1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/nvme.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/wait.h> 18 #include <linux/inet.h> 19 #include <asm/unaligned.h> 20 21 #include <rdma/ib_verbs.h> 22 #include <rdma/rdma_cm.h> 23 #include <rdma/rw.h> 24 #include <rdma/ib_cm.h> 25 26 #include <linux/nvme-rdma.h> 27 #include "nvmet.h" 28 29 /* 30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 31 */ 32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 33 #define NVMET_RDMA_MAX_INLINE_SGE 4 34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 35 36 /* Assume mpsmin == device_page_size == 4KB */ 37 #define NVMET_RDMA_MAX_MDTS 8 38 #define NVMET_RDMA_MAX_METADATA_MDTS 5 39 40 #define NVMET_RDMA_BACKLOG 128 41 42 struct nvmet_rdma_srq; 43 44 struct nvmet_rdma_cmd { 45 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 46 struct ib_cqe cqe; 47 struct ib_recv_wr wr; 48 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 49 struct nvme_command *nvme_cmd; 50 struct nvmet_rdma_queue *queue; 51 struct nvmet_rdma_srq *nsrq; 52 }; 53 54 enum { 55 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 56 }; 57 58 struct nvmet_rdma_rsp { 59 struct ib_sge send_sge; 60 struct ib_cqe send_cqe; 61 struct ib_send_wr send_wr; 62 63 struct nvmet_rdma_cmd *cmd; 64 struct nvmet_rdma_queue *queue; 65 66 struct ib_cqe read_cqe; 67 struct ib_cqe write_cqe; 68 struct rdma_rw_ctx rw; 69 70 struct nvmet_req req; 71 72 bool allocated; 73 u8 n_rdma; 74 u32 flags; 75 u32 invalidate_rkey; 76 77 struct list_head wait_list; 78 struct list_head free_list; 79 }; 80 81 enum nvmet_rdma_queue_state { 82 NVMET_RDMA_Q_CONNECTING, 83 NVMET_RDMA_Q_LIVE, 84 NVMET_RDMA_Q_DISCONNECTING, 85 }; 86 87 struct nvmet_rdma_queue { 88 struct rdma_cm_id *cm_id; 89 struct ib_qp *qp; 90 struct nvmet_port *port; 91 struct ib_cq *cq; 92 atomic_t sq_wr_avail; 93 struct nvmet_rdma_device *dev; 94 struct nvmet_rdma_srq *nsrq; 95 spinlock_t state_lock; 96 enum nvmet_rdma_queue_state state; 97 struct nvmet_cq nvme_cq; 98 struct nvmet_sq nvme_sq; 99 100 struct nvmet_rdma_rsp *rsps; 101 struct list_head free_rsps; 102 spinlock_t rsps_lock; 103 struct nvmet_rdma_cmd *cmds; 104 105 struct work_struct release_work; 106 struct list_head rsp_wait_list; 107 struct list_head rsp_wr_wait_list; 108 spinlock_t rsp_wr_wait_lock; 109 110 int idx; 111 int host_qid; 112 int comp_vector; 113 int recv_queue_size; 114 int send_queue_size; 115 116 struct list_head queue_list; 117 }; 118 119 struct nvmet_rdma_port { 120 struct nvmet_port *nport; 121 struct sockaddr_storage addr; 122 struct rdma_cm_id *cm_id; 123 struct delayed_work repair_work; 124 }; 125 126 struct nvmet_rdma_srq { 127 struct ib_srq *srq; 128 struct nvmet_rdma_cmd *cmds; 129 struct nvmet_rdma_device *ndev; 130 }; 131 132 struct nvmet_rdma_device { 133 struct ib_device *device; 134 struct ib_pd *pd; 135 struct nvmet_rdma_srq **srqs; 136 int srq_count; 137 size_t srq_size; 138 struct kref ref; 139 struct list_head entry; 140 int inline_data_size; 141 int inline_page_count; 142 }; 143 144 static bool nvmet_rdma_use_srq; 145 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 146 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 147 148 static int srq_size_set(const char *val, const struct kernel_param *kp); 149 static const struct kernel_param_ops srq_size_ops = { 150 .set = srq_size_set, 151 .get = param_get_int, 152 }; 153 154 static int nvmet_rdma_srq_size = 1024; 155 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 156 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 157 158 static DEFINE_IDA(nvmet_rdma_queue_ida); 159 static LIST_HEAD(nvmet_rdma_queue_list); 160 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 161 162 static LIST_HEAD(device_list); 163 static DEFINE_MUTEX(device_list_mutex); 164 165 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 166 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 167 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 169 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 170 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 171 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 172 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 173 struct nvmet_rdma_rsp *r); 174 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 175 struct nvmet_rdma_rsp *r); 176 177 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 178 179 static int srq_size_set(const char *val, const struct kernel_param *kp) 180 { 181 int n = 0, ret; 182 183 ret = kstrtoint(val, 10, &n); 184 if (ret != 0 || n < 256) 185 return -EINVAL; 186 187 return param_set_int(val, kp); 188 } 189 190 static int num_pages(int len) 191 { 192 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 193 } 194 195 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 196 { 197 return nvme_is_write(rsp->req.cmd) && 198 rsp->req.transfer_len && 199 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 200 } 201 202 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 203 { 204 return !nvme_is_write(rsp->req.cmd) && 205 rsp->req.transfer_len && 206 !rsp->req.cqe->status && 207 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 208 } 209 210 static inline struct nvmet_rdma_rsp * 211 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 212 { 213 struct nvmet_rdma_rsp *rsp; 214 unsigned long flags; 215 216 spin_lock_irqsave(&queue->rsps_lock, flags); 217 rsp = list_first_entry_or_null(&queue->free_rsps, 218 struct nvmet_rdma_rsp, free_list); 219 if (likely(rsp)) 220 list_del(&rsp->free_list); 221 spin_unlock_irqrestore(&queue->rsps_lock, flags); 222 223 if (unlikely(!rsp)) { 224 int ret; 225 226 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 227 if (unlikely(!rsp)) 228 return NULL; 229 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 230 if (unlikely(ret)) { 231 kfree(rsp); 232 return NULL; 233 } 234 235 rsp->allocated = true; 236 } 237 238 return rsp; 239 } 240 241 static inline void 242 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 243 { 244 unsigned long flags; 245 246 if (unlikely(rsp->allocated)) { 247 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 248 kfree(rsp); 249 return; 250 } 251 252 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 253 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 254 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 255 } 256 257 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 258 struct nvmet_rdma_cmd *c) 259 { 260 struct scatterlist *sg; 261 struct ib_sge *sge; 262 int i; 263 264 if (!ndev->inline_data_size) 265 return; 266 267 sg = c->inline_sg; 268 sge = &c->sge[1]; 269 270 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 271 if (sge->length) 272 ib_dma_unmap_page(ndev->device, sge->addr, 273 sge->length, DMA_FROM_DEVICE); 274 if (sg_page(sg)) 275 __free_page(sg_page(sg)); 276 } 277 } 278 279 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 280 struct nvmet_rdma_cmd *c) 281 { 282 struct scatterlist *sg; 283 struct ib_sge *sge; 284 struct page *pg; 285 int len; 286 int i; 287 288 if (!ndev->inline_data_size) 289 return 0; 290 291 sg = c->inline_sg; 292 sg_init_table(sg, ndev->inline_page_count); 293 sge = &c->sge[1]; 294 len = ndev->inline_data_size; 295 296 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 297 pg = alloc_page(GFP_KERNEL); 298 if (!pg) 299 goto out_err; 300 sg_assign_page(sg, pg); 301 sge->addr = ib_dma_map_page(ndev->device, 302 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 303 if (ib_dma_mapping_error(ndev->device, sge->addr)) 304 goto out_err; 305 sge->length = min_t(int, len, PAGE_SIZE); 306 sge->lkey = ndev->pd->local_dma_lkey; 307 len -= sge->length; 308 } 309 310 return 0; 311 out_err: 312 for (; i >= 0; i--, sg--, sge--) { 313 if (sge->length) 314 ib_dma_unmap_page(ndev->device, sge->addr, 315 sge->length, DMA_FROM_DEVICE); 316 if (sg_page(sg)) 317 __free_page(sg_page(sg)); 318 } 319 return -ENOMEM; 320 } 321 322 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 323 struct nvmet_rdma_cmd *c, bool admin) 324 { 325 /* NVMe command / RDMA RECV */ 326 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 327 if (!c->nvme_cmd) 328 goto out; 329 330 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 331 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 332 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 333 goto out_free_cmd; 334 335 c->sge[0].length = sizeof(*c->nvme_cmd); 336 c->sge[0].lkey = ndev->pd->local_dma_lkey; 337 338 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 339 goto out_unmap_cmd; 340 341 c->cqe.done = nvmet_rdma_recv_done; 342 343 c->wr.wr_cqe = &c->cqe; 344 c->wr.sg_list = c->sge; 345 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 346 347 return 0; 348 349 out_unmap_cmd: 350 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 351 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 352 out_free_cmd: 353 kfree(c->nvme_cmd); 354 355 out: 356 return -ENOMEM; 357 } 358 359 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 360 struct nvmet_rdma_cmd *c, bool admin) 361 { 362 if (!admin) 363 nvmet_rdma_free_inline_pages(ndev, c); 364 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 365 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 366 kfree(c->nvme_cmd); 367 } 368 369 static struct nvmet_rdma_cmd * 370 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 371 int nr_cmds, bool admin) 372 { 373 struct nvmet_rdma_cmd *cmds; 374 int ret = -EINVAL, i; 375 376 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 377 if (!cmds) 378 goto out; 379 380 for (i = 0; i < nr_cmds; i++) { 381 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 382 if (ret) 383 goto out_free; 384 } 385 386 return cmds; 387 388 out_free: 389 while (--i >= 0) 390 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 391 kfree(cmds); 392 out: 393 return ERR_PTR(ret); 394 } 395 396 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 397 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 398 { 399 int i; 400 401 for (i = 0; i < nr_cmds; i++) 402 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 403 kfree(cmds); 404 } 405 406 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 407 struct nvmet_rdma_rsp *r) 408 { 409 /* NVMe CQE / RDMA SEND */ 410 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 411 if (!r->req.cqe) 412 goto out; 413 414 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 415 sizeof(*r->req.cqe), DMA_TO_DEVICE); 416 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 417 goto out_free_rsp; 418 419 if (ib_dma_pci_p2p_dma_supported(ndev->device)) 420 r->req.p2p_client = &ndev->device->dev; 421 r->send_sge.length = sizeof(*r->req.cqe); 422 r->send_sge.lkey = ndev->pd->local_dma_lkey; 423 424 r->send_cqe.done = nvmet_rdma_send_done; 425 426 r->send_wr.wr_cqe = &r->send_cqe; 427 r->send_wr.sg_list = &r->send_sge; 428 r->send_wr.num_sge = 1; 429 r->send_wr.send_flags = IB_SEND_SIGNALED; 430 431 /* Data In / RDMA READ */ 432 r->read_cqe.done = nvmet_rdma_read_data_done; 433 /* Data Out / RDMA WRITE */ 434 r->write_cqe.done = nvmet_rdma_write_data_done; 435 436 return 0; 437 438 out_free_rsp: 439 kfree(r->req.cqe); 440 out: 441 return -ENOMEM; 442 } 443 444 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 445 struct nvmet_rdma_rsp *r) 446 { 447 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 448 sizeof(*r->req.cqe), DMA_TO_DEVICE); 449 kfree(r->req.cqe); 450 } 451 452 static int 453 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 454 { 455 struct nvmet_rdma_device *ndev = queue->dev; 456 int nr_rsps = queue->recv_queue_size * 2; 457 int ret = -EINVAL, i; 458 459 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 460 GFP_KERNEL); 461 if (!queue->rsps) 462 goto out; 463 464 for (i = 0; i < nr_rsps; i++) { 465 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 466 467 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 468 if (ret) 469 goto out_free; 470 471 list_add_tail(&rsp->free_list, &queue->free_rsps); 472 } 473 474 return 0; 475 476 out_free: 477 while (--i >= 0) { 478 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 479 480 list_del(&rsp->free_list); 481 nvmet_rdma_free_rsp(ndev, rsp); 482 } 483 kfree(queue->rsps); 484 out: 485 return ret; 486 } 487 488 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 489 { 490 struct nvmet_rdma_device *ndev = queue->dev; 491 int i, nr_rsps = queue->recv_queue_size * 2; 492 493 for (i = 0; i < nr_rsps; i++) { 494 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 495 496 list_del(&rsp->free_list); 497 nvmet_rdma_free_rsp(ndev, rsp); 498 } 499 kfree(queue->rsps); 500 } 501 502 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 503 struct nvmet_rdma_cmd *cmd) 504 { 505 int ret; 506 507 ib_dma_sync_single_for_device(ndev->device, 508 cmd->sge[0].addr, cmd->sge[0].length, 509 DMA_FROM_DEVICE); 510 511 if (cmd->nsrq) 512 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 513 else 514 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 515 516 if (unlikely(ret)) 517 pr_err("post_recv cmd failed\n"); 518 519 return ret; 520 } 521 522 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 523 { 524 spin_lock(&queue->rsp_wr_wait_lock); 525 while (!list_empty(&queue->rsp_wr_wait_list)) { 526 struct nvmet_rdma_rsp *rsp; 527 bool ret; 528 529 rsp = list_entry(queue->rsp_wr_wait_list.next, 530 struct nvmet_rdma_rsp, wait_list); 531 list_del(&rsp->wait_list); 532 533 spin_unlock(&queue->rsp_wr_wait_lock); 534 ret = nvmet_rdma_execute_command(rsp); 535 spin_lock(&queue->rsp_wr_wait_lock); 536 537 if (!ret) { 538 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 539 break; 540 } 541 } 542 spin_unlock(&queue->rsp_wr_wait_lock); 543 } 544 545 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 546 { 547 struct ib_mr_status mr_status; 548 int ret; 549 u16 status = 0; 550 551 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 552 if (ret) { 553 pr_err("ib_check_mr_status failed, ret %d\n", ret); 554 return NVME_SC_INVALID_PI; 555 } 556 557 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 558 switch (mr_status.sig_err.err_type) { 559 case IB_SIG_BAD_GUARD: 560 status = NVME_SC_GUARD_CHECK; 561 break; 562 case IB_SIG_BAD_REFTAG: 563 status = NVME_SC_REFTAG_CHECK; 564 break; 565 case IB_SIG_BAD_APPTAG: 566 status = NVME_SC_APPTAG_CHECK; 567 break; 568 } 569 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 570 mr_status.sig_err.err_type, 571 mr_status.sig_err.expected, 572 mr_status.sig_err.actual); 573 } 574 575 return status; 576 } 577 578 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 579 struct nvme_command *cmd, struct ib_sig_domain *domain, 580 u16 control, u8 pi_type) 581 { 582 domain->sig_type = IB_SIG_TYPE_T10_DIF; 583 domain->sig.dif.bg_type = IB_T10DIF_CRC; 584 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 585 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 586 if (control & NVME_RW_PRINFO_PRCHK_REF) 587 domain->sig.dif.ref_remap = true; 588 589 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 590 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 591 domain->sig.dif.app_escape = true; 592 if (pi_type == NVME_NS_DPS_PI_TYPE3) 593 domain->sig.dif.ref_escape = true; 594 } 595 596 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 597 struct ib_sig_attrs *sig_attrs) 598 { 599 struct nvme_command *cmd = req->cmd; 600 u16 control = le16_to_cpu(cmd->rw.control); 601 u8 pi_type = req->ns->pi_type; 602 struct blk_integrity *bi; 603 604 bi = bdev_get_integrity(req->ns->bdev); 605 606 memset(sig_attrs, 0, sizeof(*sig_attrs)); 607 608 if (control & NVME_RW_PRINFO_PRACT) { 609 /* for WRITE_INSERT/READ_STRIP no wire domain */ 610 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 611 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 612 pi_type); 613 /* Clear the PRACT bit since HCA will generate/verify the PI */ 614 control &= ~NVME_RW_PRINFO_PRACT; 615 cmd->rw.control = cpu_to_le16(control); 616 /* PI is added by the HW */ 617 req->transfer_len += req->metadata_len; 618 } else { 619 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 620 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 621 pi_type); 622 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 623 pi_type); 624 } 625 626 if (control & NVME_RW_PRINFO_PRCHK_REF) 627 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 628 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 629 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 630 if (control & NVME_RW_PRINFO_PRCHK_APP) 631 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 632 } 633 634 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 635 struct ib_sig_attrs *sig_attrs) 636 { 637 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 638 struct nvmet_req *req = &rsp->req; 639 int ret; 640 641 if (req->metadata_len) 642 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 643 cm_id->port_num, req->sg, req->sg_cnt, 644 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 645 addr, key, nvmet_data_dir(req)); 646 else 647 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 648 req->sg, req->sg_cnt, 0, addr, key, 649 nvmet_data_dir(req)); 650 651 return ret; 652 } 653 654 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 655 { 656 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 657 struct nvmet_req *req = &rsp->req; 658 659 if (req->metadata_len) 660 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 661 cm_id->port_num, req->sg, req->sg_cnt, 662 req->metadata_sg, req->metadata_sg_cnt, 663 nvmet_data_dir(req)); 664 else 665 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 666 req->sg, req->sg_cnt, nvmet_data_dir(req)); 667 } 668 669 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 670 { 671 struct nvmet_rdma_queue *queue = rsp->queue; 672 673 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 674 675 if (rsp->n_rdma) 676 nvmet_rdma_rw_ctx_destroy(rsp); 677 678 if (rsp->req.sg != rsp->cmd->inline_sg) 679 nvmet_req_free_sgls(&rsp->req); 680 681 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 682 nvmet_rdma_process_wr_wait_list(queue); 683 684 nvmet_rdma_put_rsp(rsp); 685 } 686 687 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 688 { 689 if (queue->nvme_sq.ctrl) { 690 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 691 } else { 692 /* 693 * we didn't setup the controller yet in case 694 * of admin connect error, just disconnect and 695 * cleanup the queue 696 */ 697 nvmet_rdma_queue_disconnect(queue); 698 } 699 } 700 701 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 702 { 703 struct nvmet_rdma_rsp *rsp = 704 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 705 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 706 707 nvmet_rdma_release_rsp(rsp); 708 709 if (unlikely(wc->status != IB_WC_SUCCESS && 710 wc->status != IB_WC_WR_FLUSH_ERR)) { 711 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 712 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 713 nvmet_rdma_error_comp(queue); 714 } 715 } 716 717 static void nvmet_rdma_queue_response(struct nvmet_req *req) 718 { 719 struct nvmet_rdma_rsp *rsp = 720 container_of(req, struct nvmet_rdma_rsp, req); 721 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 722 struct ib_send_wr *first_wr; 723 724 if (rsp->invalidate_rkey) { 725 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 726 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 727 } else { 728 rsp->send_wr.opcode = IB_WR_SEND; 729 } 730 731 if (nvmet_rdma_need_data_out(rsp)) { 732 if (rsp->req.metadata_len) 733 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 734 cm_id->port_num, &rsp->write_cqe, NULL); 735 else 736 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 737 cm_id->port_num, NULL, &rsp->send_wr); 738 } else { 739 first_wr = &rsp->send_wr; 740 } 741 742 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 743 744 ib_dma_sync_single_for_device(rsp->queue->dev->device, 745 rsp->send_sge.addr, rsp->send_sge.length, 746 DMA_TO_DEVICE); 747 748 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 749 pr_err("sending cmd response failed\n"); 750 nvmet_rdma_release_rsp(rsp); 751 } 752 } 753 754 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 755 { 756 struct nvmet_rdma_rsp *rsp = 757 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 758 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 759 u16 status = 0; 760 761 WARN_ON(rsp->n_rdma <= 0); 762 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 763 rsp->n_rdma = 0; 764 765 if (unlikely(wc->status != IB_WC_SUCCESS)) { 766 nvmet_rdma_rw_ctx_destroy(rsp); 767 nvmet_req_uninit(&rsp->req); 768 nvmet_rdma_release_rsp(rsp); 769 if (wc->status != IB_WC_WR_FLUSH_ERR) { 770 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 771 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 772 nvmet_rdma_error_comp(queue); 773 } 774 return; 775 } 776 777 if (rsp->req.metadata_len) 778 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 779 nvmet_rdma_rw_ctx_destroy(rsp); 780 781 if (unlikely(status)) 782 nvmet_req_complete(&rsp->req, status); 783 else 784 rsp->req.execute(&rsp->req); 785 } 786 787 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 788 { 789 struct nvmet_rdma_rsp *rsp = 790 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 791 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 792 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 793 u16 status; 794 795 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 796 return; 797 798 WARN_ON(rsp->n_rdma <= 0); 799 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 800 rsp->n_rdma = 0; 801 802 if (unlikely(wc->status != IB_WC_SUCCESS)) { 803 nvmet_rdma_rw_ctx_destroy(rsp); 804 nvmet_req_uninit(&rsp->req); 805 nvmet_rdma_release_rsp(rsp); 806 if (wc->status != IB_WC_WR_FLUSH_ERR) { 807 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", 808 ib_wc_status_msg(wc->status), wc->status); 809 nvmet_rdma_error_comp(queue); 810 } 811 return; 812 } 813 814 /* 815 * Upon RDMA completion check the signature status 816 * - if succeeded send good NVMe response 817 * - if failed send bad NVMe response with appropriate error 818 */ 819 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 820 if (unlikely(status)) 821 rsp->req.cqe->status = cpu_to_le16(status << 1); 822 nvmet_rdma_rw_ctx_destroy(rsp); 823 824 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 825 pr_err("sending cmd response failed\n"); 826 nvmet_rdma_release_rsp(rsp); 827 } 828 } 829 830 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 831 u64 off) 832 { 833 int sg_count = num_pages(len); 834 struct scatterlist *sg; 835 int i; 836 837 sg = rsp->cmd->inline_sg; 838 for (i = 0; i < sg_count; i++, sg++) { 839 if (i < sg_count - 1) 840 sg_unmark_end(sg); 841 else 842 sg_mark_end(sg); 843 sg->offset = off; 844 sg->length = min_t(int, len, PAGE_SIZE - off); 845 len -= sg->length; 846 if (!i) 847 off = 0; 848 } 849 850 rsp->req.sg = rsp->cmd->inline_sg; 851 rsp->req.sg_cnt = sg_count; 852 } 853 854 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 855 { 856 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 857 u64 off = le64_to_cpu(sgl->addr); 858 u32 len = le32_to_cpu(sgl->length); 859 860 if (!nvme_is_write(rsp->req.cmd)) { 861 rsp->req.error_loc = 862 offsetof(struct nvme_common_command, opcode); 863 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 864 } 865 866 if (off + len > rsp->queue->dev->inline_data_size) { 867 pr_err("invalid inline data offset!\n"); 868 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 869 } 870 871 /* no data command? */ 872 if (!len) 873 return 0; 874 875 nvmet_rdma_use_inline_sg(rsp, len, off); 876 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 877 rsp->req.transfer_len += len; 878 return 0; 879 } 880 881 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 882 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 883 { 884 u64 addr = le64_to_cpu(sgl->addr); 885 u32 key = get_unaligned_le32(sgl->key); 886 struct ib_sig_attrs sig_attrs; 887 int ret; 888 889 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 890 891 /* no data command? */ 892 if (!rsp->req.transfer_len) 893 return 0; 894 895 if (rsp->req.metadata_len) 896 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 897 898 ret = nvmet_req_alloc_sgls(&rsp->req); 899 if (unlikely(ret < 0)) 900 goto error_out; 901 902 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 903 if (unlikely(ret < 0)) 904 goto error_out; 905 rsp->n_rdma += ret; 906 907 if (invalidate) 908 rsp->invalidate_rkey = key; 909 910 return 0; 911 912 error_out: 913 rsp->req.transfer_len = 0; 914 return NVME_SC_INTERNAL; 915 } 916 917 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 918 { 919 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 920 921 switch (sgl->type >> 4) { 922 case NVME_SGL_FMT_DATA_DESC: 923 switch (sgl->type & 0xf) { 924 case NVME_SGL_FMT_OFFSET: 925 return nvmet_rdma_map_sgl_inline(rsp); 926 default: 927 pr_err("invalid SGL subtype: %#x\n", sgl->type); 928 rsp->req.error_loc = 929 offsetof(struct nvme_common_command, dptr); 930 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 931 } 932 case NVME_KEY_SGL_FMT_DATA_DESC: 933 switch (sgl->type & 0xf) { 934 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 935 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 936 case NVME_SGL_FMT_ADDRESS: 937 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 938 default: 939 pr_err("invalid SGL subtype: %#x\n", sgl->type); 940 rsp->req.error_loc = 941 offsetof(struct nvme_common_command, dptr); 942 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 943 } 944 default: 945 pr_err("invalid SGL type: %#x\n", sgl->type); 946 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 947 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 948 } 949 } 950 951 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 952 { 953 struct nvmet_rdma_queue *queue = rsp->queue; 954 955 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 956 &queue->sq_wr_avail) < 0)) { 957 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 958 1 + rsp->n_rdma, queue->idx, 959 queue->nvme_sq.ctrl->cntlid); 960 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 961 return false; 962 } 963 964 if (nvmet_rdma_need_data_in(rsp)) { 965 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 966 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 967 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 968 } else { 969 rsp->req.execute(&rsp->req); 970 } 971 972 return true; 973 } 974 975 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 976 struct nvmet_rdma_rsp *cmd) 977 { 978 u16 status; 979 980 ib_dma_sync_single_for_cpu(queue->dev->device, 981 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 982 DMA_FROM_DEVICE); 983 ib_dma_sync_single_for_cpu(queue->dev->device, 984 cmd->send_sge.addr, cmd->send_sge.length, 985 DMA_TO_DEVICE); 986 987 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 988 &queue->nvme_sq, &nvmet_rdma_ops)) 989 return; 990 991 status = nvmet_rdma_map_sgl(cmd); 992 if (status) 993 goto out_err; 994 995 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 996 spin_lock(&queue->rsp_wr_wait_lock); 997 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 998 spin_unlock(&queue->rsp_wr_wait_lock); 999 } 1000 1001 return; 1002 1003 out_err: 1004 nvmet_req_complete(&cmd->req, status); 1005 } 1006 1007 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1008 { 1009 struct nvmet_rdma_cmd *cmd = 1010 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1011 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1012 struct nvmet_rdma_rsp *rsp; 1013 1014 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1015 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1016 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1017 wc->wr_cqe, ib_wc_status_msg(wc->status), 1018 wc->status); 1019 nvmet_rdma_error_comp(queue); 1020 } 1021 return; 1022 } 1023 1024 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1025 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1026 nvmet_rdma_error_comp(queue); 1027 return; 1028 } 1029 1030 cmd->queue = queue; 1031 rsp = nvmet_rdma_get_rsp(queue); 1032 if (unlikely(!rsp)) { 1033 /* 1034 * we get here only under memory pressure, 1035 * silently drop and have the host retry 1036 * as we can't even fail it. 1037 */ 1038 nvmet_rdma_post_recv(queue->dev, cmd); 1039 return; 1040 } 1041 rsp->queue = queue; 1042 rsp->cmd = cmd; 1043 rsp->flags = 0; 1044 rsp->req.cmd = cmd->nvme_cmd; 1045 rsp->req.port = queue->port; 1046 rsp->n_rdma = 0; 1047 rsp->invalidate_rkey = 0; 1048 1049 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 1050 unsigned long flags; 1051 1052 spin_lock_irqsave(&queue->state_lock, flags); 1053 if (queue->state == NVMET_RDMA_Q_CONNECTING) 1054 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1055 else 1056 nvmet_rdma_put_rsp(rsp); 1057 spin_unlock_irqrestore(&queue->state_lock, flags); 1058 return; 1059 } 1060 1061 nvmet_rdma_handle_command(queue, rsp); 1062 } 1063 1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1065 { 1066 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1067 false); 1068 ib_destroy_srq(nsrq->srq); 1069 1070 kfree(nsrq); 1071 } 1072 1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1074 { 1075 int i; 1076 1077 if (!ndev->srqs) 1078 return; 1079 1080 for (i = 0; i < ndev->srq_count; i++) 1081 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1082 1083 kfree(ndev->srqs); 1084 } 1085 1086 static struct nvmet_rdma_srq * 1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1088 { 1089 struct ib_srq_init_attr srq_attr = { NULL, }; 1090 size_t srq_size = ndev->srq_size; 1091 struct nvmet_rdma_srq *nsrq; 1092 struct ib_srq *srq; 1093 int ret, i; 1094 1095 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1096 if (!nsrq) 1097 return ERR_PTR(-ENOMEM); 1098 1099 srq_attr.attr.max_wr = srq_size; 1100 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1101 srq_attr.attr.srq_limit = 0; 1102 srq_attr.srq_type = IB_SRQT_BASIC; 1103 srq = ib_create_srq(ndev->pd, &srq_attr); 1104 if (IS_ERR(srq)) { 1105 ret = PTR_ERR(srq); 1106 goto out_free; 1107 } 1108 1109 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1110 if (IS_ERR(nsrq->cmds)) { 1111 ret = PTR_ERR(nsrq->cmds); 1112 goto out_destroy_srq; 1113 } 1114 1115 nsrq->srq = srq; 1116 nsrq->ndev = ndev; 1117 1118 for (i = 0; i < srq_size; i++) { 1119 nsrq->cmds[i].nsrq = nsrq; 1120 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1121 if (ret) 1122 goto out_free_cmds; 1123 } 1124 1125 return nsrq; 1126 1127 out_free_cmds: 1128 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1129 out_destroy_srq: 1130 ib_destroy_srq(srq); 1131 out_free: 1132 kfree(nsrq); 1133 return ERR_PTR(ret); 1134 } 1135 1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1137 { 1138 int i, ret; 1139 1140 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1141 /* 1142 * If SRQs aren't supported we just go ahead and use normal 1143 * non-shared receive queues. 1144 */ 1145 pr_info("SRQ requested but not supported.\n"); 1146 return 0; 1147 } 1148 1149 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1150 nvmet_rdma_srq_size); 1151 ndev->srq_count = min(ndev->device->num_comp_vectors, 1152 ndev->device->attrs.max_srq); 1153 1154 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1155 if (!ndev->srqs) 1156 return -ENOMEM; 1157 1158 for (i = 0; i < ndev->srq_count; i++) { 1159 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1160 if (IS_ERR(ndev->srqs[i])) { 1161 ret = PTR_ERR(ndev->srqs[i]); 1162 goto err_srq; 1163 } 1164 } 1165 1166 return 0; 1167 1168 err_srq: 1169 while (--i >= 0) 1170 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1171 kfree(ndev->srqs); 1172 return ret; 1173 } 1174 1175 static void nvmet_rdma_free_dev(struct kref *ref) 1176 { 1177 struct nvmet_rdma_device *ndev = 1178 container_of(ref, struct nvmet_rdma_device, ref); 1179 1180 mutex_lock(&device_list_mutex); 1181 list_del(&ndev->entry); 1182 mutex_unlock(&device_list_mutex); 1183 1184 nvmet_rdma_destroy_srqs(ndev); 1185 ib_dealloc_pd(ndev->pd); 1186 1187 kfree(ndev); 1188 } 1189 1190 static struct nvmet_rdma_device * 1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1192 { 1193 struct nvmet_rdma_port *port = cm_id->context; 1194 struct nvmet_port *nport = port->nport; 1195 struct nvmet_rdma_device *ndev; 1196 int inline_page_count; 1197 int inline_sge_count; 1198 int ret; 1199 1200 mutex_lock(&device_list_mutex); 1201 list_for_each_entry(ndev, &device_list, entry) { 1202 if (ndev->device->node_guid == cm_id->device->node_guid && 1203 kref_get_unless_zero(&ndev->ref)) 1204 goto out_unlock; 1205 } 1206 1207 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1208 if (!ndev) 1209 goto out_err; 1210 1211 inline_page_count = num_pages(nport->inline_data_size); 1212 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1213 cm_id->device->attrs.max_recv_sge) - 1; 1214 if (inline_page_count > inline_sge_count) { 1215 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1216 nport->inline_data_size, cm_id->device->name, 1217 inline_sge_count * PAGE_SIZE); 1218 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1219 inline_page_count = inline_sge_count; 1220 } 1221 ndev->inline_data_size = nport->inline_data_size; 1222 ndev->inline_page_count = inline_page_count; 1223 1224 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags & 1225 IBK_INTEGRITY_HANDOVER)) { 1226 pr_warn("T10-PI is not supported by device %s. Disabling it\n", 1227 cm_id->device->name); 1228 nport->pi_enable = false; 1229 } 1230 1231 ndev->device = cm_id->device; 1232 kref_init(&ndev->ref); 1233 1234 ndev->pd = ib_alloc_pd(ndev->device, 0); 1235 if (IS_ERR(ndev->pd)) 1236 goto out_free_dev; 1237 1238 if (nvmet_rdma_use_srq) { 1239 ret = nvmet_rdma_init_srqs(ndev); 1240 if (ret) 1241 goto out_free_pd; 1242 } 1243 1244 list_add(&ndev->entry, &device_list); 1245 out_unlock: 1246 mutex_unlock(&device_list_mutex); 1247 pr_debug("added %s.\n", ndev->device->name); 1248 return ndev; 1249 1250 out_free_pd: 1251 ib_dealloc_pd(ndev->pd); 1252 out_free_dev: 1253 kfree(ndev); 1254 out_err: 1255 mutex_unlock(&device_list_mutex); 1256 return NULL; 1257 } 1258 1259 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1260 { 1261 struct ib_qp_init_attr qp_attr = { }; 1262 struct nvmet_rdma_device *ndev = queue->dev; 1263 int nr_cqe, ret, i, factor; 1264 1265 /* 1266 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1267 */ 1268 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1269 1270 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1271 queue->comp_vector, IB_POLL_WORKQUEUE); 1272 if (IS_ERR(queue->cq)) { 1273 ret = PTR_ERR(queue->cq); 1274 pr_err("failed to create CQ cqe= %d ret= %d\n", 1275 nr_cqe + 1, ret); 1276 goto out; 1277 } 1278 1279 qp_attr.qp_context = queue; 1280 qp_attr.event_handler = nvmet_rdma_qp_event; 1281 qp_attr.send_cq = queue->cq; 1282 qp_attr.recv_cq = queue->cq; 1283 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1284 qp_attr.qp_type = IB_QPT_RC; 1285 /* +1 for drain */ 1286 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1287 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1288 1 << NVMET_RDMA_MAX_MDTS); 1289 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1290 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1291 ndev->device->attrs.max_send_sge); 1292 1293 if (queue->nsrq) { 1294 qp_attr.srq = queue->nsrq->srq; 1295 } else { 1296 /* +1 for drain */ 1297 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1298 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1299 } 1300 1301 if (queue->port->pi_enable && queue->host_qid) 1302 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1303 1304 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1305 if (ret) { 1306 pr_err("failed to create_qp ret= %d\n", ret); 1307 goto err_destroy_cq; 1308 } 1309 queue->qp = queue->cm_id->qp; 1310 1311 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1312 1313 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1314 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1315 qp_attr.cap.max_send_wr, queue->cm_id); 1316 1317 if (!queue->nsrq) { 1318 for (i = 0; i < queue->recv_queue_size; i++) { 1319 queue->cmds[i].queue = queue; 1320 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1321 if (ret) 1322 goto err_destroy_qp; 1323 } 1324 } 1325 1326 out: 1327 return ret; 1328 1329 err_destroy_qp: 1330 rdma_destroy_qp(queue->cm_id); 1331 err_destroy_cq: 1332 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1333 goto out; 1334 } 1335 1336 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1337 { 1338 ib_drain_qp(queue->qp); 1339 if (queue->cm_id) 1340 rdma_destroy_id(queue->cm_id); 1341 ib_destroy_qp(queue->qp); 1342 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1343 queue->send_queue_size + 1); 1344 } 1345 1346 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1347 { 1348 pr_debug("freeing queue %d\n", queue->idx); 1349 1350 nvmet_sq_destroy(&queue->nvme_sq); 1351 1352 nvmet_rdma_destroy_queue_ib(queue); 1353 if (!queue->nsrq) { 1354 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1355 queue->recv_queue_size, 1356 !queue->host_qid); 1357 } 1358 nvmet_rdma_free_rsps(queue); 1359 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1360 kfree(queue); 1361 } 1362 1363 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1364 { 1365 struct nvmet_rdma_queue *queue = 1366 container_of(w, struct nvmet_rdma_queue, release_work); 1367 struct nvmet_rdma_device *dev = queue->dev; 1368 1369 nvmet_rdma_free_queue(queue); 1370 1371 kref_put(&dev->ref, nvmet_rdma_free_dev); 1372 } 1373 1374 static int 1375 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1376 struct nvmet_rdma_queue *queue) 1377 { 1378 struct nvme_rdma_cm_req *req; 1379 1380 req = (struct nvme_rdma_cm_req *)conn->private_data; 1381 if (!req || conn->private_data_len == 0) 1382 return NVME_RDMA_CM_INVALID_LEN; 1383 1384 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1385 return NVME_RDMA_CM_INVALID_RECFMT; 1386 1387 queue->host_qid = le16_to_cpu(req->qid); 1388 1389 /* 1390 * req->hsqsize corresponds to our recv queue size plus 1 1391 * req->hrqsize corresponds to our send queue size 1392 */ 1393 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1394 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1395 1396 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1397 return NVME_RDMA_CM_INVALID_HSQSIZE; 1398 1399 /* XXX: Should we enforce some kind of max for IO queues? */ 1400 1401 return 0; 1402 } 1403 1404 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1405 enum nvme_rdma_cm_status status) 1406 { 1407 struct nvme_rdma_cm_rej rej; 1408 1409 pr_debug("rejecting connect request: status %d (%s)\n", 1410 status, nvme_rdma_cm_msg(status)); 1411 1412 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1413 rej.sts = cpu_to_le16(status); 1414 1415 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1416 IB_CM_REJ_CONSUMER_DEFINED); 1417 } 1418 1419 static struct nvmet_rdma_queue * 1420 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1421 struct rdma_cm_id *cm_id, 1422 struct rdma_cm_event *event) 1423 { 1424 struct nvmet_rdma_port *port = cm_id->context; 1425 struct nvmet_rdma_queue *queue; 1426 int ret; 1427 1428 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1429 if (!queue) { 1430 ret = NVME_RDMA_CM_NO_RSC; 1431 goto out_reject; 1432 } 1433 1434 ret = nvmet_sq_init(&queue->nvme_sq); 1435 if (ret) { 1436 ret = NVME_RDMA_CM_NO_RSC; 1437 goto out_free_queue; 1438 } 1439 1440 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1441 if (ret) 1442 goto out_destroy_sq; 1443 1444 /* 1445 * Schedules the actual release because calling rdma_destroy_id from 1446 * inside a CM callback would trigger a deadlock. (great API design..) 1447 */ 1448 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1449 queue->dev = ndev; 1450 queue->cm_id = cm_id; 1451 queue->port = port->nport; 1452 1453 spin_lock_init(&queue->state_lock); 1454 queue->state = NVMET_RDMA_Q_CONNECTING; 1455 INIT_LIST_HEAD(&queue->rsp_wait_list); 1456 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1457 spin_lock_init(&queue->rsp_wr_wait_lock); 1458 INIT_LIST_HEAD(&queue->free_rsps); 1459 spin_lock_init(&queue->rsps_lock); 1460 INIT_LIST_HEAD(&queue->queue_list); 1461 1462 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL); 1463 if (queue->idx < 0) { 1464 ret = NVME_RDMA_CM_NO_RSC; 1465 goto out_destroy_sq; 1466 } 1467 1468 /* 1469 * Spread the io queues across completion vectors, 1470 * but still keep all admin queues on vector 0. 1471 */ 1472 queue->comp_vector = !queue->host_qid ? 0 : 1473 queue->idx % ndev->device->num_comp_vectors; 1474 1475 1476 ret = nvmet_rdma_alloc_rsps(queue); 1477 if (ret) { 1478 ret = NVME_RDMA_CM_NO_RSC; 1479 goto out_ida_remove; 1480 } 1481 1482 if (ndev->srqs) { 1483 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1484 } else { 1485 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1486 queue->recv_queue_size, 1487 !queue->host_qid); 1488 if (IS_ERR(queue->cmds)) { 1489 ret = NVME_RDMA_CM_NO_RSC; 1490 goto out_free_responses; 1491 } 1492 } 1493 1494 ret = nvmet_rdma_create_queue_ib(queue); 1495 if (ret) { 1496 pr_err("%s: creating RDMA queue failed (%d).\n", 1497 __func__, ret); 1498 ret = NVME_RDMA_CM_NO_RSC; 1499 goto out_free_cmds; 1500 } 1501 1502 return queue; 1503 1504 out_free_cmds: 1505 if (!queue->nsrq) { 1506 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1507 queue->recv_queue_size, 1508 !queue->host_qid); 1509 } 1510 out_free_responses: 1511 nvmet_rdma_free_rsps(queue); 1512 out_ida_remove: 1513 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1514 out_destroy_sq: 1515 nvmet_sq_destroy(&queue->nvme_sq); 1516 out_free_queue: 1517 kfree(queue); 1518 out_reject: 1519 nvmet_rdma_cm_reject(cm_id, ret); 1520 return NULL; 1521 } 1522 1523 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1524 { 1525 struct nvmet_rdma_queue *queue = priv; 1526 1527 switch (event->event) { 1528 case IB_EVENT_COMM_EST: 1529 rdma_notify(queue->cm_id, event->event); 1530 break; 1531 case IB_EVENT_QP_LAST_WQE_REACHED: 1532 pr_debug("received last WQE reached event for queue=0x%p\n", 1533 queue); 1534 break; 1535 default: 1536 pr_err("received IB QP event: %s (%d)\n", 1537 ib_event_msg(event->event), event->event); 1538 break; 1539 } 1540 } 1541 1542 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1543 struct nvmet_rdma_queue *queue, 1544 struct rdma_conn_param *p) 1545 { 1546 struct rdma_conn_param param = { }; 1547 struct nvme_rdma_cm_rep priv = { }; 1548 int ret = -ENOMEM; 1549 1550 param.rnr_retry_count = 7; 1551 param.flow_control = 1; 1552 param.initiator_depth = min_t(u8, p->initiator_depth, 1553 queue->dev->device->attrs.max_qp_init_rd_atom); 1554 param.private_data = &priv; 1555 param.private_data_len = sizeof(priv); 1556 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1557 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1558 1559 ret = rdma_accept(cm_id, ¶m); 1560 if (ret) 1561 pr_err("rdma_accept failed (error code = %d)\n", ret); 1562 1563 return ret; 1564 } 1565 1566 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1567 struct rdma_cm_event *event) 1568 { 1569 struct nvmet_rdma_device *ndev; 1570 struct nvmet_rdma_queue *queue; 1571 int ret = -EINVAL; 1572 1573 ndev = nvmet_rdma_find_get_device(cm_id); 1574 if (!ndev) { 1575 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1576 return -ECONNREFUSED; 1577 } 1578 1579 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1580 if (!queue) { 1581 ret = -ENOMEM; 1582 goto put_device; 1583 } 1584 1585 if (queue->host_qid == 0) { 1586 struct nvmet_rdma_queue *q; 1587 int pending = 0; 1588 1589 /* Check for pending controller teardown */ 1590 mutex_lock(&nvmet_rdma_queue_mutex); 1591 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) { 1592 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl && 1593 q->state == NVMET_RDMA_Q_DISCONNECTING) 1594 pending++; 1595 } 1596 mutex_unlock(&nvmet_rdma_queue_mutex); 1597 if (pending > NVMET_RDMA_BACKLOG) 1598 return NVME_SC_CONNECT_CTRL_BUSY; 1599 } 1600 1601 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1602 if (ret) { 1603 /* 1604 * Don't destroy the cm_id in free path, as we implicitly 1605 * destroy the cm_id here with non-zero ret code. 1606 */ 1607 queue->cm_id = NULL; 1608 goto free_queue; 1609 } 1610 1611 mutex_lock(&nvmet_rdma_queue_mutex); 1612 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1613 mutex_unlock(&nvmet_rdma_queue_mutex); 1614 1615 return 0; 1616 1617 free_queue: 1618 nvmet_rdma_free_queue(queue); 1619 put_device: 1620 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1621 1622 return ret; 1623 } 1624 1625 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1626 { 1627 unsigned long flags; 1628 1629 spin_lock_irqsave(&queue->state_lock, flags); 1630 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1631 pr_warn("trying to establish a connected queue\n"); 1632 goto out_unlock; 1633 } 1634 queue->state = NVMET_RDMA_Q_LIVE; 1635 1636 while (!list_empty(&queue->rsp_wait_list)) { 1637 struct nvmet_rdma_rsp *cmd; 1638 1639 cmd = list_first_entry(&queue->rsp_wait_list, 1640 struct nvmet_rdma_rsp, wait_list); 1641 list_del(&cmd->wait_list); 1642 1643 spin_unlock_irqrestore(&queue->state_lock, flags); 1644 nvmet_rdma_handle_command(queue, cmd); 1645 spin_lock_irqsave(&queue->state_lock, flags); 1646 } 1647 1648 out_unlock: 1649 spin_unlock_irqrestore(&queue->state_lock, flags); 1650 } 1651 1652 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1653 { 1654 bool disconnect = false; 1655 unsigned long flags; 1656 1657 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1658 1659 spin_lock_irqsave(&queue->state_lock, flags); 1660 switch (queue->state) { 1661 case NVMET_RDMA_Q_CONNECTING: 1662 while (!list_empty(&queue->rsp_wait_list)) { 1663 struct nvmet_rdma_rsp *rsp; 1664 1665 rsp = list_first_entry(&queue->rsp_wait_list, 1666 struct nvmet_rdma_rsp, 1667 wait_list); 1668 list_del(&rsp->wait_list); 1669 nvmet_rdma_put_rsp(rsp); 1670 } 1671 fallthrough; 1672 case NVMET_RDMA_Q_LIVE: 1673 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1674 disconnect = true; 1675 break; 1676 case NVMET_RDMA_Q_DISCONNECTING: 1677 break; 1678 } 1679 spin_unlock_irqrestore(&queue->state_lock, flags); 1680 1681 if (disconnect) { 1682 rdma_disconnect(queue->cm_id); 1683 queue_work(nvmet_wq, &queue->release_work); 1684 } 1685 } 1686 1687 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1688 { 1689 bool disconnect = false; 1690 1691 mutex_lock(&nvmet_rdma_queue_mutex); 1692 if (!list_empty(&queue->queue_list)) { 1693 list_del_init(&queue->queue_list); 1694 disconnect = true; 1695 } 1696 mutex_unlock(&nvmet_rdma_queue_mutex); 1697 1698 if (disconnect) 1699 __nvmet_rdma_queue_disconnect(queue); 1700 } 1701 1702 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1703 struct nvmet_rdma_queue *queue) 1704 { 1705 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1706 1707 mutex_lock(&nvmet_rdma_queue_mutex); 1708 if (!list_empty(&queue->queue_list)) 1709 list_del_init(&queue->queue_list); 1710 mutex_unlock(&nvmet_rdma_queue_mutex); 1711 1712 pr_err("failed to connect queue %d\n", queue->idx); 1713 queue_work(nvmet_wq, &queue->release_work); 1714 } 1715 1716 /** 1717 * nvmet_rdma_device_removal() - Handle RDMA device removal 1718 * @cm_id: rdma_cm id, used for nvmet port 1719 * @queue: nvmet rdma queue (cm id qp_context) 1720 * 1721 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1722 * to unplug. Note that this event can be generated on a normal 1723 * queue cm_id and/or a device bound listener cm_id (where in this 1724 * case queue will be null). 1725 * 1726 * We registered an ib_client to handle device removal for queues, 1727 * so we only need to handle the listening port cm_ids. In this case 1728 * we nullify the priv to prevent double cm_id destruction and destroying 1729 * the cm_id implicitely by returning a non-zero rc to the callout. 1730 */ 1731 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1732 struct nvmet_rdma_queue *queue) 1733 { 1734 struct nvmet_rdma_port *port; 1735 1736 if (queue) { 1737 /* 1738 * This is a queue cm_id. we have registered 1739 * an ib_client to handle queues removal 1740 * so don't interfear and just return. 1741 */ 1742 return 0; 1743 } 1744 1745 port = cm_id->context; 1746 1747 /* 1748 * This is a listener cm_id. Make sure that 1749 * future remove_port won't invoke a double 1750 * cm_id destroy. use atomic xchg to make sure 1751 * we don't compete with remove_port. 1752 */ 1753 if (xchg(&port->cm_id, NULL) != cm_id) 1754 return 0; 1755 1756 /* 1757 * We need to return 1 so that the core will destroy 1758 * it's own ID. What a great API design.. 1759 */ 1760 return 1; 1761 } 1762 1763 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1764 struct rdma_cm_event *event) 1765 { 1766 struct nvmet_rdma_queue *queue = NULL; 1767 int ret = 0; 1768 1769 if (cm_id->qp) 1770 queue = cm_id->qp->qp_context; 1771 1772 pr_debug("%s (%d): status %d id %p\n", 1773 rdma_event_msg(event->event), event->event, 1774 event->status, cm_id); 1775 1776 switch (event->event) { 1777 case RDMA_CM_EVENT_CONNECT_REQUEST: 1778 ret = nvmet_rdma_queue_connect(cm_id, event); 1779 break; 1780 case RDMA_CM_EVENT_ESTABLISHED: 1781 nvmet_rdma_queue_established(queue); 1782 break; 1783 case RDMA_CM_EVENT_ADDR_CHANGE: 1784 if (!queue) { 1785 struct nvmet_rdma_port *port = cm_id->context; 1786 1787 queue_delayed_work(nvmet_wq, &port->repair_work, 0); 1788 break; 1789 } 1790 fallthrough; 1791 case RDMA_CM_EVENT_DISCONNECTED: 1792 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1793 nvmet_rdma_queue_disconnect(queue); 1794 break; 1795 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1796 ret = nvmet_rdma_device_removal(cm_id, queue); 1797 break; 1798 case RDMA_CM_EVENT_REJECTED: 1799 pr_debug("Connection rejected: %s\n", 1800 rdma_reject_msg(cm_id, event->status)); 1801 fallthrough; 1802 case RDMA_CM_EVENT_UNREACHABLE: 1803 case RDMA_CM_EVENT_CONNECT_ERROR: 1804 nvmet_rdma_queue_connect_fail(cm_id, queue); 1805 break; 1806 default: 1807 pr_err("received unrecognized RDMA CM event %d\n", 1808 event->event); 1809 break; 1810 } 1811 1812 return ret; 1813 } 1814 1815 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1816 { 1817 struct nvmet_rdma_queue *queue; 1818 1819 restart: 1820 mutex_lock(&nvmet_rdma_queue_mutex); 1821 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1822 if (queue->nvme_sq.ctrl == ctrl) { 1823 list_del_init(&queue->queue_list); 1824 mutex_unlock(&nvmet_rdma_queue_mutex); 1825 1826 __nvmet_rdma_queue_disconnect(queue); 1827 goto restart; 1828 } 1829 } 1830 mutex_unlock(&nvmet_rdma_queue_mutex); 1831 } 1832 1833 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) 1834 { 1835 struct nvmet_rdma_queue *queue, *tmp; 1836 struct nvmet_port *nport = port->nport; 1837 1838 mutex_lock(&nvmet_rdma_queue_mutex); 1839 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1840 queue_list) { 1841 if (queue->port != nport) 1842 continue; 1843 1844 list_del_init(&queue->queue_list); 1845 __nvmet_rdma_queue_disconnect(queue); 1846 } 1847 mutex_unlock(&nvmet_rdma_queue_mutex); 1848 } 1849 1850 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1851 { 1852 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1853 1854 if (cm_id) 1855 rdma_destroy_id(cm_id); 1856 1857 /* 1858 * Destroy the remaining queues, which are not belong to any 1859 * controller yet. Do it here after the RDMA-CM was destroyed 1860 * guarantees that no new queue will be created. 1861 */ 1862 nvmet_rdma_destroy_port_queues(port); 1863 } 1864 1865 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1866 { 1867 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1868 struct rdma_cm_id *cm_id; 1869 int ret; 1870 1871 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1872 RDMA_PS_TCP, IB_QPT_RC); 1873 if (IS_ERR(cm_id)) { 1874 pr_err("CM ID creation failed\n"); 1875 return PTR_ERR(cm_id); 1876 } 1877 1878 /* 1879 * Allow both IPv4 and IPv6 sockets to bind a single port 1880 * at the same time. 1881 */ 1882 ret = rdma_set_afonly(cm_id, 1); 1883 if (ret) { 1884 pr_err("rdma_set_afonly failed (%d)\n", ret); 1885 goto out_destroy_id; 1886 } 1887 1888 ret = rdma_bind_addr(cm_id, addr); 1889 if (ret) { 1890 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1891 goto out_destroy_id; 1892 } 1893 1894 ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG); 1895 if (ret) { 1896 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1897 goto out_destroy_id; 1898 } 1899 1900 port->cm_id = cm_id; 1901 return 0; 1902 1903 out_destroy_id: 1904 rdma_destroy_id(cm_id); 1905 return ret; 1906 } 1907 1908 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1909 { 1910 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1911 struct nvmet_rdma_port, repair_work); 1912 int ret; 1913 1914 nvmet_rdma_disable_port(port); 1915 ret = nvmet_rdma_enable_port(port); 1916 if (ret) 1917 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ); 1918 } 1919 1920 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1921 { 1922 struct nvmet_rdma_port *port; 1923 __kernel_sa_family_t af; 1924 int ret; 1925 1926 port = kzalloc(sizeof(*port), GFP_KERNEL); 1927 if (!port) 1928 return -ENOMEM; 1929 1930 nport->priv = port; 1931 port->nport = nport; 1932 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1933 1934 switch (nport->disc_addr.adrfam) { 1935 case NVMF_ADDR_FAMILY_IP4: 1936 af = AF_INET; 1937 break; 1938 case NVMF_ADDR_FAMILY_IP6: 1939 af = AF_INET6; 1940 break; 1941 default: 1942 pr_err("address family %d not supported\n", 1943 nport->disc_addr.adrfam); 1944 ret = -EINVAL; 1945 goto out_free_port; 1946 } 1947 1948 if (nport->inline_data_size < 0) { 1949 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1950 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1951 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1952 nport->inline_data_size, 1953 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1954 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1955 } 1956 1957 if (nport->max_queue_size < 0) { 1958 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE; 1959 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) { 1960 pr_warn("max_queue_size %u is too large, reducing to %u\n", 1961 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE); 1962 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; 1963 } 1964 1965 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1966 nport->disc_addr.trsvcid, &port->addr); 1967 if (ret) { 1968 pr_err("malformed ip/port passed: %s:%s\n", 1969 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1970 goto out_free_port; 1971 } 1972 1973 ret = nvmet_rdma_enable_port(port); 1974 if (ret) 1975 goto out_free_port; 1976 1977 pr_info("enabling port %d (%pISpcs)\n", 1978 le16_to_cpu(nport->disc_addr.portid), 1979 (struct sockaddr *)&port->addr); 1980 1981 return 0; 1982 1983 out_free_port: 1984 kfree(port); 1985 return ret; 1986 } 1987 1988 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1989 { 1990 struct nvmet_rdma_port *port = nport->priv; 1991 1992 cancel_delayed_work_sync(&port->repair_work); 1993 nvmet_rdma_disable_port(port); 1994 kfree(port); 1995 } 1996 1997 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1998 struct nvmet_port *nport, char *traddr) 1999 { 2000 struct nvmet_rdma_port *port = nport->priv; 2001 struct rdma_cm_id *cm_id = port->cm_id; 2002 2003 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 2004 struct nvmet_rdma_rsp *rsp = 2005 container_of(req, struct nvmet_rdma_rsp, req); 2006 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 2007 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 2008 2009 sprintf(traddr, "%pISc", addr); 2010 } else { 2011 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 2012 } 2013 } 2014 2015 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 2016 { 2017 if (ctrl->pi_support) 2018 return NVMET_RDMA_MAX_METADATA_MDTS; 2019 return NVMET_RDMA_MAX_MDTS; 2020 } 2021 2022 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) 2023 { 2024 if (ctrl->pi_support) 2025 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE; 2026 return NVME_RDMA_MAX_QUEUE_SIZE; 2027 } 2028 2029 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 2030 .owner = THIS_MODULE, 2031 .type = NVMF_TRTYPE_RDMA, 2032 .msdbd = 1, 2033 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 2034 .add_port = nvmet_rdma_add_port, 2035 .remove_port = nvmet_rdma_remove_port, 2036 .queue_response = nvmet_rdma_queue_response, 2037 .delete_ctrl = nvmet_rdma_delete_ctrl, 2038 .disc_traddr = nvmet_rdma_disc_port_addr, 2039 .get_mdts = nvmet_rdma_get_mdts, 2040 .get_max_queue_size = nvmet_rdma_get_max_queue_size, 2041 }; 2042 2043 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2044 { 2045 struct nvmet_rdma_queue *queue, *tmp; 2046 struct nvmet_rdma_device *ndev; 2047 bool found = false; 2048 2049 mutex_lock(&device_list_mutex); 2050 list_for_each_entry(ndev, &device_list, entry) { 2051 if (ndev->device == ib_device) { 2052 found = true; 2053 break; 2054 } 2055 } 2056 mutex_unlock(&device_list_mutex); 2057 2058 if (!found) 2059 return; 2060 2061 /* 2062 * IB Device that is used by nvmet controllers is being removed, 2063 * delete all queues using this device. 2064 */ 2065 mutex_lock(&nvmet_rdma_queue_mutex); 2066 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2067 queue_list) { 2068 if (queue->dev->device != ib_device) 2069 continue; 2070 2071 pr_info("Removing queue %d\n", queue->idx); 2072 list_del_init(&queue->queue_list); 2073 __nvmet_rdma_queue_disconnect(queue); 2074 } 2075 mutex_unlock(&nvmet_rdma_queue_mutex); 2076 2077 flush_workqueue(nvmet_wq); 2078 } 2079 2080 static struct ib_client nvmet_rdma_ib_client = { 2081 .name = "nvmet_rdma", 2082 .remove = nvmet_rdma_remove_one 2083 }; 2084 2085 static int __init nvmet_rdma_init(void) 2086 { 2087 int ret; 2088 2089 ret = ib_register_client(&nvmet_rdma_ib_client); 2090 if (ret) 2091 return ret; 2092 2093 ret = nvmet_register_transport(&nvmet_rdma_ops); 2094 if (ret) 2095 goto err_ib_client; 2096 2097 return 0; 2098 2099 err_ib_client: 2100 ib_unregister_client(&nvmet_rdma_ib_client); 2101 return ret; 2102 } 2103 2104 static void __exit nvmet_rdma_exit(void) 2105 { 2106 nvmet_unregister_transport(&nvmet_rdma_ops); 2107 ib_unregister_client(&nvmet_rdma_ib_client); 2108 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2109 ida_destroy(&nvmet_rdma_queue_ida); 2110 } 2111 2112 module_init(nvmet_rdma_init); 2113 module_exit(nvmet_rdma_exit); 2114 2115 MODULE_DESCRIPTION("NVMe target RDMA transport driver"); 2116 MODULE_LICENSE("GPL v2"); 2117 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2118