1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/nvme.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/wait.h> 18 #include <linux/inet.h> 19 #include <asm/unaligned.h> 20 21 #include <rdma/ib_verbs.h> 22 #include <rdma/rdma_cm.h> 23 #include <rdma/rw.h> 24 #include <rdma/ib_cm.h> 25 26 #include <linux/nvme-rdma.h> 27 #include "nvmet.h" 28 29 /* 30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 31 */ 32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 33 #define NVMET_RDMA_MAX_INLINE_SGE 4 34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 35 36 /* Assume mpsmin == device_page_size == 4KB */ 37 #define NVMET_RDMA_MAX_MDTS 8 38 #define NVMET_RDMA_MAX_METADATA_MDTS 5 39 40 #define NVMET_RDMA_BACKLOG 128 41 42 struct nvmet_rdma_srq; 43 44 struct nvmet_rdma_cmd { 45 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 46 struct ib_cqe cqe; 47 struct ib_recv_wr wr; 48 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 49 struct nvme_command *nvme_cmd; 50 struct nvmet_rdma_queue *queue; 51 struct nvmet_rdma_srq *nsrq; 52 }; 53 54 enum { 55 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 56 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 57 }; 58 59 struct nvmet_rdma_rsp { 60 struct ib_sge send_sge; 61 struct ib_cqe send_cqe; 62 struct ib_send_wr send_wr; 63 64 struct nvmet_rdma_cmd *cmd; 65 struct nvmet_rdma_queue *queue; 66 67 struct ib_cqe read_cqe; 68 struct ib_cqe write_cqe; 69 struct rdma_rw_ctx rw; 70 71 struct nvmet_req req; 72 73 bool allocated; 74 u8 n_rdma; 75 u32 flags; 76 u32 invalidate_rkey; 77 78 struct list_head wait_list; 79 struct list_head free_list; 80 }; 81 82 enum nvmet_rdma_queue_state { 83 NVMET_RDMA_Q_CONNECTING, 84 NVMET_RDMA_Q_LIVE, 85 NVMET_RDMA_Q_DISCONNECTING, 86 }; 87 88 struct nvmet_rdma_queue { 89 struct rdma_cm_id *cm_id; 90 struct ib_qp *qp; 91 struct nvmet_port *port; 92 struct ib_cq *cq; 93 atomic_t sq_wr_avail; 94 struct nvmet_rdma_device *dev; 95 struct nvmet_rdma_srq *nsrq; 96 spinlock_t state_lock; 97 enum nvmet_rdma_queue_state state; 98 struct nvmet_cq nvme_cq; 99 struct nvmet_sq nvme_sq; 100 101 struct nvmet_rdma_rsp *rsps; 102 struct list_head free_rsps; 103 spinlock_t rsps_lock; 104 struct nvmet_rdma_cmd *cmds; 105 106 struct work_struct release_work; 107 struct list_head rsp_wait_list; 108 struct list_head rsp_wr_wait_list; 109 spinlock_t rsp_wr_wait_lock; 110 111 int idx; 112 int host_qid; 113 int comp_vector; 114 int recv_queue_size; 115 int send_queue_size; 116 117 struct list_head queue_list; 118 }; 119 120 struct nvmet_rdma_port { 121 struct nvmet_port *nport; 122 struct sockaddr_storage addr; 123 struct rdma_cm_id *cm_id; 124 struct delayed_work repair_work; 125 }; 126 127 struct nvmet_rdma_srq { 128 struct ib_srq *srq; 129 struct nvmet_rdma_cmd *cmds; 130 struct nvmet_rdma_device *ndev; 131 }; 132 133 struct nvmet_rdma_device { 134 struct ib_device *device; 135 struct ib_pd *pd; 136 struct nvmet_rdma_srq **srqs; 137 int srq_count; 138 size_t srq_size; 139 struct kref ref; 140 struct list_head entry; 141 int inline_data_size; 142 int inline_page_count; 143 }; 144 145 static bool nvmet_rdma_use_srq; 146 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 147 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 148 149 static int srq_size_set(const char *val, const struct kernel_param *kp); 150 static const struct kernel_param_ops srq_size_ops = { 151 .set = srq_size_set, 152 .get = param_get_int, 153 }; 154 155 static int nvmet_rdma_srq_size = 1024; 156 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 157 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 158 159 static DEFINE_IDA(nvmet_rdma_queue_ida); 160 static LIST_HEAD(nvmet_rdma_queue_list); 161 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 162 163 static LIST_HEAD(device_list); 164 static DEFINE_MUTEX(device_list_mutex); 165 166 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 167 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 169 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 170 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 171 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 172 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 173 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 174 struct nvmet_rdma_rsp *r); 175 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 176 struct nvmet_rdma_rsp *r); 177 178 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 179 180 static int srq_size_set(const char *val, const struct kernel_param *kp) 181 { 182 int n = 0, ret; 183 184 ret = kstrtoint(val, 10, &n); 185 if (ret != 0 || n < 256) 186 return -EINVAL; 187 188 return param_set_int(val, kp); 189 } 190 191 static int num_pages(int len) 192 { 193 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 194 } 195 196 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 197 { 198 return nvme_is_write(rsp->req.cmd) && 199 rsp->req.transfer_len && 200 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 201 } 202 203 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 204 { 205 return !nvme_is_write(rsp->req.cmd) && 206 rsp->req.transfer_len && 207 !rsp->req.cqe->status && 208 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 209 } 210 211 static inline struct nvmet_rdma_rsp * 212 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 213 { 214 struct nvmet_rdma_rsp *rsp; 215 unsigned long flags; 216 217 spin_lock_irqsave(&queue->rsps_lock, flags); 218 rsp = list_first_entry_or_null(&queue->free_rsps, 219 struct nvmet_rdma_rsp, free_list); 220 if (likely(rsp)) 221 list_del(&rsp->free_list); 222 spin_unlock_irqrestore(&queue->rsps_lock, flags); 223 224 if (unlikely(!rsp)) { 225 int ret; 226 227 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 228 if (unlikely(!rsp)) 229 return NULL; 230 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 231 if (unlikely(ret)) { 232 kfree(rsp); 233 return NULL; 234 } 235 236 rsp->allocated = true; 237 } 238 239 return rsp; 240 } 241 242 static inline void 243 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 244 { 245 unsigned long flags; 246 247 if (unlikely(rsp->allocated)) { 248 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 249 kfree(rsp); 250 return; 251 } 252 253 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 254 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 255 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 256 } 257 258 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 259 struct nvmet_rdma_cmd *c) 260 { 261 struct scatterlist *sg; 262 struct ib_sge *sge; 263 int i; 264 265 if (!ndev->inline_data_size) 266 return; 267 268 sg = c->inline_sg; 269 sge = &c->sge[1]; 270 271 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 272 if (sge->length) 273 ib_dma_unmap_page(ndev->device, sge->addr, 274 sge->length, DMA_FROM_DEVICE); 275 if (sg_page(sg)) 276 __free_page(sg_page(sg)); 277 } 278 } 279 280 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 281 struct nvmet_rdma_cmd *c) 282 { 283 struct scatterlist *sg; 284 struct ib_sge *sge; 285 struct page *pg; 286 int len; 287 int i; 288 289 if (!ndev->inline_data_size) 290 return 0; 291 292 sg = c->inline_sg; 293 sg_init_table(sg, ndev->inline_page_count); 294 sge = &c->sge[1]; 295 len = ndev->inline_data_size; 296 297 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 298 pg = alloc_page(GFP_KERNEL); 299 if (!pg) 300 goto out_err; 301 sg_assign_page(sg, pg); 302 sge->addr = ib_dma_map_page(ndev->device, 303 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 304 if (ib_dma_mapping_error(ndev->device, sge->addr)) 305 goto out_err; 306 sge->length = min_t(int, len, PAGE_SIZE); 307 sge->lkey = ndev->pd->local_dma_lkey; 308 len -= sge->length; 309 } 310 311 return 0; 312 out_err: 313 for (; i >= 0; i--, sg--, sge--) { 314 if (sge->length) 315 ib_dma_unmap_page(ndev->device, sge->addr, 316 sge->length, DMA_FROM_DEVICE); 317 if (sg_page(sg)) 318 __free_page(sg_page(sg)); 319 } 320 return -ENOMEM; 321 } 322 323 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 324 struct nvmet_rdma_cmd *c, bool admin) 325 { 326 /* NVMe command / RDMA RECV */ 327 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 328 if (!c->nvme_cmd) 329 goto out; 330 331 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 332 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 333 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 334 goto out_free_cmd; 335 336 c->sge[0].length = sizeof(*c->nvme_cmd); 337 c->sge[0].lkey = ndev->pd->local_dma_lkey; 338 339 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 340 goto out_unmap_cmd; 341 342 c->cqe.done = nvmet_rdma_recv_done; 343 344 c->wr.wr_cqe = &c->cqe; 345 c->wr.sg_list = c->sge; 346 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 347 348 return 0; 349 350 out_unmap_cmd: 351 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 352 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 353 out_free_cmd: 354 kfree(c->nvme_cmd); 355 356 out: 357 return -ENOMEM; 358 } 359 360 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 361 struct nvmet_rdma_cmd *c, bool admin) 362 { 363 if (!admin) 364 nvmet_rdma_free_inline_pages(ndev, c); 365 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 366 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 367 kfree(c->nvme_cmd); 368 } 369 370 static struct nvmet_rdma_cmd * 371 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 372 int nr_cmds, bool admin) 373 { 374 struct nvmet_rdma_cmd *cmds; 375 int ret = -EINVAL, i; 376 377 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 378 if (!cmds) 379 goto out; 380 381 for (i = 0; i < nr_cmds; i++) { 382 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 383 if (ret) 384 goto out_free; 385 } 386 387 return cmds; 388 389 out_free: 390 while (--i >= 0) 391 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 392 kfree(cmds); 393 out: 394 return ERR_PTR(ret); 395 } 396 397 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 398 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 399 { 400 int i; 401 402 for (i = 0; i < nr_cmds; i++) 403 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 404 kfree(cmds); 405 } 406 407 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 408 struct nvmet_rdma_rsp *r) 409 { 410 /* NVMe CQE / RDMA SEND */ 411 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 412 if (!r->req.cqe) 413 goto out; 414 415 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 416 sizeof(*r->req.cqe), DMA_TO_DEVICE); 417 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 418 goto out_free_rsp; 419 420 if (ib_dma_pci_p2p_dma_supported(ndev->device)) 421 r->req.p2p_client = &ndev->device->dev; 422 r->send_sge.length = sizeof(*r->req.cqe); 423 r->send_sge.lkey = ndev->pd->local_dma_lkey; 424 425 r->send_cqe.done = nvmet_rdma_send_done; 426 427 r->send_wr.wr_cqe = &r->send_cqe; 428 r->send_wr.sg_list = &r->send_sge; 429 r->send_wr.num_sge = 1; 430 r->send_wr.send_flags = IB_SEND_SIGNALED; 431 432 /* Data In / RDMA READ */ 433 r->read_cqe.done = nvmet_rdma_read_data_done; 434 /* Data Out / RDMA WRITE */ 435 r->write_cqe.done = nvmet_rdma_write_data_done; 436 437 return 0; 438 439 out_free_rsp: 440 kfree(r->req.cqe); 441 out: 442 return -ENOMEM; 443 } 444 445 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 446 struct nvmet_rdma_rsp *r) 447 { 448 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 449 sizeof(*r->req.cqe), DMA_TO_DEVICE); 450 kfree(r->req.cqe); 451 } 452 453 static int 454 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 455 { 456 struct nvmet_rdma_device *ndev = queue->dev; 457 int nr_rsps = queue->recv_queue_size * 2; 458 int ret = -EINVAL, i; 459 460 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 461 GFP_KERNEL); 462 if (!queue->rsps) 463 goto out; 464 465 for (i = 0; i < nr_rsps; i++) { 466 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 467 468 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 469 if (ret) 470 goto out_free; 471 472 list_add_tail(&rsp->free_list, &queue->free_rsps); 473 } 474 475 return 0; 476 477 out_free: 478 while (--i >= 0) { 479 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 480 481 list_del(&rsp->free_list); 482 nvmet_rdma_free_rsp(ndev, rsp); 483 } 484 kfree(queue->rsps); 485 out: 486 return ret; 487 } 488 489 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 490 { 491 struct nvmet_rdma_device *ndev = queue->dev; 492 int i, nr_rsps = queue->recv_queue_size * 2; 493 494 for (i = 0; i < nr_rsps; i++) { 495 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 496 497 list_del(&rsp->free_list); 498 nvmet_rdma_free_rsp(ndev, rsp); 499 } 500 kfree(queue->rsps); 501 } 502 503 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 504 struct nvmet_rdma_cmd *cmd) 505 { 506 int ret; 507 508 ib_dma_sync_single_for_device(ndev->device, 509 cmd->sge[0].addr, cmd->sge[0].length, 510 DMA_FROM_DEVICE); 511 512 if (cmd->nsrq) 513 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 514 else 515 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 516 517 if (unlikely(ret)) 518 pr_err("post_recv cmd failed\n"); 519 520 return ret; 521 } 522 523 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 524 { 525 spin_lock(&queue->rsp_wr_wait_lock); 526 while (!list_empty(&queue->rsp_wr_wait_list)) { 527 struct nvmet_rdma_rsp *rsp; 528 bool ret; 529 530 rsp = list_entry(queue->rsp_wr_wait_list.next, 531 struct nvmet_rdma_rsp, wait_list); 532 list_del(&rsp->wait_list); 533 534 spin_unlock(&queue->rsp_wr_wait_lock); 535 ret = nvmet_rdma_execute_command(rsp); 536 spin_lock(&queue->rsp_wr_wait_lock); 537 538 if (!ret) { 539 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 540 break; 541 } 542 } 543 spin_unlock(&queue->rsp_wr_wait_lock); 544 } 545 546 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 547 { 548 struct ib_mr_status mr_status; 549 int ret; 550 u16 status = 0; 551 552 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 553 if (ret) { 554 pr_err("ib_check_mr_status failed, ret %d\n", ret); 555 return NVME_SC_INVALID_PI; 556 } 557 558 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 559 switch (mr_status.sig_err.err_type) { 560 case IB_SIG_BAD_GUARD: 561 status = NVME_SC_GUARD_CHECK; 562 break; 563 case IB_SIG_BAD_REFTAG: 564 status = NVME_SC_REFTAG_CHECK; 565 break; 566 case IB_SIG_BAD_APPTAG: 567 status = NVME_SC_APPTAG_CHECK; 568 break; 569 } 570 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 571 mr_status.sig_err.err_type, 572 mr_status.sig_err.expected, 573 mr_status.sig_err.actual); 574 } 575 576 return status; 577 } 578 579 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 580 struct nvme_command *cmd, struct ib_sig_domain *domain, 581 u16 control, u8 pi_type) 582 { 583 domain->sig_type = IB_SIG_TYPE_T10_DIF; 584 domain->sig.dif.bg_type = IB_T10DIF_CRC; 585 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 586 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 587 if (control & NVME_RW_PRINFO_PRCHK_REF) 588 domain->sig.dif.ref_remap = true; 589 590 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 591 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 592 domain->sig.dif.app_escape = true; 593 if (pi_type == NVME_NS_DPS_PI_TYPE3) 594 domain->sig.dif.ref_escape = true; 595 } 596 597 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 598 struct ib_sig_attrs *sig_attrs) 599 { 600 struct nvme_command *cmd = req->cmd; 601 u16 control = le16_to_cpu(cmd->rw.control); 602 u8 pi_type = req->ns->pi_type; 603 struct blk_integrity *bi; 604 605 bi = bdev_get_integrity(req->ns->bdev); 606 607 memset(sig_attrs, 0, sizeof(*sig_attrs)); 608 609 if (control & NVME_RW_PRINFO_PRACT) { 610 /* for WRITE_INSERT/READ_STRIP no wire domain */ 611 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 612 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 613 pi_type); 614 /* Clear the PRACT bit since HCA will generate/verify the PI */ 615 control &= ~NVME_RW_PRINFO_PRACT; 616 cmd->rw.control = cpu_to_le16(control); 617 /* PI is added by the HW */ 618 req->transfer_len += req->metadata_len; 619 } else { 620 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 621 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 622 pi_type); 623 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 624 pi_type); 625 } 626 627 if (control & NVME_RW_PRINFO_PRCHK_REF) 628 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 629 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 630 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 631 if (control & NVME_RW_PRINFO_PRCHK_APP) 632 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 633 } 634 635 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 636 struct ib_sig_attrs *sig_attrs) 637 { 638 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 639 struct nvmet_req *req = &rsp->req; 640 int ret; 641 642 if (req->metadata_len) 643 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 644 cm_id->port_num, req->sg, req->sg_cnt, 645 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 646 addr, key, nvmet_data_dir(req)); 647 else 648 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 649 req->sg, req->sg_cnt, 0, addr, key, 650 nvmet_data_dir(req)); 651 652 return ret; 653 } 654 655 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 656 { 657 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 658 struct nvmet_req *req = &rsp->req; 659 660 if (req->metadata_len) 661 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 662 cm_id->port_num, req->sg, req->sg_cnt, 663 req->metadata_sg, req->metadata_sg_cnt, 664 nvmet_data_dir(req)); 665 else 666 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 667 req->sg, req->sg_cnt, nvmet_data_dir(req)); 668 } 669 670 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 671 { 672 struct nvmet_rdma_queue *queue = rsp->queue; 673 674 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 675 676 if (rsp->n_rdma) 677 nvmet_rdma_rw_ctx_destroy(rsp); 678 679 if (rsp->req.sg != rsp->cmd->inline_sg) 680 nvmet_req_free_sgls(&rsp->req); 681 682 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 683 nvmet_rdma_process_wr_wait_list(queue); 684 685 nvmet_rdma_put_rsp(rsp); 686 } 687 688 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 689 { 690 if (queue->nvme_sq.ctrl) { 691 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 692 } else { 693 /* 694 * we didn't setup the controller yet in case 695 * of admin connect error, just disconnect and 696 * cleanup the queue 697 */ 698 nvmet_rdma_queue_disconnect(queue); 699 } 700 } 701 702 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 703 { 704 struct nvmet_rdma_rsp *rsp = 705 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 706 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 707 708 nvmet_rdma_release_rsp(rsp); 709 710 if (unlikely(wc->status != IB_WC_SUCCESS && 711 wc->status != IB_WC_WR_FLUSH_ERR)) { 712 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 713 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 714 nvmet_rdma_error_comp(queue); 715 } 716 } 717 718 static void nvmet_rdma_queue_response(struct nvmet_req *req) 719 { 720 struct nvmet_rdma_rsp *rsp = 721 container_of(req, struct nvmet_rdma_rsp, req); 722 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 723 struct ib_send_wr *first_wr; 724 725 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 726 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 727 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 728 } else { 729 rsp->send_wr.opcode = IB_WR_SEND; 730 } 731 732 if (nvmet_rdma_need_data_out(rsp)) { 733 if (rsp->req.metadata_len) 734 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 735 cm_id->port_num, &rsp->write_cqe, NULL); 736 else 737 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 738 cm_id->port_num, NULL, &rsp->send_wr); 739 } else { 740 first_wr = &rsp->send_wr; 741 } 742 743 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 744 745 ib_dma_sync_single_for_device(rsp->queue->dev->device, 746 rsp->send_sge.addr, rsp->send_sge.length, 747 DMA_TO_DEVICE); 748 749 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 750 pr_err("sending cmd response failed\n"); 751 nvmet_rdma_release_rsp(rsp); 752 } 753 } 754 755 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 756 { 757 struct nvmet_rdma_rsp *rsp = 758 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 759 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 760 u16 status = 0; 761 762 WARN_ON(rsp->n_rdma <= 0); 763 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 764 rsp->n_rdma = 0; 765 766 if (unlikely(wc->status != IB_WC_SUCCESS)) { 767 nvmet_rdma_rw_ctx_destroy(rsp); 768 nvmet_req_uninit(&rsp->req); 769 nvmet_rdma_release_rsp(rsp); 770 if (wc->status != IB_WC_WR_FLUSH_ERR) { 771 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 772 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 773 nvmet_rdma_error_comp(queue); 774 } 775 return; 776 } 777 778 if (rsp->req.metadata_len) 779 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 780 nvmet_rdma_rw_ctx_destroy(rsp); 781 782 if (unlikely(status)) 783 nvmet_req_complete(&rsp->req, status); 784 else 785 rsp->req.execute(&rsp->req); 786 } 787 788 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 789 { 790 struct nvmet_rdma_rsp *rsp = 791 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 792 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 793 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 794 u16 status; 795 796 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 797 return; 798 799 WARN_ON(rsp->n_rdma <= 0); 800 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 801 rsp->n_rdma = 0; 802 803 if (unlikely(wc->status != IB_WC_SUCCESS)) { 804 nvmet_rdma_rw_ctx_destroy(rsp); 805 nvmet_req_uninit(&rsp->req); 806 nvmet_rdma_release_rsp(rsp); 807 if (wc->status != IB_WC_WR_FLUSH_ERR) { 808 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", 809 ib_wc_status_msg(wc->status), wc->status); 810 nvmet_rdma_error_comp(queue); 811 } 812 return; 813 } 814 815 /* 816 * Upon RDMA completion check the signature status 817 * - if succeeded send good NVMe response 818 * - if failed send bad NVMe response with appropriate error 819 */ 820 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 821 if (unlikely(status)) 822 rsp->req.cqe->status = cpu_to_le16(status << 1); 823 nvmet_rdma_rw_ctx_destroy(rsp); 824 825 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 826 pr_err("sending cmd response failed\n"); 827 nvmet_rdma_release_rsp(rsp); 828 } 829 } 830 831 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 832 u64 off) 833 { 834 int sg_count = num_pages(len); 835 struct scatterlist *sg; 836 int i; 837 838 sg = rsp->cmd->inline_sg; 839 for (i = 0; i < sg_count; i++, sg++) { 840 if (i < sg_count - 1) 841 sg_unmark_end(sg); 842 else 843 sg_mark_end(sg); 844 sg->offset = off; 845 sg->length = min_t(int, len, PAGE_SIZE - off); 846 len -= sg->length; 847 if (!i) 848 off = 0; 849 } 850 851 rsp->req.sg = rsp->cmd->inline_sg; 852 rsp->req.sg_cnt = sg_count; 853 } 854 855 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 856 { 857 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 858 u64 off = le64_to_cpu(sgl->addr); 859 u32 len = le32_to_cpu(sgl->length); 860 861 if (!nvme_is_write(rsp->req.cmd)) { 862 rsp->req.error_loc = 863 offsetof(struct nvme_common_command, opcode); 864 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 865 } 866 867 if (off + len > rsp->queue->dev->inline_data_size) { 868 pr_err("invalid inline data offset!\n"); 869 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 870 } 871 872 /* no data command? */ 873 if (!len) 874 return 0; 875 876 nvmet_rdma_use_inline_sg(rsp, len, off); 877 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 878 rsp->req.transfer_len += len; 879 return 0; 880 } 881 882 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 883 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 884 { 885 u64 addr = le64_to_cpu(sgl->addr); 886 u32 key = get_unaligned_le32(sgl->key); 887 struct ib_sig_attrs sig_attrs; 888 int ret; 889 890 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 891 892 /* no data command? */ 893 if (!rsp->req.transfer_len) 894 return 0; 895 896 if (rsp->req.metadata_len) 897 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 898 899 ret = nvmet_req_alloc_sgls(&rsp->req); 900 if (unlikely(ret < 0)) 901 goto error_out; 902 903 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 904 if (unlikely(ret < 0)) 905 goto error_out; 906 rsp->n_rdma += ret; 907 908 if (invalidate) { 909 rsp->invalidate_rkey = key; 910 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 911 } 912 913 return 0; 914 915 error_out: 916 rsp->req.transfer_len = 0; 917 return NVME_SC_INTERNAL; 918 } 919 920 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 921 { 922 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 923 924 switch (sgl->type >> 4) { 925 case NVME_SGL_FMT_DATA_DESC: 926 switch (sgl->type & 0xf) { 927 case NVME_SGL_FMT_OFFSET: 928 return nvmet_rdma_map_sgl_inline(rsp); 929 default: 930 pr_err("invalid SGL subtype: %#x\n", sgl->type); 931 rsp->req.error_loc = 932 offsetof(struct nvme_common_command, dptr); 933 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 934 } 935 case NVME_KEY_SGL_FMT_DATA_DESC: 936 switch (sgl->type & 0xf) { 937 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 938 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 939 case NVME_SGL_FMT_ADDRESS: 940 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 941 default: 942 pr_err("invalid SGL subtype: %#x\n", sgl->type); 943 rsp->req.error_loc = 944 offsetof(struct nvme_common_command, dptr); 945 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 946 } 947 default: 948 pr_err("invalid SGL type: %#x\n", sgl->type); 949 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 950 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 951 } 952 } 953 954 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 955 { 956 struct nvmet_rdma_queue *queue = rsp->queue; 957 958 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 959 &queue->sq_wr_avail) < 0)) { 960 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 961 1 + rsp->n_rdma, queue->idx, 962 queue->nvme_sq.ctrl->cntlid); 963 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 964 return false; 965 } 966 967 if (nvmet_rdma_need_data_in(rsp)) { 968 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 969 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 970 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 971 } else { 972 rsp->req.execute(&rsp->req); 973 } 974 975 return true; 976 } 977 978 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 979 struct nvmet_rdma_rsp *cmd) 980 { 981 u16 status; 982 983 ib_dma_sync_single_for_cpu(queue->dev->device, 984 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 985 DMA_FROM_DEVICE); 986 ib_dma_sync_single_for_cpu(queue->dev->device, 987 cmd->send_sge.addr, cmd->send_sge.length, 988 DMA_TO_DEVICE); 989 990 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 991 &queue->nvme_sq, &nvmet_rdma_ops)) 992 return; 993 994 status = nvmet_rdma_map_sgl(cmd); 995 if (status) 996 goto out_err; 997 998 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 999 spin_lock(&queue->rsp_wr_wait_lock); 1000 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 1001 spin_unlock(&queue->rsp_wr_wait_lock); 1002 } 1003 1004 return; 1005 1006 out_err: 1007 nvmet_req_complete(&cmd->req, status); 1008 } 1009 1010 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1011 { 1012 struct nvmet_rdma_cmd *cmd = 1013 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1014 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1015 struct nvmet_rdma_rsp *rsp; 1016 1017 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1018 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1019 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1020 wc->wr_cqe, ib_wc_status_msg(wc->status), 1021 wc->status); 1022 nvmet_rdma_error_comp(queue); 1023 } 1024 return; 1025 } 1026 1027 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1028 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1029 nvmet_rdma_error_comp(queue); 1030 return; 1031 } 1032 1033 cmd->queue = queue; 1034 rsp = nvmet_rdma_get_rsp(queue); 1035 if (unlikely(!rsp)) { 1036 /* 1037 * we get here only under memory pressure, 1038 * silently drop and have the host retry 1039 * as we can't even fail it. 1040 */ 1041 nvmet_rdma_post_recv(queue->dev, cmd); 1042 return; 1043 } 1044 rsp->queue = queue; 1045 rsp->cmd = cmd; 1046 rsp->flags = 0; 1047 rsp->req.cmd = cmd->nvme_cmd; 1048 rsp->req.port = queue->port; 1049 rsp->n_rdma = 0; 1050 1051 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 1052 unsigned long flags; 1053 1054 spin_lock_irqsave(&queue->state_lock, flags); 1055 if (queue->state == NVMET_RDMA_Q_CONNECTING) 1056 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1057 else 1058 nvmet_rdma_put_rsp(rsp); 1059 spin_unlock_irqrestore(&queue->state_lock, flags); 1060 return; 1061 } 1062 1063 nvmet_rdma_handle_command(queue, rsp); 1064 } 1065 1066 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1067 { 1068 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1069 false); 1070 ib_destroy_srq(nsrq->srq); 1071 1072 kfree(nsrq); 1073 } 1074 1075 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1076 { 1077 int i; 1078 1079 if (!ndev->srqs) 1080 return; 1081 1082 for (i = 0; i < ndev->srq_count; i++) 1083 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1084 1085 kfree(ndev->srqs); 1086 } 1087 1088 static struct nvmet_rdma_srq * 1089 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1090 { 1091 struct ib_srq_init_attr srq_attr = { NULL, }; 1092 size_t srq_size = ndev->srq_size; 1093 struct nvmet_rdma_srq *nsrq; 1094 struct ib_srq *srq; 1095 int ret, i; 1096 1097 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1098 if (!nsrq) 1099 return ERR_PTR(-ENOMEM); 1100 1101 srq_attr.attr.max_wr = srq_size; 1102 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1103 srq_attr.attr.srq_limit = 0; 1104 srq_attr.srq_type = IB_SRQT_BASIC; 1105 srq = ib_create_srq(ndev->pd, &srq_attr); 1106 if (IS_ERR(srq)) { 1107 ret = PTR_ERR(srq); 1108 goto out_free; 1109 } 1110 1111 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1112 if (IS_ERR(nsrq->cmds)) { 1113 ret = PTR_ERR(nsrq->cmds); 1114 goto out_destroy_srq; 1115 } 1116 1117 nsrq->srq = srq; 1118 nsrq->ndev = ndev; 1119 1120 for (i = 0; i < srq_size; i++) { 1121 nsrq->cmds[i].nsrq = nsrq; 1122 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1123 if (ret) 1124 goto out_free_cmds; 1125 } 1126 1127 return nsrq; 1128 1129 out_free_cmds: 1130 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1131 out_destroy_srq: 1132 ib_destroy_srq(srq); 1133 out_free: 1134 kfree(nsrq); 1135 return ERR_PTR(ret); 1136 } 1137 1138 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1139 { 1140 int i, ret; 1141 1142 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1143 /* 1144 * If SRQs aren't supported we just go ahead and use normal 1145 * non-shared receive queues. 1146 */ 1147 pr_info("SRQ requested but not supported.\n"); 1148 return 0; 1149 } 1150 1151 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1152 nvmet_rdma_srq_size); 1153 ndev->srq_count = min(ndev->device->num_comp_vectors, 1154 ndev->device->attrs.max_srq); 1155 1156 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1157 if (!ndev->srqs) 1158 return -ENOMEM; 1159 1160 for (i = 0; i < ndev->srq_count; i++) { 1161 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1162 if (IS_ERR(ndev->srqs[i])) { 1163 ret = PTR_ERR(ndev->srqs[i]); 1164 goto err_srq; 1165 } 1166 } 1167 1168 return 0; 1169 1170 err_srq: 1171 while (--i >= 0) 1172 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1173 kfree(ndev->srqs); 1174 return ret; 1175 } 1176 1177 static void nvmet_rdma_free_dev(struct kref *ref) 1178 { 1179 struct nvmet_rdma_device *ndev = 1180 container_of(ref, struct nvmet_rdma_device, ref); 1181 1182 mutex_lock(&device_list_mutex); 1183 list_del(&ndev->entry); 1184 mutex_unlock(&device_list_mutex); 1185 1186 nvmet_rdma_destroy_srqs(ndev); 1187 ib_dealloc_pd(ndev->pd); 1188 1189 kfree(ndev); 1190 } 1191 1192 static struct nvmet_rdma_device * 1193 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1194 { 1195 struct nvmet_rdma_port *port = cm_id->context; 1196 struct nvmet_port *nport = port->nport; 1197 struct nvmet_rdma_device *ndev; 1198 int inline_page_count; 1199 int inline_sge_count; 1200 int ret; 1201 1202 mutex_lock(&device_list_mutex); 1203 list_for_each_entry(ndev, &device_list, entry) { 1204 if (ndev->device->node_guid == cm_id->device->node_guid && 1205 kref_get_unless_zero(&ndev->ref)) 1206 goto out_unlock; 1207 } 1208 1209 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1210 if (!ndev) 1211 goto out_err; 1212 1213 inline_page_count = num_pages(nport->inline_data_size); 1214 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1215 cm_id->device->attrs.max_recv_sge) - 1; 1216 if (inline_page_count > inline_sge_count) { 1217 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1218 nport->inline_data_size, cm_id->device->name, 1219 inline_sge_count * PAGE_SIZE); 1220 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1221 inline_page_count = inline_sge_count; 1222 } 1223 ndev->inline_data_size = nport->inline_data_size; 1224 ndev->inline_page_count = inline_page_count; 1225 1226 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags & 1227 IBK_INTEGRITY_HANDOVER)) { 1228 pr_warn("T10-PI is not supported by device %s. Disabling it\n", 1229 cm_id->device->name); 1230 nport->pi_enable = false; 1231 } 1232 1233 ndev->device = cm_id->device; 1234 kref_init(&ndev->ref); 1235 1236 ndev->pd = ib_alloc_pd(ndev->device, 0); 1237 if (IS_ERR(ndev->pd)) 1238 goto out_free_dev; 1239 1240 if (nvmet_rdma_use_srq) { 1241 ret = nvmet_rdma_init_srqs(ndev); 1242 if (ret) 1243 goto out_free_pd; 1244 } 1245 1246 list_add(&ndev->entry, &device_list); 1247 out_unlock: 1248 mutex_unlock(&device_list_mutex); 1249 pr_debug("added %s.\n", ndev->device->name); 1250 return ndev; 1251 1252 out_free_pd: 1253 ib_dealloc_pd(ndev->pd); 1254 out_free_dev: 1255 kfree(ndev); 1256 out_err: 1257 mutex_unlock(&device_list_mutex); 1258 return NULL; 1259 } 1260 1261 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1262 { 1263 struct ib_qp_init_attr qp_attr = { }; 1264 struct nvmet_rdma_device *ndev = queue->dev; 1265 int nr_cqe, ret, i, factor; 1266 1267 /* 1268 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1269 */ 1270 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1271 1272 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1273 queue->comp_vector, IB_POLL_WORKQUEUE); 1274 if (IS_ERR(queue->cq)) { 1275 ret = PTR_ERR(queue->cq); 1276 pr_err("failed to create CQ cqe= %d ret= %d\n", 1277 nr_cqe + 1, ret); 1278 goto out; 1279 } 1280 1281 qp_attr.qp_context = queue; 1282 qp_attr.event_handler = nvmet_rdma_qp_event; 1283 qp_attr.send_cq = queue->cq; 1284 qp_attr.recv_cq = queue->cq; 1285 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1286 qp_attr.qp_type = IB_QPT_RC; 1287 /* +1 for drain */ 1288 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1289 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1290 1 << NVMET_RDMA_MAX_MDTS); 1291 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1292 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1293 ndev->device->attrs.max_send_sge); 1294 1295 if (queue->nsrq) { 1296 qp_attr.srq = queue->nsrq->srq; 1297 } else { 1298 /* +1 for drain */ 1299 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1300 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1301 } 1302 1303 if (queue->port->pi_enable && queue->host_qid) 1304 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1305 1306 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1307 if (ret) { 1308 pr_err("failed to create_qp ret= %d\n", ret); 1309 goto err_destroy_cq; 1310 } 1311 queue->qp = queue->cm_id->qp; 1312 1313 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1314 1315 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1316 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1317 qp_attr.cap.max_send_wr, queue->cm_id); 1318 1319 if (!queue->nsrq) { 1320 for (i = 0; i < queue->recv_queue_size; i++) { 1321 queue->cmds[i].queue = queue; 1322 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1323 if (ret) 1324 goto err_destroy_qp; 1325 } 1326 } 1327 1328 out: 1329 return ret; 1330 1331 err_destroy_qp: 1332 rdma_destroy_qp(queue->cm_id); 1333 err_destroy_cq: 1334 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1335 goto out; 1336 } 1337 1338 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1339 { 1340 ib_drain_qp(queue->qp); 1341 if (queue->cm_id) 1342 rdma_destroy_id(queue->cm_id); 1343 ib_destroy_qp(queue->qp); 1344 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1345 queue->send_queue_size + 1); 1346 } 1347 1348 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1349 { 1350 pr_debug("freeing queue %d\n", queue->idx); 1351 1352 nvmet_sq_destroy(&queue->nvme_sq); 1353 1354 nvmet_rdma_destroy_queue_ib(queue); 1355 if (!queue->nsrq) { 1356 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1357 queue->recv_queue_size, 1358 !queue->host_qid); 1359 } 1360 nvmet_rdma_free_rsps(queue); 1361 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1362 kfree(queue); 1363 } 1364 1365 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1366 { 1367 struct nvmet_rdma_queue *queue = 1368 container_of(w, struct nvmet_rdma_queue, release_work); 1369 struct nvmet_rdma_device *dev = queue->dev; 1370 1371 nvmet_rdma_free_queue(queue); 1372 1373 kref_put(&dev->ref, nvmet_rdma_free_dev); 1374 } 1375 1376 static int 1377 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1378 struct nvmet_rdma_queue *queue) 1379 { 1380 struct nvme_rdma_cm_req *req; 1381 1382 req = (struct nvme_rdma_cm_req *)conn->private_data; 1383 if (!req || conn->private_data_len == 0) 1384 return NVME_RDMA_CM_INVALID_LEN; 1385 1386 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1387 return NVME_RDMA_CM_INVALID_RECFMT; 1388 1389 queue->host_qid = le16_to_cpu(req->qid); 1390 1391 /* 1392 * req->hsqsize corresponds to our recv queue size plus 1 1393 * req->hrqsize corresponds to our send queue size 1394 */ 1395 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1396 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1397 1398 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1399 return NVME_RDMA_CM_INVALID_HSQSIZE; 1400 1401 /* XXX: Should we enforce some kind of max for IO queues? */ 1402 1403 return 0; 1404 } 1405 1406 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1407 enum nvme_rdma_cm_status status) 1408 { 1409 struct nvme_rdma_cm_rej rej; 1410 1411 pr_debug("rejecting connect request: status %d (%s)\n", 1412 status, nvme_rdma_cm_msg(status)); 1413 1414 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1415 rej.sts = cpu_to_le16(status); 1416 1417 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1418 IB_CM_REJ_CONSUMER_DEFINED); 1419 } 1420 1421 static struct nvmet_rdma_queue * 1422 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1423 struct rdma_cm_id *cm_id, 1424 struct rdma_cm_event *event) 1425 { 1426 struct nvmet_rdma_port *port = cm_id->context; 1427 struct nvmet_rdma_queue *queue; 1428 int ret; 1429 1430 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1431 if (!queue) { 1432 ret = NVME_RDMA_CM_NO_RSC; 1433 goto out_reject; 1434 } 1435 1436 ret = nvmet_sq_init(&queue->nvme_sq); 1437 if (ret) { 1438 ret = NVME_RDMA_CM_NO_RSC; 1439 goto out_free_queue; 1440 } 1441 1442 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1443 if (ret) 1444 goto out_destroy_sq; 1445 1446 /* 1447 * Schedules the actual release because calling rdma_destroy_id from 1448 * inside a CM callback would trigger a deadlock. (great API design..) 1449 */ 1450 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1451 queue->dev = ndev; 1452 queue->cm_id = cm_id; 1453 queue->port = port->nport; 1454 1455 spin_lock_init(&queue->state_lock); 1456 queue->state = NVMET_RDMA_Q_CONNECTING; 1457 INIT_LIST_HEAD(&queue->rsp_wait_list); 1458 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1459 spin_lock_init(&queue->rsp_wr_wait_lock); 1460 INIT_LIST_HEAD(&queue->free_rsps); 1461 spin_lock_init(&queue->rsps_lock); 1462 INIT_LIST_HEAD(&queue->queue_list); 1463 1464 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL); 1465 if (queue->idx < 0) { 1466 ret = NVME_RDMA_CM_NO_RSC; 1467 goto out_destroy_sq; 1468 } 1469 1470 /* 1471 * Spread the io queues across completion vectors, 1472 * but still keep all admin queues on vector 0. 1473 */ 1474 queue->comp_vector = !queue->host_qid ? 0 : 1475 queue->idx % ndev->device->num_comp_vectors; 1476 1477 1478 ret = nvmet_rdma_alloc_rsps(queue); 1479 if (ret) { 1480 ret = NVME_RDMA_CM_NO_RSC; 1481 goto out_ida_remove; 1482 } 1483 1484 if (ndev->srqs) { 1485 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1486 } else { 1487 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1488 queue->recv_queue_size, 1489 !queue->host_qid); 1490 if (IS_ERR(queue->cmds)) { 1491 ret = NVME_RDMA_CM_NO_RSC; 1492 goto out_free_responses; 1493 } 1494 } 1495 1496 ret = nvmet_rdma_create_queue_ib(queue); 1497 if (ret) { 1498 pr_err("%s: creating RDMA queue failed (%d).\n", 1499 __func__, ret); 1500 ret = NVME_RDMA_CM_NO_RSC; 1501 goto out_free_cmds; 1502 } 1503 1504 return queue; 1505 1506 out_free_cmds: 1507 if (!queue->nsrq) { 1508 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1509 queue->recv_queue_size, 1510 !queue->host_qid); 1511 } 1512 out_free_responses: 1513 nvmet_rdma_free_rsps(queue); 1514 out_ida_remove: 1515 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1516 out_destroy_sq: 1517 nvmet_sq_destroy(&queue->nvme_sq); 1518 out_free_queue: 1519 kfree(queue); 1520 out_reject: 1521 nvmet_rdma_cm_reject(cm_id, ret); 1522 return NULL; 1523 } 1524 1525 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1526 { 1527 struct nvmet_rdma_queue *queue = priv; 1528 1529 switch (event->event) { 1530 case IB_EVENT_COMM_EST: 1531 rdma_notify(queue->cm_id, event->event); 1532 break; 1533 case IB_EVENT_QP_LAST_WQE_REACHED: 1534 pr_debug("received last WQE reached event for queue=0x%p\n", 1535 queue); 1536 break; 1537 default: 1538 pr_err("received IB QP event: %s (%d)\n", 1539 ib_event_msg(event->event), event->event); 1540 break; 1541 } 1542 } 1543 1544 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1545 struct nvmet_rdma_queue *queue, 1546 struct rdma_conn_param *p) 1547 { 1548 struct rdma_conn_param param = { }; 1549 struct nvme_rdma_cm_rep priv = { }; 1550 int ret = -ENOMEM; 1551 1552 param.rnr_retry_count = 7; 1553 param.flow_control = 1; 1554 param.initiator_depth = min_t(u8, p->initiator_depth, 1555 queue->dev->device->attrs.max_qp_init_rd_atom); 1556 param.private_data = &priv; 1557 param.private_data_len = sizeof(priv); 1558 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1559 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1560 1561 ret = rdma_accept(cm_id, ¶m); 1562 if (ret) 1563 pr_err("rdma_accept failed (error code = %d)\n", ret); 1564 1565 return ret; 1566 } 1567 1568 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1569 struct rdma_cm_event *event) 1570 { 1571 struct nvmet_rdma_device *ndev; 1572 struct nvmet_rdma_queue *queue; 1573 int ret = -EINVAL; 1574 1575 ndev = nvmet_rdma_find_get_device(cm_id); 1576 if (!ndev) { 1577 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1578 return -ECONNREFUSED; 1579 } 1580 1581 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1582 if (!queue) { 1583 ret = -ENOMEM; 1584 goto put_device; 1585 } 1586 1587 if (queue->host_qid == 0) { 1588 struct nvmet_rdma_queue *q; 1589 int pending = 0; 1590 1591 /* Check for pending controller teardown */ 1592 mutex_lock(&nvmet_rdma_queue_mutex); 1593 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) { 1594 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl && 1595 q->state == NVMET_RDMA_Q_DISCONNECTING) 1596 pending++; 1597 } 1598 mutex_unlock(&nvmet_rdma_queue_mutex); 1599 if (pending > NVMET_RDMA_BACKLOG) 1600 return NVME_SC_CONNECT_CTRL_BUSY; 1601 } 1602 1603 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1604 if (ret) { 1605 /* 1606 * Don't destroy the cm_id in free path, as we implicitly 1607 * destroy the cm_id here with non-zero ret code. 1608 */ 1609 queue->cm_id = NULL; 1610 goto free_queue; 1611 } 1612 1613 mutex_lock(&nvmet_rdma_queue_mutex); 1614 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1615 mutex_unlock(&nvmet_rdma_queue_mutex); 1616 1617 return 0; 1618 1619 free_queue: 1620 nvmet_rdma_free_queue(queue); 1621 put_device: 1622 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1623 1624 return ret; 1625 } 1626 1627 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1628 { 1629 unsigned long flags; 1630 1631 spin_lock_irqsave(&queue->state_lock, flags); 1632 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1633 pr_warn("trying to establish a connected queue\n"); 1634 goto out_unlock; 1635 } 1636 queue->state = NVMET_RDMA_Q_LIVE; 1637 1638 while (!list_empty(&queue->rsp_wait_list)) { 1639 struct nvmet_rdma_rsp *cmd; 1640 1641 cmd = list_first_entry(&queue->rsp_wait_list, 1642 struct nvmet_rdma_rsp, wait_list); 1643 list_del(&cmd->wait_list); 1644 1645 spin_unlock_irqrestore(&queue->state_lock, flags); 1646 nvmet_rdma_handle_command(queue, cmd); 1647 spin_lock_irqsave(&queue->state_lock, flags); 1648 } 1649 1650 out_unlock: 1651 spin_unlock_irqrestore(&queue->state_lock, flags); 1652 } 1653 1654 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1655 { 1656 bool disconnect = false; 1657 unsigned long flags; 1658 1659 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1660 1661 spin_lock_irqsave(&queue->state_lock, flags); 1662 switch (queue->state) { 1663 case NVMET_RDMA_Q_CONNECTING: 1664 while (!list_empty(&queue->rsp_wait_list)) { 1665 struct nvmet_rdma_rsp *rsp; 1666 1667 rsp = list_first_entry(&queue->rsp_wait_list, 1668 struct nvmet_rdma_rsp, 1669 wait_list); 1670 list_del(&rsp->wait_list); 1671 nvmet_rdma_put_rsp(rsp); 1672 } 1673 fallthrough; 1674 case NVMET_RDMA_Q_LIVE: 1675 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1676 disconnect = true; 1677 break; 1678 case NVMET_RDMA_Q_DISCONNECTING: 1679 break; 1680 } 1681 spin_unlock_irqrestore(&queue->state_lock, flags); 1682 1683 if (disconnect) { 1684 rdma_disconnect(queue->cm_id); 1685 queue_work(nvmet_wq, &queue->release_work); 1686 } 1687 } 1688 1689 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1690 { 1691 bool disconnect = false; 1692 1693 mutex_lock(&nvmet_rdma_queue_mutex); 1694 if (!list_empty(&queue->queue_list)) { 1695 list_del_init(&queue->queue_list); 1696 disconnect = true; 1697 } 1698 mutex_unlock(&nvmet_rdma_queue_mutex); 1699 1700 if (disconnect) 1701 __nvmet_rdma_queue_disconnect(queue); 1702 } 1703 1704 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1705 struct nvmet_rdma_queue *queue) 1706 { 1707 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1708 1709 mutex_lock(&nvmet_rdma_queue_mutex); 1710 if (!list_empty(&queue->queue_list)) 1711 list_del_init(&queue->queue_list); 1712 mutex_unlock(&nvmet_rdma_queue_mutex); 1713 1714 pr_err("failed to connect queue %d\n", queue->idx); 1715 queue_work(nvmet_wq, &queue->release_work); 1716 } 1717 1718 /** 1719 * nvmet_rdma_device_removal() - Handle RDMA device removal 1720 * @cm_id: rdma_cm id, used for nvmet port 1721 * @queue: nvmet rdma queue (cm id qp_context) 1722 * 1723 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1724 * to unplug. Note that this event can be generated on a normal 1725 * queue cm_id and/or a device bound listener cm_id (where in this 1726 * case queue will be null). 1727 * 1728 * We registered an ib_client to handle device removal for queues, 1729 * so we only need to handle the listening port cm_ids. In this case 1730 * we nullify the priv to prevent double cm_id destruction and destroying 1731 * the cm_id implicitely by returning a non-zero rc to the callout. 1732 */ 1733 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1734 struct nvmet_rdma_queue *queue) 1735 { 1736 struct nvmet_rdma_port *port; 1737 1738 if (queue) { 1739 /* 1740 * This is a queue cm_id. we have registered 1741 * an ib_client to handle queues removal 1742 * so don't interfear and just return. 1743 */ 1744 return 0; 1745 } 1746 1747 port = cm_id->context; 1748 1749 /* 1750 * This is a listener cm_id. Make sure that 1751 * future remove_port won't invoke a double 1752 * cm_id destroy. use atomic xchg to make sure 1753 * we don't compete with remove_port. 1754 */ 1755 if (xchg(&port->cm_id, NULL) != cm_id) 1756 return 0; 1757 1758 /* 1759 * We need to return 1 so that the core will destroy 1760 * it's own ID. What a great API design.. 1761 */ 1762 return 1; 1763 } 1764 1765 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1766 struct rdma_cm_event *event) 1767 { 1768 struct nvmet_rdma_queue *queue = NULL; 1769 int ret = 0; 1770 1771 if (cm_id->qp) 1772 queue = cm_id->qp->qp_context; 1773 1774 pr_debug("%s (%d): status %d id %p\n", 1775 rdma_event_msg(event->event), event->event, 1776 event->status, cm_id); 1777 1778 switch (event->event) { 1779 case RDMA_CM_EVENT_CONNECT_REQUEST: 1780 ret = nvmet_rdma_queue_connect(cm_id, event); 1781 break; 1782 case RDMA_CM_EVENT_ESTABLISHED: 1783 nvmet_rdma_queue_established(queue); 1784 break; 1785 case RDMA_CM_EVENT_ADDR_CHANGE: 1786 if (!queue) { 1787 struct nvmet_rdma_port *port = cm_id->context; 1788 1789 queue_delayed_work(nvmet_wq, &port->repair_work, 0); 1790 break; 1791 } 1792 fallthrough; 1793 case RDMA_CM_EVENT_DISCONNECTED: 1794 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1795 nvmet_rdma_queue_disconnect(queue); 1796 break; 1797 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1798 ret = nvmet_rdma_device_removal(cm_id, queue); 1799 break; 1800 case RDMA_CM_EVENT_REJECTED: 1801 pr_debug("Connection rejected: %s\n", 1802 rdma_reject_msg(cm_id, event->status)); 1803 fallthrough; 1804 case RDMA_CM_EVENT_UNREACHABLE: 1805 case RDMA_CM_EVENT_CONNECT_ERROR: 1806 nvmet_rdma_queue_connect_fail(cm_id, queue); 1807 break; 1808 default: 1809 pr_err("received unrecognized RDMA CM event %d\n", 1810 event->event); 1811 break; 1812 } 1813 1814 return ret; 1815 } 1816 1817 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1818 { 1819 struct nvmet_rdma_queue *queue; 1820 1821 restart: 1822 mutex_lock(&nvmet_rdma_queue_mutex); 1823 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1824 if (queue->nvme_sq.ctrl == ctrl) { 1825 list_del_init(&queue->queue_list); 1826 mutex_unlock(&nvmet_rdma_queue_mutex); 1827 1828 __nvmet_rdma_queue_disconnect(queue); 1829 goto restart; 1830 } 1831 } 1832 mutex_unlock(&nvmet_rdma_queue_mutex); 1833 } 1834 1835 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) 1836 { 1837 struct nvmet_rdma_queue *queue, *tmp; 1838 struct nvmet_port *nport = port->nport; 1839 1840 mutex_lock(&nvmet_rdma_queue_mutex); 1841 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1842 queue_list) { 1843 if (queue->port != nport) 1844 continue; 1845 1846 list_del_init(&queue->queue_list); 1847 __nvmet_rdma_queue_disconnect(queue); 1848 } 1849 mutex_unlock(&nvmet_rdma_queue_mutex); 1850 } 1851 1852 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1853 { 1854 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1855 1856 if (cm_id) 1857 rdma_destroy_id(cm_id); 1858 1859 /* 1860 * Destroy the remaining queues, which are not belong to any 1861 * controller yet. Do it here after the RDMA-CM was destroyed 1862 * guarantees that no new queue will be created. 1863 */ 1864 nvmet_rdma_destroy_port_queues(port); 1865 } 1866 1867 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1868 { 1869 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1870 struct rdma_cm_id *cm_id; 1871 int ret; 1872 1873 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1874 RDMA_PS_TCP, IB_QPT_RC); 1875 if (IS_ERR(cm_id)) { 1876 pr_err("CM ID creation failed\n"); 1877 return PTR_ERR(cm_id); 1878 } 1879 1880 /* 1881 * Allow both IPv4 and IPv6 sockets to bind a single port 1882 * at the same time. 1883 */ 1884 ret = rdma_set_afonly(cm_id, 1); 1885 if (ret) { 1886 pr_err("rdma_set_afonly failed (%d)\n", ret); 1887 goto out_destroy_id; 1888 } 1889 1890 ret = rdma_bind_addr(cm_id, addr); 1891 if (ret) { 1892 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1893 goto out_destroy_id; 1894 } 1895 1896 ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG); 1897 if (ret) { 1898 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1899 goto out_destroy_id; 1900 } 1901 1902 port->cm_id = cm_id; 1903 return 0; 1904 1905 out_destroy_id: 1906 rdma_destroy_id(cm_id); 1907 return ret; 1908 } 1909 1910 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1911 { 1912 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1913 struct nvmet_rdma_port, repair_work); 1914 int ret; 1915 1916 nvmet_rdma_disable_port(port); 1917 ret = nvmet_rdma_enable_port(port); 1918 if (ret) 1919 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ); 1920 } 1921 1922 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1923 { 1924 struct nvmet_rdma_port *port; 1925 __kernel_sa_family_t af; 1926 int ret; 1927 1928 port = kzalloc(sizeof(*port), GFP_KERNEL); 1929 if (!port) 1930 return -ENOMEM; 1931 1932 nport->priv = port; 1933 port->nport = nport; 1934 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1935 1936 switch (nport->disc_addr.adrfam) { 1937 case NVMF_ADDR_FAMILY_IP4: 1938 af = AF_INET; 1939 break; 1940 case NVMF_ADDR_FAMILY_IP6: 1941 af = AF_INET6; 1942 break; 1943 default: 1944 pr_err("address family %d not supported\n", 1945 nport->disc_addr.adrfam); 1946 ret = -EINVAL; 1947 goto out_free_port; 1948 } 1949 1950 if (nport->inline_data_size < 0) { 1951 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1952 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1953 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1954 nport->inline_data_size, 1955 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1956 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1957 } 1958 1959 if (nport->max_queue_size < 0) { 1960 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE; 1961 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) { 1962 pr_warn("max_queue_size %u is too large, reducing to %u\n", 1963 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE); 1964 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; 1965 } 1966 1967 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1968 nport->disc_addr.trsvcid, &port->addr); 1969 if (ret) { 1970 pr_err("malformed ip/port passed: %s:%s\n", 1971 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1972 goto out_free_port; 1973 } 1974 1975 ret = nvmet_rdma_enable_port(port); 1976 if (ret) 1977 goto out_free_port; 1978 1979 pr_info("enabling port %d (%pISpcs)\n", 1980 le16_to_cpu(nport->disc_addr.portid), 1981 (struct sockaddr *)&port->addr); 1982 1983 return 0; 1984 1985 out_free_port: 1986 kfree(port); 1987 return ret; 1988 } 1989 1990 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1991 { 1992 struct nvmet_rdma_port *port = nport->priv; 1993 1994 cancel_delayed_work_sync(&port->repair_work); 1995 nvmet_rdma_disable_port(port); 1996 kfree(port); 1997 } 1998 1999 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 2000 struct nvmet_port *nport, char *traddr) 2001 { 2002 struct nvmet_rdma_port *port = nport->priv; 2003 struct rdma_cm_id *cm_id = port->cm_id; 2004 2005 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 2006 struct nvmet_rdma_rsp *rsp = 2007 container_of(req, struct nvmet_rdma_rsp, req); 2008 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 2009 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 2010 2011 sprintf(traddr, "%pISc", addr); 2012 } else { 2013 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 2014 } 2015 } 2016 2017 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 2018 { 2019 if (ctrl->pi_support) 2020 return NVMET_RDMA_MAX_METADATA_MDTS; 2021 return NVMET_RDMA_MAX_MDTS; 2022 } 2023 2024 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) 2025 { 2026 if (ctrl->pi_support) 2027 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE; 2028 return NVME_RDMA_MAX_QUEUE_SIZE; 2029 } 2030 2031 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 2032 .owner = THIS_MODULE, 2033 .type = NVMF_TRTYPE_RDMA, 2034 .msdbd = 1, 2035 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 2036 .add_port = nvmet_rdma_add_port, 2037 .remove_port = nvmet_rdma_remove_port, 2038 .queue_response = nvmet_rdma_queue_response, 2039 .delete_ctrl = nvmet_rdma_delete_ctrl, 2040 .disc_traddr = nvmet_rdma_disc_port_addr, 2041 .get_mdts = nvmet_rdma_get_mdts, 2042 .get_max_queue_size = nvmet_rdma_get_max_queue_size, 2043 }; 2044 2045 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2046 { 2047 struct nvmet_rdma_queue *queue, *tmp; 2048 struct nvmet_rdma_device *ndev; 2049 bool found = false; 2050 2051 mutex_lock(&device_list_mutex); 2052 list_for_each_entry(ndev, &device_list, entry) { 2053 if (ndev->device == ib_device) { 2054 found = true; 2055 break; 2056 } 2057 } 2058 mutex_unlock(&device_list_mutex); 2059 2060 if (!found) 2061 return; 2062 2063 /* 2064 * IB Device that is used by nvmet controllers is being removed, 2065 * delete all queues using this device. 2066 */ 2067 mutex_lock(&nvmet_rdma_queue_mutex); 2068 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2069 queue_list) { 2070 if (queue->dev->device != ib_device) 2071 continue; 2072 2073 pr_info("Removing queue %d\n", queue->idx); 2074 list_del_init(&queue->queue_list); 2075 __nvmet_rdma_queue_disconnect(queue); 2076 } 2077 mutex_unlock(&nvmet_rdma_queue_mutex); 2078 2079 flush_workqueue(nvmet_wq); 2080 } 2081 2082 static struct ib_client nvmet_rdma_ib_client = { 2083 .name = "nvmet_rdma", 2084 .remove = nvmet_rdma_remove_one 2085 }; 2086 2087 static int __init nvmet_rdma_init(void) 2088 { 2089 int ret; 2090 2091 ret = ib_register_client(&nvmet_rdma_ib_client); 2092 if (ret) 2093 return ret; 2094 2095 ret = nvmet_register_transport(&nvmet_rdma_ops); 2096 if (ret) 2097 goto err_ib_client; 2098 2099 return 0; 2100 2101 err_ib_client: 2102 ib_unregister_client(&nvmet_rdma_ib_client); 2103 return ret; 2104 } 2105 2106 static void __exit nvmet_rdma_exit(void) 2107 { 2108 nvmet_unregister_transport(&nvmet_rdma_ops); 2109 ib_unregister_client(&nvmet_rdma_ib_client); 2110 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2111 ida_destroy(&nvmet_rdma_queue_ida); 2112 } 2113 2114 module_init(nvmet_rdma_init); 2115 module_exit(nvmet_rdma_exit); 2116 2117 MODULE_DESCRIPTION("NVMe target RDMA transport driver"); 2118 MODULE_LICENSE("GPL v2"); 2119 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2120