xref: /linux/drivers/nvme/target/rdma.c (revision 86287543715ac2a6d92d561cc105d79306511457)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19 
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 
24 #include <linux/nvme-rdma.h>
25 #include "nvmet.h"
26 
27 /*
28  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
29  */
30 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
31 #define NVMET_RDMA_MAX_INLINE_SGE		4
32 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
33 
34 /* Assume mpsmin == device_page_size == 4KB */
35 #define NVMET_RDMA_MAX_MDTS			8
36 
37 struct nvmet_rdma_cmd {
38 	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
39 	struct ib_cqe		cqe;
40 	struct ib_recv_wr	wr;
41 	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
42 	struct nvme_command     *nvme_cmd;
43 	struct nvmet_rdma_queue	*queue;
44 };
45 
46 enum {
47 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
48 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
49 };
50 
51 struct nvmet_rdma_rsp {
52 	struct ib_sge		send_sge;
53 	struct ib_cqe		send_cqe;
54 	struct ib_send_wr	send_wr;
55 
56 	struct nvmet_rdma_cmd	*cmd;
57 	struct nvmet_rdma_queue	*queue;
58 
59 	struct ib_cqe		read_cqe;
60 	struct rdma_rw_ctx	rw;
61 
62 	struct nvmet_req	req;
63 
64 	bool			allocated;
65 	u8			n_rdma;
66 	u32			flags;
67 	u32			invalidate_rkey;
68 
69 	struct list_head	wait_list;
70 	struct list_head	free_list;
71 };
72 
73 enum nvmet_rdma_queue_state {
74 	NVMET_RDMA_Q_CONNECTING,
75 	NVMET_RDMA_Q_LIVE,
76 	NVMET_RDMA_Q_DISCONNECTING,
77 };
78 
79 struct nvmet_rdma_queue {
80 	struct rdma_cm_id	*cm_id;
81 	struct nvmet_port	*port;
82 	struct ib_cq		*cq;
83 	atomic_t		sq_wr_avail;
84 	struct nvmet_rdma_device *dev;
85 	spinlock_t		state_lock;
86 	enum nvmet_rdma_queue_state state;
87 	struct nvmet_cq		nvme_cq;
88 	struct nvmet_sq		nvme_sq;
89 
90 	struct nvmet_rdma_rsp	*rsps;
91 	struct list_head	free_rsps;
92 	spinlock_t		rsps_lock;
93 	struct nvmet_rdma_cmd	*cmds;
94 
95 	struct work_struct	release_work;
96 	struct list_head	rsp_wait_list;
97 	struct list_head	rsp_wr_wait_list;
98 	spinlock_t		rsp_wr_wait_lock;
99 
100 	int			idx;
101 	int			host_qid;
102 	int			recv_queue_size;
103 	int			send_queue_size;
104 
105 	struct list_head	queue_list;
106 };
107 
108 struct nvmet_rdma_device {
109 	struct ib_device	*device;
110 	struct ib_pd		*pd;
111 	struct ib_srq		*srq;
112 	struct nvmet_rdma_cmd	*srq_cmds;
113 	size_t			srq_size;
114 	struct kref		ref;
115 	struct list_head	entry;
116 	int			inline_data_size;
117 	int			inline_page_count;
118 };
119 
120 static bool nvmet_rdma_use_srq;
121 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
122 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
123 
124 static DEFINE_IDA(nvmet_rdma_queue_ida);
125 static LIST_HEAD(nvmet_rdma_queue_list);
126 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
127 
128 static LIST_HEAD(device_list);
129 static DEFINE_MUTEX(device_list_mutex);
130 
131 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
132 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
133 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
134 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
136 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
137 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
138 				struct nvmet_rdma_rsp *r);
139 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
140 				struct nvmet_rdma_rsp *r);
141 
142 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
143 
144 static int num_pages(int len)
145 {
146 	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
147 }
148 
149 /* XXX: really should move to a generic header sooner or later.. */
150 static inline u32 get_unaligned_le24(const u8 *p)
151 {
152 	return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
153 }
154 
155 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
156 {
157 	return nvme_is_write(rsp->req.cmd) &&
158 		rsp->req.transfer_len &&
159 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
160 }
161 
162 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
163 {
164 	return !nvme_is_write(rsp->req.cmd) &&
165 		rsp->req.transfer_len &&
166 		!rsp->req.cqe->status &&
167 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
168 }
169 
170 static inline struct nvmet_rdma_rsp *
171 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
172 {
173 	struct nvmet_rdma_rsp *rsp;
174 	unsigned long flags;
175 
176 	spin_lock_irqsave(&queue->rsps_lock, flags);
177 	rsp = list_first_entry_or_null(&queue->free_rsps,
178 				struct nvmet_rdma_rsp, free_list);
179 	if (likely(rsp))
180 		list_del(&rsp->free_list);
181 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
182 
183 	if (unlikely(!rsp)) {
184 		int ret;
185 
186 		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
187 		if (unlikely(!rsp))
188 			return NULL;
189 		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
190 		if (unlikely(ret)) {
191 			kfree(rsp);
192 			return NULL;
193 		}
194 
195 		rsp->allocated = true;
196 	}
197 
198 	return rsp;
199 }
200 
201 static inline void
202 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
203 {
204 	unsigned long flags;
205 
206 	if (unlikely(rsp->allocated)) {
207 		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
208 		kfree(rsp);
209 		return;
210 	}
211 
212 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
213 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
214 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
215 }
216 
217 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
218 				struct nvmet_rdma_cmd *c)
219 {
220 	struct scatterlist *sg;
221 	struct ib_sge *sge;
222 	int i;
223 
224 	if (!ndev->inline_data_size)
225 		return;
226 
227 	sg = c->inline_sg;
228 	sge = &c->sge[1];
229 
230 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
231 		if (sge->length)
232 			ib_dma_unmap_page(ndev->device, sge->addr,
233 					sge->length, DMA_FROM_DEVICE);
234 		if (sg_page(sg))
235 			__free_page(sg_page(sg));
236 	}
237 }
238 
239 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
240 				struct nvmet_rdma_cmd *c)
241 {
242 	struct scatterlist *sg;
243 	struct ib_sge *sge;
244 	struct page *pg;
245 	int len;
246 	int i;
247 
248 	if (!ndev->inline_data_size)
249 		return 0;
250 
251 	sg = c->inline_sg;
252 	sg_init_table(sg, ndev->inline_page_count);
253 	sge = &c->sge[1];
254 	len = ndev->inline_data_size;
255 
256 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
257 		pg = alloc_page(GFP_KERNEL);
258 		if (!pg)
259 			goto out_err;
260 		sg_assign_page(sg, pg);
261 		sge->addr = ib_dma_map_page(ndev->device,
262 			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
263 		if (ib_dma_mapping_error(ndev->device, sge->addr))
264 			goto out_err;
265 		sge->length = min_t(int, len, PAGE_SIZE);
266 		sge->lkey = ndev->pd->local_dma_lkey;
267 		len -= sge->length;
268 	}
269 
270 	return 0;
271 out_err:
272 	for (; i >= 0; i--, sg--, sge--) {
273 		if (sge->length)
274 			ib_dma_unmap_page(ndev->device, sge->addr,
275 					sge->length, DMA_FROM_DEVICE);
276 		if (sg_page(sg))
277 			__free_page(sg_page(sg));
278 	}
279 	return -ENOMEM;
280 }
281 
282 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
283 			struct nvmet_rdma_cmd *c, bool admin)
284 {
285 	/* NVMe command / RDMA RECV */
286 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
287 	if (!c->nvme_cmd)
288 		goto out;
289 
290 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
291 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
292 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
293 		goto out_free_cmd;
294 
295 	c->sge[0].length = sizeof(*c->nvme_cmd);
296 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
297 
298 	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
299 		goto out_unmap_cmd;
300 
301 	c->cqe.done = nvmet_rdma_recv_done;
302 
303 	c->wr.wr_cqe = &c->cqe;
304 	c->wr.sg_list = c->sge;
305 	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
306 
307 	return 0;
308 
309 out_unmap_cmd:
310 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
311 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
312 out_free_cmd:
313 	kfree(c->nvme_cmd);
314 
315 out:
316 	return -ENOMEM;
317 }
318 
319 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
320 		struct nvmet_rdma_cmd *c, bool admin)
321 {
322 	if (!admin)
323 		nvmet_rdma_free_inline_pages(ndev, c);
324 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
325 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
326 	kfree(c->nvme_cmd);
327 }
328 
329 static struct nvmet_rdma_cmd *
330 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
331 		int nr_cmds, bool admin)
332 {
333 	struct nvmet_rdma_cmd *cmds;
334 	int ret = -EINVAL, i;
335 
336 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
337 	if (!cmds)
338 		goto out;
339 
340 	for (i = 0; i < nr_cmds; i++) {
341 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
342 		if (ret)
343 			goto out_free;
344 	}
345 
346 	return cmds;
347 
348 out_free:
349 	while (--i >= 0)
350 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
351 	kfree(cmds);
352 out:
353 	return ERR_PTR(ret);
354 }
355 
356 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
357 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
358 {
359 	int i;
360 
361 	for (i = 0; i < nr_cmds; i++)
362 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
363 	kfree(cmds);
364 }
365 
366 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
367 		struct nvmet_rdma_rsp *r)
368 {
369 	/* NVMe CQE / RDMA SEND */
370 	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
371 	if (!r->req.cqe)
372 		goto out;
373 
374 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
375 			sizeof(*r->req.cqe), DMA_TO_DEVICE);
376 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
377 		goto out_free_rsp;
378 
379 	r->req.p2p_client = &ndev->device->dev;
380 	r->send_sge.length = sizeof(*r->req.cqe);
381 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
382 
383 	r->send_cqe.done = nvmet_rdma_send_done;
384 
385 	r->send_wr.wr_cqe = &r->send_cqe;
386 	r->send_wr.sg_list = &r->send_sge;
387 	r->send_wr.num_sge = 1;
388 	r->send_wr.send_flags = IB_SEND_SIGNALED;
389 
390 	/* Data In / RDMA READ */
391 	r->read_cqe.done = nvmet_rdma_read_data_done;
392 	return 0;
393 
394 out_free_rsp:
395 	kfree(r->req.cqe);
396 out:
397 	return -ENOMEM;
398 }
399 
400 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
401 		struct nvmet_rdma_rsp *r)
402 {
403 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
404 				sizeof(*r->req.cqe), DMA_TO_DEVICE);
405 	kfree(r->req.cqe);
406 }
407 
408 static int
409 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
410 {
411 	struct nvmet_rdma_device *ndev = queue->dev;
412 	int nr_rsps = queue->recv_queue_size * 2;
413 	int ret = -EINVAL, i;
414 
415 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
416 			GFP_KERNEL);
417 	if (!queue->rsps)
418 		goto out;
419 
420 	for (i = 0; i < nr_rsps; i++) {
421 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
422 
423 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
424 		if (ret)
425 			goto out_free;
426 
427 		list_add_tail(&rsp->free_list, &queue->free_rsps);
428 	}
429 
430 	return 0;
431 
432 out_free:
433 	while (--i >= 0) {
434 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
435 
436 		list_del(&rsp->free_list);
437 		nvmet_rdma_free_rsp(ndev, rsp);
438 	}
439 	kfree(queue->rsps);
440 out:
441 	return ret;
442 }
443 
444 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
445 {
446 	struct nvmet_rdma_device *ndev = queue->dev;
447 	int i, nr_rsps = queue->recv_queue_size * 2;
448 
449 	for (i = 0; i < nr_rsps; i++) {
450 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
451 
452 		list_del(&rsp->free_list);
453 		nvmet_rdma_free_rsp(ndev, rsp);
454 	}
455 	kfree(queue->rsps);
456 }
457 
458 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
459 		struct nvmet_rdma_cmd *cmd)
460 {
461 	int ret;
462 
463 	ib_dma_sync_single_for_device(ndev->device,
464 		cmd->sge[0].addr, cmd->sge[0].length,
465 		DMA_FROM_DEVICE);
466 
467 	if (ndev->srq)
468 		ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
469 	else
470 		ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
471 
472 	if (unlikely(ret))
473 		pr_err("post_recv cmd failed\n");
474 
475 	return ret;
476 }
477 
478 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
479 {
480 	spin_lock(&queue->rsp_wr_wait_lock);
481 	while (!list_empty(&queue->rsp_wr_wait_list)) {
482 		struct nvmet_rdma_rsp *rsp;
483 		bool ret;
484 
485 		rsp = list_entry(queue->rsp_wr_wait_list.next,
486 				struct nvmet_rdma_rsp, wait_list);
487 		list_del(&rsp->wait_list);
488 
489 		spin_unlock(&queue->rsp_wr_wait_lock);
490 		ret = nvmet_rdma_execute_command(rsp);
491 		spin_lock(&queue->rsp_wr_wait_lock);
492 
493 		if (!ret) {
494 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
495 			break;
496 		}
497 	}
498 	spin_unlock(&queue->rsp_wr_wait_lock);
499 }
500 
501 
502 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
503 {
504 	struct nvmet_rdma_queue *queue = rsp->queue;
505 
506 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
507 
508 	if (rsp->n_rdma) {
509 		rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
510 				queue->cm_id->port_num, rsp->req.sg,
511 				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
512 	}
513 
514 	if (rsp->req.sg != rsp->cmd->inline_sg)
515 		nvmet_req_free_sgl(&rsp->req);
516 
517 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
518 		nvmet_rdma_process_wr_wait_list(queue);
519 
520 	nvmet_rdma_put_rsp(rsp);
521 }
522 
523 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
524 {
525 	if (queue->nvme_sq.ctrl) {
526 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
527 	} else {
528 		/*
529 		 * we didn't setup the controller yet in case
530 		 * of admin connect error, just disconnect and
531 		 * cleanup the queue
532 		 */
533 		nvmet_rdma_queue_disconnect(queue);
534 	}
535 }
536 
537 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
538 {
539 	struct nvmet_rdma_rsp *rsp =
540 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
541 	struct nvmet_rdma_queue *queue = cq->cq_context;
542 
543 	nvmet_rdma_release_rsp(rsp);
544 
545 	if (unlikely(wc->status != IB_WC_SUCCESS &&
546 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
547 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
548 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
549 		nvmet_rdma_error_comp(queue);
550 	}
551 }
552 
553 static void nvmet_rdma_queue_response(struct nvmet_req *req)
554 {
555 	struct nvmet_rdma_rsp *rsp =
556 		container_of(req, struct nvmet_rdma_rsp, req);
557 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
558 	struct ib_send_wr *first_wr;
559 
560 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
561 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
562 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
563 	} else {
564 		rsp->send_wr.opcode = IB_WR_SEND;
565 	}
566 
567 	if (nvmet_rdma_need_data_out(rsp))
568 		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
569 				cm_id->port_num, NULL, &rsp->send_wr);
570 	else
571 		first_wr = &rsp->send_wr;
572 
573 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
574 
575 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
576 		rsp->send_sge.addr, rsp->send_sge.length,
577 		DMA_TO_DEVICE);
578 
579 	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
580 		pr_err("sending cmd response failed\n");
581 		nvmet_rdma_release_rsp(rsp);
582 	}
583 }
584 
585 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
586 {
587 	struct nvmet_rdma_rsp *rsp =
588 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
589 	struct nvmet_rdma_queue *queue = cq->cq_context;
590 
591 	WARN_ON(rsp->n_rdma <= 0);
592 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
593 	rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
594 			queue->cm_id->port_num, rsp->req.sg,
595 			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
596 	rsp->n_rdma = 0;
597 
598 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
599 		nvmet_req_uninit(&rsp->req);
600 		nvmet_rdma_release_rsp(rsp);
601 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
602 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
603 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
604 			nvmet_rdma_error_comp(queue);
605 		}
606 		return;
607 	}
608 
609 	rsp->req.execute(&rsp->req);
610 }
611 
612 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
613 		u64 off)
614 {
615 	int sg_count = num_pages(len);
616 	struct scatterlist *sg;
617 	int i;
618 
619 	sg = rsp->cmd->inline_sg;
620 	for (i = 0; i < sg_count; i++, sg++) {
621 		if (i < sg_count - 1)
622 			sg_unmark_end(sg);
623 		else
624 			sg_mark_end(sg);
625 		sg->offset = off;
626 		sg->length = min_t(int, len, PAGE_SIZE - off);
627 		len -= sg->length;
628 		if (!i)
629 			off = 0;
630 	}
631 
632 	rsp->req.sg = rsp->cmd->inline_sg;
633 	rsp->req.sg_cnt = sg_count;
634 }
635 
636 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
637 {
638 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
639 	u64 off = le64_to_cpu(sgl->addr);
640 	u32 len = le32_to_cpu(sgl->length);
641 
642 	if (!nvme_is_write(rsp->req.cmd)) {
643 		rsp->req.error_loc =
644 			offsetof(struct nvme_common_command, opcode);
645 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
646 	}
647 
648 	if (off + len > rsp->queue->dev->inline_data_size) {
649 		pr_err("invalid inline data offset!\n");
650 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
651 	}
652 
653 	/* no data command? */
654 	if (!len)
655 		return 0;
656 
657 	nvmet_rdma_use_inline_sg(rsp, len, off);
658 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
659 	rsp->req.transfer_len += len;
660 	return 0;
661 }
662 
663 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
664 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
665 {
666 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
667 	u64 addr = le64_to_cpu(sgl->addr);
668 	u32 key = get_unaligned_le32(sgl->key);
669 	int ret;
670 
671 	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
672 
673 	/* no data command? */
674 	if (!rsp->req.transfer_len)
675 		return 0;
676 
677 	ret = nvmet_req_alloc_sgl(&rsp->req);
678 	if (unlikely(ret < 0))
679 		goto error_out;
680 
681 	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
682 			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
683 			nvmet_data_dir(&rsp->req));
684 	if (unlikely(ret < 0))
685 		goto error_out;
686 	rsp->n_rdma += ret;
687 
688 	if (invalidate) {
689 		rsp->invalidate_rkey = key;
690 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
691 	}
692 
693 	return 0;
694 
695 error_out:
696 	rsp->req.transfer_len = 0;
697 	return NVME_SC_INTERNAL;
698 }
699 
700 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
701 {
702 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
703 
704 	switch (sgl->type >> 4) {
705 	case NVME_SGL_FMT_DATA_DESC:
706 		switch (sgl->type & 0xf) {
707 		case NVME_SGL_FMT_OFFSET:
708 			return nvmet_rdma_map_sgl_inline(rsp);
709 		default:
710 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
711 			rsp->req.error_loc =
712 				offsetof(struct nvme_common_command, dptr);
713 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
714 		}
715 	case NVME_KEY_SGL_FMT_DATA_DESC:
716 		switch (sgl->type & 0xf) {
717 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
718 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
719 		case NVME_SGL_FMT_ADDRESS:
720 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
721 		default:
722 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
723 			rsp->req.error_loc =
724 				offsetof(struct nvme_common_command, dptr);
725 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
726 		}
727 	default:
728 		pr_err("invalid SGL type: %#x\n", sgl->type);
729 		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
730 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
731 	}
732 }
733 
734 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
735 {
736 	struct nvmet_rdma_queue *queue = rsp->queue;
737 
738 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
739 			&queue->sq_wr_avail) < 0)) {
740 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
741 				1 + rsp->n_rdma, queue->idx,
742 				queue->nvme_sq.ctrl->cntlid);
743 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
744 		return false;
745 	}
746 
747 	if (nvmet_rdma_need_data_in(rsp)) {
748 		if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
749 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
750 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
751 	} else {
752 		rsp->req.execute(&rsp->req);
753 	}
754 
755 	return true;
756 }
757 
758 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
759 		struct nvmet_rdma_rsp *cmd)
760 {
761 	u16 status;
762 
763 	ib_dma_sync_single_for_cpu(queue->dev->device,
764 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
765 		DMA_FROM_DEVICE);
766 	ib_dma_sync_single_for_cpu(queue->dev->device,
767 		cmd->send_sge.addr, cmd->send_sge.length,
768 		DMA_TO_DEVICE);
769 
770 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
771 			&queue->nvme_sq, &nvmet_rdma_ops))
772 		return;
773 
774 	status = nvmet_rdma_map_sgl(cmd);
775 	if (status)
776 		goto out_err;
777 
778 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
779 		spin_lock(&queue->rsp_wr_wait_lock);
780 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
781 		spin_unlock(&queue->rsp_wr_wait_lock);
782 	}
783 
784 	return;
785 
786 out_err:
787 	nvmet_req_complete(&cmd->req, status);
788 }
789 
790 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
791 {
792 	struct nvmet_rdma_cmd *cmd =
793 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
794 	struct nvmet_rdma_queue *queue = cq->cq_context;
795 	struct nvmet_rdma_rsp *rsp;
796 
797 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
798 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
799 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
800 				wc->wr_cqe, ib_wc_status_msg(wc->status),
801 				wc->status);
802 			nvmet_rdma_error_comp(queue);
803 		}
804 		return;
805 	}
806 
807 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
808 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
809 		nvmet_rdma_error_comp(queue);
810 		return;
811 	}
812 
813 	cmd->queue = queue;
814 	rsp = nvmet_rdma_get_rsp(queue);
815 	if (unlikely(!rsp)) {
816 		/*
817 		 * we get here only under memory pressure,
818 		 * silently drop and have the host retry
819 		 * as we can't even fail it.
820 		 */
821 		nvmet_rdma_post_recv(queue->dev, cmd);
822 		return;
823 	}
824 	rsp->queue = queue;
825 	rsp->cmd = cmd;
826 	rsp->flags = 0;
827 	rsp->req.cmd = cmd->nvme_cmd;
828 	rsp->req.port = queue->port;
829 	rsp->n_rdma = 0;
830 
831 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
832 		unsigned long flags;
833 
834 		spin_lock_irqsave(&queue->state_lock, flags);
835 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
836 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
837 		else
838 			nvmet_rdma_put_rsp(rsp);
839 		spin_unlock_irqrestore(&queue->state_lock, flags);
840 		return;
841 	}
842 
843 	nvmet_rdma_handle_command(queue, rsp);
844 }
845 
846 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
847 {
848 	if (!ndev->srq)
849 		return;
850 
851 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
852 	ib_destroy_srq(ndev->srq);
853 }
854 
855 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
856 {
857 	struct ib_srq_init_attr srq_attr = { NULL, };
858 	struct ib_srq *srq;
859 	size_t srq_size;
860 	int ret, i;
861 
862 	srq_size = 4095;	/* XXX: tune */
863 
864 	srq_attr.attr.max_wr = srq_size;
865 	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
866 	srq_attr.attr.srq_limit = 0;
867 	srq_attr.srq_type = IB_SRQT_BASIC;
868 	srq = ib_create_srq(ndev->pd, &srq_attr);
869 	if (IS_ERR(srq)) {
870 		/*
871 		 * If SRQs aren't supported we just go ahead and use normal
872 		 * non-shared receive queues.
873 		 */
874 		pr_info("SRQ requested but not supported.\n");
875 		return 0;
876 	}
877 
878 	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
879 	if (IS_ERR(ndev->srq_cmds)) {
880 		ret = PTR_ERR(ndev->srq_cmds);
881 		goto out_destroy_srq;
882 	}
883 
884 	ndev->srq = srq;
885 	ndev->srq_size = srq_size;
886 
887 	for (i = 0; i < srq_size; i++) {
888 		ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
889 		if (ret)
890 			goto out_free_cmds;
891 	}
892 
893 	return 0;
894 
895 out_free_cmds:
896 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
897 out_destroy_srq:
898 	ib_destroy_srq(srq);
899 	return ret;
900 }
901 
902 static void nvmet_rdma_free_dev(struct kref *ref)
903 {
904 	struct nvmet_rdma_device *ndev =
905 		container_of(ref, struct nvmet_rdma_device, ref);
906 
907 	mutex_lock(&device_list_mutex);
908 	list_del(&ndev->entry);
909 	mutex_unlock(&device_list_mutex);
910 
911 	nvmet_rdma_destroy_srq(ndev);
912 	ib_dealloc_pd(ndev->pd);
913 
914 	kfree(ndev);
915 }
916 
917 static struct nvmet_rdma_device *
918 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
919 {
920 	struct nvmet_port *port = cm_id->context;
921 	struct nvmet_rdma_device *ndev;
922 	int inline_page_count;
923 	int inline_sge_count;
924 	int ret;
925 
926 	mutex_lock(&device_list_mutex);
927 	list_for_each_entry(ndev, &device_list, entry) {
928 		if (ndev->device->node_guid == cm_id->device->node_guid &&
929 		    kref_get_unless_zero(&ndev->ref))
930 			goto out_unlock;
931 	}
932 
933 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
934 	if (!ndev)
935 		goto out_err;
936 
937 	inline_page_count = num_pages(port->inline_data_size);
938 	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
939 				cm_id->device->attrs.max_recv_sge) - 1;
940 	if (inline_page_count > inline_sge_count) {
941 		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
942 			port->inline_data_size, cm_id->device->name,
943 			inline_sge_count * PAGE_SIZE);
944 		port->inline_data_size = inline_sge_count * PAGE_SIZE;
945 		inline_page_count = inline_sge_count;
946 	}
947 	ndev->inline_data_size = port->inline_data_size;
948 	ndev->inline_page_count = inline_page_count;
949 	ndev->device = cm_id->device;
950 	kref_init(&ndev->ref);
951 
952 	ndev->pd = ib_alloc_pd(ndev->device, 0);
953 	if (IS_ERR(ndev->pd))
954 		goto out_free_dev;
955 
956 	if (nvmet_rdma_use_srq) {
957 		ret = nvmet_rdma_init_srq(ndev);
958 		if (ret)
959 			goto out_free_pd;
960 	}
961 
962 	list_add(&ndev->entry, &device_list);
963 out_unlock:
964 	mutex_unlock(&device_list_mutex);
965 	pr_debug("added %s.\n", ndev->device->name);
966 	return ndev;
967 
968 out_free_pd:
969 	ib_dealloc_pd(ndev->pd);
970 out_free_dev:
971 	kfree(ndev);
972 out_err:
973 	mutex_unlock(&device_list_mutex);
974 	return NULL;
975 }
976 
977 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
978 {
979 	struct ib_qp_init_attr qp_attr;
980 	struct nvmet_rdma_device *ndev = queue->dev;
981 	int comp_vector, nr_cqe, ret, i, factor;
982 
983 	/*
984 	 * Spread the io queues across completion vectors,
985 	 * but still keep all admin queues on vector 0.
986 	 */
987 	comp_vector = !queue->host_qid ? 0 :
988 		queue->idx % ndev->device->num_comp_vectors;
989 
990 	/*
991 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
992 	 */
993 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
994 
995 	queue->cq = ib_alloc_cq(ndev->device, queue,
996 			nr_cqe + 1, comp_vector,
997 			IB_POLL_WORKQUEUE);
998 	if (IS_ERR(queue->cq)) {
999 		ret = PTR_ERR(queue->cq);
1000 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1001 		       nr_cqe + 1, ret);
1002 		goto out;
1003 	}
1004 
1005 	memset(&qp_attr, 0, sizeof(qp_attr));
1006 	qp_attr.qp_context = queue;
1007 	qp_attr.event_handler = nvmet_rdma_qp_event;
1008 	qp_attr.send_cq = queue->cq;
1009 	qp_attr.recv_cq = queue->cq;
1010 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1011 	qp_attr.qp_type = IB_QPT_RC;
1012 	/* +1 for drain */
1013 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1014 	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1015 				   1 << NVMET_RDMA_MAX_MDTS);
1016 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1017 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1018 					ndev->device->attrs.max_send_sge);
1019 
1020 	if (ndev->srq) {
1021 		qp_attr.srq = ndev->srq;
1022 	} else {
1023 		/* +1 for drain */
1024 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1025 		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1026 	}
1027 
1028 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1029 	if (ret) {
1030 		pr_err("failed to create_qp ret= %d\n", ret);
1031 		goto err_destroy_cq;
1032 	}
1033 
1034 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1035 
1036 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1037 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1038 		 qp_attr.cap.max_send_wr, queue->cm_id);
1039 
1040 	if (!ndev->srq) {
1041 		for (i = 0; i < queue->recv_queue_size; i++) {
1042 			queue->cmds[i].queue = queue;
1043 			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1044 			if (ret)
1045 				goto err_destroy_qp;
1046 		}
1047 	}
1048 
1049 out:
1050 	return ret;
1051 
1052 err_destroy_qp:
1053 	rdma_destroy_qp(queue->cm_id);
1054 err_destroy_cq:
1055 	ib_free_cq(queue->cq);
1056 	goto out;
1057 }
1058 
1059 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1060 {
1061 	struct ib_qp *qp = queue->cm_id->qp;
1062 
1063 	ib_drain_qp(qp);
1064 	rdma_destroy_id(queue->cm_id);
1065 	ib_destroy_qp(qp);
1066 	ib_free_cq(queue->cq);
1067 }
1068 
1069 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1070 {
1071 	pr_debug("freeing queue %d\n", queue->idx);
1072 
1073 	nvmet_sq_destroy(&queue->nvme_sq);
1074 
1075 	nvmet_rdma_destroy_queue_ib(queue);
1076 	if (!queue->dev->srq) {
1077 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1078 				queue->recv_queue_size,
1079 				!queue->host_qid);
1080 	}
1081 	nvmet_rdma_free_rsps(queue);
1082 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1083 	kfree(queue);
1084 }
1085 
1086 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1087 {
1088 	struct nvmet_rdma_queue *queue =
1089 		container_of(w, struct nvmet_rdma_queue, release_work);
1090 	struct nvmet_rdma_device *dev = queue->dev;
1091 
1092 	nvmet_rdma_free_queue(queue);
1093 
1094 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1095 }
1096 
1097 static int
1098 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1099 				struct nvmet_rdma_queue *queue)
1100 {
1101 	struct nvme_rdma_cm_req *req;
1102 
1103 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1104 	if (!req || conn->private_data_len == 0)
1105 		return NVME_RDMA_CM_INVALID_LEN;
1106 
1107 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1108 		return NVME_RDMA_CM_INVALID_RECFMT;
1109 
1110 	queue->host_qid = le16_to_cpu(req->qid);
1111 
1112 	/*
1113 	 * req->hsqsize corresponds to our recv queue size plus 1
1114 	 * req->hrqsize corresponds to our send queue size
1115 	 */
1116 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1117 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1118 
1119 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1120 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1121 
1122 	/* XXX: Should we enforce some kind of max for IO queues? */
1123 
1124 	return 0;
1125 }
1126 
1127 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1128 				enum nvme_rdma_cm_status status)
1129 {
1130 	struct nvme_rdma_cm_rej rej;
1131 
1132 	pr_debug("rejecting connect request: status %d (%s)\n",
1133 		 status, nvme_rdma_cm_msg(status));
1134 
1135 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1136 	rej.sts = cpu_to_le16(status);
1137 
1138 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1139 }
1140 
1141 static struct nvmet_rdma_queue *
1142 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1143 		struct rdma_cm_id *cm_id,
1144 		struct rdma_cm_event *event)
1145 {
1146 	struct nvmet_rdma_queue *queue;
1147 	int ret;
1148 
1149 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1150 	if (!queue) {
1151 		ret = NVME_RDMA_CM_NO_RSC;
1152 		goto out_reject;
1153 	}
1154 
1155 	ret = nvmet_sq_init(&queue->nvme_sq);
1156 	if (ret) {
1157 		ret = NVME_RDMA_CM_NO_RSC;
1158 		goto out_free_queue;
1159 	}
1160 
1161 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1162 	if (ret)
1163 		goto out_destroy_sq;
1164 
1165 	/*
1166 	 * Schedules the actual release because calling rdma_destroy_id from
1167 	 * inside a CM callback would trigger a deadlock. (great API design..)
1168 	 */
1169 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1170 	queue->dev = ndev;
1171 	queue->cm_id = cm_id;
1172 
1173 	spin_lock_init(&queue->state_lock);
1174 	queue->state = NVMET_RDMA_Q_CONNECTING;
1175 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1176 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1177 	spin_lock_init(&queue->rsp_wr_wait_lock);
1178 	INIT_LIST_HEAD(&queue->free_rsps);
1179 	spin_lock_init(&queue->rsps_lock);
1180 	INIT_LIST_HEAD(&queue->queue_list);
1181 
1182 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1183 	if (queue->idx < 0) {
1184 		ret = NVME_RDMA_CM_NO_RSC;
1185 		goto out_destroy_sq;
1186 	}
1187 
1188 	ret = nvmet_rdma_alloc_rsps(queue);
1189 	if (ret) {
1190 		ret = NVME_RDMA_CM_NO_RSC;
1191 		goto out_ida_remove;
1192 	}
1193 
1194 	if (!ndev->srq) {
1195 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1196 				queue->recv_queue_size,
1197 				!queue->host_qid);
1198 		if (IS_ERR(queue->cmds)) {
1199 			ret = NVME_RDMA_CM_NO_RSC;
1200 			goto out_free_responses;
1201 		}
1202 	}
1203 
1204 	ret = nvmet_rdma_create_queue_ib(queue);
1205 	if (ret) {
1206 		pr_err("%s: creating RDMA queue failed (%d).\n",
1207 			__func__, ret);
1208 		ret = NVME_RDMA_CM_NO_RSC;
1209 		goto out_free_cmds;
1210 	}
1211 
1212 	return queue;
1213 
1214 out_free_cmds:
1215 	if (!ndev->srq) {
1216 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1217 				queue->recv_queue_size,
1218 				!queue->host_qid);
1219 	}
1220 out_free_responses:
1221 	nvmet_rdma_free_rsps(queue);
1222 out_ida_remove:
1223 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1224 out_destroy_sq:
1225 	nvmet_sq_destroy(&queue->nvme_sq);
1226 out_free_queue:
1227 	kfree(queue);
1228 out_reject:
1229 	nvmet_rdma_cm_reject(cm_id, ret);
1230 	return NULL;
1231 }
1232 
1233 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1234 {
1235 	struct nvmet_rdma_queue *queue = priv;
1236 
1237 	switch (event->event) {
1238 	case IB_EVENT_COMM_EST:
1239 		rdma_notify(queue->cm_id, event->event);
1240 		break;
1241 	default:
1242 		pr_err("received IB QP event: %s (%d)\n",
1243 		       ib_event_msg(event->event), event->event);
1244 		break;
1245 	}
1246 }
1247 
1248 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1249 		struct nvmet_rdma_queue *queue,
1250 		struct rdma_conn_param *p)
1251 {
1252 	struct rdma_conn_param  param = { };
1253 	struct nvme_rdma_cm_rep priv = { };
1254 	int ret = -ENOMEM;
1255 
1256 	param.rnr_retry_count = 7;
1257 	param.flow_control = 1;
1258 	param.initiator_depth = min_t(u8, p->initiator_depth,
1259 		queue->dev->device->attrs.max_qp_init_rd_atom);
1260 	param.private_data = &priv;
1261 	param.private_data_len = sizeof(priv);
1262 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1263 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1264 
1265 	ret = rdma_accept(cm_id, &param);
1266 	if (ret)
1267 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1268 
1269 	return ret;
1270 }
1271 
1272 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1273 		struct rdma_cm_event *event)
1274 {
1275 	struct nvmet_rdma_device *ndev;
1276 	struct nvmet_rdma_queue *queue;
1277 	int ret = -EINVAL;
1278 
1279 	ndev = nvmet_rdma_find_get_device(cm_id);
1280 	if (!ndev) {
1281 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1282 		return -ECONNREFUSED;
1283 	}
1284 
1285 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1286 	if (!queue) {
1287 		ret = -ENOMEM;
1288 		goto put_device;
1289 	}
1290 	queue->port = cm_id->context;
1291 
1292 	if (queue->host_qid == 0) {
1293 		/* Let inflight controller teardown complete */
1294 		flush_scheduled_work();
1295 	}
1296 
1297 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1298 	if (ret) {
1299 		schedule_work(&queue->release_work);
1300 		/* Destroying rdma_cm id is not needed here */
1301 		return 0;
1302 	}
1303 
1304 	mutex_lock(&nvmet_rdma_queue_mutex);
1305 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1306 	mutex_unlock(&nvmet_rdma_queue_mutex);
1307 
1308 	return 0;
1309 
1310 put_device:
1311 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1312 
1313 	return ret;
1314 }
1315 
1316 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1317 {
1318 	unsigned long flags;
1319 
1320 	spin_lock_irqsave(&queue->state_lock, flags);
1321 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1322 		pr_warn("trying to establish a connected queue\n");
1323 		goto out_unlock;
1324 	}
1325 	queue->state = NVMET_RDMA_Q_LIVE;
1326 
1327 	while (!list_empty(&queue->rsp_wait_list)) {
1328 		struct nvmet_rdma_rsp *cmd;
1329 
1330 		cmd = list_first_entry(&queue->rsp_wait_list,
1331 					struct nvmet_rdma_rsp, wait_list);
1332 		list_del(&cmd->wait_list);
1333 
1334 		spin_unlock_irqrestore(&queue->state_lock, flags);
1335 		nvmet_rdma_handle_command(queue, cmd);
1336 		spin_lock_irqsave(&queue->state_lock, flags);
1337 	}
1338 
1339 out_unlock:
1340 	spin_unlock_irqrestore(&queue->state_lock, flags);
1341 }
1342 
1343 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1344 {
1345 	bool disconnect = false;
1346 	unsigned long flags;
1347 
1348 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1349 
1350 	spin_lock_irqsave(&queue->state_lock, flags);
1351 	switch (queue->state) {
1352 	case NVMET_RDMA_Q_CONNECTING:
1353 	case NVMET_RDMA_Q_LIVE:
1354 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1355 		disconnect = true;
1356 		break;
1357 	case NVMET_RDMA_Q_DISCONNECTING:
1358 		break;
1359 	}
1360 	spin_unlock_irqrestore(&queue->state_lock, flags);
1361 
1362 	if (disconnect) {
1363 		rdma_disconnect(queue->cm_id);
1364 		schedule_work(&queue->release_work);
1365 	}
1366 }
1367 
1368 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1369 {
1370 	bool disconnect = false;
1371 
1372 	mutex_lock(&nvmet_rdma_queue_mutex);
1373 	if (!list_empty(&queue->queue_list)) {
1374 		list_del_init(&queue->queue_list);
1375 		disconnect = true;
1376 	}
1377 	mutex_unlock(&nvmet_rdma_queue_mutex);
1378 
1379 	if (disconnect)
1380 		__nvmet_rdma_queue_disconnect(queue);
1381 }
1382 
1383 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1384 		struct nvmet_rdma_queue *queue)
1385 {
1386 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1387 
1388 	mutex_lock(&nvmet_rdma_queue_mutex);
1389 	if (!list_empty(&queue->queue_list))
1390 		list_del_init(&queue->queue_list);
1391 	mutex_unlock(&nvmet_rdma_queue_mutex);
1392 
1393 	pr_err("failed to connect queue %d\n", queue->idx);
1394 	schedule_work(&queue->release_work);
1395 }
1396 
1397 /**
1398  * nvme_rdma_device_removal() - Handle RDMA device removal
1399  * @cm_id:	rdma_cm id, used for nvmet port
1400  * @queue:      nvmet rdma queue (cm id qp_context)
1401  *
1402  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1403  * to unplug. Note that this event can be generated on a normal
1404  * queue cm_id and/or a device bound listener cm_id (where in this
1405  * case queue will be null).
1406  *
1407  * We registered an ib_client to handle device removal for queues,
1408  * so we only need to handle the listening port cm_ids. In this case
1409  * we nullify the priv to prevent double cm_id destruction and destroying
1410  * the cm_id implicitely by returning a non-zero rc to the callout.
1411  */
1412 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1413 		struct nvmet_rdma_queue *queue)
1414 {
1415 	struct nvmet_port *port;
1416 
1417 	if (queue) {
1418 		/*
1419 		 * This is a queue cm_id. we have registered
1420 		 * an ib_client to handle queues removal
1421 		 * so don't interfear and just return.
1422 		 */
1423 		return 0;
1424 	}
1425 
1426 	port = cm_id->context;
1427 
1428 	/*
1429 	 * This is a listener cm_id. Make sure that
1430 	 * future remove_port won't invoke a double
1431 	 * cm_id destroy. use atomic xchg to make sure
1432 	 * we don't compete with remove_port.
1433 	 */
1434 	if (xchg(&port->priv, NULL) != cm_id)
1435 		return 0;
1436 
1437 	/*
1438 	 * We need to return 1 so that the core will destroy
1439 	 * it's own ID.  What a great API design..
1440 	 */
1441 	return 1;
1442 }
1443 
1444 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1445 		struct rdma_cm_event *event)
1446 {
1447 	struct nvmet_rdma_queue *queue = NULL;
1448 	int ret = 0;
1449 
1450 	if (cm_id->qp)
1451 		queue = cm_id->qp->qp_context;
1452 
1453 	pr_debug("%s (%d): status %d id %p\n",
1454 		rdma_event_msg(event->event), event->event,
1455 		event->status, cm_id);
1456 
1457 	switch (event->event) {
1458 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1459 		ret = nvmet_rdma_queue_connect(cm_id, event);
1460 		break;
1461 	case RDMA_CM_EVENT_ESTABLISHED:
1462 		nvmet_rdma_queue_established(queue);
1463 		break;
1464 	case RDMA_CM_EVENT_ADDR_CHANGE:
1465 	case RDMA_CM_EVENT_DISCONNECTED:
1466 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1467 		nvmet_rdma_queue_disconnect(queue);
1468 		break;
1469 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1470 		ret = nvmet_rdma_device_removal(cm_id, queue);
1471 		break;
1472 	case RDMA_CM_EVENT_REJECTED:
1473 		pr_debug("Connection rejected: %s\n",
1474 			 rdma_reject_msg(cm_id, event->status));
1475 		/* FALLTHROUGH */
1476 	case RDMA_CM_EVENT_UNREACHABLE:
1477 	case RDMA_CM_EVENT_CONNECT_ERROR:
1478 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1479 		break;
1480 	default:
1481 		pr_err("received unrecognized RDMA CM event %d\n",
1482 			event->event);
1483 		break;
1484 	}
1485 
1486 	return ret;
1487 }
1488 
1489 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1490 {
1491 	struct nvmet_rdma_queue *queue;
1492 
1493 restart:
1494 	mutex_lock(&nvmet_rdma_queue_mutex);
1495 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1496 		if (queue->nvme_sq.ctrl == ctrl) {
1497 			list_del_init(&queue->queue_list);
1498 			mutex_unlock(&nvmet_rdma_queue_mutex);
1499 
1500 			__nvmet_rdma_queue_disconnect(queue);
1501 			goto restart;
1502 		}
1503 	}
1504 	mutex_unlock(&nvmet_rdma_queue_mutex);
1505 }
1506 
1507 static int nvmet_rdma_add_port(struct nvmet_port *port)
1508 {
1509 	struct rdma_cm_id *cm_id;
1510 	struct sockaddr_storage addr = { };
1511 	__kernel_sa_family_t af;
1512 	int ret;
1513 
1514 	switch (port->disc_addr.adrfam) {
1515 	case NVMF_ADDR_FAMILY_IP4:
1516 		af = AF_INET;
1517 		break;
1518 	case NVMF_ADDR_FAMILY_IP6:
1519 		af = AF_INET6;
1520 		break;
1521 	default:
1522 		pr_err("address family %d not supported\n",
1523 				port->disc_addr.adrfam);
1524 		return -EINVAL;
1525 	}
1526 
1527 	if (port->inline_data_size < 0) {
1528 		port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1529 	} else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1530 		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1531 			port->inline_data_size,
1532 			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1533 		port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1534 	}
1535 
1536 	ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1537 			port->disc_addr.trsvcid, &addr);
1538 	if (ret) {
1539 		pr_err("malformed ip/port passed: %s:%s\n",
1540 			port->disc_addr.traddr, port->disc_addr.trsvcid);
1541 		return ret;
1542 	}
1543 
1544 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1545 			RDMA_PS_TCP, IB_QPT_RC);
1546 	if (IS_ERR(cm_id)) {
1547 		pr_err("CM ID creation failed\n");
1548 		return PTR_ERR(cm_id);
1549 	}
1550 
1551 	/*
1552 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1553 	 * at the same time.
1554 	 */
1555 	ret = rdma_set_afonly(cm_id, 1);
1556 	if (ret) {
1557 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1558 		goto out_destroy_id;
1559 	}
1560 
1561 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1562 	if (ret) {
1563 		pr_err("binding CM ID to %pISpcs failed (%d)\n",
1564 			(struct sockaddr *)&addr, ret);
1565 		goto out_destroy_id;
1566 	}
1567 
1568 	ret = rdma_listen(cm_id, 128);
1569 	if (ret) {
1570 		pr_err("listening to %pISpcs failed (%d)\n",
1571 			(struct sockaddr *)&addr, ret);
1572 		goto out_destroy_id;
1573 	}
1574 
1575 	pr_info("enabling port %d (%pISpcs)\n",
1576 		le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1577 	port->priv = cm_id;
1578 	return 0;
1579 
1580 out_destroy_id:
1581 	rdma_destroy_id(cm_id);
1582 	return ret;
1583 }
1584 
1585 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1586 {
1587 	struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1588 
1589 	if (cm_id)
1590 		rdma_destroy_id(cm_id);
1591 }
1592 
1593 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1594 		struct nvmet_port *port, char *traddr)
1595 {
1596 	struct rdma_cm_id *cm_id = port->priv;
1597 
1598 	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1599 		struct nvmet_rdma_rsp *rsp =
1600 			container_of(req, struct nvmet_rdma_rsp, req);
1601 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1602 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1603 
1604 		sprintf(traddr, "%pISc", addr);
1605 	} else {
1606 		memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
1607 	}
1608 }
1609 
1610 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1611 {
1612 	return NVMET_RDMA_MAX_MDTS;
1613 }
1614 
1615 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1616 	.owner			= THIS_MODULE,
1617 	.type			= NVMF_TRTYPE_RDMA,
1618 	.msdbd			= 1,
1619 	.has_keyed_sgls		= 1,
1620 	.add_port		= nvmet_rdma_add_port,
1621 	.remove_port		= nvmet_rdma_remove_port,
1622 	.queue_response		= nvmet_rdma_queue_response,
1623 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1624 	.disc_traddr		= nvmet_rdma_disc_port_addr,
1625 	.get_mdts		= nvmet_rdma_get_mdts,
1626 };
1627 
1628 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1629 {
1630 	struct nvmet_rdma_queue *queue, *tmp;
1631 	struct nvmet_rdma_device *ndev;
1632 	bool found = false;
1633 
1634 	mutex_lock(&device_list_mutex);
1635 	list_for_each_entry(ndev, &device_list, entry) {
1636 		if (ndev->device == ib_device) {
1637 			found = true;
1638 			break;
1639 		}
1640 	}
1641 	mutex_unlock(&device_list_mutex);
1642 
1643 	if (!found)
1644 		return;
1645 
1646 	/*
1647 	 * IB Device that is used by nvmet controllers is being removed,
1648 	 * delete all queues using this device.
1649 	 */
1650 	mutex_lock(&nvmet_rdma_queue_mutex);
1651 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1652 				 queue_list) {
1653 		if (queue->dev->device != ib_device)
1654 			continue;
1655 
1656 		pr_info("Removing queue %d\n", queue->idx);
1657 		list_del_init(&queue->queue_list);
1658 		__nvmet_rdma_queue_disconnect(queue);
1659 	}
1660 	mutex_unlock(&nvmet_rdma_queue_mutex);
1661 
1662 	flush_scheduled_work();
1663 }
1664 
1665 static struct ib_client nvmet_rdma_ib_client = {
1666 	.name   = "nvmet_rdma",
1667 	.remove = nvmet_rdma_remove_one
1668 };
1669 
1670 static int __init nvmet_rdma_init(void)
1671 {
1672 	int ret;
1673 
1674 	ret = ib_register_client(&nvmet_rdma_ib_client);
1675 	if (ret)
1676 		return ret;
1677 
1678 	ret = nvmet_register_transport(&nvmet_rdma_ops);
1679 	if (ret)
1680 		goto err_ib_client;
1681 
1682 	return 0;
1683 
1684 err_ib_client:
1685 	ib_unregister_client(&nvmet_rdma_ib_client);
1686 	return ret;
1687 }
1688 
1689 static void __exit nvmet_rdma_exit(void)
1690 {
1691 	nvmet_unregister_transport(&nvmet_rdma_ops);
1692 	ib_unregister_client(&nvmet_rdma_ib_client);
1693 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1694 	ida_destroy(&nvmet_rdma_queue_ida);
1695 }
1696 
1697 module_init(nvmet_rdma_init);
1698 module_exit(nvmet_rdma_exit);
1699 
1700 MODULE_LICENSE("GPL v2");
1701 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1702