1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/key.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/inet.h> 20 #include <linux/llist.h> 21 #include <crypto/hash.h> 22 #include <trace/events/sock.h> 23 24 #include "nvmet.h" 25 26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 27 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */ 28 #define NVMET_TCP_BACKLOG 128 29 30 static int param_store_val(const char *str, int *val, int min, int max) 31 { 32 int ret, new_val; 33 34 ret = kstrtoint(str, 10, &new_val); 35 if (ret) 36 return -EINVAL; 37 38 if (new_val < min || new_val > max) 39 return -EINVAL; 40 41 *val = new_val; 42 return 0; 43 } 44 45 static int set_params(const char *str, const struct kernel_param *kp) 46 { 47 return param_store_val(str, kp->arg, 0, INT_MAX); 48 } 49 50 static const struct kernel_param_ops set_param_ops = { 51 .set = set_params, 52 .get = param_get_int, 53 }; 54 55 /* Define the socket priority to use for connections were it is desirable 56 * that the NIC consider performing optimized packet processing or filtering. 57 * A non-zero value being sufficient to indicate general consideration of any 58 * possible optimization. Making it a module param allows for alternative 59 * values that may be unique for some NIC implementations. 60 */ 61 static int so_priority; 62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); 63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); 64 65 /* Define a time period (in usecs) that io_work() shall sample an activated 66 * queue before determining it to be idle. This optional module behavior 67 * can enable NIC solutions that support socket optimized packet processing 68 * using advanced interrupt moderation techniques. 69 */ 70 static int idle_poll_period_usecs; 71 device_param_cb(idle_poll_period_usecs, &set_param_ops, 72 &idle_poll_period_usecs, 0644); 73 MODULE_PARM_DESC(idle_poll_period_usecs, 74 "nvmet tcp io_work poll till idle time period in usecs: Default 0"); 75 76 #ifdef CONFIG_NVME_TARGET_TCP_TLS 77 /* 78 * TLS handshake timeout 79 */ 80 static int tls_handshake_timeout = 10; 81 module_param(tls_handshake_timeout, int, 0644); 82 MODULE_PARM_DESC(tls_handshake_timeout, 83 "nvme TLS handshake timeout in seconds (default 10)"); 84 #endif 85 86 #define NVMET_TCP_RECV_BUDGET 8 87 #define NVMET_TCP_SEND_BUDGET 8 88 #define NVMET_TCP_IO_WORK_BUDGET 64 89 90 enum nvmet_tcp_send_state { 91 NVMET_TCP_SEND_DATA_PDU, 92 NVMET_TCP_SEND_DATA, 93 NVMET_TCP_SEND_R2T, 94 NVMET_TCP_SEND_DDGST, 95 NVMET_TCP_SEND_RESPONSE 96 }; 97 98 enum nvmet_tcp_recv_state { 99 NVMET_TCP_RECV_PDU, 100 NVMET_TCP_RECV_DATA, 101 NVMET_TCP_RECV_DDGST, 102 NVMET_TCP_RECV_ERR, 103 }; 104 105 enum { 106 NVMET_TCP_F_INIT_FAILED = (1 << 0), 107 }; 108 109 struct nvmet_tcp_cmd { 110 struct nvmet_tcp_queue *queue; 111 struct nvmet_req req; 112 113 struct nvme_tcp_cmd_pdu *cmd_pdu; 114 struct nvme_tcp_rsp_pdu *rsp_pdu; 115 struct nvme_tcp_data_pdu *data_pdu; 116 struct nvme_tcp_r2t_pdu *r2t_pdu; 117 118 u32 rbytes_done; 119 u32 wbytes_done; 120 121 u32 pdu_len; 122 u32 pdu_recv; 123 int sg_idx; 124 char recv_cbuf[CMSG_LEN(sizeof(char))]; 125 struct msghdr recv_msg; 126 struct bio_vec *iov; 127 u32 flags; 128 129 struct list_head entry; 130 struct llist_node lentry; 131 132 /* send state */ 133 u32 offset; 134 struct scatterlist *cur_sg; 135 enum nvmet_tcp_send_state state; 136 137 __le32 exp_ddgst; 138 __le32 recv_ddgst; 139 }; 140 141 enum nvmet_tcp_queue_state { 142 NVMET_TCP_Q_CONNECTING, 143 NVMET_TCP_Q_TLS_HANDSHAKE, 144 NVMET_TCP_Q_LIVE, 145 NVMET_TCP_Q_DISCONNECTING, 146 NVMET_TCP_Q_FAILED, 147 }; 148 149 struct nvmet_tcp_queue { 150 struct socket *sock; 151 struct nvmet_tcp_port *port; 152 struct work_struct io_work; 153 struct nvmet_cq nvme_cq; 154 struct nvmet_sq nvme_sq; 155 struct kref kref; 156 157 /* send state */ 158 struct nvmet_tcp_cmd *cmds; 159 unsigned int nr_cmds; 160 struct list_head free_list; 161 struct llist_head resp_list; 162 struct list_head resp_send_list; 163 int send_list_len; 164 struct nvmet_tcp_cmd *snd_cmd; 165 166 /* recv state */ 167 int offset; 168 int left; 169 enum nvmet_tcp_recv_state rcv_state; 170 struct nvmet_tcp_cmd *cmd; 171 union nvme_tcp_pdu pdu; 172 173 /* digest state */ 174 bool hdr_digest; 175 bool data_digest; 176 struct ahash_request *snd_hash; 177 struct ahash_request *rcv_hash; 178 179 /* TLS state */ 180 key_serial_t tls_pskid; 181 struct delayed_work tls_handshake_tmo_work; 182 183 unsigned long poll_end; 184 185 spinlock_t state_lock; 186 enum nvmet_tcp_queue_state state; 187 188 struct sockaddr_storage sockaddr; 189 struct sockaddr_storage sockaddr_peer; 190 struct work_struct release_work; 191 192 int idx; 193 struct list_head queue_list; 194 195 struct nvmet_tcp_cmd connect; 196 197 struct page_frag_cache pf_cache; 198 199 void (*data_ready)(struct sock *); 200 void (*state_change)(struct sock *); 201 void (*write_space)(struct sock *); 202 }; 203 204 struct nvmet_tcp_port { 205 struct socket *sock; 206 struct work_struct accept_work; 207 struct nvmet_port *nport; 208 struct sockaddr_storage addr; 209 void (*data_ready)(struct sock *); 210 }; 211 212 static DEFINE_IDA(nvmet_tcp_queue_ida); 213 static LIST_HEAD(nvmet_tcp_queue_list); 214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 215 216 static struct workqueue_struct *nvmet_tcp_wq; 217 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); 220 221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 222 struct nvmet_tcp_cmd *cmd) 223 { 224 if (unlikely(!queue->nr_cmds)) { 225 /* We didn't allocate cmds yet, send 0xffff */ 226 return USHRT_MAX; 227 } 228 229 return cmd - queue->cmds; 230 } 231 232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 233 { 234 return nvme_is_write(cmd->req.cmd) && 235 cmd->rbytes_done < cmd->req.transfer_len; 236 } 237 238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 239 { 240 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 241 } 242 243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 244 { 245 return !nvme_is_write(cmd->req.cmd) && 246 cmd->req.transfer_len > 0 && 247 !cmd->req.cqe->status; 248 } 249 250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 251 { 252 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 253 !cmd->rbytes_done; 254 } 255 256 static inline struct nvmet_tcp_cmd * 257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 258 { 259 struct nvmet_tcp_cmd *cmd; 260 261 cmd = list_first_entry_or_null(&queue->free_list, 262 struct nvmet_tcp_cmd, entry); 263 if (!cmd) 264 return NULL; 265 list_del_init(&cmd->entry); 266 267 cmd->rbytes_done = cmd->wbytes_done = 0; 268 cmd->pdu_len = 0; 269 cmd->pdu_recv = 0; 270 cmd->iov = NULL; 271 cmd->flags = 0; 272 return cmd; 273 } 274 275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 276 { 277 if (unlikely(cmd == &cmd->queue->connect)) 278 return; 279 280 list_add_tail(&cmd->entry, &cmd->queue->free_list); 281 } 282 283 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 284 { 285 return queue->sock->sk->sk_incoming_cpu; 286 } 287 288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 289 { 290 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 291 } 292 293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 294 { 295 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 296 } 297 298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 299 void *pdu, size_t len) 300 { 301 struct scatterlist sg; 302 303 sg_init_one(&sg, pdu, len); 304 ahash_request_set_crypt(hash, &sg, pdu + len, len); 305 crypto_ahash_digest(hash); 306 } 307 308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 309 void *pdu, size_t len) 310 { 311 struct nvme_tcp_hdr *hdr = pdu; 312 __le32 recv_digest; 313 __le32 exp_digest; 314 315 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 316 pr_err("queue %d: header digest enabled but no header digest\n", 317 queue->idx); 318 return -EPROTO; 319 } 320 321 recv_digest = *(__le32 *)(pdu + hdr->hlen); 322 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 323 exp_digest = *(__le32 *)(pdu + hdr->hlen); 324 if (recv_digest != exp_digest) { 325 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 326 queue->idx, le32_to_cpu(recv_digest), 327 le32_to_cpu(exp_digest)); 328 return -EPROTO; 329 } 330 331 return 0; 332 } 333 334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 335 { 336 struct nvme_tcp_hdr *hdr = pdu; 337 u8 digest_len = nvmet_tcp_hdgst_len(queue); 338 u32 len; 339 340 len = le32_to_cpu(hdr->plen) - hdr->hlen - 341 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 342 343 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 344 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 345 return -EPROTO; 346 } 347 348 return 0; 349 } 350 351 /* If cmd buffers are NULL, no operation is performed */ 352 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) 353 { 354 kfree(cmd->iov); 355 sgl_free(cmd->req.sg); 356 cmd->iov = NULL; 357 cmd->req.sg = NULL; 358 } 359 360 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) 361 { 362 struct bio_vec *iov = cmd->iov; 363 struct scatterlist *sg; 364 u32 length, offset, sg_offset; 365 int nr_pages; 366 367 length = cmd->pdu_len; 368 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); 369 offset = cmd->rbytes_done; 370 cmd->sg_idx = offset / PAGE_SIZE; 371 sg_offset = offset % PAGE_SIZE; 372 sg = &cmd->req.sg[cmd->sg_idx]; 373 374 while (length) { 375 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 376 377 bvec_set_page(iov, sg_page(sg), iov_len, 378 sg->offset + sg_offset); 379 380 length -= iov_len; 381 sg = sg_next(sg); 382 iov++; 383 sg_offset = 0; 384 } 385 386 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, 387 nr_pages, cmd->pdu_len); 388 } 389 390 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 391 { 392 queue->rcv_state = NVMET_TCP_RECV_ERR; 393 if (queue->nvme_sq.ctrl) 394 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 395 else 396 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 397 } 398 399 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 400 { 401 queue->rcv_state = NVMET_TCP_RECV_ERR; 402 if (status == -EPIPE || status == -ECONNRESET) 403 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 404 else 405 nvmet_tcp_fatal_error(queue); 406 } 407 408 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 409 { 410 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 411 u32 len = le32_to_cpu(sgl->length); 412 413 if (!len) 414 return 0; 415 416 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 417 NVME_SGL_FMT_OFFSET)) { 418 if (!nvme_is_write(cmd->req.cmd)) 419 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 420 421 if (len > cmd->req.port->inline_data_size) 422 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR; 423 cmd->pdu_len = len; 424 } 425 cmd->req.transfer_len += len; 426 427 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 428 if (!cmd->req.sg) 429 return NVME_SC_INTERNAL; 430 cmd->cur_sg = cmd->req.sg; 431 432 if (nvmet_tcp_has_data_in(cmd)) { 433 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 434 sizeof(*cmd->iov), GFP_KERNEL); 435 if (!cmd->iov) 436 goto err; 437 } 438 439 return 0; 440 err: 441 nvmet_tcp_free_cmd_buffers(cmd); 442 return NVME_SC_INTERNAL; 443 } 444 445 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, 446 struct nvmet_tcp_cmd *cmd) 447 { 448 ahash_request_set_crypt(hash, cmd->req.sg, 449 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 450 crypto_ahash_digest(hash); 451 } 452 453 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 454 { 455 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 456 struct nvmet_tcp_queue *queue = cmd->queue; 457 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 458 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 459 460 cmd->offset = 0; 461 cmd->state = NVMET_TCP_SEND_DATA_PDU; 462 463 pdu->hdr.type = nvme_tcp_c2h_data; 464 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 465 NVME_TCP_F_DATA_SUCCESS : 0); 466 pdu->hdr.hlen = sizeof(*pdu); 467 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 468 pdu->hdr.plen = 469 cpu_to_le32(pdu->hdr.hlen + hdgst + 470 cmd->req.transfer_len + ddgst); 471 pdu->command_id = cmd->req.cqe->command_id; 472 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 473 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 474 475 if (queue->data_digest) { 476 pdu->hdr.flags |= NVME_TCP_F_DDGST; 477 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); 478 } 479 480 if (cmd->queue->hdr_digest) { 481 pdu->hdr.flags |= NVME_TCP_F_HDGST; 482 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 483 } 484 } 485 486 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 487 { 488 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 489 struct nvmet_tcp_queue *queue = cmd->queue; 490 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 491 492 cmd->offset = 0; 493 cmd->state = NVMET_TCP_SEND_R2T; 494 495 pdu->hdr.type = nvme_tcp_r2t; 496 pdu->hdr.flags = 0; 497 pdu->hdr.hlen = sizeof(*pdu); 498 pdu->hdr.pdo = 0; 499 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 500 501 pdu->command_id = cmd->req.cmd->common.command_id; 502 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 503 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 504 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 505 if (cmd->queue->hdr_digest) { 506 pdu->hdr.flags |= NVME_TCP_F_HDGST; 507 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 508 } 509 } 510 511 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 512 { 513 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 514 struct nvmet_tcp_queue *queue = cmd->queue; 515 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 516 517 cmd->offset = 0; 518 cmd->state = NVMET_TCP_SEND_RESPONSE; 519 520 pdu->hdr.type = nvme_tcp_rsp; 521 pdu->hdr.flags = 0; 522 pdu->hdr.hlen = sizeof(*pdu); 523 pdu->hdr.pdo = 0; 524 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 525 if (cmd->queue->hdr_digest) { 526 pdu->hdr.flags |= NVME_TCP_F_HDGST; 527 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 528 } 529 } 530 531 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 532 { 533 struct llist_node *node; 534 struct nvmet_tcp_cmd *cmd; 535 536 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 537 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 538 list_add(&cmd->entry, &queue->resp_send_list); 539 queue->send_list_len++; 540 } 541 } 542 543 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 544 { 545 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 546 struct nvmet_tcp_cmd, entry); 547 if (!queue->snd_cmd) { 548 nvmet_tcp_process_resp_list(queue); 549 queue->snd_cmd = 550 list_first_entry_or_null(&queue->resp_send_list, 551 struct nvmet_tcp_cmd, entry); 552 if (unlikely(!queue->snd_cmd)) 553 return NULL; 554 } 555 556 list_del_init(&queue->snd_cmd->entry); 557 queue->send_list_len--; 558 559 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 560 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 561 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 562 nvmet_setup_r2t_pdu(queue->snd_cmd); 563 else 564 nvmet_setup_response_pdu(queue->snd_cmd); 565 566 return queue->snd_cmd; 567 } 568 569 static void nvmet_tcp_queue_response(struct nvmet_req *req) 570 { 571 struct nvmet_tcp_cmd *cmd = 572 container_of(req, struct nvmet_tcp_cmd, req); 573 struct nvmet_tcp_queue *queue = cmd->queue; 574 enum nvmet_tcp_recv_state queue_state; 575 struct nvmet_tcp_cmd *queue_cmd; 576 struct nvme_sgl_desc *sgl; 577 u32 len; 578 579 /* Pairs with store_release in nvmet_prepare_receive_pdu() */ 580 queue_state = smp_load_acquire(&queue->rcv_state); 581 queue_cmd = READ_ONCE(queue->cmd); 582 583 if (unlikely(cmd == queue_cmd)) { 584 sgl = &cmd->req.cmd->common.dptr.sgl; 585 len = le32_to_cpu(sgl->length); 586 587 /* 588 * Wait for inline data before processing the response. 589 * Avoid using helpers, this might happen before 590 * nvmet_req_init is completed. 591 */ 592 if (queue_state == NVMET_TCP_RECV_PDU && 593 len && len <= cmd->req.port->inline_data_size && 594 nvme_is_write(cmd->req.cmd)) 595 return; 596 } 597 598 llist_add(&cmd->lentry, &queue->resp_list); 599 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 600 } 601 602 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 603 { 604 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 605 nvmet_tcp_queue_response(&cmd->req); 606 else 607 cmd->req.execute(&cmd->req); 608 } 609 610 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 611 { 612 struct msghdr msg = { 613 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, 614 }; 615 struct bio_vec bvec; 616 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 617 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 618 int ret; 619 620 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); 621 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 622 ret = sock_sendmsg(cmd->queue->sock, &msg); 623 if (ret <= 0) 624 return ret; 625 626 cmd->offset += ret; 627 left -= ret; 628 629 if (left) 630 return -EAGAIN; 631 632 cmd->state = NVMET_TCP_SEND_DATA; 633 cmd->offset = 0; 634 return 1; 635 } 636 637 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 638 { 639 struct nvmet_tcp_queue *queue = cmd->queue; 640 int ret; 641 642 while (cmd->cur_sg) { 643 struct msghdr msg = { 644 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 645 }; 646 struct page *page = sg_page(cmd->cur_sg); 647 struct bio_vec bvec; 648 u32 left = cmd->cur_sg->length - cmd->offset; 649 650 if ((!last_in_batch && cmd->queue->send_list_len) || 651 cmd->wbytes_done + left < cmd->req.transfer_len || 652 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 653 msg.msg_flags |= MSG_MORE; 654 655 bvec_set_page(&bvec, page, left, cmd->offset); 656 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 657 ret = sock_sendmsg(cmd->queue->sock, &msg); 658 if (ret <= 0) 659 return ret; 660 661 cmd->offset += ret; 662 cmd->wbytes_done += ret; 663 664 /* Done with sg?*/ 665 if (cmd->offset == cmd->cur_sg->length) { 666 cmd->cur_sg = sg_next(cmd->cur_sg); 667 cmd->offset = 0; 668 } 669 } 670 671 if (queue->data_digest) { 672 cmd->state = NVMET_TCP_SEND_DDGST; 673 cmd->offset = 0; 674 } else { 675 if (queue->nvme_sq.sqhd_disabled) { 676 cmd->queue->snd_cmd = NULL; 677 nvmet_tcp_put_cmd(cmd); 678 } else { 679 nvmet_setup_response_pdu(cmd); 680 } 681 } 682 683 if (queue->nvme_sq.sqhd_disabled) 684 nvmet_tcp_free_cmd_buffers(cmd); 685 686 return 1; 687 688 } 689 690 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 691 bool last_in_batch) 692 { 693 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 694 struct bio_vec bvec; 695 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 696 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 697 int ret; 698 699 if (!last_in_batch && cmd->queue->send_list_len) 700 msg.msg_flags |= MSG_MORE; 701 else 702 msg.msg_flags |= MSG_EOR; 703 704 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); 705 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 706 ret = sock_sendmsg(cmd->queue->sock, &msg); 707 if (ret <= 0) 708 return ret; 709 cmd->offset += ret; 710 left -= ret; 711 712 if (left) 713 return -EAGAIN; 714 715 nvmet_tcp_free_cmd_buffers(cmd); 716 cmd->queue->snd_cmd = NULL; 717 nvmet_tcp_put_cmd(cmd); 718 return 1; 719 } 720 721 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 722 { 723 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 724 struct bio_vec bvec; 725 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 726 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 727 int ret; 728 729 if (!last_in_batch && cmd->queue->send_list_len) 730 msg.msg_flags |= MSG_MORE; 731 else 732 msg.msg_flags |= MSG_EOR; 733 734 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); 735 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 736 ret = sock_sendmsg(cmd->queue->sock, &msg); 737 if (ret <= 0) 738 return ret; 739 cmd->offset += ret; 740 left -= ret; 741 742 if (left) 743 return -EAGAIN; 744 745 cmd->queue->snd_cmd = NULL; 746 return 1; 747 } 748 749 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 750 { 751 struct nvmet_tcp_queue *queue = cmd->queue; 752 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; 753 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 754 struct kvec iov = { 755 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, 756 .iov_len = left 757 }; 758 int ret; 759 760 if (!last_in_batch && cmd->queue->send_list_len) 761 msg.msg_flags |= MSG_MORE; 762 else 763 msg.msg_flags |= MSG_EOR; 764 765 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 766 if (unlikely(ret <= 0)) 767 return ret; 768 769 cmd->offset += ret; 770 left -= ret; 771 772 if (left) 773 return -EAGAIN; 774 775 if (queue->nvme_sq.sqhd_disabled) { 776 cmd->queue->snd_cmd = NULL; 777 nvmet_tcp_put_cmd(cmd); 778 } else { 779 nvmet_setup_response_pdu(cmd); 780 } 781 return 1; 782 } 783 784 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 785 bool last_in_batch) 786 { 787 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 788 int ret = 0; 789 790 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 791 cmd = nvmet_tcp_fetch_cmd(queue); 792 if (unlikely(!cmd)) 793 return 0; 794 } 795 796 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 797 ret = nvmet_try_send_data_pdu(cmd); 798 if (ret <= 0) 799 goto done_send; 800 } 801 802 if (cmd->state == NVMET_TCP_SEND_DATA) { 803 ret = nvmet_try_send_data(cmd, last_in_batch); 804 if (ret <= 0) 805 goto done_send; 806 } 807 808 if (cmd->state == NVMET_TCP_SEND_DDGST) { 809 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 810 if (ret <= 0) 811 goto done_send; 812 } 813 814 if (cmd->state == NVMET_TCP_SEND_R2T) { 815 ret = nvmet_try_send_r2t(cmd, last_in_batch); 816 if (ret <= 0) 817 goto done_send; 818 } 819 820 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 821 ret = nvmet_try_send_response(cmd, last_in_batch); 822 823 done_send: 824 if (ret < 0) { 825 if (ret == -EAGAIN) 826 return 0; 827 return ret; 828 } 829 830 return 1; 831 } 832 833 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 834 int budget, int *sends) 835 { 836 int i, ret = 0; 837 838 for (i = 0; i < budget; i++) { 839 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 840 if (unlikely(ret < 0)) { 841 nvmet_tcp_socket_error(queue, ret); 842 goto done; 843 } else if (ret == 0) { 844 break; 845 } 846 (*sends)++; 847 } 848 done: 849 return ret; 850 } 851 852 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 853 { 854 queue->offset = 0; 855 queue->left = sizeof(struct nvme_tcp_hdr); 856 WRITE_ONCE(queue->cmd, NULL); 857 /* Ensure rcv_state is visible only after queue->cmd is set */ 858 smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU); 859 } 860 861 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 862 { 863 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 864 865 ahash_request_free(queue->rcv_hash); 866 ahash_request_free(queue->snd_hash); 867 crypto_free_ahash(tfm); 868 } 869 870 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 871 { 872 struct crypto_ahash *tfm; 873 874 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 875 if (IS_ERR(tfm)) 876 return PTR_ERR(tfm); 877 878 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 879 if (!queue->snd_hash) 880 goto free_tfm; 881 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 882 883 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 884 if (!queue->rcv_hash) 885 goto free_snd_hash; 886 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 887 888 return 0; 889 free_snd_hash: 890 ahash_request_free(queue->snd_hash); 891 free_tfm: 892 crypto_free_ahash(tfm); 893 return -ENOMEM; 894 } 895 896 897 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 898 { 899 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 900 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 901 struct msghdr msg = {}; 902 struct kvec iov; 903 int ret; 904 905 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 906 pr_err("bad nvme-tcp pdu length (%d)\n", 907 le32_to_cpu(icreq->hdr.plen)); 908 nvmet_tcp_fatal_error(queue); 909 return -EPROTO; 910 } 911 912 if (icreq->pfv != NVME_TCP_PFV_1_0) { 913 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 914 return -EPROTO; 915 } 916 917 if (icreq->hpda != 0) { 918 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 919 icreq->hpda); 920 return -EPROTO; 921 } 922 923 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 924 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 925 if (queue->hdr_digest || queue->data_digest) { 926 ret = nvmet_tcp_alloc_crypto(queue); 927 if (ret) 928 return ret; 929 } 930 931 memset(icresp, 0, sizeof(*icresp)); 932 icresp->hdr.type = nvme_tcp_icresp; 933 icresp->hdr.hlen = sizeof(*icresp); 934 icresp->hdr.pdo = 0; 935 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 936 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 937 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA); 938 icresp->cpda = 0; 939 if (queue->hdr_digest) 940 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 941 if (queue->data_digest) 942 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 943 944 iov.iov_base = icresp; 945 iov.iov_len = sizeof(*icresp); 946 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 947 if (ret < 0) { 948 queue->state = NVMET_TCP_Q_FAILED; 949 return ret; /* queue removal will cleanup */ 950 } 951 952 queue->state = NVMET_TCP_Q_LIVE; 953 nvmet_prepare_receive_pdu(queue); 954 return 0; 955 } 956 957 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 958 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 959 { 960 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 961 int ret; 962 963 /* 964 * This command has not been processed yet, hence we are trying to 965 * figure out if there is still pending data left to receive. If 966 * we don't, we can simply prepare for the next pdu and bail out, 967 * otherwise we will need to prepare a buffer and receive the 968 * stale data before continuing forward. 969 */ 970 if (!nvme_is_write(cmd->req.cmd) || !data_len || 971 data_len > cmd->req.port->inline_data_size) { 972 nvmet_prepare_receive_pdu(queue); 973 return; 974 } 975 976 ret = nvmet_tcp_map_data(cmd); 977 if (unlikely(ret)) { 978 pr_err("queue %d: failed to map data\n", queue->idx); 979 nvmet_tcp_fatal_error(queue); 980 return; 981 } 982 983 queue->rcv_state = NVMET_TCP_RECV_DATA; 984 nvmet_tcp_build_pdu_iovec(cmd); 985 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 986 } 987 988 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 989 { 990 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 991 struct nvmet_tcp_cmd *cmd; 992 unsigned int exp_data_len; 993 994 if (likely(queue->nr_cmds)) { 995 if (unlikely(data->ttag >= queue->nr_cmds)) { 996 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", 997 queue->idx, data->ttag, queue->nr_cmds); 998 goto err_proto; 999 } 1000 cmd = &queue->cmds[data->ttag]; 1001 } else { 1002 cmd = &queue->connect; 1003 } 1004 1005 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 1006 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 1007 data->ttag, le32_to_cpu(data->data_offset), 1008 cmd->rbytes_done); 1009 goto err_proto; 1010 } 1011 1012 exp_data_len = le32_to_cpu(data->hdr.plen) - 1013 nvmet_tcp_hdgst_len(queue) - 1014 nvmet_tcp_ddgst_len(queue) - 1015 sizeof(*data); 1016 1017 cmd->pdu_len = le32_to_cpu(data->data_length); 1018 if (unlikely(cmd->pdu_len != exp_data_len || 1019 cmd->pdu_len == 0 || 1020 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) { 1021 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len); 1022 goto err_proto; 1023 } 1024 cmd->pdu_recv = 0; 1025 nvmet_tcp_build_pdu_iovec(cmd); 1026 queue->cmd = cmd; 1027 queue->rcv_state = NVMET_TCP_RECV_DATA; 1028 1029 return 0; 1030 1031 err_proto: 1032 /* FIXME: use proper transport errors */ 1033 nvmet_tcp_fatal_error(queue); 1034 return -EPROTO; 1035 } 1036 1037 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 1038 { 1039 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1040 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 1041 struct nvmet_req *req; 1042 int ret; 1043 1044 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1045 if (hdr->type != nvme_tcp_icreq) { 1046 pr_err("unexpected pdu type (%d) before icreq\n", 1047 hdr->type); 1048 nvmet_tcp_fatal_error(queue); 1049 return -EPROTO; 1050 } 1051 return nvmet_tcp_handle_icreq(queue); 1052 } 1053 1054 if (unlikely(hdr->type == nvme_tcp_icreq)) { 1055 pr_err("queue %d: received icreq pdu in state %d\n", 1056 queue->idx, queue->state); 1057 nvmet_tcp_fatal_error(queue); 1058 return -EPROTO; 1059 } 1060 1061 if (hdr->type == nvme_tcp_h2c_data) { 1062 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 1063 if (unlikely(ret)) 1064 return ret; 1065 return 0; 1066 } 1067 1068 queue->cmd = nvmet_tcp_get_cmd(queue); 1069 if (unlikely(!queue->cmd)) { 1070 /* This should never happen */ 1071 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 1072 queue->idx, queue->nr_cmds, queue->send_list_len, 1073 nvme_cmd->common.opcode); 1074 nvmet_tcp_fatal_error(queue); 1075 return -ENOMEM; 1076 } 1077 1078 req = &queue->cmd->req; 1079 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 1080 1081 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 1082 &queue->nvme_sq, &nvmet_tcp_ops))) { 1083 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 1084 req->cmd, req->cmd->common.command_id, 1085 req->cmd->common.opcode, 1086 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 1087 1088 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1089 return 0; 1090 } 1091 1092 ret = nvmet_tcp_map_data(queue->cmd); 1093 if (unlikely(ret)) { 1094 pr_err("queue %d: failed to map data\n", queue->idx); 1095 if (nvmet_tcp_has_inline_data(queue->cmd)) 1096 nvmet_tcp_fatal_error(queue); 1097 else 1098 nvmet_req_complete(req, ret); 1099 ret = -EAGAIN; 1100 goto out; 1101 } 1102 1103 if (nvmet_tcp_need_data_in(queue->cmd)) { 1104 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1105 queue->rcv_state = NVMET_TCP_RECV_DATA; 1106 nvmet_tcp_build_pdu_iovec(queue->cmd); 1107 return 0; 1108 } 1109 /* send back R2T */ 1110 nvmet_tcp_queue_response(&queue->cmd->req); 1111 goto out; 1112 } 1113 1114 queue->cmd->req.execute(&queue->cmd->req); 1115 out: 1116 nvmet_prepare_receive_pdu(queue); 1117 return ret; 1118 } 1119 1120 static const u8 nvme_tcp_pdu_sizes[] = { 1121 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1122 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1123 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1124 }; 1125 1126 static inline u8 nvmet_tcp_pdu_size(u8 type) 1127 { 1128 size_t idx = type; 1129 1130 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1131 nvme_tcp_pdu_sizes[idx]) ? 1132 nvme_tcp_pdu_sizes[idx] : 0; 1133 } 1134 1135 static inline bool nvmet_tcp_pdu_valid(u8 type) 1136 { 1137 switch (type) { 1138 case nvme_tcp_icreq: 1139 case nvme_tcp_cmd: 1140 case nvme_tcp_h2c_data: 1141 /* fallthru */ 1142 return true; 1143 } 1144 1145 return false; 1146 } 1147 1148 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue, 1149 struct msghdr *msg, char *cbuf) 1150 { 1151 struct cmsghdr *cmsg = (struct cmsghdr *)cbuf; 1152 u8 ctype, level, description; 1153 int ret = 0; 1154 1155 ctype = tls_get_record_type(queue->sock->sk, cmsg); 1156 switch (ctype) { 1157 case 0: 1158 break; 1159 case TLS_RECORD_TYPE_DATA: 1160 break; 1161 case TLS_RECORD_TYPE_ALERT: 1162 tls_alert_recv(queue->sock->sk, msg, &level, &description); 1163 if (level == TLS_ALERT_LEVEL_FATAL) { 1164 pr_err("queue %d: TLS Alert desc %u\n", 1165 queue->idx, description); 1166 ret = -ENOTCONN; 1167 } else { 1168 pr_warn("queue %d: TLS Alert desc %u\n", 1169 queue->idx, description); 1170 ret = -EAGAIN; 1171 } 1172 break; 1173 default: 1174 /* discard this record type */ 1175 pr_err("queue %d: TLS record %d unhandled\n", 1176 queue->idx, ctype); 1177 ret = -EAGAIN; 1178 break; 1179 } 1180 return ret; 1181 } 1182 1183 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1184 { 1185 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1186 int len, ret; 1187 struct kvec iov; 1188 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1189 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1190 1191 recv: 1192 iov.iov_base = (void *)&queue->pdu + queue->offset; 1193 iov.iov_len = queue->left; 1194 if (queue->tls_pskid) { 1195 msg.msg_control = cbuf; 1196 msg.msg_controllen = sizeof(cbuf); 1197 } 1198 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1199 iov.iov_len, msg.msg_flags); 1200 if (unlikely(len < 0)) 1201 return len; 1202 if (queue->tls_pskid) { 1203 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); 1204 if (ret < 0) 1205 return ret; 1206 } 1207 1208 queue->offset += len; 1209 queue->left -= len; 1210 if (queue->left) 1211 return -EAGAIN; 1212 1213 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1214 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1215 1216 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1217 pr_err("unexpected pdu type %d\n", hdr->type); 1218 nvmet_tcp_fatal_error(queue); 1219 return -EIO; 1220 } 1221 1222 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1223 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1224 return -EIO; 1225 } 1226 1227 queue->left = hdr->hlen - queue->offset + hdgst; 1228 goto recv; 1229 } 1230 1231 if (queue->hdr_digest && 1232 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { 1233 nvmet_tcp_fatal_error(queue); /* fatal */ 1234 return -EPROTO; 1235 } 1236 1237 if (queue->data_digest && 1238 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1239 nvmet_tcp_fatal_error(queue); /* fatal */ 1240 return -EPROTO; 1241 } 1242 1243 return nvmet_tcp_done_recv_pdu(queue); 1244 } 1245 1246 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1247 { 1248 struct nvmet_tcp_queue *queue = cmd->queue; 1249 1250 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); 1251 queue->offset = 0; 1252 queue->left = NVME_TCP_DIGEST_LENGTH; 1253 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1254 } 1255 1256 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1257 { 1258 struct nvmet_tcp_cmd *cmd = queue->cmd; 1259 int len, ret; 1260 1261 while (msg_data_left(&cmd->recv_msg)) { 1262 len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1263 cmd->recv_msg.msg_flags); 1264 if (len <= 0) 1265 return len; 1266 if (queue->tls_pskid) { 1267 ret = nvmet_tcp_tls_record_ok(cmd->queue, 1268 &cmd->recv_msg, cmd->recv_cbuf); 1269 if (ret < 0) 1270 return ret; 1271 } 1272 1273 cmd->pdu_recv += len; 1274 cmd->rbytes_done += len; 1275 } 1276 1277 if (queue->data_digest) { 1278 nvmet_tcp_prep_recv_ddgst(cmd); 1279 return 0; 1280 } 1281 1282 if (cmd->rbytes_done == cmd->req.transfer_len) 1283 nvmet_tcp_execute_request(cmd); 1284 1285 nvmet_prepare_receive_pdu(queue); 1286 return 0; 1287 } 1288 1289 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1290 { 1291 struct nvmet_tcp_cmd *cmd = queue->cmd; 1292 int ret, len; 1293 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1294 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1295 struct kvec iov = { 1296 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1297 .iov_len = queue->left 1298 }; 1299 1300 if (queue->tls_pskid) { 1301 msg.msg_control = cbuf; 1302 msg.msg_controllen = sizeof(cbuf); 1303 } 1304 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1305 iov.iov_len, msg.msg_flags); 1306 if (unlikely(len < 0)) 1307 return len; 1308 if (queue->tls_pskid) { 1309 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); 1310 if (ret < 0) 1311 return ret; 1312 } 1313 1314 queue->offset += len; 1315 queue->left -= len; 1316 if (queue->left) 1317 return -EAGAIN; 1318 1319 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1320 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1321 queue->idx, cmd->req.cmd->common.command_id, 1322 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1323 le32_to_cpu(cmd->exp_ddgst)); 1324 nvmet_req_uninit(&cmd->req); 1325 nvmet_tcp_free_cmd_buffers(cmd); 1326 nvmet_tcp_fatal_error(queue); 1327 ret = -EPROTO; 1328 goto out; 1329 } 1330 1331 if (cmd->rbytes_done == cmd->req.transfer_len) 1332 nvmet_tcp_execute_request(cmd); 1333 1334 ret = 0; 1335 out: 1336 nvmet_prepare_receive_pdu(queue); 1337 return ret; 1338 } 1339 1340 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1341 { 1342 int result = 0; 1343 1344 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1345 return 0; 1346 1347 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1348 result = nvmet_tcp_try_recv_pdu(queue); 1349 if (result != 0) 1350 goto done_recv; 1351 } 1352 1353 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1354 result = nvmet_tcp_try_recv_data(queue); 1355 if (result != 0) 1356 goto done_recv; 1357 } 1358 1359 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1360 result = nvmet_tcp_try_recv_ddgst(queue); 1361 if (result != 0) 1362 goto done_recv; 1363 } 1364 1365 done_recv: 1366 if (result < 0) { 1367 if (result == -EAGAIN) 1368 return 0; 1369 return result; 1370 } 1371 return 1; 1372 } 1373 1374 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1375 int budget, int *recvs) 1376 { 1377 int i, ret = 0; 1378 1379 for (i = 0; i < budget; i++) { 1380 ret = nvmet_tcp_try_recv_one(queue); 1381 if (unlikely(ret < 0)) { 1382 nvmet_tcp_socket_error(queue, ret); 1383 goto done; 1384 } else if (ret == 0) { 1385 break; 1386 } 1387 (*recvs)++; 1388 } 1389 done: 1390 return ret; 1391 } 1392 1393 static void nvmet_tcp_release_queue(struct kref *kref) 1394 { 1395 struct nvmet_tcp_queue *queue = 1396 container_of(kref, struct nvmet_tcp_queue, kref); 1397 1398 WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING); 1399 queue_work(nvmet_wq, &queue->release_work); 1400 } 1401 1402 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1403 { 1404 spin_lock_bh(&queue->state_lock); 1405 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { 1406 /* Socket closed during handshake */ 1407 tls_handshake_cancel(queue->sock->sk); 1408 } 1409 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1410 queue->state = NVMET_TCP_Q_DISCONNECTING; 1411 kref_put(&queue->kref, nvmet_tcp_release_queue); 1412 } 1413 spin_unlock_bh(&queue->state_lock); 1414 } 1415 1416 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1417 { 1418 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1419 } 1420 1421 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1422 int ops) 1423 { 1424 if (!idle_poll_period_usecs) 1425 return false; 1426 1427 if (ops) 1428 nvmet_tcp_arm_queue_deadline(queue); 1429 1430 return !time_after(jiffies, queue->poll_end); 1431 } 1432 1433 static void nvmet_tcp_io_work(struct work_struct *w) 1434 { 1435 struct nvmet_tcp_queue *queue = 1436 container_of(w, struct nvmet_tcp_queue, io_work); 1437 bool pending; 1438 int ret, ops = 0; 1439 1440 do { 1441 pending = false; 1442 1443 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1444 if (ret > 0) 1445 pending = true; 1446 else if (ret < 0) 1447 return; 1448 1449 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1450 if (ret > 0) 1451 pending = true; 1452 else if (ret < 0) 1453 return; 1454 1455 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1456 1457 /* 1458 * Requeue the worker if idle deadline period is in progress or any 1459 * ops activity was recorded during the do-while loop above. 1460 */ 1461 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1462 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1463 } 1464 1465 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1466 struct nvmet_tcp_cmd *c) 1467 { 1468 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1469 1470 c->queue = queue; 1471 c->req.port = queue->port->nport; 1472 1473 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1474 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1475 if (!c->cmd_pdu) 1476 return -ENOMEM; 1477 c->req.cmd = &c->cmd_pdu->cmd; 1478 1479 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1480 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1481 if (!c->rsp_pdu) 1482 goto out_free_cmd; 1483 c->req.cqe = &c->rsp_pdu->cqe; 1484 1485 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1486 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1487 if (!c->data_pdu) 1488 goto out_free_rsp; 1489 1490 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1491 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1492 if (!c->r2t_pdu) 1493 goto out_free_data; 1494 1495 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { 1496 c->recv_msg.msg_control = c->recv_cbuf; 1497 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf); 1498 } 1499 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1500 1501 list_add_tail(&c->entry, &queue->free_list); 1502 1503 return 0; 1504 out_free_data: 1505 page_frag_free(c->data_pdu); 1506 out_free_rsp: 1507 page_frag_free(c->rsp_pdu); 1508 out_free_cmd: 1509 page_frag_free(c->cmd_pdu); 1510 return -ENOMEM; 1511 } 1512 1513 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1514 { 1515 page_frag_free(c->r2t_pdu); 1516 page_frag_free(c->data_pdu); 1517 page_frag_free(c->rsp_pdu); 1518 page_frag_free(c->cmd_pdu); 1519 } 1520 1521 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1522 { 1523 struct nvmet_tcp_cmd *cmds; 1524 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1525 1526 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1527 if (!cmds) 1528 goto out; 1529 1530 for (i = 0; i < nr_cmds; i++) { 1531 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1532 if (ret) 1533 goto out_free; 1534 } 1535 1536 queue->cmds = cmds; 1537 1538 return 0; 1539 out_free: 1540 while (--i >= 0) 1541 nvmet_tcp_free_cmd(cmds + i); 1542 kfree(cmds); 1543 out: 1544 return ret; 1545 } 1546 1547 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1548 { 1549 struct nvmet_tcp_cmd *cmds = queue->cmds; 1550 int i; 1551 1552 for (i = 0; i < queue->nr_cmds; i++) 1553 nvmet_tcp_free_cmd(cmds + i); 1554 1555 nvmet_tcp_free_cmd(&queue->connect); 1556 kfree(cmds); 1557 } 1558 1559 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1560 { 1561 struct socket *sock = queue->sock; 1562 1563 write_lock_bh(&sock->sk->sk_callback_lock); 1564 sock->sk->sk_data_ready = queue->data_ready; 1565 sock->sk->sk_state_change = queue->state_change; 1566 sock->sk->sk_write_space = queue->write_space; 1567 sock->sk->sk_user_data = NULL; 1568 write_unlock_bh(&sock->sk->sk_callback_lock); 1569 } 1570 1571 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1572 { 1573 struct nvmet_tcp_cmd *cmd = queue->cmds; 1574 int i; 1575 1576 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1577 if (nvmet_tcp_need_data_in(cmd)) 1578 nvmet_req_uninit(&cmd->req); 1579 } 1580 1581 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1582 /* failed in connect */ 1583 nvmet_req_uninit(&queue->connect.req); 1584 } 1585 } 1586 1587 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) 1588 { 1589 struct nvmet_tcp_cmd *cmd = queue->cmds; 1590 int i; 1591 1592 for (i = 0; i < queue->nr_cmds; i++, cmd++) 1593 nvmet_tcp_free_cmd_buffers(cmd); 1594 nvmet_tcp_free_cmd_buffers(&queue->connect); 1595 } 1596 1597 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1598 { 1599 struct nvmet_tcp_queue *queue = 1600 container_of(w, struct nvmet_tcp_queue, release_work); 1601 1602 mutex_lock(&nvmet_tcp_queue_mutex); 1603 list_del_init(&queue->queue_list); 1604 mutex_unlock(&nvmet_tcp_queue_mutex); 1605 1606 nvmet_tcp_restore_socket_callbacks(queue); 1607 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); 1608 cancel_work_sync(&queue->io_work); 1609 /* stop accepting incoming data */ 1610 queue->rcv_state = NVMET_TCP_RECV_ERR; 1611 1612 nvmet_tcp_uninit_data_in_cmds(queue); 1613 nvmet_sq_destroy(&queue->nvme_sq); 1614 cancel_work_sync(&queue->io_work); 1615 nvmet_tcp_free_cmd_data_in_buffers(queue); 1616 /* ->sock will be released by fput() */ 1617 fput(queue->sock->file); 1618 nvmet_tcp_free_cmds(queue); 1619 if (queue->hdr_digest || queue->data_digest) 1620 nvmet_tcp_free_crypto(queue); 1621 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1622 page_frag_cache_drain(&queue->pf_cache); 1623 kfree(queue); 1624 } 1625 1626 static void nvmet_tcp_data_ready(struct sock *sk) 1627 { 1628 struct nvmet_tcp_queue *queue; 1629 1630 trace_sk_data_ready(sk); 1631 1632 read_lock_bh(&sk->sk_callback_lock); 1633 queue = sk->sk_user_data; 1634 if (likely(queue)) { 1635 if (queue->data_ready) 1636 queue->data_ready(sk); 1637 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) 1638 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, 1639 &queue->io_work); 1640 } 1641 read_unlock_bh(&sk->sk_callback_lock); 1642 } 1643 1644 static void nvmet_tcp_write_space(struct sock *sk) 1645 { 1646 struct nvmet_tcp_queue *queue; 1647 1648 read_lock_bh(&sk->sk_callback_lock); 1649 queue = sk->sk_user_data; 1650 if (unlikely(!queue)) 1651 goto out; 1652 1653 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1654 queue->write_space(sk); 1655 goto out; 1656 } 1657 1658 if (sk_stream_is_writeable(sk)) { 1659 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1660 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1661 } 1662 out: 1663 read_unlock_bh(&sk->sk_callback_lock); 1664 } 1665 1666 static void nvmet_tcp_state_change(struct sock *sk) 1667 { 1668 struct nvmet_tcp_queue *queue; 1669 1670 read_lock_bh(&sk->sk_callback_lock); 1671 queue = sk->sk_user_data; 1672 if (!queue) 1673 goto done; 1674 1675 switch (sk->sk_state) { 1676 case TCP_FIN_WAIT2: 1677 case TCP_LAST_ACK: 1678 break; 1679 case TCP_FIN_WAIT1: 1680 case TCP_CLOSE_WAIT: 1681 case TCP_CLOSE: 1682 /* FALLTHRU */ 1683 nvmet_tcp_schedule_release_queue(queue); 1684 break; 1685 default: 1686 pr_warn("queue %d unhandled state %d\n", 1687 queue->idx, sk->sk_state); 1688 } 1689 done: 1690 read_unlock_bh(&sk->sk_callback_lock); 1691 } 1692 1693 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1694 { 1695 struct socket *sock = queue->sock; 1696 struct inet_sock *inet = inet_sk(sock->sk); 1697 int ret; 1698 1699 ret = kernel_getsockname(sock, 1700 (struct sockaddr *)&queue->sockaddr); 1701 if (ret < 0) 1702 return ret; 1703 1704 ret = kernel_getpeername(sock, 1705 (struct sockaddr *)&queue->sockaddr_peer); 1706 if (ret < 0) 1707 return ret; 1708 1709 /* 1710 * Cleanup whatever is sitting in the TCP transmit queue on socket 1711 * close. This is done to prevent stale data from being sent should 1712 * the network connection be restored before TCP times out. 1713 */ 1714 sock_no_linger(sock->sk); 1715 1716 if (so_priority > 0) 1717 sock_set_priority(sock->sk, so_priority); 1718 1719 /* Set socket type of service */ 1720 if (inet->rcv_tos > 0) 1721 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1722 1723 ret = 0; 1724 write_lock_bh(&sock->sk->sk_callback_lock); 1725 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1726 /* 1727 * If the socket is already closing, don't even start 1728 * consuming it 1729 */ 1730 ret = -ENOTCONN; 1731 } else { 1732 sock->sk->sk_user_data = queue; 1733 queue->data_ready = sock->sk->sk_data_ready; 1734 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1735 queue->state_change = sock->sk->sk_state_change; 1736 sock->sk->sk_state_change = nvmet_tcp_state_change; 1737 queue->write_space = sock->sk->sk_write_space; 1738 sock->sk->sk_write_space = nvmet_tcp_write_space; 1739 if (idle_poll_period_usecs) 1740 nvmet_tcp_arm_queue_deadline(queue); 1741 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1742 } 1743 write_unlock_bh(&sock->sk->sk_callback_lock); 1744 1745 return ret; 1746 } 1747 1748 #ifdef CONFIG_NVME_TARGET_TCP_TLS 1749 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue) 1750 { 1751 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1752 int len, ret; 1753 struct kvec iov = { 1754 .iov_base = (u8 *)&queue->pdu + queue->offset, 1755 .iov_len = sizeof(struct nvme_tcp_hdr), 1756 }; 1757 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1758 struct msghdr msg = { 1759 .msg_control = cbuf, 1760 .msg_controllen = sizeof(cbuf), 1761 .msg_flags = MSG_PEEK, 1762 }; 1763 1764 if (nvmet_port_secure_channel_required(queue->port->nport)) 1765 return 0; 1766 1767 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1768 iov.iov_len, msg.msg_flags); 1769 if (unlikely(len < 0)) { 1770 pr_debug("queue %d: peek error %d\n", 1771 queue->idx, len); 1772 return len; 1773 } 1774 1775 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); 1776 if (ret < 0) 1777 return ret; 1778 1779 if (len < sizeof(struct nvme_tcp_hdr)) { 1780 pr_debug("queue %d: short read, %d bytes missing\n", 1781 queue->idx, (int)iov.iov_len - len); 1782 return -EAGAIN; 1783 } 1784 pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n", 1785 queue->idx, hdr->type, hdr->hlen, hdr->plen, 1786 (int)sizeof(struct nvme_tcp_icreq_pdu)); 1787 if (hdr->type == nvme_tcp_icreq && 1788 hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) && 1789 hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) { 1790 pr_debug("queue %d: icreq detected\n", 1791 queue->idx); 1792 return len; 1793 } 1794 return 0; 1795 } 1796 1797 static void nvmet_tcp_tls_handshake_done(void *data, int status, 1798 key_serial_t peerid) 1799 { 1800 struct nvmet_tcp_queue *queue = data; 1801 1802 pr_debug("queue %d: TLS handshake done, key %x, status %d\n", 1803 queue->idx, peerid, status); 1804 spin_lock_bh(&queue->state_lock); 1805 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { 1806 spin_unlock_bh(&queue->state_lock); 1807 return; 1808 } 1809 if (!status) { 1810 queue->tls_pskid = peerid; 1811 queue->state = NVMET_TCP_Q_CONNECTING; 1812 } else 1813 queue->state = NVMET_TCP_Q_FAILED; 1814 spin_unlock_bh(&queue->state_lock); 1815 1816 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); 1817 if (status) 1818 nvmet_tcp_schedule_release_queue(queue); 1819 else 1820 nvmet_tcp_set_queue_sock(queue); 1821 kref_put(&queue->kref, nvmet_tcp_release_queue); 1822 } 1823 1824 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) 1825 { 1826 struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w), 1827 struct nvmet_tcp_queue, tls_handshake_tmo_work); 1828 1829 pr_warn("queue %d: TLS handshake timeout\n", queue->idx); 1830 /* 1831 * If tls_handshake_cancel() fails we've lost the race with 1832 * nvmet_tcp_tls_handshake_done() */ 1833 if (!tls_handshake_cancel(queue->sock->sk)) 1834 return; 1835 spin_lock_bh(&queue->state_lock); 1836 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { 1837 spin_unlock_bh(&queue->state_lock); 1838 return; 1839 } 1840 queue->state = NVMET_TCP_Q_FAILED; 1841 spin_unlock_bh(&queue->state_lock); 1842 nvmet_tcp_schedule_release_queue(queue); 1843 kref_put(&queue->kref, nvmet_tcp_release_queue); 1844 } 1845 1846 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue) 1847 { 1848 int ret = -EOPNOTSUPP; 1849 struct tls_handshake_args args; 1850 1851 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) { 1852 pr_warn("cannot start TLS in state %d\n", queue->state); 1853 return -EINVAL; 1854 } 1855 1856 kref_get(&queue->kref); 1857 pr_debug("queue %d: TLS ServerHello\n", queue->idx); 1858 memset(&args, 0, sizeof(args)); 1859 args.ta_sock = queue->sock; 1860 args.ta_done = nvmet_tcp_tls_handshake_done; 1861 args.ta_data = queue; 1862 args.ta_keyring = key_serial(queue->port->nport->keyring); 1863 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1864 1865 ret = tls_server_hello_psk(&args, GFP_KERNEL); 1866 if (ret) { 1867 kref_put(&queue->kref, nvmet_tcp_release_queue); 1868 pr_err("failed to start TLS, err=%d\n", ret); 1869 } else { 1870 queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work, 1871 tls_handshake_timeout * HZ); 1872 } 1873 return ret; 1874 } 1875 #else 1876 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {} 1877 #endif 1878 1879 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1880 struct socket *newsock) 1881 { 1882 struct nvmet_tcp_queue *queue; 1883 struct file *sock_file = NULL; 1884 int ret; 1885 1886 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1887 if (!queue) { 1888 ret = -ENOMEM; 1889 goto out_release; 1890 } 1891 1892 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1893 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1894 kref_init(&queue->kref); 1895 queue->sock = newsock; 1896 queue->port = port; 1897 queue->nr_cmds = 0; 1898 spin_lock_init(&queue->state_lock); 1899 if (queue->port->nport->disc_addr.tsas.tcp.sectype == 1900 NVMF_TCP_SECTYPE_TLS13) 1901 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE; 1902 else 1903 queue->state = NVMET_TCP_Q_CONNECTING; 1904 INIT_LIST_HEAD(&queue->free_list); 1905 init_llist_head(&queue->resp_list); 1906 INIT_LIST_HEAD(&queue->resp_send_list); 1907 1908 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1909 if (IS_ERR(sock_file)) { 1910 ret = PTR_ERR(sock_file); 1911 goto out_free_queue; 1912 } 1913 1914 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); 1915 if (queue->idx < 0) { 1916 ret = queue->idx; 1917 goto out_sock; 1918 } 1919 1920 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1921 if (ret) 1922 goto out_ida_remove; 1923 1924 ret = nvmet_sq_init(&queue->nvme_sq); 1925 if (ret) 1926 goto out_free_connect; 1927 1928 nvmet_prepare_receive_pdu(queue); 1929 1930 mutex_lock(&nvmet_tcp_queue_mutex); 1931 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1932 mutex_unlock(&nvmet_tcp_queue_mutex); 1933 1934 INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work, 1935 nvmet_tcp_tls_handshake_timeout); 1936 #ifdef CONFIG_NVME_TARGET_TCP_TLS 1937 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { 1938 struct sock *sk = queue->sock->sk; 1939 1940 /* Restore the default callbacks before starting upcall */ 1941 read_lock_bh(&sk->sk_callback_lock); 1942 sk->sk_user_data = NULL; 1943 sk->sk_data_ready = port->data_ready; 1944 read_unlock_bh(&sk->sk_callback_lock); 1945 if (!nvmet_tcp_try_peek_pdu(queue)) { 1946 if (!nvmet_tcp_tls_handshake(queue)) 1947 return; 1948 /* TLS handshake failed, terminate the connection */ 1949 goto out_destroy_sq; 1950 } 1951 /* Not a TLS connection, continue with normal processing */ 1952 queue->state = NVMET_TCP_Q_CONNECTING; 1953 } 1954 #endif 1955 1956 ret = nvmet_tcp_set_queue_sock(queue); 1957 if (ret) 1958 goto out_destroy_sq; 1959 1960 return; 1961 out_destroy_sq: 1962 mutex_lock(&nvmet_tcp_queue_mutex); 1963 list_del_init(&queue->queue_list); 1964 mutex_unlock(&nvmet_tcp_queue_mutex); 1965 nvmet_sq_destroy(&queue->nvme_sq); 1966 out_free_connect: 1967 nvmet_tcp_free_cmd(&queue->connect); 1968 out_ida_remove: 1969 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1970 out_sock: 1971 fput(queue->sock->file); 1972 out_free_queue: 1973 kfree(queue); 1974 out_release: 1975 pr_err("failed to allocate queue, error %d\n", ret); 1976 if (!sock_file) 1977 sock_release(newsock); 1978 } 1979 1980 static void nvmet_tcp_accept_work(struct work_struct *w) 1981 { 1982 struct nvmet_tcp_port *port = 1983 container_of(w, struct nvmet_tcp_port, accept_work); 1984 struct socket *newsock; 1985 int ret; 1986 1987 while (true) { 1988 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1989 if (ret < 0) { 1990 if (ret != -EAGAIN) 1991 pr_warn("failed to accept err=%d\n", ret); 1992 return; 1993 } 1994 nvmet_tcp_alloc_queue(port, newsock); 1995 } 1996 } 1997 1998 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1999 { 2000 struct nvmet_tcp_port *port; 2001 2002 trace_sk_data_ready(sk); 2003 2004 read_lock_bh(&sk->sk_callback_lock); 2005 port = sk->sk_user_data; 2006 if (!port) 2007 goto out; 2008 2009 if (sk->sk_state == TCP_LISTEN) 2010 queue_work(nvmet_wq, &port->accept_work); 2011 out: 2012 read_unlock_bh(&sk->sk_callback_lock); 2013 } 2014 2015 static int nvmet_tcp_add_port(struct nvmet_port *nport) 2016 { 2017 struct nvmet_tcp_port *port; 2018 __kernel_sa_family_t af; 2019 int ret; 2020 2021 port = kzalloc(sizeof(*port), GFP_KERNEL); 2022 if (!port) 2023 return -ENOMEM; 2024 2025 switch (nport->disc_addr.adrfam) { 2026 case NVMF_ADDR_FAMILY_IP4: 2027 af = AF_INET; 2028 break; 2029 case NVMF_ADDR_FAMILY_IP6: 2030 af = AF_INET6; 2031 break; 2032 default: 2033 pr_err("address family %d not supported\n", 2034 nport->disc_addr.adrfam); 2035 ret = -EINVAL; 2036 goto err_port; 2037 } 2038 2039 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 2040 nport->disc_addr.trsvcid, &port->addr); 2041 if (ret) { 2042 pr_err("malformed ip/port passed: %s:%s\n", 2043 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 2044 goto err_port; 2045 } 2046 2047 port->nport = nport; 2048 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 2049 if (port->nport->inline_data_size < 0) 2050 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 2051 2052 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 2053 IPPROTO_TCP, &port->sock); 2054 if (ret) { 2055 pr_err("failed to create a socket\n"); 2056 goto err_port; 2057 } 2058 2059 port->sock->sk->sk_user_data = port; 2060 port->data_ready = port->sock->sk->sk_data_ready; 2061 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 2062 sock_set_reuseaddr(port->sock->sk); 2063 tcp_sock_set_nodelay(port->sock->sk); 2064 if (so_priority > 0) 2065 sock_set_priority(port->sock->sk, so_priority); 2066 2067 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 2068 sizeof(port->addr)); 2069 if (ret) { 2070 pr_err("failed to bind port socket %d\n", ret); 2071 goto err_sock; 2072 } 2073 2074 ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG); 2075 if (ret) { 2076 pr_err("failed to listen %d on port sock\n", ret); 2077 goto err_sock; 2078 } 2079 2080 nport->priv = port; 2081 pr_info("enabling port %d (%pISpc)\n", 2082 le16_to_cpu(nport->disc_addr.portid), &port->addr); 2083 2084 return 0; 2085 2086 err_sock: 2087 sock_release(port->sock); 2088 err_port: 2089 kfree(port); 2090 return ret; 2091 } 2092 2093 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) 2094 { 2095 struct nvmet_tcp_queue *queue; 2096 2097 mutex_lock(&nvmet_tcp_queue_mutex); 2098 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 2099 if (queue->port == port) 2100 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 2101 mutex_unlock(&nvmet_tcp_queue_mutex); 2102 } 2103 2104 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 2105 { 2106 struct nvmet_tcp_port *port = nport->priv; 2107 2108 write_lock_bh(&port->sock->sk->sk_callback_lock); 2109 port->sock->sk->sk_data_ready = port->data_ready; 2110 port->sock->sk->sk_user_data = NULL; 2111 write_unlock_bh(&port->sock->sk->sk_callback_lock); 2112 cancel_work_sync(&port->accept_work); 2113 /* 2114 * Destroy the remaining queues, which are not belong to any 2115 * controller yet. 2116 */ 2117 nvmet_tcp_destroy_port_queues(port); 2118 2119 sock_release(port->sock); 2120 kfree(port); 2121 } 2122 2123 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 2124 { 2125 struct nvmet_tcp_queue *queue; 2126 2127 mutex_lock(&nvmet_tcp_queue_mutex); 2128 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 2129 if (queue->nvme_sq.ctrl == ctrl) 2130 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 2131 mutex_unlock(&nvmet_tcp_queue_mutex); 2132 } 2133 2134 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 2135 { 2136 struct nvmet_tcp_queue *queue = 2137 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 2138 2139 if (sq->qid == 0) { 2140 struct nvmet_tcp_queue *q; 2141 int pending = 0; 2142 2143 /* Check for pending controller teardown */ 2144 mutex_lock(&nvmet_tcp_queue_mutex); 2145 list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) { 2146 if (q->nvme_sq.ctrl == sq->ctrl && 2147 q->state == NVMET_TCP_Q_DISCONNECTING) 2148 pending++; 2149 } 2150 mutex_unlock(&nvmet_tcp_queue_mutex); 2151 if (pending > NVMET_TCP_BACKLOG) 2152 return NVME_SC_CONNECT_CTRL_BUSY; 2153 } 2154 2155 queue->nr_cmds = sq->size * 2; 2156 if (nvmet_tcp_alloc_cmds(queue)) { 2157 queue->nr_cmds = 0; 2158 return NVME_SC_INTERNAL; 2159 } 2160 return 0; 2161 } 2162 2163 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 2164 struct nvmet_port *nport, char *traddr) 2165 { 2166 struct nvmet_tcp_port *port = nport->priv; 2167 2168 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 2169 struct nvmet_tcp_cmd *cmd = 2170 container_of(req, struct nvmet_tcp_cmd, req); 2171 struct nvmet_tcp_queue *queue = cmd->queue; 2172 2173 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 2174 } else { 2175 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 2176 } 2177 } 2178 2179 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl, 2180 char *traddr, size_t traddr_len) 2181 { 2182 struct nvmet_sq *sq = ctrl->sqs[0]; 2183 struct nvmet_tcp_queue *queue = 2184 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 2185 2186 if (queue->sockaddr_peer.ss_family == AF_UNSPEC) 2187 return -EINVAL; 2188 return snprintf(traddr, traddr_len, "%pISc", 2189 (struct sockaddr *)&queue->sockaddr_peer); 2190 } 2191 2192 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 2193 .owner = THIS_MODULE, 2194 .type = NVMF_TRTYPE_TCP, 2195 .msdbd = 1, 2196 .add_port = nvmet_tcp_add_port, 2197 .remove_port = nvmet_tcp_remove_port, 2198 .queue_response = nvmet_tcp_queue_response, 2199 .delete_ctrl = nvmet_tcp_delete_ctrl, 2200 .install_queue = nvmet_tcp_install_queue, 2201 .disc_traddr = nvmet_tcp_disc_port_addr, 2202 .host_traddr = nvmet_tcp_host_port_addr, 2203 }; 2204 2205 static int __init nvmet_tcp_init(void) 2206 { 2207 int ret; 2208 2209 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", 2210 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2211 if (!nvmet_tcp_wq) 2212 return -ENOMEM; 2213 2214 ret = nvmet_register_transport(&nvmet_tcp_ops); 2215 if (ret) 2216 goto err; 2217 2218 return 0; 2219 err: 2220 destroy_workqueue(nvmet_tcp_wq); 2221 return ret; 2222 } 2223 2224 static void __exit nvmet_tcp_exit(void) 2225 { 2226 struct nvmet_tcp_queue *queue; 2227 2228 nvmet_unregister_transport(&nvmet_tcp_ops); 2229 2230 flush_workqueue(nvmet_wq); 2231 mutex_lock(&nvmet_tcp_queue_mutex); 2232 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 2233 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 2234 mutex_unlock(&nvmet_tcp_queue_mutex); 2235 flush_workqueue(nvmet_wq); 2236 2237 destroy_workqueue(nvmet_tcp_wq); 2238 ida_destroy(&nvmet_tcp_queue_ida); 2239 } 2240 2241 module_init(nvmet_tcp_init); 2242 module_exit(nvmet_tcp_exit); 2243 2244 MODULE_DESCRIPTION("NVMe target TCP transport driver"); 2245 MODULE_LICENSE("GPL v2"); 2246 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 2247