1 /* 2 * NVMe over Fabrics RDMA target. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/atomic.h> 16 #include <linux/ctype.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/nvme.h> 22 #include <linux/slab.h> 23 #include <linux/string.h> 24 #include <linux/wait.h> 25 #include <linux/inet.h> 26 #include <asm/unaligned.h> 27 28 #include <rdma/ib_verbs.h> 29 #include <rdma/rdma_cm.h> 30 #include <rdma/rw.h> 31 32 #include <linux/nvme-rdma.h> 33 #include "nvmet.h" 34 35 /* 36 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 37 */ 38 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 39 #define NVMET_RDMA_MAX_INLINE_SGE 4 40 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 41 42 struct nvmet_rdma_cmd { 43 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 44 struct ib_cqe cqe; 45 struct ib_recv_wr wr; 46 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 47 struct nvme_command *nvme_cmd; 48 struct nvmet_rdma_queue *queue; 49 }; 50 51 enum { 52 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 53 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 54 }; 55 56 struct nvmet_rdma_rsp { 57 struct ib_sge send_sge; 58 struct ib_cqe send_cqe; 59 struct ib_send_wr send_wr; 60 61 struct nvmet_rdma_cmd *cmd; 62 struct nvmet_rdma_queue *queue; 63 64 struct ib_cqe read_cqe; 65 struct rdma_rw_ctx rw; 66 67 struct nvmet_req req; 68 69 bool allocated; 70 u8 n_rdma; 71 u32 flags; 72 u32 invalidate_rkey; 73 74 struct list_head wait_list; 75 struct list_head free_list; 76 }; 77 78 enum nvmet_rdma_queue_state { 79 NVMET_RDMA_Q_CONNECTING, 80 NVMET_RDMA_Q_LIVE, 81 NVMET_RDMA_Q_DISCONNECTING, 82 }; 83 84 struct nvmet_rdma_queue { 85 struct rdma_cm_id *cm_id; 86 struct nvmet_port *port; 87 struct ib_cq *cq; 88 atomic_t sq_wr_avail; 89 struct nvmet_rdma_device *dev; 90 spinlock_t state_lock; 91 enum nvmet_rdma_queue_state state; 92 struct nvmet_cq nvme_cq; 93 struct nvmet_sq nvme_sq; 94 95 struct nvmet_rdma_rsp *rsps; 96 struct list_head free_rsps; 97 spinlock_t rsps_lock; 98 struct nvmet_rdma_cmd *cmds; 99 100 struct work_struct release_work; 101 struct list_head rsp_wait_list; 102 struct list_head rsp_wr_wait_list; 103 spinlock_t rsp_wr_wait_lock; 104 105 int idx; 106 int host_qid; 107 int recv_queue_size; 108 int send_queue_size; 109 110 struct list_head queue_list; 111 }; 112 113 struct nvmet_rdma_device { 114 struct ib_device *device; 115 struct ib_pd *pd; 116 struct ib_srq *srq; 117 struct nvmet_rdma_cmd *srq_cmds; 118 size_t srq_size; 119 struct kref ref; 120 struct list_head entry; 121 int inline_data_size; 122 int inline_page_count; 123 }; 124 125 static bool nvmet_rdma_use_srq; 126 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 127 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 128 129 static DEFINE_IDA(nvmet_rdma_queue_ida); 130 static LIST_HEAD(nvmet_rdma_queue_list); 131 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 132 133 static LIST_HEAD(device_list); 134 static DEFINE_MUTEX(device_list_mutex); 135 136 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 137 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 138 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 139 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 140 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 141 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 142 143 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 144 145 static int num_pages(int len) 146 { 147 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 148 } 149 150 /* XXX: really should move to a generic header sooner or later.. */ 151 static inline u32 get_unaligned_le24(const u8 *p) 152 { 153 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16; 154 } 155 156 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 157 { 158 return nvme_is_write(rsp->req.cmd) && 159 rsp->req.transfer_len && 160 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 161 } 162 163 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 164 { 165 return !nvme_is_write(rsp->req.cmd) && 166 rsp->req.transfer_len && 167 !rsp->req.rsp->status && 168 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 169 } 170 171 static inline struct nvmet_rdma_rsp * 172 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 173 { 174 struct nvmet_rdma_rsp *rsp; 175 unsigned long flags; 176 177 spin_lock_irqsave(&queue->rsps_lock, flags); 178 rsp = list_first_entry_or_null(&queue->free_rsps, 179 struct nvmet_rdma_rsp, free_list); 180 if (likely(rsp)) 181 list_del(&rsp->free_list); 182 spin_unlock_irqrestore(&queue->rsps_lock, flags); 183 184 if (unlikely(!rsp)) { 185 rsp = kmalloc(sizeof(*rsp), GFP_KERNEL); 186 if (unlikely(!rsp)) 187 return NULL; 188 rsp->allocated = true; 189 } 190 191 return rsp; 192 } 193 194 static inline void 195 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 196 { 197 unsigned long flags; 198 199 if (unlikely(rsp->allocated)) { 200 kfree(rsp); 201 return; 202 } 203 204 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 205 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 206 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 207 } 208 209 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 210 struct nvmet_rdma_cmd *c) 211 { 212 struct scatterlist *sg; 213 struct ib_sge *sge; 214 int i; 215 216 if (!ndev->inline_data_size) 217 return; 218 219 sg = c->inline_sg; 220 sge = &c->sge[1]; 221 222 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 223 if (sge->length) 224 ib_dma_unmap_page(ndev->device, sge->addr, 225 sge->length, DMA_FROM_DEVICE); 226 if (sg_page(sg)) 227 __free_page(sg_page(sg)); 228 } 229 } 230 231 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 232 struct nvmet_rdma_cmd *c) 233 { 234 struct scatterlist *sg; 235 struct ib_sge *sge; 236 struct page *pg; 237 int len; 238 int i; 239 240 if (!ndev->inline_data_size) 241 return 0; 242 243 sg = c->inline_sg; 244 sg_init_table(sg, ndev->inline_page_count); 245 sge = &c->sge[1]; 246 len = ndev->inline_data_size; 247 248 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 249 pg = alloc_page(GFP_KERNEL); 250 if (!pg) 251 goto out_err; 252 sg_assign_page(sg, pg); 253 sge->addr = ib_dma_map_page(ndev->device, 254 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 255 if (ib_dma_mapping_error(ndev->device, sge->addr)) 256 goto out_err; 257 sge->length = min_t(int, len, PAGE_SIZE); 258 sge->lkey = ndev->pd->local_dma_lkey; 259 len -= sge->length; 260 } 261 262 return 0; 263 out_err: 264 for (; i >= 0; i--, sg--, sge--) { 265 if (sge->length) 266 ib_dma_unmap_page(ndev->device, sge->addr, 267 sge->length, DMA_FROM_DEVICE); 268 if (sg_page(sg)) 269 __free_page(sg_page(sg)); 270 } 271 return -ENOMEM; 272 } 273 274 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 275 struct nvmet_rdma_cmd *c, bool admin) 276 { 277 /* NVMe command / RDMA RECV */ 278 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 279 if (!c->nvme_cmd) 280 goto out; 281 282 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 283 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 284 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 285 goto out_free_cmd; 286 287 c->sge[0].length = sizeof(*c->nvme_cmd); 288 c->sge[0].lkey = ndev->pd->local_dma_lkey; 289 290 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 291 goto out_unmap_cmd; 292 293 c->cqe.done = nvmet_rdma_recv_done; 294 295 c->wr.wr_cqe = &c->cqe; 296 c->wr.sg_list = c->sge; 297 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 298 299 return 0; 300 301 out_unmap_cmd: 302 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 303 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 304 out_free_cmd: 305 kfree(c->nvme_cmd); 306 307 out: 308 return -ENOMEM; 309 } 310 311 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 312 struct nvmet_rdma_cmd *c, bool admin) 313 { 314 if (!admin) 315 nvmet_rdma_free_inline_pages(ndev, c); 316 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 317 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 318 kfree(c->nvme_cmd); 319 } 320 321 static struct nvmet_rdma_cmd * 322 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 323 int nr_cmds, bool admin) 324 { 325 struct nvmet_rdma_cmd *cmds; 326 int ret = -EINVAL, i; 327 328 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 329 if (!cmds) 330 goto out; 331 332 for (i = 0; i < nr_cmds; i++) { 333 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 334 if (ret) 335 goto out_free; 336 } 337 338 return cmds; 339 340 out_free: 341 while (--i >= 0) 342 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 343 kfree(cmds); 344 out: 345 return ERR_PTR(ret); 346 } 347 348 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 349 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 350 { 351 int i; 352 353 for (i = 0; i < nr_cmds; i++) 354 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 355 kfree(cmds); 356 } 357 358 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 359 struct nvmet_rdma_rsp *r) 360 { 361 /* NVMe CQE / RDMA SEND */ 362 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL); 363 if (!r->req.rsp) 364 goto out; 365 366 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp, 367 sizeof(*r->req.rsp), DMA_TO_DEVICE); 368 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 369 goto out_free_rsp; 370 371 r->send_sge.length = sizeof(*r->req.rsp); 372 r->send_sge.lkey = ndev->pd->local_dma_lkey; 373 374 r->send_cqe.done = nvmet_rdma_send_done; 375 376 r->send_wr.wr_cqe = &r->send_cqe; 377 r->send_wr.sg_list = &r->send_sge; 378 r->send_wr.num_sge = 1; 379 r->send_wr.send_flags = IB_SEND_SIGNALED; 380 381 /* Data In / RDMA READ */ 382 r->read_cqe.done = nvmet_rdma_read_data_done; 383 return 0; 384 385 out_free_rsp: 386 kfree(r->req.rsp); 387 out: 388 return -ENOMEM; 389 } 390 391 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 392 struct nvmet_rdma_rsp *r) 393 { 394 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 395 sizeof(*r->req.rsp), DMA_TO_DEVICE); 396 kfree(r->req.rsp); 397 } 398 399 static int 400 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 401 { 402 struct nvmet_rdma_device *ndev = queue->dev; 403 int nr_rsps = queue->recv_queue_size * 2; 404 int ret = -EINVAL, i; 405 406 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 407 GFP_KERNEL); 408 if (!queue->rsps) 409 goto out; 410 411 for (i = 0; i < nr_rsps; i++) { 412 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 413 414 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 415 if (ret) 416 goto out_free; 417 418 list_add_tail(&rsp->free_list, &queue->free_rsps); 419 } 420 421 return 0; 422 423 out_free: 424 while (--i >= 0) { 425 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 426 427 list_del(&rsp->free_list); 428 nvmet_rdma_free_rsp(ndev, rsp); 429 } 430 kfree(queue->rsps); 431 out: 432 return ret; 433 } 434 435 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 436 { 437 struct nvmet_rdma_device *ndev = queue->dev; 438 int i, nr_rsps = queue->recv_queue_size * 2; 439 440 for (i = 0; i < nr_rsps; i++) { 441 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 442 443 list_del(&rsp->free_list); 444 nvmet_rdma_free_rsp(ndev, rsp); 445 } 446 kfree(queue->rsps); 447 } 448 449 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 450 struct nvmet_rdma_cmd *cmd) 451 { 452 int ret; 453 454 ib_dma_sync_single_for_device(ndev->device, 455 cmd->sge[0].addr, cmd->sge[0].length, 456 DMA_FROM_DEVICE); 457 458 if (ndev->srq) 459 ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL); 460 else 461 ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL); 462 463 if (unlikely(ret)) 464 pr_err("post_recv cmd failed\n"); 465 466 return ret; 467 } 468 469 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 470 { 471 spin_lock(&queue->rsp_wr_wait_lock); 472 while (!list_empty(&queue->rsp_wr_wait_list)) { 473 struct nvmet_rdma_rsp *rsp; 474 bool ret; 475 476 rsp = list_entry(queue->rsp_wr_wait_list.next, 477 struct nvmet_rdma_rsp, wait_list); 478 list_del(&rsp->wait_list); 479 480 spin_unlock(&queue->rsp_wr_wait_lock); 481 ret = nvmet_rdma_execute_command(rsp); 482 spin_lock(&queue->rsp_wr_wait_lock); 483 484 if (!ret) { 485 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 486 break; 487 } 488 } 489 spin_unlock(&queue->rsp_wr_wait_lock); 490 } 491 492 493 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 494 { 495 struct nvmet_rdma_queue *queue = rsp->queue; 496 497 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 498 499 if (rsp->n_rdma) { 500 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 501 queue->cm_id->port_num, rsp->req.sg, 502 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 503 } 504 505 if (rsp->req.sg != rsp->cmd->inline_sg) 506 nvmet_req_free_sgl(&rsp->req); 507 508 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 509 nvmet_rdma_process_wr_wait_list(queue); 510 511 nvmet_rdma_put_rsp(rsp); 512 } 513 514 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 515 { 516 if (queue->nvme_sq.ctrl) { 517 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 518 } else { 519 /* 520 * we didn't setup the controller yet in case 521 * of admin connect error, just disconnect and 522 * cleanup the queue 523 */ 524 nvmet_rdma_queue_disconnect(queue); 525 } 526 } 527 528 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 529 { 530 struct nvmet_rdma_rsp *rsp = 531 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 532 struct nvmet_rdma_queue *queue = cq->cq_context; 533 534 nvmet_rdma_release_rsp(rsp); 535 536 if (unlikely(wc->status != IB_WC_SUCCESS && 537 wc->status != IB_WC_WR_FLUSH_ERR)) { 538 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 539 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 540 nvmet_rdma_error_comp(queue); 541 } 542 } 543 544 static void nvmet_rdma_queue_response(struct nvmet_req *req) 545 { 546 struct nvmet_rdma_rsp *rsp = 547 container_of(req, struct nvmet_rdma_rsp, req); 548 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 549 struct ib_send_wr *first_wr; 550 551 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 552 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 553 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 554 } else { 555 rsp->send_wr.opcode = IB_WR_SEND; 556 } 557 558 if (nvmet_rdma_need_data_out(rsp)) 559 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 560 cm_id->port_num, NULL, &rsp->send_wr); 561 else 562 first_wr = &rsp->send_wr; 563 564 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 565 566 ib_dma_sync_single_for_device(rsp->queue->dev->device, 567 rsp->send_sge.addr, rsp->send_sge.length, 568 DMA_TO_DEVICE); 569 570 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 571 pr_err("sending cmd response failed\n"); 572 nvmet_rdma_release_rsp(rsp); 573 } 574 } 575 576 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 577 { 578 struct nvmet_rdma_rsp *rsp = 579 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 580 struct nvmet_rdma_queue *queue = cq->cq_context; 581 582 WARN_ON(rsp->n_rdma <= 0); 583 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 584 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 585 queue->cm_id->port_num, rsp->req.sg, 586 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 587 rsp->n_rdma = 0; 588 589 if (unlikely(wc->status != IB_WC_SUCCESS)) { 590 nvmet_req_uninit(&rsp->req); 591 nvmet_rdma_release_rsp(rsp); 592 if (wc->status != IB_WC_WR_FLUSH_ERR) { 593 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 594 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 595 nvmet_rdma_error_comp(queue); 596 } 597 return; 598 } 599 600 nvmet_req_execute(&rsp->req); 601 } 602 603 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 604 u64 off) 605 { 606 int sg_count = num_pages(len); 607 struct scatterlist *sg; 608 int i; 609 610 sg = rsp->cmd->inline_sg; 611 for (i = 0; i < sg_count; i++, sg++) { 612 if (i < sg_count - 1) 613 sg_unmark_end(sg); 614 else 615 sg_mark_end(sg); 616 sg->offset = off; 617 sg->length = min_t(int, len, PAGE_SIZE - off); 618 len -= sg->length; 619 if (!i) 620 off = 0; 621 } 622 623 rsp->req.sg = rsp->cmd->inline_sg; 624 rsp->req.sg_cnt = sg_count; 625 } 626 627 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 628 { 629 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 630 u64 off = le64_to_cpu(sgl->addr); 631 u32 len = le32_to_cpu(sgl->length); 632 633 if (!nvme_is_write(rsp->req.cmd)) { 634 rsp->req.error_loc = 635 offsetof(struct nvme_common_command, opcode); 636 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 637 } 638 639 if (off + len > rsp->queue->dev->inline_data_size) { 640 pr_err("invalid inline data offset!\n"); 641 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 642 } 643 644 /* no data command? */ 645 if (!len) 646 return 0; 647 648 nvmet_rdma_use_inline_sg(rsp, len, off); 649 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 650 rsp->req.transfer_len += len; 651 return 0; 652 } 653 654 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 655 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 656 { 657 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 658 u64 addr = le64_to_cpu(sgl->addr); 659 u32 key = get_unaligned_le32(sgl->key); 660 int ret; 661 662 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 663 664 /* no data command? */ 665 if (!rsp->req.transfer_len) 666 return 0; 667 668 ret = nvmet_req_alloc_sgl(&rsp->req); 669 if (ret < 0) 670 goto error_out; 671 672 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 673 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, 674 nvmet_data_dir(&rsp->req)); 675 if (ret < 0) 676 goto error_out; 677 rsp->n_rdma += ret; 678 679 if (invalidate) { 680 rsp->invalidate_rkey = key; 681 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 682 } 683 684 return 0; 685 686 error_out: 687 rsp->req.transfer_len = 0; 688 return NVME_SC_INTERNAL; 689 } 690 691 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 692 { 693 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 694 695 switch (sgl->type >> 4) { 696 case NVME_SGL_FMT_DATA_DESC: 697 switch (sgl->type & 0xf) { 698 case NVME_SGL_FMT_OFFSET: 699 return nvmet_rdma_map_sgl_inline(rsp); 700 default: 701 pr_err("invalid SGL subtype: %#x\n", sgl->type); 702 rsp->req.error_loc = 703 offsetof(struct nvme_common_command, dptr); 704 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 705 } 706 case NVME_KEY_SGL_FMT_DATA_DESC: 707 switch (sgl->type & 0xf) { 708 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 709 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 710 case NVME_SGL_FMT_ADDRESS: 711 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 712 default: 713 pr_err("invalid SGL subtype: %#x\n", sgl->type); 714 rsp->req.error_loc = 715 offsetof(struct nvme_common_command, dptr); 716 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 717 } 718 default: 719 pr_err("invalid SGL type: %#x\n", sgl->type); 720 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 721 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 722 } 723 } 724 725 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 726 { 727 struct nvmet_rdma_queue *queue = rsp->queue; 728 729 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 730 &queue->sq_wr_avail) < 0)) { 731 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 732 1 + rsp->n_rdma, queue->idx, 733 queue->nvme_sq.ctrl->cntlid); 734 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 735 return false; 736 } 737 738 if (nvmet_rdma_need_data_in(rsp)) { 739 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp, 740 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 741 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 742 } else { 743 nvmet_req_execute(&rsp->req); 744 } 745 746 return true; 747 } 748 749 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 750 struct nvmet_rdma_rsp *cmd) 751 { 752 u16 status; 753 754 ib_dma_sync_single_for_cpu(queue->dev->device, 755 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 756 DMA_FROM_DEVICE); 757 ib_dma_sync_single_for_cpu(queue->dev->device, 758 cmd->send_sge.addr, cmd->send_sge.length, 759 DMA_TO_DEVICE); 760 761 cmd->req.p2p_client = &queue->dev->device->dev; 762 763 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 764 &queue->nvme_sq, &nvmet_rdma_ops)) 765 return; 766 767 status = nvmet_rdma_map_sgl(cmd); 768 if (status) 769 goto out_err; 770 771 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 772 spin_lock(&queue->rsp_wr_wait_lock); 773 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 774 spin_unlock(&queue->rsp_wr_wait_lock); 775 } 776 777 return; 778 779 out_err: 780 nvmet_req_complete(&cmd->req, status); 781 } 782 783 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 784 { 785 struct nvmet_rdma_cmd *cmd = 786 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 787 struct nvmet_rdma_queue *queue = cq->cq_context; 788 struct nvmet_rdma_rsp *rsp; 789 790 if (unlikely(wc->status != IB_WC_SUCCESS)) { 791 if (wc->status != IB_WC_WR_FLUSH_ERR) { 792 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 793 wc->wr_cqe, ib_wc_status_msg(wc->status), 794 wc->status); 795 nvmet_rdma_error_comp(queue); 796 } 797 return; 798 } 799 800 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 801 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 802 nvmet_rdma_error_comp(queue); 803 return; 804 } 805 806 cmd->queue = queue; 807 rsp = nvmet_rdma_get_rsp(queue); 808 if (unlikely(!rsp)) { 809 /* 810 * we get here only under memory pressure, 811 * silently drop and have the host retry 812 * as we can't even fail it. 813 */ 814 nvmet_rdma_post_recv(queue->dev, cmd); 815 return; 816 } 817 rsp->queue = queue; 818 rsp->cmd = cmd; 819 rsp->flags = 0; 820 rsp->req.cmd = cmd->nvme_cmd; 821 rsp->req.port = queue->port; 822 rsp->n_rdma = 0; 823 824 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 825 unsigned long flags; 826 827 spin_lock_irqsave(&queue->state_lock, flags); 828 if (queue->state == NVMET_RDMA_Q_CONNECTING) 829 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 830 else 831 nvmet_rdma_put_rsp(rsp); 832 spin_unlock_irqrestore(&queue->state_lock, flags); 833 return; 834 } 835 836 nvmet_rdma_handle_command(queue, rsp); 837 } 838 839 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) 840 { 841 if (!ndev->srq) 842 return; 843 844 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 845 ib_destroy_srq(ndev->srq); 846 } 847 848 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 849 { 850 struct ib_srq_init_attr srq_attr = { NULL, }; 851 struct ib_srq *srq; 852 size_t srq_size; 853 int ret, i; 854 855 srq_size = 4095; /* XXX: tune */ 856 857 srq_attr.attr.max_wr = srq_size; 858 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 859 srq_attr.attr.srq_limit = 0; 860 srq_attr.srq_type = IB_SRQT_BASIC; 861 srq = ib_create_srq(ndev->pd, &srq_attr); 862 if (IS_ERR(srq)) { 863 /* 864 * If SRQs aren't supported we just go ahead and use normal 865 * non-shared receive queues. 866 */ 867 pr_info("SRQ requested but not supported.\n"); 868 return 0; 869 } 870 871 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 872 if (IS_ERR(ndev->srq_cmds)) { 873 ret = PTR_ERR(ndev->srq_cmds); 874 goto out_destroy_srq; 875 } 876 877 ndev->srq = srq; 878 ndev->srq_size = srq_size; 879 880 for (i = 0; i < srq_size; i++) { 881 ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); 882 if (ret) 883 goto out_free_cmds; 884 } 885 886 return 0; 887 888 out_free_cmds: 889 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 890 out_destroy_srq: 891 ib_destroy_srq(srq); 892 return ret; 893 } 894 895 static void nvmet_rdma_free_dev(struct kref *ref) 896 { 897 struct nvmet_rdma_device *ndev = 898 container_of(ref, struct nvmet_rdma_device, ref); 899 900 mutex_lock(&device_list_mutex); 901 list_del(&ndev->entry); 902 mutex_unlock(&device_list_mutex); 903 904 nvmet_rdma_destroy_srq(ndev); 905 ib_dealloc_pd(ndev->pd); 906 907 kfree(ndev); 908 } 909 910 static struct nvmet_rdma_device * 911 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 912 { 913 struct nvmet_port *port = cm_id->context; 914 struct nvmet_rdma_device *ndev; 915 int inline_page_count; 916 int inline_sge_count; 917 int ret; 918 919 mutex_lock(&device_list_mutex); 920 list_for_each_entry(ndev, &device_list, entry) { 921 if (ndev->device->node_guid == cm_id->device->node_guid && 922 kref_get_unless_zero(&ndev->ref)) 923 goto out_unlock; 924 } 925 926 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 927 if (!ndev) 928 goto out_err; 929 930 inline_page_count = num_pages(port->inline_data_size); 931 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 932 cm_id->device->attrs.max_recv_sge) - 1; 933 if (inline_page_count > inline_sge_count) { 934 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 935 port->inline_data_size, cm_id->device->name, 936 inline_sge_count * PAGE_SIZE); 937 port->inline_data_size = inline_sge_count * PAGE_SIZE; 938 inline_page_count = inline_sge_count; 939 } 940 ndev->inline_data_size = port->inline_data_size; 941 ndev->inline_page_count = inline_page_count; 942 ndev->device = cm_id->device; 943 kref_init(&ndev->ref); 944 945 ndev->pd = ib_alloc_pd(ndev->device, 0); 946 if (IS_ERR(ndev->pd)) 947 goto out_free_dev; 948 949 if (nvmet_rdma_use_srq) { 950 ret = nvmet_rdma_init_srq(ndev); 951 if (ret) 952 goto out_free_pd; 953 } 954 955 list_add(&ndev->entry, &device_list); 956 out_unlock: 957 mutex_unlock(&device_list_mutex); 958 pr_debug("added %s.\n", ndev->device->name); 959 return ndev; 960 961 out_free_pd: 962 ib_dealloc_pd(ndev->pd); 963 out_free_dev: 964 kfree(ndev); 965 out_err: 966 mutex_unlock(&device_list_mutex); 967 return NULL; 968 } 969 970 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 971 { 972 struct ib_qp_init_attr qp_attr; 973 struct nvmet_rdma_device *ndev = queue->dev; 974 int comp_vector, nr_cqe, ret, i; 975 976 /* 977 * Spread the io queues across completion vectors, 978 * but still keep all admin queues on vector 0. 979 */ 980 comp_vector = !queue->host_qid ? 0 : 981 queue->idx % ndev->device->num_comp_vectors; 982 983 /* 984 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 985 */ 986 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 987 988 queue->cq = ib_alloc_cq(ndev->device, queue, 989 nr_cqe + 1, comp_vector, 990 IB_POLL_WORKQUEUE); 991 if (IS_ERR(queue->cq)) { 992 ret = PTR_ERR(queue->cq); 993 pr_err("failed to create CQ cqe= %d ret= %d\n", 994 nr_cqe + 1, ret); 995 goto out; 996 } 997 998 memset(&qp_attr, 0, sizeof(qp_attr)); 999 qp_attr.qp_context = queue; 1000 qp_attr.event_handler = nvmet_rdma_qp_event; 1001 qp_attr.send_cq = queue->cq; 1002 qp_attr.recv_cq = queue->cq; 1003 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1004 qp_attr.qp_type = IB_QPT_RC; 1005 /* +1 for drain */ 1006 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1007 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size; 1008 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1009 ndev->device->attrs.max_send_sge); 1010 1011 if (ndev->srq) { 1012 qp_attr.srq = ndev->srq; 1013 } else { 1014 /* +1 for drain */ 1015 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1016 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1017 } 1018 1019 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1020 if (ret) { 1021 pr_err("failed to create_qp ret= %d\n", ret); 1022 goto err_destroy_cq; 1023 } 1024 1025 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1026 1027 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1028 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1029 qp_attr.cap.max_send_wr, queue->cm_id); 1030 1031 if (!ndev->srq) { 1032 for (i = 0; i < queue->recv_queue_size; i++) { 1033 queue->cmds[i].queue = queue; 1034 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1035 if (ret) 1036 goto err_destroy_qp; 1037 } 1038 } 1039 1040 out: 1041 return ret; 1042 1043 err_destroy_qp: 1044 rdma_destroy_qp(queue->cm_id); 1045 err_destroy_cq: 1046 ib_free_cq(queue->cq); 1047 goto out; 1048 } 1049 1050 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1051 { 1052 struct ib_qp *qp = queue->cm_id->qp; 1053 1054 ib_drain_qp(qp); 1055 rdma_destroy_id(queue->cm_id); 1056 ib_destroy_qp(qp); 1057 ib_free_cq(queue->cq); 1058 } 1059 1060 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1061 { 1062 pr_debug("freeing queue %d\n", queue->idx); 1063 1064 nvmet_sq_destroy(&queue->nvme_sq); 1065 1066 nvmet_rdma_destroy_queue_ib(queue); 1067 if (!queue->dev->srq) { 1068 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1069 queue->recv_queue_size, 1070 !queue->host_qid); 1071 } 1072 nvmet_rdma_free_rsps(queue); 1073 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1074 kfree(queue); 1075 } 1076 1077 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1078 { 1079 struct nvmet_rdma_queue *queue = 1080 container_of(w, struct nvmet_rdma_queue, release_work); 1081 struct nvmet_rdma_device *dev = queue->dev; 1082 1083 nvmet_rdma_free_queue(queue); 1084 1085 kref_put(&dev->ref, nvmet_rdma_free_dev); 1086 } 1087 1088 static int 1089 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1090 struct nvmet_rdma_queue *queue) 1091 { 1092 struct nvme_rdma_cm_req *req; 1093 1094 req = (struct nvme_rdma_cm_req *)conn->private_data; 1095 if (!req || conn->private_data_len == 0) 1096 return NVME_RDMA_CM_INVALID_LEN; 1097 1098 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1099 return NVME_RDMA_CM_INVALID_RECFMT; 1100 1101 queue->host_qid = le16_to_cpu(req->qid); 1102 1103 /* 1104 * req->hsqsize corresponds to our recv queue size plus 1 1105 * req->hrqsize corresponds to our send queue size 1106 */ 1107 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1108 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1109 1110 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1111 return NVME_RDMA_CM_INVALID_HSQSIZE; 1112 1113 /* XXX: Should we enforce some kind of max for IO queues? */ 1114 1115 return 0; 1116 } 1117 1118 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1119 enum nvme_rdma_cm_status status) 1120 { 1121 struct nvme_rdma_cm_rej rej; 1122 1123 pr_debug("rejecting connect request: status %d (%s)\n", 1124 status, nvme_rdma_cm_msg(status)); 1125 1126 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1127 rej.sts = cpu_to_le16(status); 1128 1129 return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); 1130 } 1131 1132 static struct nvmet_rdma_queue * 1133 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1134 struct rdma_cm_id *cm_id, 1135 struct rdma_cm_event *event) 1136 { 1137 struct nvmet_rdma_queue *queue; 1138 int ret; 1139 1140 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1141 if (!queue) { 1142 ret = NVME_RDMA_CM_NO_RSC; 1143 goto out_reject; 1144 } 1145 1146 ret = nvmet_sq_init(&queue->nvme_sq); 1147 if (ret) { 1148 ret = NVME_RDMA_CM_NO_RSC; 1149 goto out_free_queue; 1150 } 1151 1152 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1153 if (ret) 1154 goto out_destroy_sq; 1155 1156 /* 1157 * Schedules the actual release because calling rdma_destroy_id from 1158 * inside a CM callback would trigger a deadlock. (great API design..) 1159 */ 1160 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1161 queue->dev = ndev; 1162 queue->cm_id = cm_id; 1163 1164 spin_lock_init(&queue->state_lock); 1165 queue->state = NVMET_RDMA_Q_CONNECTING; 1166 INIT_LIST_HEAD(&queue->rsp_wait_list); 1167 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1168 spin_lock_init(&queue->rsp_wr_wait_lock); 1169 INIT_LIST_HEAD(&queue->free_rsps); 1170 spin_lock_init(&queue->rsps_lock); 1171 INIT_LIST_HEAD(&queue->queue_list); 1172 1173 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1174 if (queue->idx < 0) { 1175 ret = NVME_RDMA_CM_NO_RSC; 1176 goto out_destroy_sq; 1177 } 1178 1179 ret = nvmet_rdma_alloc_rsps(queue); 1180 if (ret) { 1181 ret = NVME_RDMA_CM_NO_RSC; 1182 goto out_ida_remove; 1183 } 1184 1185 if (!ndev->srq) { 1186 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1187 queue->recv_queue_size, 1188 !queue->host_qid); 1189 if (IS_ERR(queue->cmds)) { 1190 ret = NVME_RDMA_CM_NO_RSC; 1191 goto out_free_responses; 1192 } 1193 } 1194 1195 ret = nvmet_rdma_create_queue_ib(queue); 1196 if (ret) { 1197 pr_err("%s: creating RDMA queue failed (%d).\n", 1198 __func__, ret); 1199 ret = NVME_RDMA_CM_NO_RSC; 1200 goto out_free_cmds; 1201 } 1202 1203 return queue; 1204 1205 out_free_cmds: 1206 if (!ndev->srq) { 1207 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1208 queue->recv_queue_size, 1209 !queue->host_qid); 1210 } 1211 out_free_responses: 1212 nvmet_rdma_free_rsps(queue); 1213 out_ida_remove: 1214 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1215 out_destroy_sq: 1216 nvmet_sq_destroy(&queue->nvme_sq); 1217 out_free_queue: 1218 kfree(queue); 1219 out_reject: 1220 nvmet_rdma_cm_reject(cm_id, ret); 1221 return NULL; 1222 } 1223 1224 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1225 { 1226 struct nvmet_rdma_queue *queue = priv; 1227 1228 switch (event->event) { 1229 case IB_EVENT_COMM_EST: 1230 rdma_notify(queue->cm_id, event->event); 1231 break; 1232 default: 1233 pr_err("received IB QP event: %s (%d)\n", 1234 ib_event_msg(event->event), event->event); 1235 break; 1236 } 1237 } 1238 1239 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1240 struct nvmet_rdma_queue *queue, 1241 struct rdma_conn_param *p) 1242 { 1243 struct rdma_conn_param param = { }; 1244 struct nvme_rdma_cm_rep priv = { }; 1245 int ret = -ENOMEM; 1246 1247 param.rnr_retry_count = 7; 1248 param.flow_control = 1; 1249 param.initiator_depth = min_t(u8, p->initiator_depth, 1250 queue->dev->device->attrs.max_qp_init_rd_atom); 1251 param.private_data = &priv; 1252 param.private_data_len = sizeof(priv); 1253 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1254 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1255 1256 ret = rdma_accept(cm_id, ¶m); 1257 if (ret) 1258 pr_err("rdma_accept failed (error code = %d)\n", ret); 1259 1260 return ret; 1261 } 1262 1263 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1264 struct rdma_cm_event *event) 1265 { 1266 struct nvmet_rdma_device *ndev; 1267 struct nvmet_rdma_queue *queue; 1268 int ret = -EINVAL; 1269 1270 ndev = nvmet_rdma_find_get_device(cm_id); 1271 if (!ndev) { 1272 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1273 return -ECONNREFUSED; 1274 } 1275 1276 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1277 if (!queue) { 1278 ret = -ENOMEM; 1279 goto put_device; 1280 } 1281 queue->port = cm_id->context; 1282 1283 if (queue->host_qid == 0) { 1284 /* Let inflight controller teardown complete */ 1285 flush_scheduled_work(); 1286 } 1287 1288 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1289 if (ret) { 1290 schedule_work(&queue->release_work); 1291 /* Destroying rdma_cm id is not needed here */ 1292 return 0; 1293 } 1294 1295 mutex_lock(&nvmet_rdma_queue_mutex); 1296 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1297 mutex_unlock(&nvmet_rdma_queue_mutex); 1298 1299 return 0; 1300 1301 put_device: 1302 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1303 1304 return ret; 1305 } 1306 1307 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1308 { 1309 unsigned long flags; 1310 1311 spin_lock_irqsave(&queue->state_lock, flags); 1312 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1313 pr_warn("trying to establish a connected queue\n"); 1314 goto out_unlock; 1315 } 1316 queue->state = NVMET_RDMA_Q_LIVE; 1317 1318 while (!list_empty(&queue->rsp_wait_list)) { 1319 struct nvmet_rdma_rsp *cmd; 1320 1321 cmd = list_first_entry(&queue->rsp_wait_list, 1322 struct nvmet_rdma_rsp, wait_list); 1323 list_del(&cmd->wait_list); 1324 1325 spin_unlock_irqrestore(&queue->state_lock, flags); 1326 nvmet_rdma_handle_command(queue, cmd); 1327 spin_lock_irqsave(&queue->state_lock, flags); 1328 } 1329 1330 out_unlock: 1331 spin_unlock_irqrestore(&queue->state_lock, flags); 1332 } 1333 1334 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1335 { 1336 bool disconnect = false; 1337 unsigned long flags; 1338 1339 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1340 1341 spin_lock_irqsave(&queue->state_lock, flags); 1342 switch (queue->state) { 1343 case NVMET_RDMA_Q_CONNECTING: 1344 case NVMET_RDMA_Q_LIVE: 1345 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1346 disconnect = true; 1347 break; 1348 case NVMET_RDMA_Q_DISCONNECTING: 1349 break; 1350 } 1351 spin_unlock_irqrestore(&queue->state_lock, flags); 1352 1353 if (disconnect) { 1354 rdma_disconnect(queue->cm_id); 1355 schedule_work(&queue->release_work); 1356 } 1357 } 1358 1359 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1360 { 1361 bool disconnect = false; 1362 1363 mutex_lock(&nvmet_rdma_queue_mutex); 1364 if (!list_empty(&queue->queue_list)) { 1365 list_del_init(&queue->queue_list); 1366 disconnect = true; 1367 } 1368 mutex_unlock(&nvmet_rdma_queue_mutex); 1369 1370 if (disconnect) 1371 __nvmet_rdma_queue_disconnect(queue); 1372 } 1373 1374 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1375 struct nvmet_rdma_queue *queue) 1376 { 1377 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1378 1379 mutex_lock(&nvmet_rdma_queue_mutex); 1380 if (!list_empty(&queue->queue_list)) 1381 list_del_init(&queue->queue_list); 1382 mutex_unlock(&nvmet_rdma_queue_mutex); 1383 1384 pr_err("failed to connect queue %d\n", queue->idx); 1385 schedule_work(&queue->release_work); 1386 } 1387 1388 /** 1389 * nvme_rdma_device_removal() - Handle RDMA device removal 1390 * @cm_id: rdma_cm id, used for nvmet port 1391 * @queue: nvmet rdma queue (cm id qp_context) 1392 * 1393 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1394 * to unplug. Note that this event can be generated on a normal 1395 * queue cm_id and/or a device bound listener cm_id (where in this 1396 * case queue will be null). 1397 * 1398 * We registered an ib_client to handle device removal for queues, 1399 * so we only need to handle the listening port cm_ids. In this case 1400 * we nullify the priv to prevent double cm_id destruction and destroying 1401 * the cm_id implicitely by returning a non-zero rc to the callout. 1402 */ 1403 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1404 struct nvmet_rdma_queue *queue) 1405 { 1406 struct nvmet_port *port; 1407 1408 if (queue) { 1409 /* 1410 * This is a queue cm_id. we have registered 1411 * an ib_client to handle queues removal 1412 * so don't interfear and just return. 1413 */ 1414 return 0; 1415 } 1416 1417 port = cm_id->context; 1418 1419 /* 1420 * This is a listener cm_id. Make sure that 1421 * future remove_port won't invoke a double 1422 * cm_id destroy. use atomic xchg to make sure 1423 * we don't compete with remove_port. 1424 */ 1425 if (xchg(&port->priv, NULL) != cm_id) 1426 return 0; 1427 1428 /* 1429 * We need to return 1 so that the core will destroy 1430 * it's own ID. What a great API design.. 1431 */ 1432 return 1; 1433 } 1434 1435 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1436 struct rdma_cm_event *event) 1437 { 1438 struct nvmet_rdma_queue *queue = NULL; 1439 int ret = 0; 1440 1441 if (cm_id->qp) 1442 queue = cm_id->qp->qp_context; 1443 1444 pr_debug("%s (%d): status %d id %p\n", 1445 rdma_event_msg(event->event), event->event, 1446 event->status, cm_id); 1447 1448 switch (event->event) { 1449 case RDMA_CM_EVENT_CONNECT_REQUEST: 1450 ret = nvmet_rdma_queue_connect(cm_id, event); 1451 break; 1452 case RDMA_CM_EVENT_ESTABLISHED: 1453 nvmet_rdma_queue_established(queue); 1454 break; 1455 case RDMA_CM_EVENT_ADDR_CHANGE: 1456 case RDMA_CM_EVENT_DISCONNECTED: 1457 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1458 nvmet_rdma_queue_disconnect(queue); 1459 break; 1460 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1461 ret = nvmet_rdma_device_removal(cm_id, queue); 1462 break; 1463 case RDMA_CM_EVENT_REJECTED: 1464 pr_debug("Connection rejected: %s\n", 1465 rdma_reject_msg(cm_id, event->status)); 1466 /* FALLTHROUGH */ 1467 case RDMA_CM_EVENT_UNREACHABLE: 1468 case RDMA_CM_EVENT_CONNECT_ERROR: 1469 nvmet_rdma_queue_connect_fail(cm_id, queue); 1470 break; 1471 default: 1472 pr_err("received unrecognized RDMA CM event %d\n", 1473 event->event); 1474 break; 1475 } 1476 1477 return ret; 1478 } 1479 1480 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1481 { 1482 struct nvmet_rdma_queue *queue; 1483 1484 restart: 1485 mutex_lock(&nvmet_rdma_queue_mutex); 1486 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1487 if (queue->nvme_sq.ctrl == ctrl) { 1488 list_del_init(&queue->queue_list); 1489 mutex_unlock(&nvmet_rdma_queue_mutex); 1490 1491 __nvmet_rdma_queue_disconnect(queue); 1492 goto restart; 1493 } 1494 } 1495 mutex_unlock(&nvmet_rdma_queue_mutex); 1496 } 1497 1498 static int nvmet_rdma_add_port(struct nvmet_port *port) 1499 { 1500 struct rdma_cm_id *cm_id; 1501 struct sockaddr_storage addr = { }; 1502 __kernel_sa_family_t af; 1503 int ret; 1504 1505 switch (port->disc_addr.adrfam) { 1506 case NVMF_ADDR_FAMILY_IP4: 1507 af = AF_INET; 1508 break; 1509 case NVMF_ADDR_FAMILY_IP6: 1510 af = AF_INET6; 1511 break; 1512 default: 1513 pr_err("address family %d not supported\n", 1514 port->disc_addr.adrfam); 1515 return -EINVAL; 1516 } 1517 1518 if (port->inline_data_size < 0) { 1519 port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1520 } else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1521 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1522 port->inline_data_size, 1523 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1524 port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1525 } 1526 1527 ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr, 1528 port->disc_addr.trsvcid, &addr); 1529 if (ret) { 1530 pr_err("malformed ip/port passed: %s:%s\n", 1531 port->disc_addr.traddr, port->disc_addr.trsvcid); 1532 return ret; 1533 } 1534 1535 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1536 RDMA_PS_TCP, IB_QPT_RC); 1537 if (IS_ERR(cm_id)) { 1538 pr_err("CM ID creation failed\n"); 1539 return PTR_ERR(cm_id); 1540 } 1541 1542 /* 1543 * Allow both IPv4 and IPv6 sockets to bind a single port 1544 * at the same time. 1545 */ 1546 ret = rdma_set_afonly(cm_id, 1); 1547 if (ret) { 1548 pr_err("rdma_set_afonly failed (%d)\n", ret); 1549 goto out_destroy_id; 1550 } 1551 1552 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr); 1553 if (ret) { 1554 pr_err("binding CM ID to %pISpcs failed (%d)\n", 1555 (struct sockaddr *)&addr, ret); 1556 goto out_destroy_id; 1557 } 1558 1559 ret = rdma_listen(cm_id, 128); 1560 if (ret) { 1561 pr_err("listening to %pISpcs failed (%d)\n", 1562 (struct sockaddr *)&addr, ret); 1563 goto out_destroy_id; 1564 } 1565 1566 pr_info("enabling port %d (%pISpcs)\n", 1567 le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr); 1568 port->priv = cm_id; 1569 return 0; 1570 1571 out_destroy_id: 1572 rdma_destroy_id(cm_id); 1573 return ret; 1574 } 1575 1576 static void nvmet_rdma_remove_port(struct nvmet_port *port) 1577 { 1578 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL); 1579 1580 if (cm_id) 1581 rdma_destroy_id(cm_id); 1582 } 1583 1584 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1585 struct nvmet_port *port, char *traddr) 1586 { 1587 struct rdma_cm_id *cm_id = port->priv; 1588 1589 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 1590 struct nvmet_rdma_rsp *rsp = 1591 container_of(req, struct nvmet_rdma_rsp, req); 1592 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 1593 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 1594 1595 sprintf(traddr, "%pISc", addr); 1596 } else { 1597 memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE); 1598 } 1599 } 1600 1601 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 1602 .owner = THIS_MODULE, 1603 .type = NVMF_TRTYPE_RDMA, 1604 .msdbd = 1, 1605 .has_keyed_sgls = 1, 1606 .add_port = nvmet_rdma_add_port, 1607 .remove_port = nvmet_rdma_remove_port, 1608 .queue_response = nvmet_rdma_queue_response, 1609 .delete_ctrl = nvmet_rdma_delete_ctrl, 1610 .disc_traddr = nvmet_rdma_disc_port_addr, 1611 }; 1612 1613 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1614 { 1615 struct nvmet_rdma_queue *queue, *tmp; 1616 struct nvmet_rdma_device *ndev; 1617 bool found = false; 1618 1619 mutex_lock(&device_list_mutex); 1620 list_for_each_entry(ndev, &device_list, entry) { 1621 if (ndev->device == ib_device) { 1622 found = true; 1623 break; 1624 } 1625 } 1626 mutex_unlock(&device_list_mutex); 1627 1628 if (!found) 1629 return; 1630 1631 /* 1632 * IB Device that is used by nvmet controllers is being removed, 1633 * delete all queues using this device. 1634 */ 1635 mutex_lock(&nvmet_rdma_queue_mutex); 1636 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1637 queue_list) { 1638 if (queue->dev->device != ib_device) 1639 continue; 1640 1641 pr_info("Removing queue %d\n", queue->idx); 1642 list_del_init(&queue->queue_list); 1643 __nvmet_rdma_queue_disconnect(queue); 1644 } 1645 mutex_unlock(&nvmet_rdma_queue_mutex); 1646 1647 flush_scheduled_work(); 1648 } 1649 1650 static struct ib_client nvmet_rdma_ib_client = { 1651 .name = "nvmet_rdma", 1652 .remove = nvmet_rdma_remove_one 1653 }; 1654 1655 static int __init nvmet_rdma_init(void) 1656 { 1657 int ret; 1658 1659 ret = ib_register_client(&nvmet_rdma_ib_client); 1660 if (ret) 1661 return ret; 1662 1663 ret = nvmet_register_transport(&nvmet_rdma_ops); 1664 if (ret) 1665 goto err_ib_client; 1666 1667 return 0; 1668 1669 err_ib_client: 1670 ib_unregister_client(&nvmet_rdma_ib_client); 1671 return ret; 1672 } 1673 1674 static void __exit nvmet_rdma_exit(void) 1675 { 1676 nvmet_unregister_transport(&nvmet_rdma_ops); 1677 ib_unregister_client(&nvmet_rdma_ib_client); 1678 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 1679 ida_destroy(&nvmet_rdma_queue_ida); 1680 } 1681 1682 module_init(nvmet_rdma_init); 1683 module_exit(nvmet_rdma_exit); 1684 1685 MODULE_LICENSE("GPL v2"); 1686 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 1687