1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/nvme.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/wait.h> 18 #include <linux/inet.h> 19 #include <asm/unaligned.h> 20 21 #include <rdma/ib_verbs.h> 22 #include <rdma/rdma_cm.h> 23 #include <rdma/rw.h> 24 #include <rdma/ib_cm.h> 25 26 #include <linux/nvme-rdma.h> 27 #include "nvmet.h" 28 29 /* 30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 31 */ 32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 33 #define NVMET_RDMA_MAX_INLINE_SGE 4 34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 35 36 /* Assume mpsmin == device_page_size == 4KB */ 37 #define NVMET_RDMA_MAX_MDTS 8 38 #define NVMET_RDMA_MAX_METADATA_MDTS 5 39 40 #define NVMET_RDMA_BACKLOG 128 41 42 struct nvmet_rdma_srq; 43 44 struct nvmet_rdma_cmd { 45 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 46 struct ib_cqe cqe; 47 struct ib_recv_wr wr; 48 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 49 struct nvme_command *nvme_cmd; 50 struct nvmet_rdma_queue *queue; 51 struct nvmet_rdma_srq *nsrq; 52 }; 53 54 enum { 55 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 56 }; 57 58 struct nvmet_rdma_rsp { 59 struct ib_sge send_sge; 60 struct ib_cqe send_cqe; 61 struct ib_send_wr send_wr; 62 63 struct nvmet_rdma_cmd *cmd; 64 struct nvmet_rdma_queue *queue; 65 66 struct ib_cqe read_cqe; 67 struct ib_cqe write_cqe; 68 struct rdma_rw_ctx rw; 69 70 struct nvmet_req req; 71 72 bool allocated; 73 u8 n_rdma; 74 u32 flags; 75 u32 invalidate_rkey; 76 77 struct list_head wait_list; 78 struct list_head free_list; 79 }; 80 81 enum nvmet_rdma_queue_state { 82 NVMET_RDMA_Q_CONNECTING, 83 NVMET_RDMA_Q_LIVE, 84 NVMET_RDMA_Q_DISCONNECTING, 85 }; 86 87 struct nvmet_rdma_queue { 88 struct rdma_cm_id *cm_id; 89 struct ib_qp *qp; 90 struct nvmet_port *port; 91 struct ib_cq *cq; 92 atomic_t sq_wr_avail; 93 struct nvmet_rdma_device *dev; 94 struct nvmet_rdma_srq *nsrq; 95 spinlock_t state_lock; 96 enum nvmet_rdma_queue_state state; 97 struct nvmet_cq nvme_cq; 98 struct nvmet_sq nvme_sq; 99 100 struct nvmet_rdma_rsp *rsps; 101 struct list_head free_rsps; 102 spinlock_t rsps_lock; 103 struct nvmet_rdma_cmd *cmds; 104 105 struct work_struct release_work; 106 struct list_head rsp_wait_list; 107 struct list_head rsp_wr_wait_list; 108 spinlock_t rsp_wr_wait_lock; 109 110 int idx; 111 int host_qid; 112 int comp_vector; 113 int recv_queue_size; 114 int send_queue_size; 115 116 struct list_head queue_list; 117 }; 118 119 struct nvmet_rdma_port { 120 struct nvmet_port *nport; 121 struct sockaddr_storage addr; 122 struct rdma_cm_id *cm_id; 123 struct delayed_work repair_work; 124 }; 125 126 struct nvmet_rdma_srq { 127 struct ib_srq *srq; 128 struct nvmet_rdma_cmd *cmds; 129 struct nvmet_rdma_device *ndev; 130 }; 131 132 struct nvmet_rdma_device { 133 struct ib_device *device; 134 struct ib_pd *pd; 135 struct nvmet_rdma_srq **srqs; 136 int srq_count; 137 size_t srq_size; 138 struct kref ref; 139 struct list_head entry; 140 int inline_data_size; 141 int inline_page_count; 142 }; 143 144 static bool nvmet_rdma_use_srq; 145 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 146 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 147 148 static int srq_size_set(const char *val, const struct kernel_param *kp); 149 static const struct kernel_param_ops srq_size_ops = { 150 .set = srq_size_set, 151 .get = param_get_int, 152 }; 153 154 static int nvmet_rdma_srq_size = 1024; 155 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 156 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 157 158 static DEFINE_IDA(nvmet_rdma_queue_ida); 159 static LIST_HEAD(nvmet_rdma_queue_list); 160 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 161 162 static LIST_HEAD(device_list); 163 static DEFINE_MUTEX(device_list_mutex); 164 165 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 166 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 167 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 169 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 170 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 171 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 172 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 173 struct nvmet_rdma_rsp *r); 174 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 175 struct nvmet_rdma_rsp *r); 176 177 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 178 179 static int srq_size_set(const char *val, const struct kernel_param *kp) 180 { 181 int n = 0, ret; 182 183 ret = kstrtoint(val, 10, &n); 184 if (ret != 0 || n < 256) 185 return -EINVAL; 186 187 return param_set_int(val, kp); 188 } 189 190 static int num_pages(int len) 191 { 192 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 193 } 194 195 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 196 { 197 return nvme_is_write(rsp->req.cmd) && 198 rsp->req.transfer_len && 199 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 200 } 201 202 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 203 { 204 return !nvme_is_write(rsp->req.cmd) && 205 rsp->req.transfer_len && 206 !rsp->req.cqe->status && 207 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 208 } 209 210 static inline struct nvmet_rdma_rsp * 211 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 212 { 213 struct nvmet_rdma_rsp *rsp; 214 unsigned long flags; 215 216 spin_lock_irqsave(&queue->rsps_lock, flags); 217 rsp = list_first_entry_or_null(&queue->free_rsps, 218 struct nvmet_rdma_rsp, free_list); 219 if (likely(rsp)) 220 list_del(&rsp->free_list); 221 spin_unlock_irqrestore(&queue->rsps_lock, flags); 222 223 if (unlikely(!rsp)) { 224 int ret; 225 226 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 227 if (unlikely(!rsp)) 228 return NULL; 229 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 230 if (unlikely(ret)) { 231 kfree(rsp); 232 return NULL; 233 } 234 235 rsp->allocated = true; 236 } 237 238 return rsp; 239 } 240 241 static inline void 242 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 243 { 244 unsigned long flags; 245 246 if (unlikely(rsp->allocated)) { 247 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 248 kfree(rsp); 249 return; 250 } 251 252 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 253 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 254 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 255 } 256 257 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 258 struct nvmet_rdma_cmd *c) 259 { 260 struct scatterlist *sg; 261 struct ib_sge *sge; 262 int i; 263 264 if (!ndev->inline_data_size) 265 return; 266 267 sg = c->inline_sg; 268 sge = &c->sge[1]; 269 270 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 271 if (sge->length) 272 ib_dma_unmap_page(ndev->device, sge->addr, 273 sge->length, DMA_FROM_DEVICE); 274 if (sg_page(sg)) 275 __free_page(sg_page(sg)); 276 } 277 } 278 279 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 280 struct nvmet_rdma_cmd *c) 281 { 282 struct scatterlist *sg; 283 struct ib_sge *sge; 284 struct page *pg; 285 int len; 286 int i; 287 288 if (!ndev->inline_data_size) 289 return 0; 290 291 sg = c->inline_sg; 292 sg_init_table(sg, ndev->inline_page_count); 293 sge = &c->sge[1]; 294 len = ndev->inline_data_size; 295 296 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 297 pg = alloc_page(GFP_KERNEL); 298 if (!pg) 299 goto out_err; 300 sg_assign_page(sg, pg); 301 sge->addr = ib_dma_map_page(ndev->device, 302 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 303 if (ib_dma_mapping_error(ndev->device, sge->addr)) 304 goto out_err; 305 sge->length = min_t(int, len, PAGE_SIZE); 306 sge->lkey = ndev->pd->local_dma_lkey; 307 len -= sge->length; 308 } 309 310 return 0; 311 out_err: 312 for (; i >= 0; i--, sg--, sge--) { 313 if (sge->length) 314 ib_dma_unmap_page(ndev->device, sge->addr, 315 sge->length, DMA_FROM_DEVICE); 316 if (sg_page(sg)) 317 __free_page(sg_page(sg)); 318 } 319 return -ENOMEM; 320 } 321 322 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 323 struct nvmet_rdma_cmd *c, bool admin) 324 { 325 /* NVMe command / RDMA RECV */ 326 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 327 if (!c->nvme_cmd) 328 goto out; 329 330 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 331 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 332 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 333 goto out_free_cmd; 334 335 c->sge[0].length = sizeof(*c->nvme_cmd); 336 c->sge[0].lkey = ndev->pd->local_dma_lkey; 337 338 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 339 goto out_unmap_cmd; 340 341 c->cqe.done = nvmet_rdma_recv_done; 342 343 c->wr.wr_cqe = &c->cqe; 344 c->wr.sg_list = c->sge; 345 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 346 347 return 0; 348 349 out_unmap_cmd: 350 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 351 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 352 out_free_cmd: 353 kfree(c->nvme_cmd); 354 355 out: 356 return -ENOMEM; 357 } 358 359 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 360 struct nvmet_rdma_cmd *c, bool admin) 361 { 362 if (!admin) 363 nvmet_rdma_free_inline_pages(ndev, c); 364 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 365 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 366 kfree(c->nvme_cmd); 367 } 368 369 static struct nvmet_rdma_cmd * 370 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 371 int nr_cmds, bool admin) 372 { 373 struct nvmet_rdma_cmd *cmds; 374 int ret = -EINVAL, i; 375 376 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 377 if (!cmds) 378 goto out; 379 380 for (i = 0; i < nr_cmds; i++) { 381 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 382 if (ret) 383 goto out_free; 384 } 385 386 return cmds; 387 388 out_free: 389 while (--i >= 0) 390 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 391 kfree(cmds); 392 out: 393 return ERR_PTR(ret); 394 } 395 396 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 397 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 398 { 399 int i; 400 401 for (i = 0; i < nr_cmds; i++) 402 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 403 kfree(cmds); 404 } 405 406 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 407 struct nvmet_rdma_rsp *r) 408 { 409 /* NVMe CQE / RDMA SEND */ 410 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 411 if (!r->req.cqe) 412 goto out; 413 414 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 415 sizeof(*r->req.cqe), DMA_TO_DEVICE); 416 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 417 goto out_free_rsp; 418 419 if (ib_dma_pci_p2p_dma_supported(ndev->device)) 420 r->req.p2p_client = &ndev->device->dev; 421 r->send_sge.length = sizeof(*r->req.cqe); 422 r->send_sge.lkey = ndev->pd->local_dma_lkey; 423 424 r->send_cqe.done = nvmet_rdma_send_done; 425 426 r->send_wr.wr_cqe = &r->send_cqe; 427 r->send_wr.sg_list = &r->send_sge; 428 r->send_wr.num_sge = 1; 429 r->send_wr.send_flags = IB_SEND_SIGNALED; 430 431 /* Data In / RDMA READ */ 432 r->read_cqe.done = nvmet_rdma_read_data_done; 433 /* Data Out / RDMA WRITE */ 434 r->write_cqe.done = nvmet_rdma_write_data_done; 435 436 return 0; 437 438 out_free_rsp: 439 kfree(r->req.cqe); 440 out: 441 return -ENOMEM; 442 } 443 444 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 445 struct nvmet_rdma_rsp *r) 446 { 447 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 448 sizeof(*r->req.cqe), DMA_TO_DEVICE); 449 kfree(r->req.cqe); 450 } 451 452 static int 453 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 454 { 455 struct nvmet_rdma_device *ndev = queue->dev; 456 int nr_rsps = queue->recv_queue_size * 2; 457 int ret = -EINVAL, i; 458 459 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 460 GFP_KERNEL); 461 if (!queue->rsps) 462 goto out; 463 464 for (i = 0; i < nr_rsps; i++) { 465 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 466 467 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 468 if (ret) 469 goto out_free; 470 471 list_add_tail(&rsp->free_list, &queue->free_rsps); 472 } 473 474 return 0; 475 476 out_free: 477 while (--i >= 0) 478 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); 479 kfree(queue->rsps); 480 out: 481 return ret; 482 } 483 484 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 485 { 486 struct nvmet_rdma_device *ndev = queue->dev; 487 int i, nr_rsps = queue->recv_queue_size * 2; 488 489 for (i = 0; i < nr_rsps; i++) 490 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); 491 kfree(queue->rsps); 492 } 493 494 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 495 struct nvmet_rdma_cmd *cmd) 496 { 497 int ret; 498 499 ib_dma_sync_single_for_device(ndev->device, 500 cmd->sge[0].addr, cmd->sge[0].length, 501 DMA_FROM_DEVICE); 502 503 if (cmd->nsrq) 504 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 505 else 506 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 507 508 if (unlikely(ret)) 509 pr_err("post_recv cmd failed\n"); 510 511 return ret; 512 } 513 514 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 515 { 516 spin_lock(&queue->rsp_wr_wait_lock); 517 while (!list_empty(&queue->rsp_wr_wait_list)) { 518 struct nvmet_rdma_rsp *rsp; 519 bool ret; 520 521 rsp = list_entry(queue->rsp_wr_wait_list.next, 522 struct nvmet_rdma_rsp, wait_list); 523 list_del(&rsp->wait_list); 524 525 spin_unlock(&queue->rsp_wr_wait_lock); 526 ret = nvmet_rdma_execute_command(rsp); 527 spin_lock(&queue->rsp_wr_wait_lock); 528 529 if (!ret) { 530 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 531 break; 532 } 533 } 534 spin_unlock(&queue->rsp_wr_wait_lock); 535 } 536 537 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 538 { 539 struct ib_mr_status mr_status; 540 int ret; 541 u16 status = 0; 542 543 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 544 if (ret) { 545 pr_err("ib_check_mr_status failed, ret %d\n", ret); 546 return NVME_SC_INVALID_PI; 547 } 548 549 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 550 switch (mr_status.sig_err.err_type) { 551 case IB_SIG_BAD_GUARD: 552 status = NVME_SC_GUARD_CHECK; 553 break; 554 case IB_SIG_BAD_REFTAG: 555 status = NVME_SC_REFTAG_CHECK; 556 break; 557 case IB_SIG_BAD_APPTAG: 558 status = NVME_SC_APPTAG_CHECK; 559 break; 560 } 561 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 562 mr_status.sig_err.err_type, 563 mr_status.sig_err.expected, 564 mr_status.sig_err.actual); 565 } 566 567 return status; 568 } 569 570 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 571 struct nvme_command *cmd, struct ib_sig_domain *domain, 572 u16 control, u8 pi_type) 573 { 574 domain->sig_type = IB_SIG_TYPE_T10_DIF; 575 domain->sig.dif.bg_type = IB_T10DIF_CRC; 576 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 577 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 578 if (control & NVME_RW_PRINFO_PRCHK_REF) 579 domain->sig.dif.ref_remap = true; 580 581 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 582 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 583 domain->sig.dif.app_escape = true; 584 if (pi_type == NVME_NS_DPS_PI_TYPE3) 585 domain->sig.dif.ref_escape = true; 586 } 587 588 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 589 struct ib_sig_attrs *sig_attrs) 590 { 591 struct nvme_command *cmd = req->cmd; 592 u16 control = le16_to_cpu(cmd->rw.control); 593 u8 pi_type = req->ns->pi_type; 594 struct blk_integrity *bi; 595 596 bi = bdev_get_integrity(req->ns->bdev); 597 598 memset(sig_attrs, 0, sizeof(*sig_attrs)); 599 600 if (control & NVME_RW_PRINFO_PRACT) { 601 /* for WRITE_INSERT/READ_STRIP no wire domain */ 602 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 603 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 604 pi_type); 605 /* Clear the PRACT bit since HCA will generate/verify the PI */ 606 control &= ~NVME_RW_PRINFO_PRACT; 607 cmd->rw.control = cpu_to_le16(control); 608 /* PI is added by the HW */ 609 req->transfer_len += req->metadata_len; 610 } else { 611 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 612 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 613 pi_type); 614 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 615 pi_type); 616 } 617 618 if (control & NVME_RW_PRINFO_PRCHK_REF) 619 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 620 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 621 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 622 if (control & NVME_RW_PRINFO_PRCHK_APP) 623 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 624 } 625 626 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 627 struct ib_sig_attrs *sig_attrs) 628 { 629 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 630 struct nvmet_req *req = &rsp->req; 631 int ret; 632 633 if (req->metadata_len) 634 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 635 cm_id->port_num, req->sg, req->sg_cnt, 636 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 637 addr, key, nvmet_data_dir(req)); 638 else 639 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 640 req->sg, req->sg_cnt, 0, addr, key, 641 nvmet_data_dir(req)); 642 643 return ret; 644 } 645 646 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 647 { 648 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 649 struct nvmet_req *req = &rsp->req; 650 651 if (req->metadata_len) 652 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 653 cm_id->port_num, req->sg, req->sg_cnt, 654 req->metadata_sg, req->metadata_sg_cnt, 655 nvmet_data_dir(req)); 656 else 657 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 658 req->sg, req->sg_cnt, nvmet_data_dir(req)); 659 } 660 661 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 662 { 663 struct nvmet_rdma_queue *queue = rsp->queue; 664 665 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 666 667 if (rsp->n_rdma) 668 nvmet_rdma_rw_ctx_destroy(rsp); 669 670 if (rsp->req.sg != rsp->cmd->inline_sg) 671 nvmet_req_free_sgls(&rsp->req); 672 673 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 674 nvmet_rdma_process_wr_wait_list(queue); 675 676 nvmet_rdma_put_rsp(rsp); 677 } 678 679 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 680 { 681 if (queue->nvme_sq.ctrl) { 682 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 683 } else { 684 /* 685 * we didn't setup the controller yet in case 686 * of admin connect error, just disconnect and 687 * cleanup the queue 688 */ 689 nvmet_rdma_queue_disconnect(queue); 690 } 691 } 692 693 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 694 { 695 struct nvmet_rdma_rsp *rsp = 696 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 697 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 698 699 nvmet_rdma_release_rsp(rsp); 700 701 if (unlikely(wc->status != IB_WC_SUCCESS && 702 wc->status != IB_WC_WR_FLUSH_ERR)) { 703 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 704 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 705 nvmet_rdma_error_comp(queue); 706 } 707 } 708 709 static void nvmet_rdma_queue_response(struct nvmet_req *req) 710 { 711 struct nvmet_rdma_rsp *rsp = 712 container_of(req, struct nvmet_rdma_rsp, req); 713 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 714 struct ib_send_wr *first_wr; 715 716 if (rsp->invalidate_rkey) { 717 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 718 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 719 } else { 720 rsp->send_wr.opcode = IB_WR_SEND; 721 } 722 723 if (nvmet_rdma_need_data_out(rsp)) { 724 if (rsp->req.metadata_len) 725 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 726 cm_id->port_num, &rsp->write_cqe, NULL); 727 else 728 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 729 cm_id->port_num, NULL, &rsp->send_wr); 730 } else { 731 first_wr = &rsp->send_wr; 732 } 733 734 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 735 736 ib_dma_sync_single_for_device(rsp->queue->dev->device, 737 rsp->send_sge.addr, rsp->send_sge.length, 738 DMA_TO_DEVICE); 739 740 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 741 pr_err("sending cmd response failed\n"); 742 nvmet_rdma_release_rsp(rsp); 743 } 744 } 745 746 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 747 { 748 struct nvmet_rdma_rsp *rsp = 749 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 750 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 751 u16 status = 0; 752 753 WARN_ON(rsp->n_rdma <= 0); 754 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 755 rsp->n_rdma = 0; 756 757 if (unlikely(wc->status != IB_WC_SUCCESS)) { 758 nvmet_rdma_rw_ctx_destroy(rsp); 759 nvmet_req_uninit(&rsp->req); 760 nvmet_rdma_release_rsp(rsp); 761 if (wc->status != IB_WC_WR_FLUSH_ERR) { 762 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 763 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 764 nvmet_rdma_error_comp(queue); 765 } 766 return; 767 } 768 769 if (rsp->req.metadata_len) 770 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 771 nvmet_rdma_rw_ctx_destroy(rsp); 772 773 if (unlikely(status)) 774 nvmet_req_complete(&rsp->req, status); 775 else 776 rsp->req.execute(&rsp->req); 777 } 778 779 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 780 { 781 struct nvmet_rdma_rsp *rsp = 782 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 783 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 784 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 785 u16 status; 786 787 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 788 return; 789 790 WARN_ON(rsp->n_rdma <= 0); 791 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 792 rsp->n_rdma = 0; 793 794 if (unlikely(wc->status != IB_WC_SUCCESS)) { 795 nvmet_rdma_rw_ctx_destroy(rsp); 796 nvmet_req_uninit(&rsp->req); 797 nvmet_rdma_release_rsp(rsp); 798 if (wc->status != IB_WC_WR_FLUSH_ERR) { 799 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", 800 ib_wc_status_msg(wc->status), wc->status); 801 nvmet_rdma_error_comp(queue); 802 } 803 return; 804 } 805 806 /* 807 * Upon RDMA completion check the signature status 808 * - if succeeded send good NVMe response 809 * - if failed send bad NVMe response with appropriate error 810 */ 811 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 812 if (unlikely(status)) 813 rsp->req.cqe->status = cpu_to_le16(status << 1); 814 nvmet_rdma_rw_ctx_destroy(rsp); 815 816 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 817 pr_err("sending cmd response failed\n"); 818 nvmet_rdma_release_rsp(rsp); 819 } 820 } 821 822 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 823 u64 off) 824 { 825 int sg_count = num_pages(len); 826 struct scatterlist *sg; 827 int i; 828 829 sg = rsp->cmd->inline_sg; 830 for (i = 0; i < sg_count; i++, sg++) { 831 if (i < sg_count - 1) 832 sg_unmark_end(sg); 833 else 834 sg_mark_end(sg); 835 sg->offset = off; 836 sg->length = min_t(int, len, PAGE_SIZE - off); 837 len -= sg->length; 838 if (!i) 839 off = 0; 840 } 841 842 rsp->req.sg = rsp->cmd->inline_sg; 843 rsp->req.sg_cnt = sg_count; 844 } 845 846 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 847 { 848 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 849 u64 off = le64_to_cpu(sgl->addr); 850 u32 len = le32_to_cpu(sgl->length); 851 852 if (!nvme_is_write(rsp->req.cmd)) { 853 rsp->req.error_loc = 854 offsetof(struct nvme_common_command, opcode); 855 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 856 } 857 858 if (off + len > rsp->queue->dev->inline_data_size) { 859 pr_err("invalid inline data offset!\n"); 860 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR; 861 } 862 863 /* no data command? */ 864 if (!len) 865 return 0; 866 867 nvmet_rdma_use_inline_sg(rsp, len, off); 868 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 869 rsp->req.transfer_len += len; 870 return 0; 871 } 872 873 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 874 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 875 { 876 u64 addr = le64_to_cpu(sgl->addr); 877 u32 key = get_unaligned_le32(sgl->key); 878 struct ib_sig_attrs sig_attrs; 879 int ret; 880 881 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 882 883 /* no data command? */ 884 if (!rsp->req.transfer_len) 885 return 0; 886 887 if (rsp->req.metadata_len) 888 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 889 890 ret = nvmet_req_alloc_sgls(&rsp->req); 891 if (unlikely(ret < 0)) 892 goto error_out; 893 894 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 895 if (unlikely(ret < 0)) 896 goto error_out; 897 rsp->n_rdma += ret; 898 899 if (invalidate) 900 rsp->invalidate_rkey = key; 901 902 return 0; 903 904 error_out: 905 rsp->req.transfer_len = 0; 906 return NVME_SC_INTERNAL; 907 } 908 909 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 910 { 911 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 912 913 switch (sgl->type >> 4) { 914 case NVME_SGL_FMT_DATA_DESC: 915 switch (sgl->type & 0xf) { 916 case NVME_SGL_FMT_OFFSET: 917 return nvmet_rdma_map_sgl_inline(rsp); 918 default: 919 pr_err("invalid SGL subtype: %#x\n", sgl->type); 920 rsp->req.error_loc = 921 offsetof(struct nvme_common_command, dptr); 922 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 923 } 924 case NVME_KEY_SGL_FMT_DATA_DESC: 925 switch (sgl->type & 0xf) { 926 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 927 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 928 case NVME_SGL_FMT_ADDRESS: 929 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 930 default: 931 pr_err("invalid SGL subtype: %#x\n", sgl->type); 932 rsp->req.error_loc = 933 offsetof(struct nvme_common_command, dptr); 934 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 935 } 936 default: 937 pr_err("invalid SGL type: %#x\n", sgl->type); 938 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 939 return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR; 940 } 941 } 942 943 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 944 { 945 struct nvmet_rdma_queue *queue = rsp->queue; 946 947 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 948 &queue->sq_wr_avail) < 0)) { 949 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 950 1 + rsp->n_rdma, queue->idx, 951 queue->nvme_sq.ctrl->cntlid); 952 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 953 return false; 954 } 955 956 if (nvmet_rdma_need_data_in(rsp)) { 957 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 958 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 959 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 960 } else { 961 rsp->req.execute(&rsp->req); 962 } 963 964 return true; 965 } 966 967 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 968 struct nvmet_rdma_rsp *cmd) 969 { 970 u16 status; 971 972 ib_dma_sync_single_for_cpu(queue->dev->device, 973 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 974 DMA_FROM_DEVICE); 975 ib_dma_sync_single_for_cpu(queue->dev->device, 976 cmd->send_sge.addr, cmd->send_sge.length, 977 DMA_TO_DEVICE); 978 979 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 980 &queue->nvme_sq, &nvmet_rdma_ops)) 981 return; 982 983 status = nvmet_rdma_map_sgl(cmd); 984 if (status) 985 goto out_err; 986 987 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 988 spin_lock(&queue->rsp_wr_wait_lock); 989 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 990 spin_unlock(&queue->rsp_wr_wait_lock); 991 } 992 993 return; 994 995 out_err: 996 nvmet_req_complete(&cmd->req, status); 997 } 998 999 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1000 { 1001 struct nvmet_rdma_cmd *cmd = 1002 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1003 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1004 struct nvmet_rdma_rsp *rsp; 1005 1006 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1007 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1008 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1009 wc->wr_cqe, ib_wc_status_msg(wc->status), 1010 wc->status); 1011 nvmet_rdma_error_comp(queue); 1012 } 1013 return; 1014 } 1015 1016 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1017 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1018 nvmet_rdma_error_comp(queue); 1019 return; 1020 } 1021 1022 cmd->queue = queue; 1023 rsp = nvmet_rdma_get_rsp(queue); 1024 if (unlikely(!rsp)) { 1025 /* 1026 * we get here only under memory pressure, 1027 * silently drop and have the host retry 1028 * as we can't even fail it. 1029 */ 1030 nvmet_rdma_post_recv(queue->dev, cmd); 1031 return; 1032 } 1033 rsp->queue = queue; 1034 rsp->cmd = cmd; 1035 rsp->flags = 0; 1036 rsp->req.cmd = cmd->nvme_cmd; 1037 rsp->req.port = queue->port; 1038 rsp->n_rdma = 0; 1039 rsp->invalidate_rkey = 0; 1040 1041 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 1042 unsigned long flags; 1043 1044 spin_lock_irqsave(&queue->state_lock, flags); 1045 if (queue->state == NVMET_RDMA_Q_CONNECTING) 1046 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1047 else 1048 nvmet_rdma_put_rsp(rsp); 1049 spin_unlock_irqrestore(&queue->state_lock, flags); 1050 return; 1051 } 1052 1053 nvmet_rdma_handle_command(queue, rsp); 1054 } 1055 1056 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1057 { 1058 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1059 false); 1060 ib_destroy_srq(nsrq->srq); 1061 1062 kfree(nsrq); 1063 } 1064 1065 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1066 { 1067 int i; 1068 1069 if (!ndev->srqs) 1070 return; 1071 1072 for (i = 0; i < ndev->srq_count; i++) 1073 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1074 1075 kfree(ndev->srqs); 1076 } 1077 1078 static struct nvmet_rdma_srq * 1079 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1080 { 1081 struct ib_srq_init_attr srq_attr = { NULL, }; 1082 size_t srq_size = ndev->srq_size; 1083 struct nvmet_rdma_srq *nsrq; 1084 struct ib_srq *srq; 1085 int ret, i; 1086 1087 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1088 if (!nsrq) 1089 return ERR_PTR(-ENOMEM); 1090 1091 srq_attr.attr.max_wr = srq_size; 1092 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1093 srq_attr.attr.srq_limit = 0; 1094 srq_attr.srq_type = IB_SRQT_BASIC; 1095 srq = ib_create_srq(ndev->pd, &srq_attr); 1096 if (IS_ERR(srq)) { 1097 ret = PTR_ERR(srq); 1098 goto out_free; 1099 } 1100 1101 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1102 if (IS_ERR(nsrq->cmds)) { 1103 ret = PTR_ERR(nsrq->cmds); 1104 goto out_destroy_srq; 1105 } 1106 1107 nsrq->srq = srq; 1108 nsrq->ndev = ndev; 1109 1110 for (i = 0; i < srq_size; i++) { 1111 nsrq->cmds[i].nsrq = nsrq; 1112 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1113 if (ret) 1114 goto out_free_cmds; 1115 } 1116 1117 return nsrq; 1118 1119 out_free_cmds: 1120 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1121 out_destroy_srq: 1122 ib_destroy_srq(srq); 1123 out_free: 1124 kfree(nsrq); 1125 return ERR_PTR(ret); 1126 } 1127 1128 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1129 { 1130 int i, ret; 1131 1132 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1133 /* 1134 * If SRQs aren't supported we just go ahead and use normal 1135 * non-shared receive queues. 1136 */ 1137 pr_info("SRQ requested but not supported.\n"); 1138 return 0; 1139 } 1140 1141 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1142 nvmet_rdma_srq_size); 1143 ndev->srq_count = min(ndev->device->num_comp_vectors, 1144 ndev->device->attrs.max_srq); 1145 1146 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1147 if (!ndev->srqs) 1148 return -ENOMEM; 1149 1150 for (i = 0; i < ndev->srq_count; i++) { 1151 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1152 if (IS_ERR(ndev->srqs[i])) { 1153 ret = PTR_ERR(ndev->srqs[i]); 1154 goto err_srq; 1155 } 1156 } 1157 1158 return 0; 1159 1160 err_srq: 1161 while (--i >= 0) 1162 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1163 kfree(ndev->srqs); 1164 return ret; 1165 } 1166 1167 static void nvmet_rdma_free_dev(struct kref *ref) 1168 { 1169 struct nvmet_rdma_device *ndev = 1170 container_of(ref, struct nvmet_rdma_device, ref); 1171 1172 mutex_lock(&device_list_mutex); 1173 list_del(&ndev->entry); 1174 mutex_unlock(&device_list_mutex); 1175 1176 nvmet_rdma_destroy_srqs(ndev); 1177 ib_dealloc_pd(ndev->pd); 1178 1179 kfree(ndev); 1180 } 1181 1182 static struct nvmet_rdma_device * 1183 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1184 { 1185 struct nvmet_rdma_port *port = cm_id->context; 1186 struct nvmet_port *nport = port->nport; 1187 struct nvmet_rdma_device *ndev; 1188 int inline_page_count; 1189 int inline_sge_count; 1190 int ret; 1191 1192 mutex_lock(&device_list_mutex); 1193 list_for_each_entry(ndev, &device_list, entry) { 1194 if (ndev->device->node_guid == cm_id->device->node_guid && 1195 kref_get_unless_zero(&ndev->ref)) 1196 goto out_unlock; 1197 } 1198 1199 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1200 if (!ndev) 1201 goto out_err; 1202 1203 inline_page_count = num_pages(nport->inline_data_size); 1204 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1205 cm_id->device->attrs.max_recv_sge) - 1; 1206 if (inline_page_count > inline_sge_count) { 1207 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1208 nport->inline_data_size, cm_id->device->name, 1209 inline_sge_count * PAGE_SIZE); 1210 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1211 inline_page_count = inline_sge_count; 1212 } 1213 ndev->inline_data_size = nport->inline_data_size; 1214 ndev->inline_page_count = inline_page_count; 1215 1216 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags & 1217 IBK_INTEGRITY_HANDOVER)) { 1218 pr_warn("T10-PI is not supported by device %s. Disabling it\n", 1219 cm_id->device->name); 1220 nport->pi_enable = false; 1221 } 1222 1223 ndev->device = cm_id->device; 1224 kref_init(&ndev->ref); 1225 1226 ndev->pd = ib_alloc_pd(ndev->device, 0); 1227 if (IS_ERR(ndev->pd)) 1228 goto out_free_dev; 1229 1230 if (nvmet_rdma_use_srq) { 1231 ret = nvmet_rdma_init_srqs(ndev); 1232 if (ret) 1233 goto out_free_pd; 1234 } 1235 1236 list_add(&ndev->entry, &device_list); 1237 out_unlock: 1238 mutex_unlock(&device_list_mutex); 1239 pr_debug("added %s.\n", ndev->device->name); 1240 return ndev; 1241 1242 out_free_pd: 1243 ib_dealloc_pd(ndev->pd); 1244 out_free_dev: 1245 kfree(ndev); 1246 out_err: 1247 mutex_unlock(&device_list_mutex); 1248 return NULL; 1249 } 1250 1251 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1252 { 1253 struct ib_qp_init_attr qp_attr = { }; 1254 struct nvmet_rdma_device *ndev = queue->dev; 1255 int nr_cqe, ret, i, factor; 1256 1257 /* 1258 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1259 */ 1260 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1261 1262 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1263 queue->comp_vector, IB_POLL_WORKQUEUE); 1264 if (IS_ERR(queue->cq)) { 1265 ret = PTR_ERR(queue->cq); 1266 pr_err("failed to create CQ cqe= %d ret= %d\n", 1267 nr_cqe + 1, ret); 1268 goto out; 1269 } 1270 1271 qp_attr.qp_context = queue; 1272 qp_attr.event_handler = nvmet_rdma_qp_event; 1273 qp_attr.send_cq = queue->cq; 1274 qp_attr.recv_cq = queue->cq; 1275 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1276 qp_attr.qp_type = IB_QPT_RC; 1277 /* +1 for drain */ 1278 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1279 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1280 1 << NVMET_RDMA_MAX_MDTS); 1281 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1282 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1283 ndev->device->attrs.max_send_sge); 1284 1285 if (queue->nsrq) { 1286 qp_attr.srq = queue->nsrq->srq; 1287 } else { 1288 /* +1 for drain */ 1289 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1290 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1291 } 1292 1293 if (queue->port->pi_enable && queue->host_qid) 1294 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1295 1296 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1297 if (ret) { 1298 pr_err("failed to create_qp ret= %d\n", ret); 1299 goto err_destroy_cq; 1300 } 1301 queue->qp = queue->cm_id->qp; 1302 1303 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1304 1305 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1306 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1307 qp_attr.cap.max_send_wr, queue->cm_id); 1308 1309 if (!queue->nsrq) { 1310 for (i = 0; i < queue->recv_queue_size; i++) { 1311 queue->cmds[i].queue = queue; 1312 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1313 if (ret) 1314 goto err_destroy_qp; 1315 } 1316 } 1317 1318 out: 1319 return ret; 1320 1321 err_destroy_qp: 1322 rdma_destroy_qp(queue->cm_id); 1323 err_destroy_cq: 1324 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1325 goto out; 1326 } 1327 1328 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1329 { 1330 ib_drain_qp(queue->qp); 1331 if (queue->cm_id) 1332 rdma_destroy_id(queue->cm_id); 1333 ib_destroy_qp(queue->qp); 1334 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1335 queue->send_queue_size + 1); 1336 } 1337 1338 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1339 { 1340 pr_debug("freeing queue %d\n", queue->idx); 1341 1342 nvmet_sq_destroy(&queue->nvme_sq); 1343 1344 nvmet_rdma_destroy_queue_ib(queue); 1345 if (!queue->nsrq) { 1346 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1347 queue->recv_queue_size, 1348 !queue->host_qid); 1349 } 1350 nvmet_rdma_free_rsps(queue); 1351 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1352 kfree(queue); 1353 } 1354 1355 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1356 { 1357 struct nvmet_rdma_queue *queue = 1358 container_of(w, struct nvmet_rdma_queue, release_work); 1359 struct nvmet_rdma_device *dev = queue->dev; 1360 1361 nvmet_rdma_free_queue(queue); 1362 1363 kref_put(&dev->ref, nvmet_rdma_free_dev); 1364 } 1365 1366 static int 1367 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1368 struct nvmet_rdma_queue *queue) 1369 { 1370 struct nvme_rdma_cm_req *req; 1371 1372 req = (struct nvme_rdma_cm_req *)conn->private_data; 1373 if (!req || conn->private_data_len == 0) 1374 return NVME_RDMA_CM_INVALID_LEN; 1375 1376 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1377 return NVME_RDMA_CM_INVALID_RECFMT; 1378 1379 queue->host_qid = le16_to_cpu(req->qid); 1380 1381 /* 1382 * req->hsqsize corresponds to our recv queue size plus 1 1383 * req->hrqsize corresponds to our send queue size 1384 */ 1385 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1386 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1387 1388 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1389 return NVME_RDMA_CM_INVALID_HSQSIZE; 1390 1391 /* XXX: Should we enforce some kind of max for IO queues? */ 1392 1393 return 0; 1394 } 1395 1396 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1397 enum nvme_rdma_cm_status status) 1398 { 1399 struct nvme_rdma_cm_rej rej; 1400 1401 pr_debug("rejecting connect request: status %d (%s)\n", 1402 status, nvme_rdma_cm_msg(status)); 1403 1404 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1405 rej.sts = cpu_to_le16(status); 1406 1407 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1408 IB_CM_REJ_CONSUMER_DEFINED); 1409 } 1410 1411 static struct nvmet_rdma_queue * 1412 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1413 struct rdma_cm_id *cm_id, 1414 struct rdma_cm_event *event) 1415 { 1416 struct nvmet_rdma_port *port = cm_id->context; 1417 struct nvmet_rdma_queue *queue; 1418 int ret; 1419 1420 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1421 if (!queue) { 1422 ret = NVME_RDMA_CM_NO_RSC; 1423 goto out_reject; 1424 } 1425 1426 ret = nvmet_sq_init(&queue->nvme_sq); 1427 if (ret) { 1428 ret = NVME_RDMA_CM_NO_RSC; 1429 goto out_free_queue; 1430 } 1431 1432 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1433 if (ret) 1434 goto out_destroy_sq; 1435 1436 /* 1437 * Schedules the actual release because calling rdma_destroy_id from 1438 * inside a CM callback would trigger a deadlock. (great API design..) 1439 */ 1440 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1441 queue->dev = ndev; 1442 queue->cm_id = cm_id; 1443 queue->port = port->nport; 1444 1445 spin_lock_init(&queue->state_lock); 1446 queue->state = NVMET_RDMA_Q_CONNECTING; 1447 INIT_LIST_HEAD(&queue->rsp_wait_list); 1448 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1449 spin_lock_init(&queue->rsp_wr_wait_lock); 1450 INIT_LIST_HEAD(&queue->free_rsps); 1451 spin_lock_init(&queue->rsps_lock); 1452 INIT_LIST_HEAD(&queue->queue_list); 1453 1454 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL); 1455 if (queue->idx < 0) { 1456 ret = NVME_RDMA_CM_NO_RSC; 1457 goto out_destroy_sq; 1458 } 1459 1460 /* 1461 * Spread the io queues across completion vectors, 1462 * but still keep all admin queues on vector 0. 1463 */ 1464 queue->comp_vector = !queue->host_qid ? 0 : 1465 queue->idx % ndev->device->num_comp_vectors; 1466 1467 1468 ret = nvmet_rdma_alloc_rsps(queue); 1469 if (ret) { 1470 ret = NVME_RDMA_CM_NO_RSC; 1471 goto out_ida_remove; 1472 } 1473 1474 if (ndev->srqs) { 1475 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1476 } else { 1477 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1478 queue->recv_queue_size, 1479 !queue->host_qid); 1480 if (IS_ERR(queue->cmds)) { 1481 ret = NVME_RDMA_CM_NO_RSC; 1482 goto out_free_responses; 1483 } 1484 } 1485 1486 ret = nvmet_rdma_create_queue_ib(queue); 1487 if (ret) { 1488 pr_err("%s: creating RDMA queue failed (%d).\n", 1489 __func__, ret); 1490 ret = NVME_RDMA_CM_NO_RSC; 1491 goto out_free_cmds; 1492 } 1493 1494 return queue; 1495 1496 out_free_cmds: 1497 if (!queue->nsrq) { 1498 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1499 queue->recv_queue_size, 1500 !queue->host_qid); 1501 } 1502 out_free_responses: 1503 nvmet_rdma_free_rsps(queue); 1504 out_ida_remove: 1505 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1506 out_destroy_sq: 1507 nvmet_sq_destroy(&queue->nvme_sq); 1508 out_free_queue: 1509 kfree(queue); 1510 out_reject: 1511 nvmet_rdma_cm_reject(cm_id, ret); 1512 return NULL; 1513 } 1514 1515 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1516 { 1517 struct nvmet_rdma_queue *queue = priv; 1518 1519 switch (event->event) { 1520 case IB_EVENT_COMM_EST: 1521 rdma_notify(queue->cm_id, event->event); 1522 break; 1523 case IB_EVENT_QP_LAST_WQE_REACHED: 1524 pr_debug("received last WQE reached event for queue=0x%p\n", 1525 queue); 1526 break; 1527 default: 1528 pr_err("received IB QP event: %s (%d)\n", 1529 ib_event_msg(event->event), event->event); 1530 break; 1531 } 1532 } 1533 1534 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1535 struct nvmet_rdma_queue *queue, 1536 struct rdma_conn_param *p) 1537 { 1538 struct rdma_conn_param param = { }; 1539 struct nvme_rdma_cm_rep priv = { }; 1540 int ret = -ENOMEM; 1541 1542 param.rnr_retry_count = 7; 1543 param.flow_control = 1; 1544 param.initiator_depth = min_t(u8, p->initiator_depth, 1545 queue->dev->device->attrs.max_qp_init_rd_atom); 1546 param.private_data = &priv; 1547 param.private_data_len = sizeof(priv); 1548 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1549 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1550 1551 ret = rdma_accept(cm_id, ¶m); 1552 if (ret) 1553 pr_err("rdma_accept failed (error code = %d)\n", ret); 1554 1555 return ret; 1556 } 1557 1558 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1559 struct rdma_cm_event *event) 1560 { 1561 struct nvmet_rdma_device *ndev; 1562 struct nvmet_rdma_queue *queue; 1563 int ret = -EINVAL; 1564 1565 ndev = nvmet_rdma_find_get_device(cm_id); 1566 if (!ndev) { 1567 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1568 return -ECONNREFUSED; 1569 } 1570 1571 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1572 if (!queue) { 1573 ret = -ENOMEM; 1574 goto put_device; 1575 } 1576 1577 if (queue->host_qid == 0) { 1578 struct nvmet_rdma_queue *q; 1579 int pending = 0; 1580 1581 /* Check for pending controller teardown */ 1582 mutex_lock(&nvmet_rdma_queue_mutex); 1583 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) { 1584 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl && 1585 q->state == NVMET_RDMA_Q_DISCONNECTING) 1586 pending++; 1587 } 1588 mutex_unlock(&nvmet_rdma_queue_mutex); 1589 if (pending > NVMET_RDMA_BACKLOG) 1590 return NVME_SC_CONNECT_CTRL_BUSY; 1591 } 1592 1593 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1594 if (ret) { 1595 /* 1596 * Don't destroy the cm_id in free path, as we implicitly 1597 * destroy the cm_id here with non-zero ret code. 1598 */ 1599 queue->cm_id = NULL; 1600 goto free_queue; 1601 } 1602 1603 mutex_lock(&nvmet_rdma_queue_mutex); 1604 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1605 mutex_unlock(&nvmet_rdma_queue_mutex); 1606 1607 return 0; 1608 1609 free_queue: 1610 nvmet_rdma_free_queue(queue); 1611 put_device: 1612 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1613 1614 return ret; 1615 } 1616 1617 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1618 { 1619 unsigned long flags; 1620 1621 spin_lock_irqsave(&queue->state_lock, flags); 1622 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1623 pr_warn("trying to establish a connected queue\n"); 1624 goto out_unlock; 1625 } 1626 queue->state = NVMET_RDMA_Q_LIVE; 1627 1628 while (!list_empty(&queue->rsp_wait_list)) { 1629 struct nvmet_rdma_rsp *cmd; 1630 1631 cmd = list_first_entry(&queue->rsp_wait_list, 1632 struct nvmet_rdma_rsp, wait_list); 1633 list_del(&cmd->wait_list); 1634 1635 spin_unlock_irqrestore(&queue->state_lock, flags); 1636 nvmet_rdma_handle_command(queue, cmd); 1637 spin_lock_irqsave(&queue->state_lock, flags); 1638 } 1639 1640 out_unlock: 1641 spin_unlock_irqrestore(&queue->state_lock, flags); 1642 } 1643 1644 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1645 { 1646 bool disconnect = false; 1647 unsigned long flags; 1648 1649 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1650 1651 spin_lock_irqsave(&queue->state_lock, flags); 1652 switch (queue->state) { 1653 case NVMET_RDMA_Q_CONNECTING: 1654 while (!list_empty(&queue->rsp_wait_list)) { 1655 struct nvmet_rdma_rsp *rsp; 1656 1657 rsp = list_first_entry(&queue->rsp_wait_list, 1658 struct nvmet_rdma_rsp, 1659 wait_list); 1660 list_del(&rsp->wait_list); 1661 nvmet_rdma_put_rsp(rsp); 1662 } 1663 fallthrough; 1664 case NVMET_RDMA_Q_LIVE: 1665 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1666 disconnect = true; 1667 break; 1668 case NVMET_RDMA_Q_DISCONNECTING: 1669 break; 1670 } 1671 spin_unlock_irqrestore(&queue->state_lock, flags); 1672 1673 if (disconnect) { 1674 rdma_disconnect(queue->cm_id); 1675 queue_work(nvmet_wq, &queue->release_work); 1676 } 1677 } 1678 1679 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1680 { 1681 bool disconnect = false; 1682 1683 mutex_lock(&nvmet_rdma_queue_mutex); 1684 if (!list_empty(&queue->queue_list)) { 1685 list_del_init(&queue->queue_list); 1686 disconnect = true; 1687 } 1688 mutex_unlock(&nvmet_rdma_queue_mutex); 1689 1690 if (disconnect) 1691 __nvmet_rdma_queue_disconnect(queue); 1692 } 1693 1694 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1695 struct nvmet_rdma_queue *queue) 1696 { 1697 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1698 1699 mutex_lock(&nvmet_rdma_queue_mutex); 1700 if (!list_empty(&queue->queue_list)) 1701 list_del_init(&queue->queue_list); 1702 mutex_unlock(&nvmet_rdma_queue_mutex); 1703 1704 pr_err("failed to connect queue %d\n", queue->idx); 1705 queue_work(nvmet_wq, &queue->release_work); 1706 } 1707 1708 /** 1709 * nvmet_rdma_device_removal() - Handle RDMA device removal 1710 * @cm_id: rdma_cm id, used for nvmet port 1711 * @queue: nvmet rdma queue (cm id qp_context) 1712 * 1713 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1714 * to unplug. Note that this event can be generated on a normal 1715 * queue cm_id and/or a device bound listener cm_id (where in this 1716 * case queue will be null). 1717 * 1718 * We registered an ib_client to handle device removal for queues, 1719 * so we only need to handle the listening port cm_ids. In this case 1720 * we nullify the priv to prevent double cm_id destruction and destroying 1721 * the cm_id implicitely by returning a non-zero rc to the callout. 1722 */ 1723 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1724 struct nvmet_rdma_queue *queue) 1725 { 1726 struct nvmet_rdma_port *port; 1727 1728 if (queue) { 1729 /* 1730 * This is a queue cm_id. we have registered 1731 * an ib_client to handle queues removal 1732 * so don't interfear and just return. 1733 */ 1734 return 0; 1735 } 1736 1737 port = cm_id->context; 1738 1739 /* 1740 * This is a listener cm_id. Make sure that 1741 * future remove_port won't invoke a double 1742 * cm_id destroy. use atomic xchg to make sure 1743 * we don't compete with remove_port. 1744 */ 1745 if (xchg(&port->cm_id, NULL) != cm_id) 1746 return 0; 1747 1748 /* 1749 * We need to return 1 so that the core will destroy 1750 * it's own ID. What a great API design.. 1751 */ 1752 return 1; 1753 } 1754 1755 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1756 struct rdma_cm_event *event) 1757 { 1758 struct nvmet_rdma_queue *queue = NULL; 1759 int ret = 0; 1760 1761 if (cm_id->qp) 1762 queue = cm_id->qp->qp_context; 1763 1764 pr_debug("%s (%d): status %d id %p\n", 1765 rdma_event_msg(event->event), event->event, 1766 event->status, cm_id); 1767 1768 switch (event->event) { 1769 case RDMA_CM_EVENT_CONNECT_REQUEST: 1770 ret = nvmet_rdma_queue_connect(cm_id, event); 1771 break; 1772 case RDMA_CM_EVENT_ESTABLISHED: 1773 nvmet_rdma_queue_established(queue); 1774 break; 1775 case RDMA_CM_EVENT_ADDR_CHANGE: 1776 if (!queue) { 1777 struct nvmet_rdma_port *port = cm_id->context; 1778 1779 queue_delayed_work(nvmet_wq, &port->repair_work, 0); 1780 break; 1781 } 1782 fallthrough; 1783 case RDMA_CM_EVENT_DISCONNECTED: 1784 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1785 nvmet_rdma_queue_disconnect(queue); 1786 break; 1787 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1788 ret = nvmet_rdma_device_removal(cm_id, queue); 1789 break; 1790 case RDMA_CM_EVENT_REJECTED: 1791 pr_debug("Connection rejected: %s\n", 1792 rdma_reject_msg(cm_id, event->status)); 1793 fallthrough; 1794 case RDMA_CM_EVENT_UNREACHABLE: 1795 case RDMA_CM_EVENT_CONNECT_ERROR: 1796 nvmet_rdma_queue_connect_fail(cm_id, queue); 1797 break; 1798 default: 1799 pr_err("received unrecognized RDMA CM event %d\n", 1800 event->event); 1801 break; 1802 } 1803 1804 return ret; 1805 } 1806 1807 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1808 { 1809 struct nvmet_rdma_queue *queue, *n; 1810 1811 mutex_lock(&nvmet_rdma_queue_mutex); 1812 list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) { 1813 if (queue->nvme_sq.ctrl != ctrl) 1814 continue; 1815 list_del_init(&queue->queue_list); 1816 __nvmet_rdma_queue_disconnect(queue); 1817 } 1818 mutex_unlock(&nvmet_rdma_queue_mutex); 1819 } 1820 1821 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) 1822 { 1823 struct nvmet_rdma_queue *queue, *tmp; 1824 struct nvmet_port *nport = port->nport; 1825 1826 mutex_lock(&nvmet_rdma_queue_mutex); 1827 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1828 queue_list) { 1829 if (queue->port != nport) 1830 continue; 1831 1832 list_del_init(&queue->queue_list); 1833 __nvmet_rdma_queue_disconnect(queue); 1834 } 1835 mutex_unlock(&nvmet_rdma_queue_mutex); 1836 } 1837 1838 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1839 { 1840 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1841 1842 if (cm_id) 1843 rdma_destroy_id(cm_id); 1844 1845 /* 1846 * Destroy the remaining queues, which are not belong to any 1847 * controller yet. Do it here after the RDMA-CM was destroyed 1848 * guarantees that no new queue will be created. 1849 */ 1850 nvmet_rdma_destroy_port_queues(port); 1851 } 1852 1853 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1854 { 1855 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1856 struct rdma_cm_id *cm_id; 1857 int ret; 1858 1859 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1860 RDMA_PS_TCP, IB_QPT_RC); 1861 if (IS_ERR(cm_id)) { 1862 pr_err("CM ID creation failed\n"); 1863 return PTR_ERR(cm_id); 1864 } 1865 1866 /* 1867 * Allow both IPv4 and IPv6 sockets to bind a single port 1868 * at the same time. 1869 */ 1870 ret = rdma_set_afonly(cm_id, 1); 1871 if (ret) { 1872 pr_err("rdma_set_afonly failed (%d)\n", ret); 1873 goto out_destroy_id; 1874 } 1875 1876 ret = rdma_bind_addr(cm_id, addr); 1877 if (ret) { 1878 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1879 goto out_destroy_id; 1880 } 1881 1882 ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG); 1883 if (ret) { 1884 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1885 goto out_destroy_id; 1886 } 1887 1888 port->cm_id = cm_id; 1889 return 0; 1890 1891 out_destroy_id: 1892 rdma_destroy_id(cm_id); 1893 return ret; 1894 } 1895 1896 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1897 { 1898 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1899 struct nvmet_rdma_port, repair_work); 1900 int ret; 1901 1902 nvmet_rdma_disable_port(port); 1903 ret = nvmet_rdma_enable_port(port); 1904 if (ret) 1905 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ); 1906 } 1907 1908 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1909 { 1910 struct nvmet_rdma_port *port; 1911 __kernel_sa_family_t af; 1912 int ret; 1913 1914 port = kzalloc(sizeof(*port), GFP_KERNEL); 1915 if (!port) 1916 return -ENOMEM; 1917 1918 nport->priv = port; 1919 port->nport = nport; 1920 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1921 1922 switch (nport->disc_addr.adrfam) { 1923 case NVMF_ADDR_FAMILY_IP4: 1924 af = AF_INET; 1925 break; 1926 case NVMF_ADDR_FAMILY_IP6: 1927 af = AF_INET6; 1928 break; 1929 default: 1930 pr_err("address family %d not supported\n", 1931 nport->disc_addr.adrfam); 1932 ret = -EINVAL; 1933 goto out_free_port; 1934 } 1935 1936 if (nport->inline_data_size < 0) { 1937 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1938 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1939 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1940 nport->inline_data_size, 1941 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1942 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1943 } 1944 1945 if (nport->max_queue_size < 0) { 1946 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE; 1947 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) { 1948 pr_warn("max_queue_size %u is too large, reducing to %u\n", 1949 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE); 1950 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; 1951 } 1952 1953 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1954 nport->disc_addr.trsvcid, &port->addr); 1955 if (ret) { 1956 pr_err("malformed ip/port passed: %s:%s\n", 1957 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1958 goto out_free_port; 1959 } 1960 1961 ret = nvmet_rdma_enable_port(port); 1962 if (ret) 1963 goto out_free_port; 1964 1965 pr_info("enabling port %d (%pISpcs)\n", 1966 le16_to_cpu(nport->disc_addr.portid), 1967 (struct sockaddr *)&port->addr); 1968 1969 return 0; 1970 1971 out_free_port: 1972 kfree(port); 1973 return ret; 1974 } 1975 1976 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1977 { 1978 struct nvmet_rdma_port *port = nport->priv; 1979 1980 cancel_delayed_work_sync(&port->repair_work); 1981 nvmet_rdma_disable_port(port); 1982 kfree(port); 1983 } 1984 1985 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1986 struct nvmet_port *nport, char *traddr) 1987 { 1988 struct nvmet_rdma_port *port = nport->priv; 1989 struct rdma_cm_id *cm_id = port->cm_id; 1990 1991 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 1992 struct nvmet_rdma_rsp *rsp = 1993 container_of(req, struct nvmet_rdma_rsp, req); 1994 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 1995 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 1996 1997 sprintf(traddr, "%pISc", addr); 1998 } else { 1999 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 2000 } 2001 } 2002 2003 static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl, 2004 char *traddr, size_t traddr_len) 2005 { 2006 struct nvmet_sq *nvme_sq = ctrl->sqs[0]; 2007 struct nvmet_rdma_queue *queue = 2008 container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq); 2009 2010 return snprintf(traddr, traddr_len, "%pISc", 2011 (struct sockaddr *)&queue->cm_id->route.addr.dst_addr); 2012 } 2013 2014 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 2015 { 2016 if (ctrl->pi_support) 2017 return NVMET_RDMA_MAX_METADATA_MDTS; 2018 return NVMET_RDMA_MAX_MDTS; 2019 } 2020 2021 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) 2022 { 2023 if (ctrl->pi_support) 2024 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE; 2025 return NVME_RDMA_MAX_QUEUE_SIZE; 2026 } 2027 2028 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 2029 .owner = THIS_MODULE, 2030 .type = NVMF_TRTYPE_RDMA, 2031 .msdbd = 1, 2032 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 2033 .add_port = nvmet_rdma_add_port, 2034 .remove_port = nvmet_rdma_remove_port, 2035 .queue_response = nvmet_rdma_queue_response, 2036 .delete_ctrl = nvmet_rdma_delete_ctrl, 2037 .disc_traddr = nvmet_rdma_disc_port_addr, 2038 .host_traddr = nvmet_rdma_host_port_addr, 2039 .get_mdts = nvmet_rdma_get_mdts, 2040 .get_max_queue_size = nvmet_rdma_get_max_queue_size, 2041 }; 2042 2043 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2044 { 2045 struct nvmet_rdma_queue *queue, *tmp; 2046 struct nvmet_rdma_device *ndev; 2047 bool found = false; 2048 2049 mutex_lock(&device_list_mutex); 2050 list_for_each_entry(ndev, &device_list, entry) { 2051 if (ndev->device == ib_device) { 2052 found = true; 2053 break; 2054 } 2055 } 2056 mutex_unlock(&device_list_mutex); 2057 2058 if (!found) 2059 return; 2060 2061 /* 2062 * IB Device that is used by nvmet controllers is being removed, 2063 * delete all queues using this device. 2064 */ 2065 mutex_lock(&nvmet_rdma_queue_mutex); 2066 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2067 queue_list) { 2068 if (queue->dev->device != ib_device) 2069 continue; 2070 2071 pr_info("Removing queue %d\n", queue->idx); 2072 list_del_init(&queue->queue_list); 2073 __nvmet_rdma_queue_disconnect(queue); 2074 } 2075 mutex_unlock(&nvmet_rdma_queue_mutex); 2076 2077 flush_workqueue(nvmet_wq); 2078 } 2079 2080 static struct ib_client nvmet_rdma_ib_client = { 2081 .name = "nvmet_rdma", 2082 .remove = nvmet_rdma_remove_one 2083 }; 2084 2085 static int __init nvmet_rdma_init(void) 2086 { 2087 int ret; 2088 2089 ret = ib_register_client(&nvmet_rdma_ib_client); 2090 if (ret) 2091 return ret; 2092 2093 ret = nvmet_register_transport(&nvmet_rdma_ops); 2094 if (ret) 2095 goto err_ib_client; 2096 2097 return 0; 2098 2099 err_ib_client: 2100 ib_unregister_client(&nvmet_rdma_ib_client); 2101 return ret; 2102 } 2103 2104 static void __exit nvmet_rdma_exit(void) 2105 { 2106 nvmet_unregister_transport(&nvmet_rdma_ops); 2107 ib_unregister_client(&nvmet_rdma_ib_client); 2108 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2109 ida_destroy(&nvmet_rdma_queue_ida); 2110 } 2111 2112 module_init(nvmet_rdma_init); 2113 module_exit(nvmet_rdma_exit); 2114 2115 MODULE_DESCRIPTION("NVMe target RDMA transport driver"); 2116 MODULE_LICENSE("GPL v2"); 2117 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2118