xref: /linux/drivers/nvme/target/rdma.c (revision 9fb29c734f9e98adc1f2f3c4629fe487cb93f2dd)
1 /*
2  * NVMe over Fabrics RDMA target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27 
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31 
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34 
35 /*
36  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
37  */
38 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
39 #define NVMET_RDMA_MAX_INLINE_SGE		4
40 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
41 
42 struct nvmet_rdma_cmd {
43 	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
44 	struct ib_cqe		cqe;
45 	struct ib_recv_wr	wr;
46 	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47 	struct nvme_command     *nvme_cmd;
48 	struct nvmet_rdma_queue	*queue;
49 };
50 
51 enum {
52 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
53 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
54 };
55 
56 struct nvmet_rdma_rsp {
57 	struct ib_sge		send_sge;
58 	struct ib_cqe		send_cqe;
59 	struct ib_send_wr	send_wr;
60 
61 	struct nvmet_rdma_cmd	*cmd;
62 	struct nvmet_rdma_queue	*queue;
63 
64 	struct ib_cqe		read_cqe;
65 	struct rdma_rw_ctx	rw;
66 
67 	struct nvmet_req	req;
68 
69 	bool			allocated;
70 	u8			n_rdma;
71 	u32			flags;
72 	u32			invalidate_rkey;
73 
74 	struct list_head	wait_list;
75 	struct list_head	free_list;
76 };
77 
78 enum nvmet_rdma_queue_state {
79 	NVMET_RDMA_Q_CONNECTING,
80 	NVMET_RDMA_Q_LIVE,
81 	NVMET_RDMA_Q_DISCONNECTING,
82 };
83 
84 struct nvmet_rdma_queue {
85 	struct rdma_cm_id	*cm_id;
86 	struct nvmet_port	*port;
87 	struct ib_cq		*cq;
88 	atomic_t		sq_wr_avail;
89 	struct nvmet_rdma_device *dev;
90 	spinlock_t		state_lock;
91 	enum nvmet_rdma_queue_state state;
92 	struct nvmet_cq		nvme_cq;
93 	struct nvmet_sq		nvme_sq;
94 
95 	struct nvmet_rdma_rsp	*rsps;
96 	struct list_head	free_rsps;
97 	spinlock_t		rsps_lock;
98 	struct nvmet_rdma_cmd	*cmds;
99 
100 	struct work_struct	release_work;
101 	struct list_head	rsp_wait_list;
102 	struct list_head	rsp_wr_wait_list;
103 	spinlock_t		rsp_wr_wait_lock;
104 
105 	int			idx;
106 	int			host_qid;
107 	int			recv_queue_size;
108 	int			send_queue_size;
109 
110 	struct list_head	queue_list;
111 };
112 
113 struct nvmet_rdma_device {
114 	struct ib_device	*device;
115 	struct ib_pd		*pd;
116 	struct ib_srq		*srq;
117 	struct nvmet_rdma_cmd	*srq_cmds;
118 	size_t			srq_size;
119 	struct kref		ref;
120 	struct list_head	entry;
121 	int			inline_data_size;
122 	int			inline_page_count;
123 };
124 
125 static bool nvmet_rdma_use_srq;
126 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
127 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
128 
129 static DEFINE_IDA(nvmet_rdma_queue_ida);
130 static LIST_HEAD(nvmet_rdma_queue_list);
131 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
132 
133 static LIST_HEAD(device_list);
134 static DEFINE_MUTEX(device_list_mutex);
135 
136 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
137 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
138 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
139 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
140 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
141 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
142 
143 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
144 
145 static int num_pages(int len)
146 {
147 	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
148 }
149 
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline u32 get_unaligned_le24(const u8 *p)
152 {
153 	return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
154 }
155 
156 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
157 {
158 	return nvme_is_write(rsp->req.cmd) &&
159 		rsp->req.transfer_len &&
160 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162 
163 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
164 {
165 	return !nvme_is_write(rsp->req.cmd) &&
166 		rsp->req.transfer_len &&
167 		!rsp->req.rsp->status &&
168 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
169 }
170 
171 static inline struct nvmet_rdma_rsp *
172 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
173 {
174 	struct nvmet_rdma_rsp *rsp;
175 	unsigned long flags;
176 
177 	spin_lock_irqsave(&queue->rsps_lock, flags);
178 	rsp = list_first_entry_or_null(&queue->free_rsps,
179 				struct nvmet_rdma_rsp, free_list);
180 	if (likely(rsp))
181 		list_del(&rsp->free_list);
182 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
183 
184 	if (unlikely(!rsp)) {
185 		rsp = kmalloc(sizeof(*rsp), GFP_KERNEL);
186 		if (unlikely(!rsp))
187 			return NULL;
188 		rsp->allocated = true;
189 	}
190 
191 	return rsp;
192 }
193 
194 static inline void
195 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
196 {
197 	unsigned long flags;
198 
199 	if (unlikely(rsp->allocated)) {
200 		kfree(rsp);
201 		return;
202 	}
203 
204 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
205 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
206 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
207 }
208 
209 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
210 				struct nvmet_rdma_cmd *c)
211 {
212 	struct scatterlist *sg;
213 	struct ib_sge *sge;
214 	int i;
215 
216 	if (!ndev->inline_data_size)
217 		return;
218 
219 	sg = c->inline_sg;
220 	sge = &c->sge[1];
221 
222 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
223 		if (sge->length)
224 			ib_dma_unmap_page(ndev->device, sge->addr,
225 					sge->length, DMA_FROM_DEVICE);
226 		if (sg_page(sg))
227 			__free_page(sg_page(sg));
228 	}
229 }
230 
231 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
232 				struct nvmet_rdma_cmd *c)
233 {
234 	struct scatterlist *sg;
235 	struct ib_sge *sge;
236 	struct page *pg;
237 	int len;
238 	int i;
239 
240 	if (!ndev->inline_data_size)
241 		return 0;
242 
243 	sg = c->inline_sg;
244 	sg_init_table(sg, ndev->inline_page_count);
245 	sge = &c->sge[1];
246 	len = ndev->inline_data_size;
247 
248 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
249 		pg = alloc_page(GFP_KERNEL);
250 		if (!pg)
251 			goto out_err;
252 		sg_assign_page(sg, pg);
253 		sge->addr = ib_dma_map_page(ndev->device,
254 			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
255 		if (ib_dma_mapping_error(ndev->device, sge->addr))
256 			goto out_err;
257 		sge->length = min_t(int, len, PAGE_SIZE);
258 		sge->lkey = ndev->pd->local_dma_lkey;
259 		len -= sge->length;
260 	}
261 
262 	return 0;
263 out_err:
264 	for (; i >= 0; i--, sg--, sge--) {
265 		if (sge->length)
266 			ib_dma_unmap_page(ndev->device, sge->addr,
267 					sge->length, DMA_FROM_DEVICE);
268 		if (sg_page(sg))
269 			__free_page(sg_page(sg));
270 	}
271 	return -ENOMEM;
272 }
273 
274 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
275 			struct nvmet_rdma_cmd *c, bool admin)
276 {
277 	/* NVMe command / RDMA RECV */
278 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
279 	if (!c->nvme_cmd)
280 		goto out;
281 
282 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
283 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
284 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
285 		goto out_free_cmd;
286 
287 	c->sge[0].length = sizeof(*c->nvme_cmd);
288 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
289 
290 	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
291 		goto out_unmap_cmd;
292 
293 	c->cqe.done = nvmet_rdma_recv_done;
294 
295 	c->wr.wr_cqe = &c->cqe;
296 	c->wr.sg_list = c->sge;
297 	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
298 
299 	return 0;
300 
301 out_unmap_cmd:
302 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
303 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
304 out_free_cmd:
305 	kfree(c->nvme_cmd);
306 
307 out:
308 	return -ENOMEM;
309 }
310 
311 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
312 		struct nvmet_rdma_cmd *c, bool admin)
313 {
314 	if (!admin)
315 		nvmet_rdma_free_inline_pages(ndev, c);
316 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
317 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
318 	kfree(c->nvme_cmd);
319 }
320 
321 static struct nvmet_rdma_cmd *
322 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
323 		int nr_cmds, bool admin)
324 {
325 	struct nvmet_rdma_cmd *cmds;
326 	int ret = -EINVAL, i;
327 
328 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
329 	if (!cmds)
330 		goto out;
331 
332 	for (i = 0; i < nr_cmds; i++) {
333 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
334 		if (ret)
335 			goto out_free;
336 	}
337 
338 	return cmds;
339 
340 out_free:
341 	while (--i >= 0)
342 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
343 	kfree(cmds);
344 out:
345 	return ERR_PTR(ret);
346 }
347 
348 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
349 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
350 {
351 	int i;
352 
353 	for (i = 0; i < nr_cmds; i++)
354 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
355 	kfree(cmds);
356 }
357 
358 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
359 		struct nvmet_rdma_rsp *r)
360 {
361 	/* NVMe CQE / RDMA SEND */
362 	r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
363 	if (!r->req.rsp)
364 		goto out;
365 
366 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
367 			sizeof(*r->req.rsp), DMA_TO_DEVICE);
368 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
369 		goto out_free_rsp;
370 
371 	r->send_sge.length = sizeof(*r->req.rsp);
372 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
373 
374 	r->send_cqe.done = nvmet_rdma_send_done;
375 
376 	r->send_wr.wr_cqe = &r->send_cqe;
377 	r->send_wr.sg_list = &r->send_sge;
378 	r->send_wr.num_sge = 1;
379 	r->send_wr.send_flags = IB_SEND_SIGNALED;
380 
381 	/* Data In / RDMA READ */
382 	r->read_cqe.done = nvmet_rdma_read_data_done;
383 	return 0;
384 
385 out_free_rsp:
386 	kfree(r->req.rsp);
387 out:
388 	return -ENOMEM;
389 }
390 
391 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
392 		struct nvmet_rdma_rsp *r)
393 {
394 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
395 				sizeof(*r->req.rsp), DMA_TO_DEVICE);
396 	kfree(r->req.rsp);
397 }
398 
399 static int
400 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
401 {
402 	struct nvmet_rdma_device *ndev = queue->dev;
403 	int nr_rsps = queue->recv_queue_size * 2;
404 	int ret = -EINVAL, i;
405 
406 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
407 			GFP_KERNEL);
408 	if (!queue->rsps)
409 		goto out;
410 
411 	for (i = 0; i < nr_rsps; i++) {
412 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413 
414 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
415 		if (ret)
416 			goto out_free;
417 
418 		list_add_tail(&rsp->free_list, &queue->free_rsps);
419 	}
420 
421 	return 0;
422 
423 out_free:
424 	while (--i >= 0) {
425 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
426 
427 		list_del(&rsp->free_list);
428 		nvmet_rdma_free_rsp(ndev, rsp);
429 	}
430 	kfree(queue->rsps);
431 out:
432 	return ret;
433 }
434 
435 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
436 {
437 	struct nvmet_rdma_device *ndev = queue->dev;
438 	int i, nr_rsps = queue->recv_queue_size * 2;
439 
440 	for (i = 0; i < nr_rsps; i++) {
441 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
442 
443 		list_del(&rsp->free_list);
444 		nvmet_rdma_free_rsp(ndev, rsp);
445 	}
446 	kfree(queue->rsps);
447 }
448 
449 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
450 		struct nvmet_rdma_cmd *cmd)
451 {
452 	int ret;
453 
454 	ib_dma_sync_single_for_device(ndev->device,
455 		cmd->sge[0].addr, cmd->sge[0].length,
456 		DMA_FROM_DEVICE);
457 
458 	if (ndev->srq)
459 		ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
460 	else
461 		ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
462 
463 	if (unlikely(ret))
464 		pr_err("post_recv cmd failed\n");
465 
466 	return ret;
467 }
468 
469 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
470 {
471 	spin_lock(&queue->rsp_wr_wait_lock);
472 	while (!list_empty(&queue->rsp_wr_wait_list)) {
473 		struct nvmet_rdma_rsp *rsp;
474 		bool ret;
475 
476 		rsp = list_entry(queue->rsp_wr_wait_list.next,
477 				struct nvmet_rdma_rsp, wait_list);
478 		list_del(&rsp->wait_list);
479 
480 		spin_unlock(&queue->rsp_wr_wait_lock);
481 		ret = nvmet_rdma_execute_command(rsp);
482 		spin_lock(&queue->rsp_wr_wait_lock);
483 
484 		if (!ret) {
485 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
486 			break;
487 		}
488 	}
489 	spin_unlock(&queue->rsp_wr_wait_lock);
490 }
491 
492 
493 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
494 {
495 	struct nvmet_rdma_queue *queue = rsp->queue;
496 
497 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
498 
499 	if (rsp->n_rdma) {
500 		rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
501 				queue->cm_id->port_num, rsp->req.sg,
502 				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
503 	}
504 
505 	if (rsp->req.sg != rsp->cmd->inline_sg)
506 		nvmet_req_free_sgl(&rsp->req);
507 
508 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
509 		nvmet_rdma_process_wr_wait_list(queue);
510 
511 	nvmet_rdma_put_rsp(rsp);
512 }
513 
514 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
515 {
516 	if (queue->nvme_sq.ctrl) {
517 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
518 	} else {
519 		/*
520 		 * we didn't setup the controller yet in case
521 		 * of admin connect error, just disconnect and
522 		 * cleanup the queue
523 		 */
524 		nvmet_rdma_queue_disconnect(queue);
525 	}
526 }
527 
528 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
529 {
530 	struct nvmet_rdma_rsp *rsp =
531 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
532 	struct nvmet_rdma_queue *queue = cq->cq_context;
533 
534 	nvmet_rdma_release_rsp(rsp);
535 
536 	if (unlikely(wc->status != IB_WC_SUCCESS &&
537 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
538 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
539 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
540 		nvmet_rdma_error_comp(queue);
541 	}
542 }
543 
544 static void nvmet_rdma_queue_response(struct nvmet_req *req)
545 {
546 	struct nvmet_rdma_rsp *rsp =
547 		container_of(req, struct nvmet_rdma_rsp, req);
548 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
549 	struct ib_send_wr *first_wr;
550 
551 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
552 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
553 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
554 	} else {
555 		rsp->send_wr.opcode = IB_WR_SEND;
556 	}
557 
558 	if (nvmet_rdma_need_data_out(rsp))
559 		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
560 				cm_id->port_num, NULL, &rsp->send_wr);
561 	else
562 		first_wr = &rsp->send_wr;
563 
564 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
565 
566 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
567 		rsp->send_sge.addr, rsp->send_sge.length,
568 		DMA_TO_DEVICE);
569 
570 	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
571 		pr_err("sending cmd response failed\n");
572 		nvmet_rdma_release_rsp(rsp);
573 	}
574 }
575 
576 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
577 {
578 	struct nvmet_rdma_rsp *rsp =
579 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
580 	struct nvmet_rdma_queue *queue = cq->cq_context;
581 
582 	WARN_ON(rsp->n_rdma <= 0);
583 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
584 	rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
585 			queue->cm_id->port_num, rsp->req.sg,
586 			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
587 	rsp->n_rdma = 0;
588 
589 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
590 		nvmet_req_uninit(&rsp->req);
591 		nvmet_rdma_release_rsp(rsp);
592 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
593 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
594 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
595 			nvmet_rdma_error_comp(queue);
596 		}
597 		return;
598 	}
599 
600 	nvmet_req_execute(&rsp->req);
601 }
602 
603 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
604 		u64 off)
605 {
606 	int sg_count = num_pages(len);
607 	struct scatterlist *sg;
608 	int i;
609 
610 	sg = rsp->cmd->inline_sg;
611 	for (i = 0; i < sg_count; i++, sg++) {
612 		if (i < sg_count - 1)
613 			sg_unmark_end(sg);
614 		else
615 			sg_mark_end(sg);
616 		sg->offset = off;
617 		sg->length = min_t(int, len, PAGE_SIZE - off);
618 		len -= sg->length;
619 		if (!i)
620 			off = 0;
621 	}
622 
623 	rsp->req.sg = rsp->cmd->inline_sg;
624 	rsp->req.sg_cnt = sg_count;
625 }
626 
627 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
628 {
629 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
630 	u64 off = le64_to_cpu(sgl->addr);
631 	u32 len = le32_to_cpu(sgl->length);
632 
633 	if (!nvme_is_write(rsp->req.cmd)) {
634 		rsp->req.error_loc =
635 			offsetof(struct nvme_common_command, opcode);
636 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
637 	}
638 
639 	if (off + len > rsp->queue->dev->inline_data_size) {
640 		pr_err("invalid inline data offset!\n");
641 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
642 	}
643 
644 	/* no data command? */
645 	if (!len)
646 		return 0;
647 
648 	nvmet_rdma_use_inline_sg(rsp, len, off);
649 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
650 	rsp->req.transfer_len += len;
651 	return 0;
652 }
653 
654 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
655 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
656 {
657 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
658 	u64 addr = le64_to_cpu(sgl->addr);
659 	u32 key = get_unaligned_le32(sgl->key);
660 	int ret;
661 
662 	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
663 
664 	/* no data command? */
665 	if (!rsp->req.transfer_len)
666 		return 0;
667 
668 	ret = nvmet_req_alloc_sgl(&rsp->req);
669 	if (ret < 0)
670 		goto error_out;
671 
672 	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
673 			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
674 			nvmet_data_dir(&rsp->req));
675 	if (ret < 0)
676 		goto error_out;
677 	rsp->n_rdma += ret;
678 
679 	if (invalidate) {
680 		rsp->invalidate_rkey = key;
681 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
682 	}
683 
684 	return 0;
685 
686 error_out:
687 	rsp->req.transfer_len = 0;
688 	return NVME_SC_INTERNAL;
689 }
690 
691 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
692 {
693 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
694 
695 	switch (sgl->type >> 4) {
696 	case NVME_SGL_FMT_DATA_DESC:
697 		switch (sgl->type & 0xf) {
698 		case NVME_SGL_FMT_OFFSET:
699 			return nvmet_rdma_map_sgl_inline(rsp);
700 		default:
701 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
702 			rsp->req.error_loc =
703 				offsetof(struct nvme_common_command, dptr);
704 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
705 		}
706 	case NVME_KEY_SGL_FMT_DATA_DESC:
707 		switch (sgl->type & 0xf) {
708 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
709 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
710 		case NVME_SGL_FMT_ADDRESS:
711 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
712 		default:
713 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
714 			rsp->req.error_loc =
715 				offsetof(struct nvme_common_command, dptr);
716 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
717 		}
718 	default:
719 		pr_err("invalid SGL type: %#x\n", sgl->type);
720 		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
721 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
722 	}
723 }
724 
725 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
726 {
727 	struct nvmet_rdma_queue *queue = rsp->queue;
728 
729 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
730 			&queue->sq_wr_avail) < 0)) {
731 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
732 				1 + rsp->n_rdma, queue->idx,
733 				queue->nvme_sq.ctrl->cntlid);
734 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
735 		return false;
736 	}
737 
738 	if (nvmet_rdma_need_data_in(rsp)) {
739 		if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
740 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
741 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
742 	} else {
743 		nvmet_req_execute(&rsp->req);
744 	}
745 
746 	return true;
747 }
748 
749 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
750 		struct nvmet_rdma_rsp *cmd)
751 {
752 	u16 status;
753 
754 	ib_dma_sync_single_for_cpu(queue->dev->device,
755 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
756 		DMA_FROM_DEVICE);
757 	ib_dma_sync_single_for_cpu(queue->dev->device,
758 		cmd->send_sge.addr, cmd->send_sge.length,
759 		DMA_TO_DEVICE);
760 
761 	cmd->req.p2p_client = &queue->dev->device->dev;
762 
763 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
764 			&queue->nvme_sq, &nvmet_rdma_ops))
765 		return;
766 
767 	status = nvmet_rdma_map_sgl(cmd);
768 	if (status)
769 		goto out_err;
770 
771 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
772 		spin_lock(&queue->rsp_wr_wait_lock);
773 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
774 		spin_unlock(&queue->rsp_wr_wait_lock);
775 	}
776 
777 	return;
778 
779 out_err:
780 	nvmet_req_complete(&cmd->req, status);
781 }
782 
783 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
784 {
785 	struct nvmet_rdma_cmd *cmd =
786 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
787 	struct nvmet_rdma_queue *queue = cq->cq_context;
788 	struct nvmet_rdma_rsp *rsp;
789 
790 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
791 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
792 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
793 				wc->wr_cqe, ib_wc_status_msg(wc->status),
794 				wc->status);
795 			nvmet_rdma_error_comp(queue);
796 		}
797 		return;
798 	}
799 
800 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
801 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
802 		nvmet_rdma_error_comp(queue);
803 		return;
804 	}
805 
806 	cmd->queue = queue;
807 	rsp = nvmet_rdma_get_rsp(queue);
808 	if (unlikely(!rsp)) {
809 		/*
810 		 * we get here only under memory pressure,
811 		 * silently drop and have the host retry
812 		 * as we can't even fail it.
813 		 */
814 		nvmet_rdma_post_recv(queue->dev, cmd);
815 		return;
816 	}
817 	rsp->queue = queue;
818 	rsp->cmd = cmd;
819 	rsp->flags = 0;
820 	rsp->req.cmd = cmd->nvme_cmd;
821 	rsp->req.port = queue->port;
822 	rsp->n_rdma = 0;
823 
824 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
825 		unsigned long flags;
826 
827 		spin_lock_irqsave(&queue->state_lock, flags);
828 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
829 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
830 		else
831 			nvmet_rdma_put_rsp(rsp);
832 		spin_unlock_irqrestore(&queue->state_lock, flags);
833 		return;
834 	}
835 
836 	nvmet_rdma_handle_command(queue, rsp);
837 }
838 
839 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
840 {
841 	if (!ndev->srq)
842 		return;
843 
844 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
845 	ib_destroy_srq(ndev->srq);
846 }
847 
848 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
849 {
850 	struct ib_srq_init_attr srq_attr = { NULL, };
851 	struct ib_srq *srq;
852 	size_t srq_size;
853 	int ret, i;
854 
855 	srq_size = 4095;	/* XXX: tune */
856 
857 	srq_attr.attr.max_wr = srq_size;
858 	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
859 	srq_attr.attr.srq_limit = 0;
860 	srq_attr.srq_type = IB_SRQT_BASIC;
861 	srq = ib_create_srq(ndev->pd, &srq_attr);
862 	if (IS_ERR(srq)) {
863 		/*
864 		 * If SRQs aren't supported we just go ahead and use normal
865 		 * non-shared receive queues.
866 		 */
867 		pr_info("SRQ requested but not supported.\n");
868 		return 0;
869 	}
870 
871 	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
872 	if (IS_ERR(ndev->srq_cmds)) {
873 		ret = PTR_ERR(ndev->srq_cmds);
874 		goto out_destroy_srq;
875 	}
876 
877 	ndev->srq = srq;
878 	ndev->srq_size = srq_size;
879 
880 	for (i = 0; i < srq_size; i++) {
881 		ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
882 		if (ret)
883 			goto out_free_cmds;
884 	}
885 
886 	return 0;
887 
888 out_free_cmds:
889 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
890 out_destroy_srq:
891 	ib_destroy_srq(srq);
892 	return ret;
893 }
894 
895 static void nvmet_rdma_free_dev(struct kref *ref)
896 {
897 	struct nvmet_rdma_device *ndev =
898 		container_of(ref, struct nvmet_rdma_device, ref);
899 
900 	mutex_lock(&device_list_mutex);
901 	list_del(&ndev->entry);
902 	mutex_unlock(&device_list_mutex);
903 
904 	nvmet_rdma_destroy_srq(ndev);
905 	ib_dealloc_pd(ndev->pd);
906 
907 	kfree(ndev);
908 }
909 
910 static struct nvmet_rdma_device *
911 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
912 {
913 	struct nvmet_port *port = cm_id->context;
914 	struct nvmet_rdma_device *ndev;
915 	int inline_page_count;
916 	int inline_sge_count;
917 	int ret;
918 
919 	mutex_lock(&device_list_mutex);
920 	list_for_each_entry(ndev, &device_list, entry) {
921 		if (ndev->device->node_guid == cm_id->device->node_guid &&
922 		    kref_get_unless_zero(&ndev->ref))
923 			goto out_unlock;
924 	}
925 
926 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
927 	if (!ndev)
928 		goto out_err;
929 
930 	inline_page_count = num_pages(port->inline_data_size);
931 	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
932 				cm_id->device->attrs.max_recv_sge) - 1;
933 	if (inline_page_count > inline_sge_count) {
934 		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
935 			port->inline_data_size, cm_id->device->name,
936 			inline_sge_count * PAGE_SIZE);
937 		port->inline_data_size = inline_sge_count * PAGE_SIZE;
938 		inline_page_count = inline_sge_count;
939 	}
940 	ndev->inline_data_size = port->inline_data_size;
941 	ndev->inline_page_count = inline_page_count;
942 	ndev->device = cm_id->device;
943 	kref_init(&ndev->ref);
944 
945 	ndev->pd = ib_alloc_pd(ndev->device, 0);
946 	if (IS_ERR(ndev->pd))
947 		goto out_free_dev;
948 
949 	if (nvmet_rdma_use_srq) {
950 		ret = nvmet_rdma_init_srq(ndev);
951 		if (ret)
952 			goto out_free_pd;
953 	}
954 
955 	list_add(&ndev->entry, &device_list);
956 out_unlock:
957 	mutex_unlock(&device_list_mutex);
958 	pr_debug("added %s.\n", ndev->device->name);
959 	return ndev;
960 
961 out_free_pd:
962 	ib_dealloc_pd(ndev->pd);
963 out_free_dev:
964 	kfree(ndev);
965 out_err:
966 	mutex_unlock(&device_list_mutex);
967 	return NULL;
968 }
969 
970 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
971 {
972 	struct ib_qp_init_attr qp_attr;
973 	struct nvmet_rdma_device *ndev = queue->dev;
974 	int comp_vector, nr_cqe, ret, i;
975 
976 	/*
977 	 * Spread the io queues across completion vectors,
978 	 * but still keep all admin queues on vector 0.
979 	 */
980 	comp_vector = !queue->host_qid ? 0 :
981 		queue->idx % ndev->device->num_comp_vectors;
982 
983 	/*
984 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
985 	 */
986 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
987 
988 	queue->cq = ib_alloc_cq(ndev->device, queue,
989 			nr_cqe + 1, comp_vector,
990 			IB_POLL_WORKQUEUE);
991 	if (IS_ERR(queue->cq)) {
992 		ret = PTR_ERR(queue->cq);
993 		pr_err("failed to create CQ cqe= %d ret= %d\n",
994 		       nr_cqe + 1, ret);
995 		goto out;
996 	}
997 
998 	memset(&qp_attr, 0, sizeof(qp_attr));
999 	qp_attr.qp_context = queue;
1000 	qp_attr.event_handler = nvmet_rdma_qp_event;
1001 	qp_attr.send_cq = queue->cq;
1002 	qp_attr.recv_cq = queue->cq;
1003 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1004 	qp_attr.qp_type = IB_QPT_RC;
1005 	/* +1 for drain */
1006 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1007 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
1008 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1009 					ndev->device->attrs.max_send_sge);
1010 
1011 	if (ndev->srq) {
1012 		qp_attr.srq = ndev->srq;
1013 	} else {
1014 		/* +1 for drain */
1015 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1016 		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1017 	}
1018 
1019 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1020 	if (ret) {
1021 		pr_err("failed to create_qp ret= %d\n", ret);
1022 		goto err_destroy_cq;
1023 	}
1024 
1025 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1026 
1027 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1028 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1029 		 qp_attr.cap.max_send_wr, queue->cm_id);
1030 
1031 	if (!ndev->srq) {
1032 		for (i = 0; i < queue->recv_queue_size; i++) {
1033 			queue->cmds[i].queue = queue;
1034 			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1035 			if (ret)
1036 				goto err_destroy_qp;
1037 		}
1038 	}
1039 
1040 out:
1041 	return ret;
1042 
1043 err_destroy_qp:
1044 	rdma_destroy_qp(queue->cm_id);
1045 err_destroy_cq:
1046 	ib_free_cq(queue->cq);
1047 	goto out;
1048 }
1049 
1050 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1051 {
1052 	struct ib_qp *qp = queue->cm_id->qp;
1053 
1054 	ib_drain_qp(qp);
1055 	rdma_destroy_id(queue->cm_id);
1056 	ib_destroy_qp(qp);
1057 	ib_free_cq(queue->cq);
1058 }
1059 
1060 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1061 {
1062 	pr_debug("freeing queue %d\n", queue->idx);
1063 
1064 	nvmet_sq_destroy(&queue->nvme_sq);
1065 
1066 	nvmet_rdma_destroy_queue_ib(queue);
1067 	if (!queue->dev->srq) {
1068 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1069 				queue->recv_queue_size,
1070 				!queue->host_qid);
1071 	}
1072 	nvmet_rdma_free_rsps(queue);
1073 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1074 	kfree(queue);
1075 }
1076 
1077 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1078 {
1079 	struct nvmet_rdma_queue *queue =
1080 		container_of(w, struct nvmet_rdma_queue, release_work);
1081 	struct nvmet_rdma_device *dev = queue->dev;
1082 
1083 	nvmet_rdma_free_queue(queue);
1084 
1085 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1086 }
1087 
1088 static int
1089 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1090 				struct nvmet_rdma_queue *queue)
1091 {
1092 	struct nvme_rdma_cm_req *req;
1093 
1094 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1095 	if (!req || conn->private_data_len == 0)
1096 		return NVME_RDMA_CM_INVALID_LEN;
1097 
1098 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1099 		return NVME_RDMA_CM_INVALID_RECFMT;
1100 
1101 	queue->host_qid = le16_to_cpu(req->qid);
1102 
1103 	/*
1104 	 * req->hsqsize corresponds to our recv queue size plus 1
1105 	 * req->hrqsize corresponds to our send queue size
1106 	 */
1107 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1108 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1109 
1110 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1111 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1112 
1113 	/* XXX: Should we enforce some kind of max for IO queues? */
1114 
1115 	return 0;
1116 }
1117 
1118 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1119 				enum nvme_rdma_cm_status status)
1120 {
1121 	struct nvme_rdma_cm_rej rej;
1122 
1123 	pr_debug("rejecting connect request: status %d (%s)\n",
1124 		 status, nvme_rdma_cm_msg(status));
1125 
1126 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1127 	rej.sts = cpu_to_le16(status);
1128 
1129 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1130 }
1131 
1132 static struct nvmet_rdma_queue *
1133 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1134 		struct rdma_cm_id *cm_id,
1135 		struct rdma_cm_event *event)
1136 {
1137 	struct nvmet_rdma_queue *queue;
1138 	int ret;
1139 
1140 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1141 	if (!queue) {
1142 		ret = NVME_RDMA_CM_NO_RSC;
1143 		goto out_reject;
1144 	}
1145 
1146 	ret = nvmet_sq_init(&queue->nvme_sq);
1147 	if (ret) {
1148 		ret = NVME_RDMA_CM_NO_RSC;
1149 		goto out_free_queue;
1150 	}
1151 
1152 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1153 	if (ret)
1154 		goto out_destroy_sq;
1155 
1156 	/*
1157 	 * Schedules the actual release because calling rdma_destroy_id from
1158 	 * inside a CM callback would trigger a deadlock. (great API design..)
1159 	 */
1160 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1161 	queue->dev = ndev;
1162 	queue->cm_id = cm_id;
1163 
1164 	spin_lock_init(&queue->state_lock);
1165 	queue->state = NVMET_RDMA_Q_CONNECTING;
1166 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1167 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1168 	spin_lock_init(&queue->rsp_wr_wait_lock);
1169 	INIT_LIST_HEAD(&queue->free_rsps);
1170 	spin_lock_init(&queue->rsps_lock);
1171 	INIT_LIST_HEAD(&queue->queue_list);
1172 
1173 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1174 	if (queue->idx < 0) {
1175 		ret = NVME_RDMA_CM_NO_RSC;
1176 		goto out_destroy_sq;
1177 	}
1178 
1179 	ret = nvmet_rdma_alloc_rsps(queue);
1180 	if (ret) {
1181 		ret = NVME_RDMA_CM_NO_RSC;
1182 		goto out_ida_remove;
1183 	}
1184 
1185 	if (!ndev->srq) {
1186 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1187 				queue->recv_queue_size,
1188 				!queue->host_qid);
1189 		if (IS_ERR(queue->cmds)) {
1190 			ret = NVME_RDMA_CM_NO_RSC;
1191 			goto out_free_responses;
1192 		}
1193 	}
1194 
1195 	ret = nvmet_rdma_create_queue_ib(queue);
1196 	if (ret) {
1197 		pr_err("%s: creating RDMA queue failed (%d).\n",
1198 			__func__, ret);
1199 		ret = NVME_RDMA_CM_NO_RSC;
1200 		goto out_free_cmds;
1201 	}
1202 
1203 	return queue;
1204 
1205 out_free_cmds:
1206 	if (!ndev->srq) {
1207 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1208 				queue->recv_queue_size,
1209 				!queue->host_qid);
1210 	}
1211 out_free_responses:
1212 	nvmet_rdma_free_rsps(queue);
1213 out_ida_remove:
1214 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1215 out_destroy_sq:
1216 	nvmet_sq_destroy(&queue->nvme_sq);
1217 out_free_queue:
1218 	kfree(queue);
1219 out_reject:
1220 	nvmet_rdma_cm_reject(cm_id, ret);
1221 	return NULL;
1222 }
1223 
1224 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1225 {
1226 	struct nvmet_rdma_queue *queue = priv;
1227 
1228 	switch (event->event) {
1229 	case IB_EVENT_COMM_EST:
1230 		rdma_notify(queue->cm_id, event->event);
1231 		break;
1232 	default:
1233 		pr_err("received IB QP event: %s (%d)\n",
1234 		       ib_event_msg(event->event), event->event);
1235 		break;
1236 	}
1237 }
1238 
1239 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1240 		struct nvmet_rdma_queue *queue,
1241 		struct rdma_conn_param *p)
1242 {
1243 	struct rdma_conn_param  param = { };
1244 	struct nvme_rdma_cm_rep priv = { };
1245 	int ret = -ENOMEM;
1246 
1247 	param.rnr_retry_count = 7;
1248 	param.flow_control = 1;
1249 	param.initiator_depth = min_t(u8, p->initiator_depth,
1250 		queue->dev->device->attrs.max_qp_init_rd_atom);
1251 	param.private_data = &priv;
1252 	param.private_data_len = sizeof(priv);
1253 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1254 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1255 
1256 	ret = rdma_accept(cm_id, &param);
1257 	if (ret)
1258 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1259 
1260 	return ret;
1261 }
1262 
1263 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1264 		struct rdma_cm_event *event)
1265 {
1266 	struct nvmet_rdma_device *ndev;
1267 	struct nvmet_rdma_queue *queue;
1268 	int ret = -EINVAL;
1269 
1270 	ndev = nvmet_rdma_find_get_device(cm_id);
1271 	if (!ndev) {
1272 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1273 		return -ECONNREFUSED;
1274 	}
1275 
1276 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1277 	if (!queue) {
1278 		ret = -ENOMEM;
1279 		goto put_device;
1280 	}
1281 	queue->port = cm_id->context;
1282 
1283 	if (queue->host_qid == 0) {
1284 		/* Let inflight controller teardown complete */
1285 		flush_scheduled_work();
1286 	}
1287 
1288 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1289 	if (ret) {
1290 		schedule_work(&queue->release_work);
1291 		/* Destroying rdma_cm id is not needed here */
1292 		return 0;
1293 	}
1294 
1295 	mutex_lock(&nvmet_rdma_queue_mutex);
1296 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1297 	mutex_unlock(&nvmet_rdma_queue_mutex);
1298 
1299 	return 0;
1300 
1301 put_device:
1302 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1303 
1304 	return ret;
1305 }
1306 
1307 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1308 {
1309 	unsigned long flags;
1310 
1311 	spin_lock_irqsave(&queue->state_lock, flags);
1312 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1313 		pr_warn("trying to establish a connected queue\n");
1314 		goto out_unlock;
1315 	}
1316 	queue->state = NVMET_RDMA_Q_LIVE;
1317 
1318 	while (!list_empty(&queue->rsp_wait_list)) {
1319 		struct nvmet_rdma_rsp *cmd;
1320 
1321 		cmd = list_first_entry(&queue->rsp_wait_list,
1322 					struct nvmet_rdma_rsp, wait_list);
1323 		list_del(&cmd->wait_list);
1324 
1325 		spin_unlock_irqrestore(&queue->state_lock, flags);
1326 		nvmet_rdma_handle_command(queue, cmd);
1327 		spin_lock_irqsave(&queue->state_lock, flags);
1328 	}
1329 
1330 out_unlock:
1331 	spin_unlock_irqrestore(&queue->state_lock, flags);
1332 }
1333 
1334 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1335 {
1336 	bool disconnect = false;
1337 	unsigned long flags;
1338 
1339 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1340 
1341 	spin_lock_irqsave(&queue->state_lock, flags);
1342 	switch (queue->state) {
1343 	case NVMET_RDMA_Q_CONNECTING:
1344 	case NVMET_RDMA_Q_LIVE:
1345 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1346 		disconnect = true;
1347 		break;
1348 	case NVMET_RDMA_Q_DISCONNECTING:
1349 		break;
1350 	}
1351 	spin_unlock_irqrestore(&queue->state_lock, flags);
1352 
1353 	if (disconnect) {
1354 		rdma_disconnect(queue->cm_id);
1355 		schedule_work(&queue->release_work);
1356 	}
1357 }
1358 
1359 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1360 {
1361 	bool disconnect = false;
1362 
1363 	mutex_lock(&nvmet_rdma_queue_mutex);
1364 	if (!list_empty(&queue->queue_list)) {
1365 		list_del_init(&queue->queue_list);
1366 		disconnect = true;
1367 	}
1368 	mutex_unlock(&nvmet_rdma_queue_mutex);
1369 
1370 	if (disconnect)
1371 		__nvmet_rdma_queue_disconnect(queue);
1372 }
1373 
1374 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1375 		struct nvmet_rdma_queue *queue)
1376 {
1377 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1378 
1379 	mutex_lock(&nvmet_rdma_queue_mutex);
1380 	if (!list_empty(&queue->queue_list))
1381 		list_del_init(&queue->queue_list);
1382 	mutex_unlock(&nvmet_rdma_queue_mutex);
1383 
1384 	pr_err("failed to connect queue %d\n", queue->idx);
1385 	schedule_work(&queue->release_work);
1386 }
1387 
1388 /**
1389  * nvme_rdma_device_removal() - Handle RDMA device removal
1390  * @cm_id:	rdma_cm id, used for nvmet port
1391  * @queue:      nvmet rdma queue (cm id qp_context)
1392  *
1393  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1394  * to unplug. Note that this event can be generated on a normal
1395  * queue cm_id and/or a device bound listener cm_id (where in this
1396  * case queue will be null).
1397  *
1398  * We registered an ib_client to handle device removal for queues,
1399  * so we only need to handle the listening port cm_ids. In this case
1400  * we nullify the priv to prevent double cm_id destruction and destroying
1401  * the cm_id implicitely by returning a non-zero rc to the callout.
1402  */
1403 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1404 		struct nvmet_rdma_queue *queue)
1405 {
1406 	struct nvmet_port *port;
1407 
1408 	if (queue) {
1409 		/*
1410 		 * This is a queue cm_id. we have registered
1411 		 * an ib_client to handle queues removal
1412 		 * so don't interfear and just return.
1413 		 */
1414 		return 0;
1415 	}
1416 
1417 	port = cm_id->context;
1418 
1419 	/*
1420 	 * This is a listener cm_id. Make sure that
1421 	 * future remove_port won't invoke a double
1422 	 * cm_id destroy. use atomic xchg to make sure
1423 	 * we don't compete with remove_port.
1424 	 */
1425 	if (xchg(&port->priv, NULL) != cm_id)
1426 		return 0;
1427 
1428 	/*
1429 	 * We need to return 1 so that the core will destroy
1430 	 * it's own ID.  What a great API design..
1431 	 */
1432 	return 1;
1433 }
1434 
1435 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1436 		struct rdma_cm_event *event)
1437 {
1438 	struct nvmet_rdma_queue *queue = NULL;
1439 	int ret = 0;
1440 
1441 	if (cm_id->qp)
1442 		queue = cm_id->qp->qp_context;
1443 
1444 	pr_debug("%s (%d): status %d id %p\n",
1445 		rdma_event_msg(event->event), event->event,
1446 		event->status, cm_id);
1447 
1448 	switch (event->event) {
1449 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1450 		ret = nvmet_rdma_queue_connect(cm_id, event);
1451 		break;
1452 	case RDMA_CM_EVENT_ESTABLISHED:
1453 		nvmet_rdma_queue_established(queue);
1454 		break;
1455 	case RDMA_CM_EVENT_ADDR_CHANGE:
1456 	case RDMA_CM_EVENT_DISCONNECTED:
1457 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1458 		nvmet_rdma_queue_disconnect(queue);
1459 		break;
1460 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1461 		ret = nvmet_rdma_device_removal(cm_id, queue);
1462 		break;
1463 	case RDMA_CM_EVENT_REJECTED:
1464 		pr_debug("Connection rejected: %s\n",
1465 			 rdma_reject_msg(cm_id, event->status));
1466 		/* FALLTHROUGH */
1467 	case RDMA_CM_EVENT_UNREACHABLE:
1468 	case RDMA_CM_EVENT_CONNECT_ERROR:
1469 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1470 		break;
1471 	default:
1472 		pr_err("received unrecognized RDMA CM event %d\n",
1473 			event->event);
1474 		break;
1475 	}
1476 
1477 	return ret;
1478 }
1479 
1480 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1481 {
1482 	struct nvmet_rdma_queue *queue;
1483 
1484 restart:
1485 	mutex_lock(&nvmet_rdma_queue_mutex);
1486 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1487 		if (queue->nvme_sq.ctrl == ctrl) {
1488 			list_del_init(&queue->queue_list);
1489 			mutex_unlock(&nvmet_rdma_queue_mutex);
1490 
1491 			__nvmet_rdma_queue_disconnect(queue);
1492 			goto restart;
1493 		}
1494 	}
1495 	mutex_unlock(&nvmet_rdma_queue_mutex);
1496 }
1497 
1498 static int nvmet_rdma_add_port(struct nvmet_port *port)
1499 {
1500 	struct rdma_cm_id *cm_id;
1501 	struct sockaddr_storage addr = { };
1502 	__kernel_sa_family_t af;
1503 	int ret;
1504 
1505 	switch (port->disc_addr.adrfam) {
1506 	case NVMF_ADDR_FAMILY_IP4:
1507 		af = AF_INET;
1508 		break;
1509 	case NVMF_ADDR_FAMILY_IP6:
1510 		af = AF_INET6;
1511 		break;
1512 	default:
1513 		pr_err("address family %d not supported\n",
1514 				port->disc_addr.adrfam);
1515 		return -EINVAL;
1516 	}
1517 
1518 	if (port->inline_data_size < 0) {
1519 		port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1520 	} else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1521 		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1522 			port->inline_data_size,
1523 			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1524 		port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1525 	}
1526 
1527 	ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1528 			port->disc_addr.trsvcid, &addr);
1529 	if (ret) {
1530 		pr_err("malformed ip/port passed: %s:%s\n",
1531 			port->disc_addr.traddr, port->disc_addr.trsvcid);
1532 		return ret;
1533 	}
1534 
1535 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1536 			RDMA_PS_TCP, IB_QPT_RC);
1537 	if (IS_ERR(cm_id)) {
1538 		pr_err("CM ID creation failed\n");
1539 		return PTR_ERR(cm_id);
1540 	}
1541 
1542 	/*
1543 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1544 	 * at the same time.
1545 	 */
1546 	ret = rdma_set_afonly(cm_id, 1);
1547 	if (ret) {
1548 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1549 		goto out_destroy_id;
1550 	}
1551 
1552 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1553 	if (ret) {
1554 		pr_err("binding CM ID to %pISpcs failed (%d)\n",
1555 			(struct sockaddr *)&addr, ret);
1556 		goto out_destroy_id;
1557 	}
1558 
1559 	ret = rdma_listen(cm_id, 128);
1560 	if (ret) {
1561 		pr_err("listening to %pISpcs failed (%d)\n",
1562 			(struct sockaddr *)&addr, ret);
1563 		goto out_destroy_id;
1564 	}
1565 
1566 	pr_info("enabling port %d (%pISpcs)\n",
1567 		le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1568 	port->priv = cm_id;
1569 	return 0;
1570 
1571 out_destroy_id:
1572 	rdma_destroy_id(cm_id);
1573 	return ret;
1574 }
1575 
1576 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1577 {
1578 	struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1579 
1580 	if (cm_id)
1581 		rdma_destroy_id(cm_id);
1582 }
1583 
1584 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1585 		struct nvmet_port *port, char *traddr)
1586 {
1587 	struct rdma_cm_id *cm_id = port->priv;
1588 
1589 	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1590 		struct nvmet_rdma_rsp *rsp =
1591 			container_of(req, struct nvmet_rdma_rsp, req);
1592 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1593 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1594 
1595 		sprintf(traddr, "%pISc", addr);
1596 	} else {
1597 		memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
1598 	}
1599 }
1600 
1601 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1602 	.owner			= THIS_MODULE,
1603 	.type			= NVMF_TRTYPE_RDMA,
1604 	.msdbd			= 1,
1605 	.has_keyed_sgls		= 1,
1606 	.add_port		= nvmet_rdma_add_port,
1607 	.remove_port		= nvmet_rdma_remove_port,
1608 	.queue_response		= nvmet_rdma_queue_response,
1609 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1610 	.disc_traddr		= nvmet_rdma_disc_port_addr,
1611 };
1612 
1613 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1614 {
1615 	struct nvmet_rdma_queue *queue, *tmp;
1616 	struct nvmet_rdma_device *ndev;
1617 	bool found = false;
1618 
1619 	mutex_lock(&device_list_mutex);
1620 	list_for_each_entry(ndev, &device_list, entry) {
1621 		if (ndev->device == ib_device) {
1622 			found = true;
1623 			break;
1624 		}
1625 	}
1626 	mutex_unlock(&device_list_mutex);
1627 
1628 	if (!found)
1629 		return;
1630 
1631 	/*
1632 	 * IB Device that is used by nvmet controllers is being removed,
1633 	 * delete all queues using this device.
1634 	 */
1635 	mutex_lock(&nvmet_rdma_queue_mutex);
1636 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1637 				 queue_list) {
1638 		if (queue->dev->device != ib_device)
1639 			continue;
1640 
1641 		pr_info("Removing queue %d\n", queue->idx);
1642 		list_del_init(&queue->queue_list);
1643 		__nvmet_rdma_queue_disconnect(queue);
1644 	}
1645 	mutex_unlock(&nvmet_rdma_queue_mutex);
1646 
1647 	flush_scheduled_work();
1648 }
1649 
1650 static struct ib_client nvmet_rdma_ib_client = {
1651 	.name   = "nvmet_rdma",
1652 	.remove = nvmet_rdma_remove_one
1653 };
1654 
1655 static int __init nvmet_rdma_init(void)
1656 {
1657 	int ret;
1658 
1659 	ret = ib_register_client(&nvmet_rdma_ib_client);
1660 	if (ret)
1661 		return ret;
1662 
1663 	ret = nvmet_register_transport(&nvmet_rdma_ops);
1664 	if (ret)
1665 		goto err_ib_client;
1666 
1667 	return 0;
1668 
1669 err_ib_client:
1670 	ib_unregister_client(&nvmet_rdma_ib_client);
1671 	return ret;
1672 }
1673 
1674 static void __exit nvmet_rdma_exit(void)
1675 {
1676 	nvmet_unregister_transport(&nvmet_rdma_ops);
1677 	ib_unregister_client(&nvmet_rdma_ib_client);
1678 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1679 	ida_destroy(&nvmet_rdma_queue_ida);
1680 }
1681 
1682 module_init(nvmet_rdma_init);
1683 module_exit(nvmet_rdma_exit);
1684 
1685 MODULE_LICENSE("GPL v2");
1686 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1687