1 /* 2 * NVMe over Fabrics RDMA target. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/atomic.h> 16 #include <linux/ctype.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/nvme.h> 22 #include <linux/slab.h> 23 #include <linux/string.h> 24 #include <linux/wait.h> 25 #include <linux/inet.h> 26 #include <asm/unaligned.h> 27 28 #include <rdma/ib_verbs.h> 29 #include <rdma/rdma_cm.h> 30 #include <rdma/rw.h> 31 32 #include <linux/nvme-rdma.h> 33 #include "nvmet.h" 34 35 /* 36 * We allow up to a page of inline data to go with the SQE 37 */ 38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE 39 40 struct nvmet_rdma_cmd { 41 struct ib_sge sge[2]; 42 struct ib_cqe cqe; 43 struct ib_recv_wr wr; 44 struct scatterlist inline_sg; 45 struct page *inline_page; 46 struct nvme_command *nvme_cmd; 47 struct nvmet_rdma_queue *queue; 48 }; 49 50 enum { 51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 53 }; 54 55 struct nvmet_rdma_rsp { 56 struct ib_sge send_sge; 57 struct ib_cqe send_cqe; 58 struct ib_send_wr send_wr; 59 60 struct nvmet_rdma_cmd *cmd; 61 struct nvmet_rdma_queue *queue; 62 63 struct ib_cqe read_cqe; 64 struct rdma_rw_ctx rw; 65 66 struct nvmet_req req; 67 68 u8 n_rdma; 69 u32 flags; 70 u32 invalidate_rkey; 71 72 struct list_head wait_list; 73 struct list_head free_list; 74 }; 75 76 enum nvmet_rdma_queue_state { 77 NVMET_RDMA_Q_CONNECTING, 78 NVMET_RDMA_Q_LIVE, 79 NVMET_RDMA_Q_DISCONNECTING, 80 NVMET_RDMA_IN_DEVICE_REMOVAL, 81 }; 82 83 struct nvmet_rdma_queue { 84 struct rdma_cm_id *cm_id; 85 struct nvmet_port *port; 86 struct ib_cq *cq; 87 atomic_t sq_wr_avail; 88 struct nvmet_rdma_device *dev; 89 spinlock_t state_lock; 90 enum nvmet_rdma_queue_state state; 91 struct nvmet_cq nvme_cq; 92 struct nvmet_sq nvme_sq; 93 94 struct nvmet_rdma_rsp *rsps; 95 struct list_head free_rsps; 96 spinlock_t rsps_lock; 97 struct nvmet_rdma_cmd *cmds; 98 99 struct work_struct release_work; 100 struct list_head rsp_wait_list; 101 struct list_head rsp_wr_wait_list; 102 spinlock_t rsp_wr_wait_lock; 103 104 int idx; 105 int host_qid; 106 int recv_queue_size; 107 int send_queue_size; 108 109 struct list_head queue_list; 110 }; 111 112 struct nvmet_rdma_device { 113 struct ib_device *device; 114 struct ib_pd *pd; 115 struct ib_srq *srq; 116 struct nvmet_rdma_cmd *srq_cmds; 117 size_t srq_size; 118 struct kref ref; 119 struct list_head entry; 120 }; 121 122 static bool nvmet_rdma_use_srq; 123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 124 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 125 126 static DEFINE_IDA(nvmet_rdma_queue_ida); 127 static LIST_HEAD(nvmet_rdma_queue_list); 128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 129 130 static LIST_HEAD(device_list); 131 static DEFINE_MUTEX(device_list_mutex); 132 133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 139 140 static struct nvmet_fabrics_ops nvmet_rdma_ops; 141 142 /* XXX: really should move to a generic header sooner or later.. */ 143 static inline u32 get_unaligned_le24(const u8 *p) 144 { 145 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16; 146 } 147 148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 149 { 150 return nvme_is_write(rsp->req.cmd) && 151 rsp->req.data_len && 152 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 153 } 154 155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 156 { 157 return !nvme_is_write(rsp->req.cmd) && 158 rsp->req.data_len && 159 !rsp->req.rsp->status && 160 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 161 } 162 163 static inline struct nvmet_rdma_rsp * 164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 165 { 166 struct nvmet_rdma_rsp *rsp; 167 unsigned long flags; 168 169 spin_lock_irqsave(&queue->rsps_lock, flags); 170 rsp = list_first_entry(&queue->free_rsps, 171 struct nvmet_rdma_rsp, free_list); 172 list_del(&rsp->free_list); 173 spin_unlock_irqrestore(&queue->rsps_lock, flags); 174 175 return rsp; 176 } 177 178 static inline void 179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 180 { 181 unsigned long flags; 182 183 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 184 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 185 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 186 } 187 188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents) 189 { 190 struct scatterlist *sg; 191 int count; 192 193 if (!sgl || !nents) 194 return; 195 196 for_each_sg(sgl, sg, nents, count) 197 __free_page(sg_page(sg)); 198 kfree(sgl); 199 } 200 201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, 202 u32 length) 203 { 204 struct scatterlist *sg; 205 struct page *page; 206 unsigned int nent; 207 int i = 0; 208 209 nent = DIV_ROUND_UP(length, PAGE_SIZE); 210 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 211 if (!sg) 212 goto out; 213 214 sg_init_table(sg, nent); 215 216 while (length) { 217 u32 page_len = min_t(u32, length, PAGE_SIZE); 218 219 page = alloc_page(GFP_KERNEL); 220 if (!page) 221 goto out_free_pages; 222 223 sg_set_page(&sg[i], page, page_len, 0); 224 length -= page_len; 225 i++; 226 } 227 *sgl = sg; 228 *nents = nent; 229 return 0; 230 231 out_free_pages: 232 while (i > 0) { 233 i--; 234 __free_page(sg_page(&sg[i])); 235 } 236 kfree(sg); 237 out: 238 return NVME_SC_INTERNAL; 239 } 240 241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 242 struct nvmet_rdma_cmd *c, bool admin) 243 { 244 /* NVMe command / RDMA RECV */ 245 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 246 if (!c->nvme_cmd) 247 goto out; 248 249 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 250 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 251 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 252 goto out_free_cmd; 253 254 c->sge[0].length = sizeof(*c->nvme_cmd); 255 c->sge[0].lkey = ndev->pd->local_dma_lkey; 256 257 if (!admin) { 258 c->inline_page = alloc_pages(GFP_KERNEL, 259 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 260 if (!c->inline_page) 261 goto out_unmap_cmd; 262 c->sge[1].addr = ib_dma_map_page(ndev->device, 263 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE, 264 DMA_FROM_DEVICE); 265 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr)) 266 goto out_free_inline_page; 267 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE; 268 c->sge[1].lkey = ndev->pd->local_dma_lkey; 269 } 270 271 c->cqe.done = nvmet_rdma_recv_done; 272 273 c->wr.wr_cqe = &c->cqe; 274 c->wr.sg_list = c->sge; 275 c->wr.num_sge = admin ? 1 : 2; 276 277 return 0; 278 279 out_free_inline_page: 280 if (!admin) { 281 __free_pages(c->inline_page, 282 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 283 } 284 out_unmap_cmd: 285 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 286 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 287 out_free_cmd: 288 kfree(c->nvme_cmd); 289 290 out: 291 return -ENOMEM; 292 } 293 294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 295 struct nvmet_rdma_cmd *c, bool admin) 296 { 297 if (!admin) { 298 ib_dma_unmap_page(ndev->device, c->sge[1].addr, 299 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE); 300 __free_pages(c->inline_page, 301 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 302 } 303 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 304 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 305 kfree(c->nvme_cmd); 306 } 307 308 static struct nvmet_rdma_cmd * 309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 310 int nr_cmds, bool admin) 311 { 312 struct nvmet_rdma_cmd *cmds; 313 int ret = -EINVAL, i; 314 315 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 316 if (!cmds) 317 goto out; 318 319 for (i = 0; i < nr_cmds; i++) { 320 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 321 if (ret) 322 goto out_free; 323 } 324 325 return cmds; 326 327 out_free: 328 while (--i >= 0) 329 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 330 kfree(cmds); 331 out: 332 return ERR_PTR(ret); 333 } 334 335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 336 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 337 { 338 int i; 339 340 for (i = 0; i < nr_cmds; i++) 341 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 342 kfree(cmds); 343 } 344 345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 346 struct nvmet_rdma_rsp *r) 347 { 348 /* NVMe CQE / RDMA SEND */ 349 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL); 350 if (!r->req.rsp) 351 goto out; 352 353 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp, 354 sizeof(*r->req.rsp), DMA_TO_DEVICE); 355 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 356 goto out_free_rsp; 357 358 r->send_sge.length = sizeof(*r->req.rsp); 359 r->send_sge.lkey = ndev->pd->local_dma_lkey; 360 361 r->send_cqe.done = nvmet_rdma_send_done; 362 363 r->send_wr.wr_cqe = &r->send_cqe; 364 r->send_wr.sg_list = &r->send_sge; 365 r->send_wr.num_sge = 1; 366 r->send_wr.send_flags = IB_SEND_SIGNALED; 367 368 /* Data In / RDMA READ */ 369 r->read_cqe.done = nvmet_rdma_read_data_done; 370 return 0; 371 372 out_free_rsp: 373 kfree(r->req.rsp); 374 out: 375 return -ENOMEM; 376 } 377 378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 379 struct nvmet_rdma_rsp *r) 380 { 381 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 382 sizeof(*r->req.rsp), DMA_TO_DEVICE); 383 kfree(r->req.rsp); 384 } 385 386 static int 387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 388 { 389 struct nvmet_rdma_device *ndev = queue->dev; 390 int nr_rsps = queue->recv_queue_size * 2; 391 int ret = -EINVAL, i; 392 393 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 394 GFP_KERNEL); 395 if (!queue->rsps) 396 goto out; 397 398 for (i = 0; i < nr_rsps; i++) { 399 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 400 401 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 402 if (ret) 403 goto out_free; 404 405 list_add_tail(&rsp->free_list, &queue->free_rsps); 406 } 407 408 return 0; 409 410 out_free: 411 while (--i >= 0) { 412 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 413 414 list_del(&rsp->free_list); 415 nvmet_rdma_free_rsp(ndev, rsp); 416 } 417 kfree(queue->rsps); 418 out: 419 return ret; 420 } 421 422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 423 { 424 struct nvmet_rdma_device *ndev = queue->dev; 425 int i, nr_rsps = queue->recv_queue_size * 2; 426 427 for (i = 0; i < nr_rsps; i++) { 428 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 429 430 list_del(&rsp->free_list); 431 nvmet_rdma_free_rsp(ndev, rsp); 432 } 433 kfree(queue->rsps); 434 } 435 436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 437 struct nvmet_rdma_cmd *cmd) 438 { 439 struct ib_recv_wr *bad_wr; 440 441 if (ndev->srq) 442 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr); 443 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr); 444 } 445 446 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 447 { 448 spin_lock(&queue->rsp_wr_wait_lock); 449 while (!list_empty(&queue->rsp_wr_wait_list)) { 450 struct nvmet_rdma_rsp *rsp; 451 bool ret; 452 453 rsp = list_entry(queue->rsp_wr_wait_list.next, 454 struct nvmet_rdma_rsp, wait_list); 455 list_del(&rsp->wait_list); 456 457 spin_unlock(&queue->rsp_wr_wait_lock); 458 ret = nvmet_rdma_execute_command(rsp); 459 spin_lock(&queue->rsp_wr_wait_lock); 460 461 if (!ret) { 462 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 463 break; 464 } 465 } 466 spin_unlock(&queue->rsp_wr_wait_lock); 467 } 468 469 470 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 471 { 472 struct nvmet_rdma_queue *queue = rsp->queue; 473 474 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 475 476 if (rsp->n_rdma) { 477 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 478 queue->cm_id->port_num, rsp->req.sg, 479 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 480 } 481 482 if (rsp->req.sg != &rsp->cmd->inline_sg) 483 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt); 484 485 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 486 nvmet_rdma_process_wr_wait_list(queue); 487 488 nvmet_rdma_put_rsp(rsp); 489 } 490 491 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 492 { 493 if (queue->nvme_sq.ctrl) { 494 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 495 } else { 496 /* 497 * we didn't setup the controller yet in case 498 * of admin connect error, just disconnect and 499 * cleanup the queue 500 */ 501 nvmet_rdma_queue_disconnect(queue); 502 } 503 } 504 505 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 506 { 507 struct nvmet_rdma_rsp *rsp = 508 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 509 510 nvmet_rdma_release_rsp(rsp); 511 512 if (unlikely(wc->status != IB_WC_SUCCESS && 513 wc->status != IB_WC_WR_FLUSH_ERR)) { 514 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 515 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 516 nvmet_rdma_error_comp(rsp->queue); 517 } 518 } 519 520 static void nvmet_rdma_queue_response(struct nvmet_req *req) 521 { 522 struct nvmet_rdma_rsp *rsp = 523 container_of(req, struct nvmet_rdma_rsp, req); 524 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 525 struct ib_send_wr *first_wr, *bad_wr; 526 527 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 528 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 529 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 530 } else { 531 rsp->send_wr.opcode = IB_WR_SEND; 532 } 533 534 if (nvmet_rdma_need_data_out(rsp)) 535 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 536 cm_id->port_num, NULL, &rsp->send_wr); 537 else 538 first_wr = &rsp->send_wr; 539 540 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 541 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) { 542 pr_err("sending cmd response failed\n"); 543 nvmet_rdma_release_rsp(rsp); 544 } 545 } 546 547 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 548 { 549 struct nvmet_rdma_rsp *rsp = 550 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 551 struct nvmet_rdma_queue *queue = cq->cq_context; 552 553 WARN_ON(rsp->n_rdma <= 0); 554 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 555 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 556 queue->cm_id->port_num, rsp->req.sg, 557 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 558 rsp->n_rdma = 0; 559 560 if (unlikely(wc->status != IB_WC_SUCCESS)) { 561 nvmet_rdma_release_rsp(rsp); 562 if (wc->status != IB_WC_WR_FLUSH_ERR) { 563 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 564 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 565 nvmet_rdma_error_comp(queue); 566 } 567 return; 568 } 569 570 rsp->req.execute(&rsp->req); 571 } 572 573 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 574 u64 off) 575 { 576 sg_init_table(&rsp->cmd->inline_sg, 1); 577 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off); 578 rsp->req.sg = &rsp->cmd->inline_sg; 579 rsp->req.sg_cnt = 1; 580 } 581 582 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 583 { 584 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 585 u64 off = le64_to_cpu(sgl->addr); 586 u32 len = le32_to_cpu(sgl->length); 587 588 if (!nvme_is_write(rsp->req.cmd)) 589 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 590 591 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) { 592 pr_err("invalid inline data offset!\n"); 593 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 594 } 595 596 /* no data command? */ 597 if (!len) 598 return 0; 599 600 nvmet_rdma_use_inline_sg(rsp, len, off); 601 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 602 return 0; 603 } 604 605 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 606 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 607 { 608 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 609 u64 addr = le64_to_cpu(sgl->addr); 610 u32 len = get_unaligned_le24(sgl->length); 611 u32 key = get_unaligned_le32(sgl->key); 612 int ret; 613 u16 status; 614 615 /* no data command? */ 616 if (!len) 617 return 0; 618 619 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt, 620 len); 621 if (status) 622 return status; 623 624 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 625 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, 626 nvmet_data_dir(&rsp->req)); 627 if (ret < 0) 628 return NVME_SC_INTERNAL; 629 rsp->n_rdma += ret; 630 631 if (invalidate) { 632 rsp->invalidate_rkey = key; 633 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 634 } 635 636 return 0; 637 } 638 639 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 640 { 641 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 642 643 switch (sgl->type >> 4) { 644 case NVME_SGL_FMT_DATA_DESC: 645 switch (sgl->type & 0xf) { 646 case NVME_SGL_FMT_OFFSET: 647 return nvmet_rdma_map_sgl_inline(rsp); 648 default: 649 pr_err("invalid SGL subtype: %#x\n", sgl->type); 650 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 651 } 652 case NVME_KEY_SGL_FMT_DATA_DESC: 653 switch (sgl->type & 0xf) { 654 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 655 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 656 case NVME_SGL_FMT_ADDRESS: 657 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 658 default: 659 pr_err("invalid SGL subtype: %#x\n", sgl->type); 660 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 661 } 662 default: 663 pr_err("invalid SGL type: %#x\n", sgl->type); 664 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 665 } 666 } 667 668 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 669 { 670 struct nvmet_rdma_queue *queue = rsp->queue; 671 672 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 673 &queue->sq_wr_avail) < 0)) { 674 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 675 1 + rsp->n_rdma, queue->idx, 676 queue->nvme_sq.ctrl->cntlid); 677 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 678 return false; 679 } 680 681 if (nvmet_rdma_need_data_in(rsp)) { 682 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp, 683 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 684 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 685 } else { 686 rsp->req.execute(&rsp->req); 687 } 688 689 return true; 690 } 691 692 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 693 struct nvmet_rdma_rsp *cmd) 694 { 695 u16 status; 696 697 cmd->queue = queue; 698 cmd->n_rdma = 0; 699 cmd->req.port = queue->port; 700 701 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 702 &queue->nvme_sq, &nvmet_rdma_ops)) 703 return; 704 705 status = nvmet_rdma_map_sgl(cmd); 706 if (status) 707 goto out_err; 708 709 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 710 spin_lock(&queue->rsp_wr_wait_lock); 711 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 712 spin_unlock(&queue->rsp_wr_wait_lock); 713 } 714 715 return; 716 717 out_err: 718 nvmet_req_complete(&cmd->req, status); 719 } 720 721 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 722 { 723 struct nvmet_rdma_cmd *cmd = 724 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 725 struct nvmet_rdma_queue *queue = cq->cq_context; 726 struct nvmet_rdma_rsp *rsp; 727 728 if (unlikely(wc->status != IB_WC_SUCCESS)) { 729 if (wc->status != IB_WC_WR_FLUSH_ERR) { 730 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 731 wc->wr_cqe, ib_wc_status_msg(wc->status), 732 wc->status); 733 nvmet_rdma_error_comp(queue); 734 } 735 return; 736 } 737 738 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 739 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 740 nvmet_rdma_error_comp(queue); 741 return; 742 } 743 744 cmd->queue = queue; 745 rsp = nvmet_rdma_get_rsp(queue); 746 rsp->cmd = cmd; 747 rsp->flags = 0; 748 rsp->req.cmd = cmd->nvme_cmd; 749 750 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 751 unsigned long flags; 752 753 spin_lock_irqsave(&queue->state_lock, flags); 754 if (queue->state == NVMET_RDMA_Q_CONNECTING) 755 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 756 else 757 nvmet_rdma_put_rsp(rsp); 758 spin_unlock_irqrestore(&queue->state_lock, flags); 759 return; 760 } 761 762 nvmet_rdma_handle_command(queue, rsp); 763 } 764 765 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) 766 { 767 if (!ndev->srq) 768 return; 769 770 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 771 ib_destroy_srq(ndev->srq); 772 } 773 774 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 775 { 776 struct ib_srq_init_attr srq_attr = { NULL, }; 777 struct ib_srq *srq; 778 size_t srq_size; 779 int ret, i; 780 781 srq_size = 4095; /* XXX: tune */ 782 783 srq_attr.attr.max_wr = srq_size; 784 srq_attr.attr.max_sge = 2; 785 srq_attr.attr.srq_limit = 0; 786 srq_attr.srq_type = IB_SRQT_BASIC; 787 srq = ib_create_srq(ndev->pd, &srq_attr); 788 if (IS_ERR(srq)) { 789 /* 790 * If SRQs aren't supported we just go ahead and use normal 791 * non-shared receive queues. 792 */ 793 pr_info("SRQ requested but not supported.\n"); 794 return 0; 795 } 796 797 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 798 if (IS_ERR(ndev->srq_cmds)) { 799 ret = PTR_ERR(ndev->srq_cmds); 800 goto out_destroy_srq; 801 } 802 803 ndev->srq = srq; 804 ndev->srq_size = srq_size; 805 806 for (i = 0; i < srq_size; i++) 807 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); 808 809 return 0; 810 811 out_destroy_srq: 812 ib_destroy_srq(srq); 813 return ret; 814 } 815 816 static void nvmet_rdma_free_dev(struct kref *ref) 817 { 818 struct nvmet_rdma_device *ndev = 819 container_of(ref, struct nvmet_rdma_device, ref); 820 821 mutex_lock(&device_list_mutex); 822 list_del(&ndev->entry); 823 mutex_unlock(&device_list_mutex); 824 825 nvmet_rdma_destroy_srq(ndev); 826 ib_dealloc_pd(ndev->pd); 827 828 kfree(ndev); 829 } 830 831 static struct nvmet_rdma_device * 832 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 833 { 834 struct nvmet_rdma_device *ndev; 835 int ret; 836 837 mutex_lock(&device_list_mutex); 838 list_for_each_entry(ndev, &device_list, entry) { 839 if (ndev->device->node_guid == cm_id->device->node_guid && 840 kref_get_unless_zero(&ndev->ref)) 841 goto out_unlock; 842 } 843 844 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 845 if (!ndev) 846 goto out_err; 847 848 ndev->device = cm_id->device; 849 kref_init(&ndev->ref); 850 851 ndev->pd = ib_alloc_pd(ndev->device, 0); 852 if (IS_ERR(ndev->pd)) 853 goto out_free_dev; 854 855 if (nvmet_rdma_use_srq) { 856 ret = nvmet_rdma_init_srq(ndev); 857 if (ret) 858 goto out_free_pd; 859 } 860 861 list_add(&ndev->entry, &device_list); 862 out_unlock: 863 mutex_unlock(&device_list_mutex); 864 pr_debug("added %s.\n", ndev->device->name); 865 return ndev; 866 867 out_free_pd: 868 ib_dealloc_pd(ndev->pd); 869 out_free_dev: 870 kfree(ndev); 871 out_err: 872 mutex_unlock(&device_list_mutex); 873 return NULL; 874 } 875 876 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 877 { 878 struct ib_qp_init_attr qp_attr; 879 struct nvmet_rdma_device *ndev = queue->dev; 880 int comp_vector, nr_cqe, ret, i; 881 882 /* 883 * Spread the io queues across completion vectors, 884 * but still keep all admin queues on vector 0. 885 */ 886 comp_vector = !queue->host_qid ? 0 : 887 queue->idx % ndev->device->num_comp_vectors; 888 889 /* 890 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 891 */ 892 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 893 894 queue->cq = ib_alloc_cq(ndev->device, queue, 895 nr_cqe + 1, comp_vector, 896 IB_POLL_WORKQUEUE); 897 if (IS_ERR(queue->cq)) { 898 ret = PTR_ERR(queue->cq); 899 pr_err("failed to create CQ cqe= %d ret= %d\n", 900 nr_cqe + 1, ret); 901 goto out; 902 } 903 904 memset(&qp_attr, 0, sizeof(qp_attr)); 905 qp_attr.qp_context = queue; 906 qp_attr.event_handler = nvmet_rdma_qp_event; 907 qp_attr.send_cq = queue->cq; 908 qp_attr.recv_cq = queue->cq; 909 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 910 qp_attr.qp_type = IB_QPT_RC; 911 /* +1 for drain */ 912 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 913 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size; 914 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 915 ndev->device->attrs.max_sge); 916 917 if (ndev->srq) { 918 qp_attr.srq = ndev->srq; 919 } else { 920 /* +1 for drain */ 921 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 922 qp_attr.cap.max_recv_sge = 2; 923 } 924 925 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 926 if (ret) { 927 pr_err("failed to create_qp ret= %d\n", ret); 928 goto err_destroy_cq; 929 } 930 931 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 932 933 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 934 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 935 qp_attr.cap.max_send_wr, queue->cm_id); 936 937 if (!ndev->srq) { 938 for (i = 0; i < queue->recv_queue_size; i++) { 939 queue->cmds[i].queue = queue; 940 nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 941 } 942 } 943 944 out: 945 return ret; 946 947 err_destroy_cq: 948 ib_free_cq(queue->cq); 949 goto out; 950 } 951 952 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 953 { 954 rdma_destroy_qp(queue->cm_id); 955 ib_free_cq(queue->cq); 956 } 957 958 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 959 { 960 pr_info("freeing queue %d\n", queue->idx); 961 962 nvmet_sq_destroy(&queue->nvme_sq); 963 964 nvmet_rdma_destroy_queue_ib(queue); 965 if (!queue->dev->srq) { 966 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 967 queue->recv_queue_size, 968 !queue->host_qid); 969 } 970 nvmet_rdma_free_rsps(queue); 971 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 972 kfree(queue); 973 } 974 975 static void nvmet_rdma_release_queue_work(struct work_struct *w) 976 { 977 struct nvmet_rdma_queue *queue = 978 container_of(w, struct nvmet_rdma_queue, release_work); 979 struct rdma_cm_id *cm_id = queue->cm_id; 980 struct nvmet_rdma_device *dev = queue->dev; 981 enum nvmet_rdma_queue_state state = queue->state; 982 983 nvmet_rdma_free_queue(queue); 984 985 if (state != NVMET_RDMA_IN_DEVICE_REMOVAL) 986 rdma_destroy_id(cm_id); 987 988 kref_put(&dev->ref, nvmet_rdma_free_dev); 989 } 990 991 static int 992 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 993 struct nvmet_rdma_queue *queue) 994 { 995 struct nvme_rdma_cm_req *req; 996 997 req = (struct nvme_rdma_cm_req *)conn->private_data; 998 if (!req || conn->private_data_len == 0) 999 return NVME_RDMA_CM_INVALID_LEN; 1000 1001 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1002 return NVME_RDMA_CM_INVALID_RECFMT; 1003 1004 queue->host_qid = le16_to_cpu(req->qid); 1005 1006 /* 1007 * req->hsqsize corresponds to our recv queue size plus 1 1008 * req->hrqsize corresponds to our send queue size 1009 */ 1010 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1011 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1012 1013 if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH) 1014 return NVME_RDMA_CM_INVALID_HSQSIZE; 1015 1016 /* XXX: Should we enforce some kind of max for IO queues? */ 1017 1018 return 0; 1019 } 1020 1021 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1022 enum nvme_rdma_cm_status status) 1023 { 1024 struct nvme_rdma_cm_rej rej; 1025 1026 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1027 rej.sts = cpu_to_le16(status); 1028 1029 return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); 1030 } 1031 1032 static struct nvmet_rdma_queue * 1033 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1034 struct rdma_cm_id *cm_id, 1035 struct rdma_cm_event *event) 1036 { 1037 struct nvmet_rdma_queue *queue; 1038 int ret; 1039 1040 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1041 if (!queue) { 1042 ret = NVME_RDMA_CM_NO_RSC; 1043 goto out_reject; 1044 } 1045 1046 ret = nvmet_sq_init(&queue->nvme_sq); 1047 if (ret) 1048 goto out_free_queue; 1049 1050 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1051 if (ret) 1052 goto out_destroy_sq; 1053 1054 /* 1055 * Schedules the actual release because calling rdma_destroy_id from 1056 * inside a CM callback would trigger a deadlock. (great API design..) 1057 */ 1058 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1059 queue->dev = ndev; 1060 queue->cm_id = cm_id; 1061 1062 spin_lock_init(&queue->state_lock); 1063 queue->state = NVMET_RDMA_Q_CONNECTING; 1064 INIT_LIST_HEAD(&queue->rsp_wait_list); 1065 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1066 spin_lock_init(&queue->rsp_wr_wait_lock); 1067 INIT_LIST_HEAD(&queue->free_rsps); 1068 spin_lock_init(&queue->rsps_lock); 1069 1070 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1071 if (queue->idx < 0) { 1072 ret = NVME_RDMA_CM_NO_RSC; 1073 goto out_free_queue; 1074 } 1075 1076 ret = nvmet_rdma_alloc_rsps(queue); 1077 if (ret) { 1078 ret = NVME_RDMA_CM_NO_RSC; 1079 goto out_ida_remove; 1080 } 1081 1082 if (!ndev->srq) { 1083 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1084 queue->recv_queue_size, 1085 !queue->host_qid); 1086 if (IS_ERR(queue->cmds)) { 1087 ret = NVME_RDMA_CM_NO_RSC; 1088 goto out_free_responses; 1089 } 1090 } 1091 1092 ret = nvmet_rdma_create_queue_ib(queue); 1093 if (ret) { 1094 pr_err("%s: creating RDMA queue failed (%d).\n", 1095 __func__, ret); 1096 ret = NVME_RDMA_CM_NO_RSC; 1097 goto out_free_cmds; 1098 } 1099 1100 return queue; 1101 1102 out_free_cmds: 1103 if (!ndev->srq) { 1104 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1105 queue->recv_queue_size, 1106 !queue->host_qid); 1107 } 1108 out_free_responses: 1109 nvmet_rdma_free_rsps(queue); 1110 out_ida_remove: 1111 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1112 out_destroy_sq: 1113 nvmet_sq_destroy(&queue->nvme_sq); 1114 out_free_queue: 1115 kfree(queue); 1116 out_reject: 1117 nvmet_rdma_cm_reject(cm_id, ret); 1118 return NULL; 1119 } 1120 1121 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1122 { 1123 struct nvmet_rdma_queue *queue = priv; 1124 1125 switch (event->event) { 1126 case IB_EVENT_COMM_EST: 1127 rdma_notify(queue->cm_id, event->event); 1128 break; 1129 default: 1130 pr_err("received unrecognized IB QP event %d\n", event->event); 1131 break; 1132 } 1133 } 1134 1135 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1136 struct nvmet_rdma_queue *queue, 1137 struct rdma_conn_param *p) 1138 { 1139 struct rdma_conn_param param = { }; 1140 struct nvme_rdma_cm_rep priv = { }; 1141 int ret = -ENOMEM; 1142 1143 param.rnr_retry_count = 7; 1144 param.flow_control = 1; 1145 param.initiator_depth = min_t(u8, p->initiator_depth, 1146 queue->dev->device->attrs.max_qp_init_rd_atom); 1147 param.private_data = &priv; 1148 param.private_data_len = sizeof(priv); 1149 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1150 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1151 1152 ret = rdma_accept(cm_id, ¶m); 1153 if (ret) 1154 pr_err("rdma_accept failed (error code = %d)\n", ret); 1155 1156 return ret; 1157 } 1158 1159 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1160 struct rdma_cm_event *event) 1161 { 1162 struct nvmet_rdma_device *ndev; 1163 struct nvmet_rdma_queue *queue; 1164 int ret = -EINVAL; 1165 1166 ndev = nvmet_rdma_find_get_device(cm_id); 1167 if (!ndev) { 1168 pr_err("no client data!\n"); 1169 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1170 return -ECONNREFUSED; 1171 } 1172 1173 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1174 if (!queue) { 1175 ret = -ENOMEM; 1176 goto put_device; 1177 } 1178 queue->port = cm_id->context; 1179 1180 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1181 if (ret) 1182 goto release_queue; 1183 1184 mutex_lock(&nvmet_rdma_queue_mutex); 1185 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1186 mutex_unlock(&nvmet_rdma_queue_mutex); 1187 1188 return 0; 1189 1190 release_queue: 1191 nvmet_rdma_free_queue(queue); 1192 put_device: 1193 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1194 1195 return ret; 1196 } 1197 1198 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1199 { 1200 unsigned long flags; 1201 1202 spin_lock_irqsave(&queue->state_lock, flags); 1203 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1204 pr_warn("trying to establish a connected queue\n"); 1205 goto out_unlock; 1206 } 1207 queue->state = NVMET_RDMA_Q_LIVE; 1208 1209 while (!list_empty(&queue->rsp_wait_list)) { 1210 struct nvmet_rdma_rsp *cmd; 1211 1212 cmd = list_first_entry(&queue->rsp_wait_list, 1213 struct nvmet_rdma_rsp, wait_list); 1214 list_del(&cmd->wait_list); 1215 1216 spin_unlock_irqrestore(&queue->state_lock, flags); 1217 nvmet_rdma_handle_command(queue, cmd); 1218 spin_lock_irqsave(&queue->state_lock, flags); 1219 } 1220 1221 out_unlock: 1222 spin_unlock_irqrestore(&queue->state_lock, flags); 1223 } 1224 1225 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1226 { 1227 bool disconnect = false; 1228 unsigned long flags; 1229 1230 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1231 1232 spin_lock_irqsave(&queue->state_lock, flags); 1233 switch (queue->state) { 1234 case NVMET_RDMA_Q_CONNECTING: 1235 case NVMET_RDMA_Q_LIVE: 1236 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1237 case NVMET_RDMA_IN_DEVICE_REMOVAL: 1238 disconnect = true; 1239 break; 1240 case NVMET_RDMA_Q_DISCONNECTING: 1241 break; 1242 } 1243 spin_unlock_irqrestore(&queue->state_lock, flags); 1244 1245 if (disconnect) { 1246 rdma_disconnect(queue->cm_id); 1247 ib_drain_qp(queue->cm_id->qp); 1248 schedule_work(&queue->release_work); 1249 } 1250 } 1251 1252 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1253 { 1254 bool disconnect = false; 1255 1256 mutex_lock(&nvmet_rdma_queue_mutex); 1257 if (!list_empty(&queue->queue_list)) { 1258 list_del_init(&queue->queue_list); 1259 disconnect = true; 1260 } 1261 mutex_unlock(&nvmet_rdma_queue_mutex); 1262 1263 if (disconnect) 1264 __nvmet_rdma_queue_disconnect(queue); 1265 } 1266 1267 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1268 struct nvmet_rdma_queue *queue) 1269 { 1270 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1271 1272 pr_err("failed to connect queue\n"); 1273 schedule_work(&queue->release_work); 1274 } 1275 1276 /** 1277 * nvme_rdma_device_removal() - Handle RDMA device removal 1278 * @queue: nvmet rdma queue (cm id qp_context) 1279 * @addr: nvmet address (cm_id context) 1280 * 1281 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1282 * to unplug so we should take care of destroying our RDMA resources. 1283 * This event will be generated for each allocated cm_id. 1284 * 1285 * Note that this event can be generated on a normal queue cm_id 1286 * and/or a device bound listener cm_id (where in this case 1287 * queue will be null). 1288 * 1289 * we claim ownership on destroying the cm_id. For queues we move 1290 * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port 1291 * we nullify the priv to prevent double cm_id destruction and destroying 1292 * the cm_id implicitely by returning a non-zero rc to the callout. 1293 */ 1294 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1295 struct nvmet_rdma_queue *queue) 1296 { 1297 unsigned long flags; 1298 1299 if (!queue) { 1300 struct nvmet_port *port = cm_id->context; 1301 1302 /* 1303 * This is a listener cm_id. Make sure that 1304 * future remove_port won't invoke a double 1305 * cm_id destroy. use atomic xchg to make sure 1306 * we don't compete with remove_port. 1307 */ 1308 if (xchg(&port->priv, NULL) != cm_id) 1309 return 0; 1310 } else { 1311 /* 1312 * This is a queue cm_id. Make sure that 1313 * release queue will not destroy the cm_id 1314 * and schedule all ctrl queues removal (only 1315 * if the queue is not disconnecting already). 1316 */ 1317 spin_lock_irqsave(&queue->state_lock, flags); 1318 if (queue->state != NVMET_RDMA_Q_DISCONNECTING) 1319 queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL; 1320 spin_unlock_irqrestore(&queue->state_lock, flags); 1321 nvmet_rdma_queue_disconnect(queue); 1322 flush_scheduled_work(); 1323 } 1324 1325 /* 1326 * We need to return 1 so that the core will destroy 1327 * it's own ID. What a great API design.. 1328 */ 1329 return 1; 1330 } 1331 1332 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1333 struct rdma_cm_event *event) 1334 { 1335 struct nvmet_rdma_queue *queue = NULL; 1336 int ret = 0; 1337 1338 if (cm_id->qp) 1339 queue = cm_id->qp->qp_context; 1340 1341 pr_debug("%s (%d): status %d id %p\n", 1342 rdma_event_msg(event->event), event->event, 1343 event->status, cm_id); 1344 1345 switch (event->event) { 1346 case RDMA_CM_EVENT_CONNECT_REQUEST: 1347 ret = nvmet_rdma_queue_connect(cm_id, event); 1348 break; 1349 case RDMA_CM_EVENT_ESTABLISHED: 1350 nvmet_rdma_queue_established(queue); 1351 break; 1352 case RDMA_CM_EVENT_ADDR_CHANGE: 1353 case RDMA_CM_EVENT_DISCONNECTED: 1354 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1355 nvmet_rdma_queue_disconnect(queue); 1356 break; 1357 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1358 ret = nvmet_rdma_device_removal(cm_id, queue); 1359 break; 1360 case RDMA_CM_EVENT_REJECTED: 1361 case RDMA_CM_EVENT_UNREACHABLE: 1362 case RDMA_CM_EVENT_CONNECT_ERROR: 1363 nvmet_rdma_queue_connect_fail(cm_id, queue); 1364 break; 1365 default: 1366 pr_err("received unrecognized RDMA CM event %d\n", 1367 event->event); 1368 break; 1369 } 1370 1371 return ret; 1372 } 1373 1374 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1375 { 1376 struct nvmet_rdma_queue *queue; 1377 1378 restart: 1379 mutex_lock(&nvmet_rdma_queue_mutex); 1380 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1381 if (queue->nvme_sq.ctrl == ctrl) { 1382 list_del_init(&queue->queue_list); 1383 mutex_unlock(&nvmet_rdma_queue_mutex); 1384 1385 __nvmet_rdma_queue_disconnect(queue); 1386 goto restart; 1387 } 1388 } 1389 mutex_unlock(&nvmet_rdma_queue_mutex); 1390 } 1391 1392 static int nvmet_rdma_add_port(struct nvmet_port *port) 1393 { 1394 struct rdma_cm_id *cm_id; 1395 struct sockaddr_in addr_in; 1396 u16 port_in; 1397 int ret; 1398 1399 switch (port->disc_addr.adrfam) { 1400 case NVMF_ADDR_FAMILY_IP4: 1401 break; 1402 default: 1403 pr_err("address family %d not supported\n", 1404 port->disc_addr.adrfam); 1405 return -EINVAL; 1406 } 1407 1408 ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in); 1409 if (ret) 1410 return ret; 1411 1412 addr_in.sin_family = AF_INET; 1413 addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr); 1414 addr_in.sin_port = htons(port_in); 1415 1416 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1417 RDMA_PS_TCP, IB_QPT_RC); 1418 if (IS_ERR(cm_id)) { 1419 pr_err("CM ID creation failed\n"); 1420 return PTR_ERR(cm_id); 1421 } 1422 1423 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in); 1424 if (ret) { 1425 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret); 1426 goto out_destroy_id; 1427 } 1428 1429 ret = rdma_listen(cm_id, 128); 1430 if (ret) { 1431 pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret); 1432 goto out_destroy_id; 1433 } 1434 1435 pr_info("enabling port %d (%pISpc)\n", 1436 le16_to_cpu(port->disc_addr.portid), &addr_in); 1437 port->priv = cm_id; 1438 return 0; 1439 1440 out_destroy_id: 1441 rdma_destroy_id(cm_id); 1442 return ret; 1443 } 1444 1445 static void nvmet_rdma_remove_port(struct nvmet_port *port) 1446 { 1447 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL); 1448 1449 if (cm_id) 1450 rdma_destroy_id(cm_id); 1451 } 1452 1453 static struct nvmet_fabrics_ops nvmet_rdma_ops = { 1454 .owner = THIS_MODULE, 1455 .type = NVMF_TRTYPE_RDMA, 1456 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE, 1457 .msdbd = 1, 1458 .has_keyed_sgls = 1, 1459 .add_port = nvmet_rdma_add_port, 1460 .remove_port = nvmet_rdma_remove_port, 1461 .queue_response = nvmet_rdma_queue_response, 1462 .delete_ctrl = nvmet_rdma_delete_ctrl, 1463 }; 1464 1465 static int __init nvmet_rdma_init(void) 1466 { 1467 return nvmet_register_transport(&nvmet_rdma_ops); 1468 } 1469 1470 static void __exit nvmet_rdma_exit(void) 1471 { 1472 struct nvmet_rdma_queue *queue; 1473 1474 nvmet_unregister_transport(&nvmet_rdma_ops); 1475 1476 flush_scheduled_work(); 1477 1478 mutex_lock(&nvmet_rdma_queue_mutex); 1479 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list, 1480 struct nvmet_rdma_queue, queue_list))) { 1481 list_del_init(&queue->queue_list); 1482 1483 mutex_unlock(&nvmet_rdma_queue_mutex); 1484 __nvmet_rdma_queue_disconnect(queue); 1485 mutex_lock(&nvmet_rdma_queue_mutex); 1486 } 1487 mutex_unlock(&nvmet_rdma_queue_mutex); 1488 1489 flush_scheduled_work(); 1490 ida_destroy(&nvmet_rdma_queue_ida); 1491 } 1492 1493 module_init(nvmet_rdma_init); 1494 module_exit(nvmet_rdma_exit); 1495 1496 MODULE_LICENSE("GPL v2"); 1497 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 1498