cmd *cmd;
260 
261 	cmd = list_first_entry_or_null(&queue->free_list,
262 				struct nvmet_tcp_cmd, entry);
263 	if (!cmd)
264 		return NULL;
265 	list_del_init(&cmd->entry);
266 
267 	cmd->rbytes_done = cmd->wbytes_done = 0;
268 	cmd->pdu_len = 0;
269 	cmd->pdu_recv = 0;
270 	cmd->iov = NULL;
271 	cmd->flags = 0;
272 	return cmd;
273 }
274 
275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
276 {
277 	if (unlikely(cmd == &cmd->queue->connect))
278 		return;
279 
280 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
281 }
282 
283 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
284 {
285 	return queue->sock->sk->sk_incoming_cpu;
286 }
287 
288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
289 {
290 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
291 }
292 
293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
294 {
295 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
296 }
297 
298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
299 		void *pdu, size_t len)
300 {
301 	struct scatterlist sg;
302 
303 	sg_init_one(&sg, pdu, len);
304 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
305 	crypto_ahash_digest(hash);
306 }
307 
308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
309 	void *pdu, size_t len)
310 {
311 	struct nvme_tcp_hdr *hdr = pdu;
312 	__le32 recv_digest;
313 	__le32 exp_digest;
314 
315 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
316 		pr_err("queue %d: header digest enabled but no header digest\n",
317 			queue->idx);
318 		return -EPROTO;
319 	}
320 
321 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
322 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
323 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
324 	if (recv_digest != exp_digest) {
325 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
326 			queue->idx, le32_to_cpu(recv_digest),
327 			le32_to_cpu(exp_digest));
328 		return -EPROTO;
329 	}
330 
331 	return 0;
332 }
333 
334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
335 {
336 	struct nvme_tcp_hdr *hdr = pdu;
337 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
338 	u32 len;
339 
340 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
341 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
342 
343 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
344 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
345 		return -EPROTO;
346 	}
347 
348 	return 0;
349 }
350 
351 /* If cmd buffers are NULL, no operation is performed */
352 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
353 {
354 	kfree(cmd->iov);
355 	sgl_free(cmd->req.sg);
356 	cmd->iov = NULL;
357 	cmd->req.sg = NULL;
358 }
359 
360 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
361 {
362 	struct bio_vec *iov = cmd->iov;
363 	struct scatterlist *sg;
364 	u32 length, offset, sg_offset;
365 	int nr_pages;
366 
367 	length = cmd->pdu_len;
368 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
369 	offset = cmd->rbytes_done;
370 	cmd->sg_idx = offset / PAGE_SIZE;
371 	sg_offset = offset % PAGE_SIZE;
372 	sg = &cmd->req.sg[cmd->sg_idx];
373 
374 	while (length) {
375 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
376 
377 		bvec_set_page(iov, sg_page(sg), iov_len,
378 				sg->offset + sg_offset);
379 
380 		length -= iov_len;
381 		sg = sg_next(sg);
382 		iov++;
383 		sg_offset = 0;
384 	}
385 
386 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
387 		      nr_pages, cmd->pdu_len);
388 }
389 
390 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
391 {
392 	queue->rcv_state = NVMET_TCP_RECV_ERR;
393 	if (queue->nvme_sq.ctrl)
394 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
395 	else
396 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
397 }
398 
399 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
400 {
401 	queue->rcv_state = NVMET_TCP_RECV_ERR;
402 	if (status == -EPIPE || status == -ECONNRESET)
403 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
404 	else
405 		nvmet_tcp_fatal_error(queue);
406 }
407 
408 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
409 {
410 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
411 	u32 len = le32_to_cpu(sgl->length);
412 
413 	if (!len)
414 		return 0;
415 
416 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
417 			  NVME_SGL_FMT_OFFSET)) {
418 		if (!nvme_is_write(cmd->req.cmd))
419 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
420 
421 		if (len > cmd->req.port->inline_data_size)
422 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
423 		cmd->pdu_len = len;
424 	}
425 	cmd->req.transfer_len += len;
426 
427 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
428 	if (!cmd->req.sg)
429 		return NVME_SC_INTERNAL;
430 	cmd->cur_sg = cmd->req.sg;
431 
432 	if (nvmet_tcp_has_data_in(cmd)) {
433 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
434 				sizeof(*cmd->iov), GFP_KERNEL);
435 		if (!cmd->iov)
436 			goto err;
437 	}
438 
439 	return 0;
440 err:
441 	nvmet_tcp_free_cmd_buffers(cmd);
442 	return NVME_SC_INTERNAL;
443 }
444 
445 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
446 		struct nvmet_tcp_cmd *cmd)
447 {
448 	ahash_request_set_crypt(hash, cmd->req.sg,
449 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
450 	crypto_ahash_digest(hash);
451 }
452 
453 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
454 {
455 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
456 	struct nvmet_tcp_queue *queue = cmd->queue;
457 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
458 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
459 
460 	cmd->offset = 0;
461 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
462 
463 	pdu->hdr.type = nvme_tcp_c2h_data;
464 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
465 						NVME_TCP_F_DATA_SUCCESS : 0);
466 	pdu->hdr.hlen = sizeof(*pdu);
467 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
468 	pdu->hdr.plen =
469 		cpu_to_le32(pdu->hdr.hlen + hdgst +
470 				cmd->req.transfer_len + ddgst);
471 	pdu->command_id = cmd->req.cqe->command_id;
472 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
473 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
474 
475 	if (queue->data_digest) {
476 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
477 		nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
478 	}
479 
480 	if (cmd->queue->hdr_digest) {
481 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
482 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
483 	}
484 }
485 
486 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
487 {
488 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
489 	struct nvmet_tcp_queue *queue = cmd->queue;
490 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
491 
492 	cmd->offset = 0;
493 	cmd->state = NVMET_TCP_SEND_R2T;
494 
495 	pdu->hdr.type = nvme_tcp_r2t;
496 	pdu->hdr.flags = 0;
497 	pdu->hdr.hlen = sizeof(*pdu);
498 	pdu->hdr.pdo = 0;
499 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
500 
501 	pdu->command_id = cmd->req.cmd->common.command_id;
502 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
503 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
504 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
505 	if (cmd->queue->hdr_digest) {
506 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
507 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
508 	}
509 }
510 
511 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
512 {
513 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
514 	struct nvmet_tcp_queue *queue = cmd->queue;
515 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
516 
517 	cmd->offset = 0;
518 	cmd->state = NVMET_TCP_SEND_RESPONSE;
519 
520 	pdu->hdr.type = nvme_tcp_rsp;
521 	pdu->hdr.flags = 0;
522 	pdu->hdr.hlen = sizeof(*pdu);
523 	pdu->hdr.pdo = 0;
524 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
525 	if (cmd->queue->hdr_digest) {
526 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
527 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
528 	}
529 }
530 
531 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
532 {
533 	struct llist_node *node;
534 	struct nvmet_tcp_cmd *cmd;
535 
536 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
537 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
538 		list_add(&cmd->entry, &queue->resp_send_list);
539 		queue->send_list_len++;
540 	}
541 }
542 
543 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
544 {
545 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
546 				struct nvmet_tcp_cmd, entry);
547 	if (!queue->snd_cmd) {
548 		nvmet_tcp_process_resp_list(queue);
549 		queue->snd_cmd =
550 			list_first_entry_or_null(&queue->resp_send_list,
551 					struct nvmet_tcp_cmd, entry);
552 		if (unlikely(!queue->snd_cmd))
553 			return NULL;
554 	}
555 
556 	list_del_init(&queue->snd_cmd->entry);
557 	queue->send_list_len--;
558 
559 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
560 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
561 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
562 		nvmet_setup_r2t_pdu(queue->snd_cmd);
563 	else
564 		nvmet_setup_response_pdu(queue->snd_cmd);
565 
566 	return queue->snd_cmd;
567 }
568 
569 static void nvmet_tcp_queue_response(struct nvmet_req *req)
570 {
571 	struct nvmet_tcp_cmd *cmd =
572 		container_of(req, struct nvmet_tcp_cmd, req);
573 	struct nvmet_tcp_queue	*queue = cmd->queue;
574 	struct nvme_sgl_desc *sgl;
575 	u32 len;
576 
577 	if (unlikely(cmd == queue->cmd)) {
578 		sgl = &cmd->req.cmd->common.dptr.sgl;
579 		len = le32_to_cpu(sgl->length);
580 
581 		/*
582 		 * Wait for inline data before processing the response.
583 		 * Avoid using helpers, this might happen before
584 		 * nvmet_req_init is completed.
585 		 */
586 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
587 		    len && len <= cmd->req.port->inline_data_size &&
588 		    nvme_is_write(cmd->req.cmd))
589 			return;
590 	}
591 
592 	llist_add(&cmd->lentry, &queue->resp_list);
593 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
594 }
595 
596 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
597 {
598 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
599 		nvmet_tcp_queue_response(&cmd->req);
600 	else
601 		cmd->req.execute(&cmd->req);
602 }
603 
604 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
605 {
606 	struct msghdr msg = {
607 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
608 	};
609 	struct bio_vec bvec;
610 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
611 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
612 	int ret;
613 
614 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
615 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
616 	ret = sock_sendmsg(cmd->queue->sock, &msg);
617 	if (ret <= 0)
618 		return ret;
619 
620 	cmd->offset += ret;
621 	left -= ret;
622 
623 	if (left)
624 		return -EAGAIN;
625 
626 	cmd->state = NVMET_TCP_SEND_DATA;
627 	cmd->offset  = 0;
628 	return 1;
629 }
630 
631 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
632 {
633 	struct nvmet_tcp_queue *queue = cmd->queue;
634 	int ret;
635 
636 	while (cmd->cur_sg) {
637 		struct msghdr msg = {
638 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
639 		};
640 		struct page *page = sg_page(cmd->cur_sg);
641 		struct bio_vec bvec;
642 		u32 left = cmd->cur_sg->length - cmd->offset;
643 
644 		if ((!last_in_batch && cmd->queue->send_list_len) ||
645 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
646 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
647 			msg.msg_flags |= MSG_MORE;
648 
649 		bvec_set_page(&bvec, page, left, cmd->offset);
650 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
651 		ret = sock_sendmsg(cmd->queue->sock, &msg);
652 		if (ret <= 0)
653 			return ret;
654 
655 		cmd->offset += ret;
656 		cmd->wbytes_done += ret;
657 
658 		/* Done with sg?*/
659 		if (cmd->offset == cmd->cur_sg->length) {
660 			cmd->cur_sg = sg_next(cmd->cur_sg);
661 			cmd->offset = 0;
662 		}
663 	}
664 
665 	if (queue->data_digest) {
666 		cmd->state = NVMET_TCP_SEND_DDGST;
667 		cmd->offset = 0;
668 	} else {
669 		if (queue->nvme_sq.sqhd_disabled) {
670 			cmd->queue->snd_cmd = NULL;
671 			nvmet_tcp_put_cmd(cmd);
672 		} else {
673 			nvmet_setup_response_pdu(cmd);
674 		}
675 	}
676 
677 	if (queue->nvme_sq.sqhd_disabled)
678 		nvmet_tcp_free_cmd_buffers(cmd);
679 
680 	return 1;
681 
682 }
683 
684 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
685 		bool last_in_batch)
686 {
687 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
688 	struct bio_vec bvec;
689 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
690 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
691 	int ret;
692 
693 	if (!last_in_batch && cmd->queue->send_list_len)
694 		msg.msg_flags |= MSG_MORE;
695 	else
696 		msg.msg_flags |= MSG_EOR;
697 
698 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
699 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
700 	ret = sock_sendmsg(cmd->queue->sock, &msg);
701 	if (ret <= 0)
702 		return ret;
703 	cmd->offset += ret;
704 	left -= ret;
705 
706 	if (left)
707 		return -EAGAIN;
708 
709 	nvmet_tcp_free_cmd_buffers(cmd);
710 	cmd->queue->snd_cmd = NULL;
711 	nvmet_tcp_put_cmd(cmd);
712 	return 1;
713 }
714 
715 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
716 {
717 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
718 	struct bio_vec bvec;
719 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
720 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
721 	int ret;
722 
723 	if (!last_in_batch && cmd->queue->send_list_len)
724 		msg.msg_flags |= MSG_MORE;
725 	else
726 		msg.msg_flags |= MSG_EOR;
727 
728 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
729 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
730 	ret = sock_sendmsg(cmd->queue->sock, &msg);
731 	if (ret <= 0)
732 		return ret;
733 	cmd->offset += ret;
734 	left -= ret;
735 
736 	if (left)
737 		return -EAGAIN;
738 
739 	cmd->queue->snd_cmd = NULL;
740 	return 1;
741 }
742 
743 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
744 {
745 	struct nvmet_tcp_queue *queue = cmd->queue;
746 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
747 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
748 	struct kvec iov = {
749 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
750 		.iov_len = left
751 	};
752 	int ret;
753 
754 	if (!last_in_batch && cmd->queue->send_list_len)
755 		msg.msg_flags |= MSG_MORE;
756 	else
757 		msg.msg_flags |= MSG_EOR;
758 
759 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
760 	if (unlikely(ret <= 0))
761 		return ret;
762 
763 	cmd->offset += ret;
764 	left -= ret;
765 
766 	if (left)
767 		return -EAGAIN;
768 
769 	if (queue->nvme_sq.sqhd_disabled) {
770 		cmd->queue->snd_cmd = NULL;
771 		nvmet_tcp_put_cmd(cmd);
772 	} else {
773 		nvmet_setup_response_pdu(cmd);
774 	}
775 	return 1;
776 }
777 
778 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
779 		bool last_in_batch)
780 {
781 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
782 	int ret = 0;
783 
784 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
785 		cmd = nvmet_tcp_fetch_cmd(queue);
786 		if (unlikely(!cmd))
787 			return 0;
788 	}
789 
790 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
791 		ret = nvmet_try_send_data_pdu(cmd);
792 		if (ret <= 0)
793 			goto done_send;
794 	}
795 
796 	if (cmd->state == NVMET_TCP_SEND_DATA) {
797 		ret = nvmet_try_send_data(cmd, last_in_batch);
798 		if (ret <= 0)
799 			goto done_send;
800 	}
801 
802 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
803 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
804 		if (ret <= 0)
805 			goto done_send;
806 	}
807 
808 	if (cmd->state == NVMET_TCP_SEND_R2T) {
809 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
810 		if (ret <= 0)
811 			goto done_send;
812 	}
813 
814 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
815 		ret = nvmet_try_send_response(cmd, last_in_batch);
816 
817 done_send:
818 	if (ret < 0) {
819 		if (ret == -EAGAIN)
820 			return 0;
821 		return ret;
822 	}
823 
824 	return 1;
825 }
826 
827 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
828 		int budget, int *sends)
829 {
830 	int i, ret = 0;
831 
832 	for (i = 0; i < budget; i++) {
833 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
834 		if (unlikely(ret < 0)) {
835 			nvmet_tcp_socket_error(queue, ret);
836 			goto done;
837 		} else if (ret == 0) {
838 			break;
839 		}
840 		(*sends)++;
841 	}
842 done:
843 	return ret;
844 }
845 
846 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
847 {
848 	queue->offset = 0;
849 	queue->left = sizeof(struct nvme_tcp_hdr);
850 	queue->cmd = NULL;
851 	queue->rcv_state = NVMET_TCP_RECV_PDU;
852 }
853 
854 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
855 {
856 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
857 
858 	ahash_request_free(queue->rcv_hash);
859 	ahash_request_free(queue->snd_hash);
860 	crypto_free_ahash(tfm);
861 }
862 
863 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
864 {
865 	struct crypto_ahash *tfm;
866 
867 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
868 	if (IS_ERR(tfm))
869 		return PTR_ERR(tfm);
870 
871 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
872 	if (!queue->snd_hash)
873 		goto free_tfm;
874 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
875 
876 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
877 	if (!queue->rcv_hash)
878 		goto free_snd_hash;
879 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
880 
881 	return 0;
882 free_snd_hash:
883 	ahash_request_free(queue->snd_hash);
884 free_tfm:
885 	crypto_free_ahash(tfm);
886 	return -ENOMEM;
887 }
888 
889 
890 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
891 {
892 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
893 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
894 	struct msghdr msg = {};
895 	struct kvec iov;
896 	int ret;
897 
898 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
899 		pr_err("bad nvme-tcp pdu length (%d)\n",
900 			le32_to_cpu(icreq->hdr.plen));
901 		nvmet_tcp_fatal_error(queue);
902 		return -EPROTO;
903 	}
904 
905 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
906 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
907 		return -EPROTO;
908 	}
909 
910 	if (icreq->hpda != 0) {
911 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
912 			icreq->hpda);
913 		return -EPROTO;
914 	}
915 
916 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
917 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
918 	if (queue->hdr_digest || queue->data_digest) {
919 		ret = nvmet_tcp_alloc_crypto(queue);
920 		if (ret)
921 			return ret;
922 	}
923 
924 	memset(icresp, 0, sizeof(*icresp));
925 	icresp->hdr.type = nvme_tcp_icresp;
926 	icresp->hdr.hlen = sizeof(*icresp);
927 	icresp->hdr.pdo = 0;
928 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
929 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
930 	icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
931 	icresp->cpda = 0;
932 	if (queue->hdr_digest)
933 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
934 	if (queue->data_digest)
935 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
936 
937 	iov.iov_base = icresp;
938 	iov.iov_len = sizeof(*icresp);
939 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
940 	if (ret < 0) {
941 		queue->state = NVMET_TCP_Q_FAILED;
942 		return ret; /* queue removal will cleanup */
943 	}
944 
945 	queue->state = NVMET_TCP_Q_LIVE;
946 	nvmet_prepare_receive_pdu(queue);
947 	return 0;
948 }
949 
950 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
951 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
952 {
953 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
954 	int ret;
955 
956 	/*
957 	 * This command has not been processed yet, hence we are trying to
958 	 * figure out if there is still pending data left to receive. If
959 	 * we don't, we can simply prepare for the next pdu and bail out,
960 	 * otherwise we will need to prepare a buffer and receive the
961 	 * stale data before continuing forward.
962 	 */
963 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
964 	    data_len > cmd->req.port->inline_data_size) {
965 		nvmet_prepare_receive_pdu(queue);
966 		return;
967 	}
968 
969 	ret = nvmet_tcp_map_data(cmd);
970 	if (unlikely(ret)) {
971 		pr_err("queue %d: failed to map data\n", queue->idx);
972 		nvmet_tcp_fatal_error(queue);
973 		return;
974 	}
975 
976 	queue->rcv_state = NVMET_TCP_RECV_DATA;
977 	nvmet_tcp_build_pdu_iovec(cmd);
978 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
979 }
980 
981 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
982 {
983 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
984 	struct nvmet_tcp_cmd *cmd;
985 	unsigned int exp_data_len;
986 
987 	if (likely(queue->nr_cmds)) {
988 		if (unlikely(data->ttag >= queue->nr_cmds)) {
989 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
990 				queue->idx, data->ttag, queue->nr_cmds);
991 			goto err_proto;
992 		}
993 		cmd = &queue->cmds[data->ttag];
994 	} else {
995 		cmd = &queue->connect;
996 	}
997 
998 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
999 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
1000 			data->ttag, le32_to_cpu(data->data_offset),
1001 			cmd->rbytes_done);
1002 		goto err_proto;
1003 	}
1004 
1005 	exp_data_len = le32_to_cpu(data->hdr.plen) -
1006 			nvmet_tcp_hdgst_len(queue) -
1007 			nvmet_tcp_ddgst_len(queue) -
1008 			sizeof(*data);
1009 
1010 	cmd->pdu_len = le32_to_cpu(data->data_length);
1011 	if (unlikely(cmd->pdu_len != exp_data_len ||
1012 		     cmd->pdu_len == 0 ||
1013 		     cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1014 		pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1015 		goto err_proto;
1016 	}
1017 	cmd->pdu_recv = 0;
1018 	nvmet_tcp_build_pdu_iovec(cmd);
1019 	queue->cmd = cmd;
1020 	queue->rcv_state = NVMET_TCP_RECV_DATA;
1021 
1022 	return 0;
1023 
1024 err_proto:
1025 	/* FIXME: use proper transport errors */
1026 	nvmet_tcp_fatal_error(queue);
1027 	return -EPROTO;
1028 }
1029 
1030 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1031 {
1032 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1033 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1034 	struct nvmet_req *req;
1035 	int ret;
1036 
1037 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1038 		if (hdr->type != nvme_tcp_icreq) {
1039 			pr_err("unexpected pdu type (%d) before icreq\n",
1040 				hdr->type);
1041 			nvmet_tcp_fatal_error(queue);
1042 			return -EPROTO;
1043 		}
1044 		return nvmet_tcp_handle_icreq(queue);
1045 	}
1046 
1047 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1048 		pr_err("queue %d: received icreq pdu in state %d\n",
1049 			queue->idx, queue->state);
1050 		nvmet_tcp_fatal_error(queue);
1051 		return -EPROTO;
1052 	}
1053 
1054 	if (hdr->type == nvme_tcp_h2c_data) {
1055 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1056 		if (unlikely(ret))
1057 			return ret;
1058 		return 0;
1059 	}
1060 
1061 	queue->cmd = nvmet_tcp_get_cmd(queue);
1062 	if (unlikely(!queue->cmd)) {
1063 		/* This should never happen */
1064 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1065 			queue->idx, queue->nr_cmds, queue->send_list_len,
1066 			nvme_cmd->common.opcode);
1067 		nvmet_tcp_fatal_error(queue);
1068 		return -ENOMEM;
1069 	}
1070 
1071 	req = &queue->cmd->req;
1072 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1073 
1074 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1075 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1076 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1077 			req->cmd, req->cmd->common.command_id,
1078 			req->cmd->common.opcode,
1079 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
1080 
1081 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1082 		return 0;
1083 	}
1084 
1085 	ret = nvmet_tcp_map_data(queue->cmd);
1086 	if (unlikely(ret)) {
1087 		pr_err("queue %d: failed to map data\n", queue->idx);
1088 		if (nvmet_tcp_has_inline_data(queue->cmd))
1089 			nvmet_tcp_fatal_error(queue);
1090 		else
1091 			nvmet_req_complete(req, ret);
1092 		ret = -EAGAIN;
1093 		goto out;
1094 	}
1095 
1096 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1097 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1098 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1099 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1100 			return 0;
1101 		}
1102 		/* send back R2T */
1103 		nvmet_tcp_queue_response(&queue->cmd->req);
1104 		goto out;
1105 	}
1106 
1107 	queue->cmd->req.execute(&queue->cmd->req);
1108 out:
1109 	nvmet_prepare_receive_pdu(queue);
1110 	return ret;
1111 }
1112 
1113 static const u8 nvme_tcp_pdu_sizes[] = {
1114 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1115 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1116 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1117 };
1118 
1119 static inline u8 nvmet_tcp_pdu_size(u8 type)
1120 {
1121 	size_t idx = type;
1122 
1123 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1124 		nvme_tcp_pdu_sizes[idx]) ?
1125 			nvme_tcp_pdu_sizes[idx] : 0;
1126 }
1127 
1128 static inline bool nvmet_tcp_pdu_valid(u8 type)
1129 {
1130 	switch (type) {
1131 	case nvme_tcp_icreq:
1132 	case nvme_tcp_cmd:
1133 	case nvme_tcp_h2c_data:
1134 		/* fallthru */
1135 		return true;
1136 	}
1137 
1138 	return false;
1139 }
1140 
1141 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1142 		struct msghdr *msg, char *cbuf)
1143 {
1144 	struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1145 	u8 ctype, level, description;
1146 	int ret = 0;
1147 
1148 	ctype = tls_get_record_type(queue->sock->sk, cmsg);
1149 	switch (ctype) {
1150 	case 0:
1151 		break;
1152 	case TLS_RECORD_TYPE_DATA:
1153 		break;
1154 	case TLS_RECORD_TYPE_ALERT:
1155 		tls_alert_recv(queue->sock->sk, msg, &level, &description);
1156 		if (level == TLS_ALERT_LEVEL_FATAL) {
1157 			pr_err("queue %d: TLS Alert desc %u\n",
1158 			       queue->idx, description);
1159 			ret = -ENOTCONN;
1160 		} else {
1161 			pr_warn("queue %d: TLS Alert desc %u\n",
1162 			       queue->idx, description);
1163 			ret = -EAGAIN;
1164 		}
1165 		break;
1166 	default:
1167 		/* discard this record type */
1168 		pr_err("queue %d: TLS record %d unhandled\n",
1169 		       queue->idx, ctype);
1170 		ret = -EAGAIN;
1171 		break;
1172 	}
1173 	return ret;
1174 }
1175 
1176 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1177 {
1178 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1179 	int len, ret;
1180 	struct kvec iov;
1181 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1182 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1183 
1184 recv:
1185 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1186 	iov.iov_len = queue->left;
1187 	if (queue->tls_pskid) {
1188 		msg.msg_control = cbuf;
1189 		msg.msg_controllen = sizeof(cbuf);
1190 	}
1191 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1192 			iov.iov_len, msg.msg_flags);
1193 	if (unlikely(len < 0))
1194 		return len;
1195 	if (queue->tls_pskid) {
1196 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1197 		if (ret < 0)
1198 			return ret;
1199 	}
1200 
1201 	queue->offset += len;
1202 	queue->left -= len;
1203 	if (queue->left)
1204 		return -EAGAIN;
1205 
1206 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1207 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1208 
1209 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1210 			pr_err("unexpected pdu type %d\n", hdr->type);
1211 			nvmet_tcp_fatal_error(queue);
1212 			return -EIO;
1213 		}
1214 
1215 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1216 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1217 			return -EIO;
1218 		}
1219 
1220 		queue->left = hdr->hlen - queue->offset + hdgst;
1221 		goto recv;
1222 	}
1223 
1224 	if (queue->hdr_digest &&
1225 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1226 		nvmet_tcp_fatal_error(queue); /* fatal */
1227 		return -EPROTO;
1228 	}
1229 
1230 	if (queue->data_digest &&
1231 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1232 		nvmet_tcp_fatal_error(queue); /* fatal */
1233 		return -EPROTO;
1234 	}
1235 
1236 	return nvmet_tcp_done_recv_pdu(queue);
1237 }
1238 
1239 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1240 {
1241 	struct nvmet_tcp_queue *queue = cmd->queue;
1242 
1243 	nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1244 	queue->offset = 0;
1245 	queue->left = NVME_TCP_DIGEST_LENGTH;
1246 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1247 }
1248 
1249 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1250 {
1251 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1252 	int len, ret;
1253 
1254 	while (msg_data_left(&cmd->recv_msg)) {
1255 		len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1256 			cmd->recv_msg.msg_flags);
1257 		if (len <= 0)
1258 			return len;
1259 		if (queue->tls_pskid) {
1260 			ret = nvmet_tcp_tls_record_ok(cmd->queue,
1261 					&cmd->recv_msg, cmd->recv_cbuf);
1262 			if (ret < 0)
1263 				return ret;
1264 		}
1265 
1266 		cmd->pdu_recv += len;
1267 		cmd->rbytes_done += len;
1268 	}
1269 
1270 	if (queue->data_digest) {
1271 		nvmet_tcp_prep_recv_ddgst(cmd);
1272 		return 0;
1273 	}
1274 
1275 	if (cmd->rbytes_done == cmd->req.transfer_len)
1276 		nvmet_tcp_execute_request(cmd);
1277 
1278 	nvmet_prepare_receive_pdu(queue);
1279 	return 0;
1280 }
1281 
1282 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1283 {
1284 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1285 	int ret, len;
1286 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1287 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1288 	struct kvec iov = {
1289 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1290 		.iov_len = queue->left
1291 	};
1292 
1293 	if (queue->tls_pskid) {
1294 		msg.msg_control = cbuf;
1295 		msg.msg_controllen = sizeof(cbuf);
1296 	}
1297 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1298 			iov.iov_len, msg.msg_flags);
1299 	if (unlikely(len < 0))
1300 		return len;
1301 	if (queue->tls_pskid) {
1302 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1303 		if (ret < 0)
1304 			return ret;
1305 	}
1306 
1307 	queue->offset += len;
1308 	queue->left -= len;
1309 	if (queue->left)
1310 		return -EAGAIN;
1311 
1312 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1313 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1314 			queue->idx, cmd->req.cmd->common.command_id,
1315 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1316 			le32_to_cpu(cmd->exp_ddgst));
1317 		nvmet_req_uninit(&cmd->req);
1318 		nvmet_tcp_free_cmd_buffers(cmd);
1319 		nvmet_tcp_fatal_error(queue);
1320 		ret = -EPROTO;
1321 		goto out;
1322 	}
1323 
1324 	if (cmd->rbytes_done == cmd->req.transfer_len)
1325 		nvmet_tcp_execute_request(cmd);
1326 
1327 	ret = 0;
1328 out:
1329 	nvmet_prepare_receive_pdu(queue);
1330 	return ret;
1331 }
1332 
1333 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1334 {
1335 	int result = 0;
1336 
1337 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1338 		return 0;
1339 
1340 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1341 		result = nvmet_tcp_try_recv_pdu(queue);
1342 		if (result != 0)
1343 			goto done_recv;
1344 	}
1345 
1346 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1347 		result = nvmet_tcp_try_recv_data(queue);
1348 		if (result != 0)
1349 			goto done_recv;
1350 	}
1351 
1352 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1353 		result = nvmet_tcp_try_recv_ddgst(queue);
1354 		if (result != 0)
1355 			goto done_recv;
1356 	}
1357 
1358 done_recv:
1359 	if (result < 0) {
1360 		if (result == -EAGAIN)
1361 			return 0;
1362 		return result;
1363 	}
1364 	return 1;
1365 }
1366 
1367 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1368 		int budget, int *recvs)
1369 {
1370 	int i, ret = 0;
1371 
1372 	for (i = 0; i < budget; i++) {
1373 		ret = nvmet_tcp_try_recv_one(queue);
1374 		if (unlikely(ret < 0)) {
1375 			nvmet_tcp_socket_error(queue, ret);
1376 			goto done;
1377 		} else if (ret == 0) {
1378 			break;
1379 		}
1380 		(*recvs)++;
1381 	}
1382 done:
1383 	return ret;
1384 }
1385 
1386 static void nvmet_tcp_release_queue(struct kref *kref)
1387 {
1388 	struct nvmet_tcp_queue *queue =
1389 		container_of(kref, struct nvmet_tcp_queue, kref);
1390 
1391 	WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1392 	queue_work(nvmet_wq, &queue->release_work);
1393 }
1394 
1395 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1396 {
1397 	spin_lock_bh(&queue->state_lock);
1398 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1399 		/* Socket closed during handshake */
1400 		tls_handshake_cancel(queue->sock->sk);
1401 	}
1402 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1403 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1404 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1405 	}
1406 	spin_unlock_bh(&queue->state_lock);
1407 }
1408 
1409 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1410 {
1411 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1412 }
1413 
1414 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1415 		int ops)
1416 {
1417 	if (!idle_poll_period_usecs)
1418 		return false;
1419 
1420 	if (ops)
1421 		nvmet_tcp_arm_queue_deadline(queue);
1422 
1423 	return !time_after(jiffies, queue->poll_end);
1424 }
1425 
1426 static void nvmet_tcp_io_work(struct work_struct *w)
1427 {
1428 	struct nvmet_tcp_queue *queue =
1429 		container_of(w, struct nvmet_tcp_queue, io_work);
1430 	bool pending;
1431 	int ret, ops = 0;
1432 
1433 	do {
1434 		pending = false;
1435 
1436 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1437 		if (ret > 0)
1438 			pending = true;
1439 		else if (ret < 0)
1440 			return;
1441 
1442 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1443 		if (ret > 0)
1444 			pending = true;
1445 		else if (ret < 0)
1446 			return;
1447 
1448 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1449 
1450 	/*
1451 	 * Requeue the worker if idle deadline period is in progress or any
1452 	 * ops activity was recorded during the do-while loop above.
1453 	 */
1454 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1455 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1456 }
1457 
1458 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1459 		struct nvmet_tcp_cmd *c)
1460 {
1461 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1462 
1463 	c->queue = queue;
1464 	c->req.port = queue->port->nport;
1465 
1466 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1467 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1468 	if (!c->cmd_pdu)
1469 		return -ENOMEM;
1470 	c->req.cmd = &c->cmd_pdu->cmd;
1471 
1472 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1473 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1474 	if (!c->rsp_pdu)
1475 		goto out_free_cmd;
1476 	c->req.cqe = &c->rsp_pdu->cqe;
1477 
1478 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1479 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1480 	if (!c->data_pdu)
1481 		goto out_free_rsp;
1482 
1483 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1484 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1485 	if (!c->r2t_pdu)
1486 		goto out_free_data;
1487 
1488 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1489 		c->recv_msg.msg_control = c->recv_cbuf;
1490 		c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1491 	}
1492 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1493 
1494 	list_add_tail(&c->entry, &queue->free_list);
1495 
1496 	return 0;
1497 out_free_data:
1498 	page_frag_free(c->data_pdu);
1499 out_free_rsp:
1500 	page_frag_free(c->rsp_pdu);
1501 out_free_cmd:
1502 	page_frag_free(c->cmd_pdu);
1503 	return -ENOMEM;
1504 }
1505 
1506 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1507 {
1508 	page_frag_free(c->r2t_pdu);
1509 	page_frag_free(c->data_pdu);
1510 	page_frag_free(c->rsp_pdu);
1511 	page_frag_free(c->cmd_pdu);
1512 }
1513 
1514 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1515 {
1516 	struct nvmet_tcp_cmd *cmds;
1517 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1518 
1519 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1520 	if (!cmds)
1521 		goto out;
1522 
1523 	for (i = 0; i < nr_cmds; i++) {
1524 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1525 		if (ret)
1526 			goto out_free;
1527 	}
1528 
1529 	queue->cmds = cmds;
1530 
1531 	return 0;
1532 out_free:
1533 	while (--i >= 0)
1534 		nvmet_tcp_free_cmd(cmds + i);
1535 	kfree(cmds);
1536 out:
1537 	return ret;
1538 }
1539 
1540 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1541 {
1542 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1543 	int i;
1544 
1545 	for (i = 0; i < queue->nr_cmds; i++)
1546 		nvmet_tcp_free_cmd(cmds + i);
1547 
1548 	nvmet_tcp_free_cmd(&queue->connect);
1549 	kfree(cmds);
1550 }
1551 
1552 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1553 {
1554 	struct socket *sock = queue->sock;
1555 
1556 	write_lock_bh(&sock->sk->sk_callback_lock);
1557 	sock->sk->sk_data_ready =  queue->data_ready;
1558 	sock->sk->sk_state_change = queue->state_change;
1559 	sock->sk->sk_write_space = queue->write_space;
1560 	sock->sk->sk_user_data = NULL;
1561 	write_unlock_bh(&sock->sk->sk_callback_lock);
1562 }
1563 
1564 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1565 {
1566 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1567 	int i;
1568 
1569 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1570 		if (nvmet_tcp_need_data_in(cmd))
1571 			nvmet_req_uninit(&cmd->req);
1572 	}
1573 
1574 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1575 		/* failed in connect */
1576 		nvmet_req_uninit(&queue->connect.req);
1577 	}
1578 }
1579 
1580 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1581 {
1582 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1583 	int i;
1584 
1585 	for (i = 0; i < queue->nr_cmds; i++, cmd++)
1586 		nvmet_tcp_free_cmd_buffers(cmd);
1587 	nvmet_tcp_free_cmd_buffers(&queue->connect);
1588 }
1589 
1590 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1591 {
1592 	struct nvmet_tcp_queue *queue =
1593 		container_of(w, struct nvmet_tcp_queue, release_work);
1594 
1595 	mutex_lock(&nvmet_tcp_queue_mutex);
1596 	list_del_init(&queue->queue_list);
1597 	mutex_unlock(&nvmet_tcp_queue_mutex);
1598 
1599 	nvmet_tcp_restore_socket_callbacks(queue);
1600 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1601 	cancel_work_sync(&queue->io_work);
1602 	/* stop accepting incoming data */
1603 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1604 
1605 	nvmet_tcp_uninit_data_in_cmds(queue);
1606 	nvmet_sq_destroy(&queue->nvme_sq);
1607 	cancel_work_sync(&queue->io_work);
1608 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1609 	/* ->sock will be released by fput() */
1610 	fput(queue->sock->file);
1611 	nvmet_tcp_free_cmds(queue);
1612 	if (queue->hdr_digest || queue->data_digest)
1613 		nvmet_tcp_free_crypto(queue);
1614 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1615 	page_frag_cache_drain(&queue->pf_cache);
1616 	kfree(queue);
1617 }
1618 
1619 static void nvmet_tcp_data_ready(struct sock *sk)
1620 {
1621 	struct nvmet_tcp_queue *queue;
1622 
1623 	trace_sk_data_ready(sk);
1624 
1625 	read_lock_bh(&sk->sk_callback_lock);
1626 	queue = sk->sk_user_data;
1627 	if (likely(queue)) {
1628 		if (queue->data_ready)
1629 			queue->data_ready(sk);
1630 		if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1631 			queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1632 				      &queue->io_work);
1633 	}
1634 	read_unlock_bh(&sk->sk_callback_lock);
1635 }
1636 
1637 static void nvmet_tcp_write_space(struct sock *sk)
1638 {
1639 	struct nvmet_tcp_queue *queue;
1640 
1641 	read_lock_bh(&sk->sk_callback_lock);
1642 	queue = sk->sk_user_data;
1643 	if (unlikely(!queue))
1644 		goto out;
1645 
1646 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1647 		queue->write_space(sk);
1648 		goto out;
1649 	}
1650 
1651 	if (sk_stream_is_writeable(sk)) {
1652 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1653 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1654 	}
1655 out:
1656 	read_unlock_bh(&sk->sk_callback_lock);
1657 }
1658 
1659 static void nvmet_tcp_state_change(struct sock *sk)
1660 {
1661 	struct nvmet_tcp_queue *queue;
1662 
1663 	read_lock_bh(&sk->sk_callback_lock);
1664 	queue = sk->sk_user_data;
1665 	if (!queue)
1666 		goto done;
1667 
1668 	switch (sk->sk_state) {
1669 	case TCP_FIN_WAIT2:
1670 	case TCP_LAST_ACK:
1671 		break;
1672 	case TCP_FIN_WAIT1:
1673 	case TCP_CLOSE_WAIT:
1674 	case TCP_CLOSE:
1675 		/* FALLTHRU */
1676 		nvmet_tcp_schedule_release_queue(queue);
1677 		break;
1678 	default:
1679 		pr_warn("queue %d unhandled state %d\n",
1680 			queue->idx, sk->sk_state);
1681 	}
1682 done:
1683 	read_unlock_bh(&sk->sk_callback_lock);
1684 }
1685 
1686 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1687 {
1688 	struct socket *sock = queue->sock;
1689 	struct inet_sock *inet = inet_sk(sock->sk);
1690 	int ret;
1691 
1692 	ret = kernel_getsockname(sock,
1693 		(struct sockaddr *)&queue->sockaddr);
1694 	if (ret < 0)
1695 		return ret;
1696 
1697 	ret = kernel_getpeername(sock,
1698 		(struct sockaddr *)&queue->sockaddr_peer);
1699 	if (ret < 0)
1700 		return ret;
1701 
1702 	/*
1703 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1704 	 * close. This is done to prevent stale data from being sent should
1705 	 * the network connection be restored before TCP times out.
1706 	 */
1707 	sock_no_linger(sock->sk);
1708 
1709 	if (so_priority > 0)
1710 		sock_set_priority(sock->sk, so_priority);
1711 
1712 	/* Set socket type of service */
1713 	if (inet->rcv_tos > 0)
1714 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1715 
1716 	ret = 0;
1717 	write_lock_bh(&sock->sk->sk_callback_lock);
1718 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1719 		/*
1720 		 * If the socket is already closing, don't even start
1721 		 * consuming it
1722 		 */
1723 		ret = -ENOTCONN;
1724 	} else {
1725 		sock->sk->sk_user_data = queue;
1726 		queue->data_ready = sock->sk->sk_data_ready;
1727 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1728 		queue->state_change = sock->sk->sk_state_change;
1729 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1730 		queue->write_space = sock->sk->sk_write_space;
1731 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1732 		if (idle_poll_period_usecs)
1733 			nvmet_tcp_arm_queue_deadline(queue);
1734 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1735 	}
1736 	write_unlock_bh(&sock->sk->sk_callback_lock);
1737 
1738 	return ret;
1739 }
1740 
1741 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1742 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1743 {
1744 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1745 	int len, ret;
1746 	struct kvec iov = {
1747 		.iov_base = (u8 *)&queue->pdu + queue->offset,
1748 		.iov_len = sizeof(struct nvme_tcp_hdr),
1749 	};
1750 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1751 	struct msghdr msg = {
1752 		.msg_control = cbuf,
1753 		.msg_controllen = sizeof(cbuf),
1754 		.msg_flags = MSG_PEEK,
1755 	};
1756 
1757 	if (nvmet_port_secure_channel_required(queue->port->nport))
1758 		return 0;
1759 
1760 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1761 			iov.iov_len, msg.msg_flags);
1762 	if (unlikely(len < 0)) {
1763 		pr_debug("queue %d: peek error %d\n",
1764 			 queue->idx, len);
1765 		return len;
1766 	}
1767 
1768 	ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1769 	if (ret < 0)
1770 		return ret;
1771 
1772 	if (len < sizeof(struct nvme_tcp_hdr)) {
1773 		pr_debug("queue %d: short read, %d bytes missing\n",
1774 			 queue->idx, (int)iov.iov_len - len);
1775 		return -EAGAIN;
1776 	}
1777 	pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1778 		 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1779 		 (int)sizeof(struct nvme_tcp_icreq_pdu));
1780 	if (hdr->type == nvme_tcp_icreq &&
1781 	    hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1782 	    hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1783 		pr_debug("queue %d: icreq detected\n",
1784 			 queue->idx);
1785 		return len;
1786 	}
1787 	return 0;
1788 }
1789 
1790 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1791 					 key_serial_t peerid)
1792 {
1793 	struct nvmet_tcp_queue *queue = data;
1794 
1795 	pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1796 		 queue->idx, peerid, status);
1797 	spin_lock_bh(&queue->state_lock);
1798 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1799 		spin_unlock_bh(&queue->state_lock);
1800 		return;
1801 	}
1802 	if (!status) {
1803 		queue->tls_pskid = peerid;
1804 		queue->state = NVMET_TCP_Q_CONNECTING;
1805 	} else
1806 		queue->state = NVMET_TCP_Q_FAILED;
1807 	spin_unlock_bh(&queue->state_lock);
1808 
1809 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1810 	if (status)
1811 		nvmet_tcp_schedule_release_queue(queue);
1812 	else
1813 		nvmet_tcp_set_queue_sock(queue);
1814 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1815 }
1816 
1817 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1818 {
1819 	struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1820 			struct nvmet_tcp_queue, tls_handshake_tmo_work);
1821 
1822 	pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1823 	/*
1824 	 * If tls_handshake_cancel() fails we've lost the race with
1825 	 * nvmet_tcp_tls_handshake_done() */
1826 	if (!tls_handshake_cancel(queue->sock->sk))
1827 		return;
1828 	spin_lock_bh(&queue->state_lock);
1829 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1830 		spin_unlock_bh(&queue->state_lock);
1831 		return;
1832 	}
1833 	queue->state = NVMET_TCP_Q_FAILED;
1834 	spin_unlock_bh(&queue->state_lock);
1835 	nvmet_tcp_schedule_release_queue(queue);
1836 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1837 }
1838 
1839 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1840 {
1841 	int ret = -EOPNOTSUPP;
1842 	struct tls_handshake_args args;
1843 
1844 	if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1845 		pr_warn("cannot start TLS in state %d\n", queue->state);
1846 		return -EINVAL;
1847 	}
1848 
1849 	kref_get(&queue->kref);
1850 	pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1851 	memset(&args, 0, sizeof(args));
1852 	args.ta_sock = queue->sock;
1853 	args.ta_done = nvmet_tcp_tls_handshake_done;
1854 	args.ta_data = queue;
1855 	args.ta_keyring = key_serial(queue->port->nport->keyring);
1856 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1857 
1858 	ret = tls_server_hello_psk(&args, GFP_KERNEL);
1859 	if (ret) {
1860 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1861 		pr_err("failed to start TLS, err=%d\n", ret);
1862 	} else {
1863 		queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1864 				   tls_handshake_timeout * HZ);
1865 	}
1866 	return ret;
1867 }
1868 #else
1869 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1870 #endif
1871 
1872 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1873 		struct socket *newsock)
1874 {
1875 	struct nvmet_tcp_queue *queue;
1876 	struct file *sock_file = NULL;
1877 	int ret;
1878 
1879 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1880 	if (!queue) {
1881 		ret = -ENOMEM;
1882 		goto out_release;
1883 	}
1884 
1885 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1886 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1887 	kref_init(&queue->kref);
1888 	queue->sock = newsock;
1889 	queue->port = port;
1890 	queue->nr_cmds = 0;
1891 	spin_lock_init(&queue->state_lock);
1892 	if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1893 	    NVMF_TCP_SECTYPE_TLS13)
1894 		queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1895 	else
1896 		queue->state = NVMET_TCP_Q_CONNECTING;
1897 	INIT_LIST_HEAD(&queue->free_list);
1898 	init_llist_head(&queue->resp_list);
1899 	INIT_LIST_HEAD(&queue->resp_send_list);
1900 
1901 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1902 	if (IS_ERR(sock_file)) {
1903 		ret = PTR_ERR(sock_file);
1904 		goto out_free_queue;
1905 	}
1906 
1907 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1908 	if (queue->idx < 0) {
1909 		ret = queue->idx;
1910 		goto out_sock;
1911 	}
1912 
1913 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1914 	if (ret)
1915 		goto out_ida_remove;
1916 
1917 	ret = nvmet_sq_init(&queue->nvme_sq);
1918 	if (ret)
1919 		goto out_free_connect;
1920 
1921 	nvmet_prepare_receive_pdu(queue);
1922 
1923 	mutex_lock(&nvmet_tcp_queue_mutex);
1924 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1925 	mutex_unlock(&nvmet_tcp_queue_mutex);
1926 
1927 	INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1928 			  nvmet_tcp_tls_handshake_timeout);
1929 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1930 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1931 		struct sock *sk = queue->sock->sk;
1932 
1933 		/* Restore the default callbacks before starting upcall */
1934 		read_lock_bh(&sk->sk_callback_lock);
1935 		sk->sk_user_data = NULL;
1936 		sk->sk_data_ready = port->data_ready;
1937 		read_unlock_bh(&sk->sk_callback_lock);
1938 		if (!nvmet_tcp_try_peek_pdu(queue)) {
1939 			if (!nvmet_tcp_tls_handshake(queue))
1940 				return;
1941 			/* TLS handshake failed, terminate the connection */
1942 			goto out_destroy_sq;
1943 		}
1944 		/* Not a TLS connection, continue with normal processing */
1945 		queue->state = NVMET_TCP_Q_CONNECTING;
1946 	}
1947 #endif
1948 
1949 	ret = nvmet_tcp_set_queue_sock(queue);
1950 	if (ret)
1951 		goto out_destroy_sq;
1952 
1953 	return;
1954 out_destroy_sq:
1955 	mutex_lock(&nvmet_tcp_queue_mutex);
1956 	list_del_init(&queue->queue_list);
1957 	mutex_unlock(&nvmet_tcp_queue_mutex);
1958 	nvmet_sq_destroy(&queue->nvme_sq);
1959 out_free_connect:
1960 	nvmet_tcp_free_cmd(&queue->connect);
1961 out_ida_remove:
1962 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1963 out_sock:
1964 	fput(queue->sock->file);
1965 out_free_queue:
1966 	kfree(queue);
1967 out_release:
1968 	pr_err("failed to allocate queue, error %d\n", ret);
1969 	if (!sock_file)
1970 		sock_release(newsock);
1971 }
1972 
1973 static void nvmet_tcp_accept_work(struct work_struct *w)
1974 {
1975 	struct nvmet_tcp_port *port =
1976 		container_of(w, struct nvmet_tcp_port, accept_work);
1977 	struct socket *newsock;
1978 	int ret;
1979 
1980 	while (true) {
1981 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1982 		if (ret < 0) {
1983 			if (ret != -EAGAIN)
1984 				pr_warn("failed to accept err=%d\n", ret);
1985 			return;
1986 		}
1987 		nvmet_tcp_alloc_queue(port, newsock);
1988 	}
1989 }
1990 
1991 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1992 {
1993 	struct nvmet_tcp_port *port;
1994 
1995 	trace_sk_data_ready(sk);
1996 
1997 	read_lock_bh(&sk->sk_callback_lock);
1998 	port = sk->sk_user_data;
1999 	if (!port)
2000 		goto out;
2001 
2002 	if (sk->sk_state == TCP_LISTEN)
2003 		queue_work(nvmet_wq, &port->accept_work);
2004 out:
2005 	read_unlock_bh(&sk->sk_callback_lock);
2006 }
2007 
2008 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2009 {
2010 	struct nvmet_tcp_port *port;
2011 	__kernel_sa_family_t af;
2012 	int ret;
2013 
2014 	port = kzalloc(sizeof(*port), GFP_KERNEL);
2015 	if (!port)
2016 		return -ENOMEM;
2017 
2018 	switch (nport->disc_addr.adrfam) {
2019 	case NVMF_ADDR_FAMILY_IP4:
2020 		af = AF_INET;
2021 		break;
2022 	case NVMF_ADDR_FAMILY_IP6:
2023 		af = AF_INET6;
2024 		break;
2025 	default:
2026 		pr_err("address family %d not supported\n",
2027 				nport->disc_addr.adrfam);
2028 		ret = -EINVAL;
2029 		goto err_port;
2030 	}
2031 
2032 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2033 			nport->disc_addr.trsvcid, &port->addr);
2034 	if (ret) {
2035 		pr_err("malformed ip/port passed: %s:%s\n",
2036 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2037 		goto err_port;
2038 	}
2039 
2040 	port->nport = nport;
2041 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2042 	if (port->nport->inline_data_size < 0)
2043 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2044 
2045 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2046 				IPPROTO_TCP, &port->sock);
2047 	if (ret) {
2048 		pr_err("failed to create a socket\n");
2049 		goto err_port;
2050 	}
2051 
2052 	port->sock->sk->sk_user_data = port;
2053 	port->data_ready = port->sock->sk->sk_data_ready;
2054 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2055 	sock_set_reuseaddr(port->sock->sk);
2056 	tcp_sock_set_nodelay(port->sock->sk);
2057 	if (so_priority > 0)
2058 		sock_set_priority(port->sock->sk, so_priority);
2059 
2060 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2061 			sizeof(port->addr));
2062 	if (ret) {
2063 		pr_err("failed to bind port socket %d\n", ret);
2064 		goto err_sock;
2065 	}
2066 
2067 	ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2068 	if (ret) {
2069 		pr_err("failed to listen %d on port sock\n", ret);
2070 		goto err_sock;
2071 	}
2072 
2073 	nport->priv = port;
2074 	pr_info("enabling port %d (%pISpc)\n",
2075 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
2076 
2077 	return 0;
2078 
2079 err_sock:
2080 	sock_release(port->sock);
2081 err_port:
2082 	kfree(port);
2083 	return ret;
2084 }
2085 
2086 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2087 {
2088 	struct nvmet_tcp_queue *queue;
2089 
2090 	mutex_lock(&nvmet_tcp_queue_mutex);
2091 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2092 		if (queue->port == port)
2093 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2094 	mutex_unlock(&nvmet_tcp_queue_mutex);
2095 }
2096 
2097 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2098 {
2099 	struct nvmet_tcp_port *port = nport->priv;
2100 
2101 	write_lock_bh(&port->sock->sk->sk_callback_lock);
2102 	port->sock->sk->sk_data_ready = port->data_ready;
2103 	port->sock->sk->sk_user_data = NULL;
2104 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
2105 	cancel_work_sync(&port->accept_work);
2106 	/*
2107 	 * Destroy the remaining queues, which are not belong to any
2108 	 * controller yet.
2109 	 */
2110 	nvmet_tcp_destroy_port_queues(port);
2111 
2112 	sock_release(port->sock);
2113 	kfree(port);
2114 }
2115 
2116 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2117 {
2118 	struct nvmet_tcp_queue *queue;
2119 
2120 	mutex_lock(&nvmet_tcp_queue_mutex);
2121 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2122 		if (queue->nvme_sq.ctrl == ctrl)
2123 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2124 	mutex_unlock(&nvmet_tcp_queue_mutex);
2125 }
2126 
2127 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2128 {
2129 	struct nvmet_tcp_queue *queue =
2130 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2131 
2132 	if (sq->qid == 0) {
2133 		struct nvmet_tcp_queue *q;
2134 		int pending = 0;
2135 
2136 		/* Check for pending controller teardown */
2137 		mutex_lock(&nvmet_tcp_queue_mutex);
2138 		list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2139 			if (q->nvme_sq.ctrl == sq->ctrl &&
2140 			    q->state == NVMET_TCP_Q_DISCONNECTING)
2141 				pending++;
2142 		}
2143 		mutex_unlock(&nvmet_tcp_queue_mutex);
2144 		if (pending > NVMET_TCP_BACKLOG)
2145 			return NVME_SC_CONNECT_CTRL_BUSY;
2146 	}
2147 
2148 	queue->nr_cmds = sq->size * 2;
2149 	if (nvmet_tcp_alloc_cmds(queue))
2150 		return NVME_SC_INTERNAL;
2151 	return 0;
2152 }
2153 
2154 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2155 		struct nvmet_port *nport, char *traddr)
2156 {
2157 	struct nvmet_tcp_port *port = nport->priv;
2158 
2159 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2160 		struct nvmet_tcp_cmd *cmd =
2161 			container_of(req, struct nvmet_tcp_cmd, req);
2162 		struct nvmet_tcp_queue *queue = cmd->queue;
2163 
2164 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2165 	} else {
2166 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2167 	}
2168 }
2169 
2170 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2171 	.owner			= THIS_MODULE,
2172 	.type			= NVMF_TRTYPE_TCP,
2173 	.msdbd			= 1,
2174 	.add_port		= nvmet_tcp_add_port,
2175 	.remove_port		= nvmet_tcp_remove_port,
2176 	.queue_response		= nvmet_tcp_queue_response,
2177 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
2178 	.install_queue		= nvmet_tcp_install_queue,
2179 	.disc_traddr		= nvmet_tcp_disc_port_addr,
2180 };
2181 
2182 static int __init nvmet_tcp_init(void)
2183 {
2184 	int ret;
2185 
2186 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2187 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2188 	if (!nvmet_tcp_wq)
2189 		return -ENOMEM;
2190 
2191 	ret = nvmet_register_transport(&nvmet_tcp_ops);
2192 	if (ret)
2193 		goto err;
2194 
2195 	return 0;
2196 err:
2197 	destroy_workqueue(nvmet_tcp_wq);
2198 	return ret;
2199 }
2200 
2201 static void __exit nvmet_tcp_exit(void)
2202 {
2203 	struct nvmet_tcp_queue *queue;
2204 
2205 	nvmet_unregister_transport(&nvmet_tcp_ops);
2206 
2207 	flush_workqueue(nvmet_wq);
2208 	mutex_lock(&nvmet_tcp_queue_mutex);
2209 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2210 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2211 	mutex_unlock(&nvmet_tcp_queue_mutex);
2212 	flush_workqueue(nvmet_wq);
2213 
2214 	destroy_workqueue(nvmet_tcp_wq);
2215 	ida_destroy(&nvmet_tcp_queue_ida);
2216 }
2217 
2218 module_init(nvmet_tcp_init);
2219 module_exit(nvmet_tcp_exit);
2220 
2221 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2222 MODULE_LICENSE("GPL v2");
2223 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2224