xref: /linux/drivers/nvme/target/rdma.c (revision 22c55fb9eb92395d999b8404d73e58540d11bdd8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <linux/unaligned.h>
20 
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
23 #include <rdma/rw.h>
24 #include <rdma/ib_cm.h>
25 
26 #include <linux/nvme-rdma.h>
27 #include "nvmet.h"
28 
29 /*
30  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31  */
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE		4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
35 
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS			8
38 #define NVMET_RDMA_MAX_METADATA_MDTS		5
39 
40 #define NVMET_RDMA_BACKLOG 128
41 
42 #define NVMET_RDMA_DISCRETE_RSP_TAG		-1
43 
44 struct nvmet_rdma_srq;
45 
46 struct nvmet_rdma_cmd {
47 	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
48 	struct ib_cqe		cqe;
49 	struct ib_recv_wr	wr;
50 	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
51 	struct nvme_command     *nvme_cmd;
52 	struct nvmet_rdma_queue	*queue;
53 	struct nvmet_rdma_srq   *nsrq;
54 };
55 
56 enum {
57 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
58 };
59 
60 struct nvmet_rdma_rsp {
61 	struct ib_sge		send_sge;
62 	struct ib_cqe		send_cqe;
63 	struct ib_send_wr	send_wr;
64 
65 	struct nvmet_rdma_cmd	*cmd;
66 	struct nvmet_rdma_queue	*queue;
67 
68 	struct ib_cqe		read_cqe;
69 	struct ib_cqe		write_cqe;
70 	struct rdma_rw_ctx	rw;
71 
72 	struct nvmet_req	req;
73 
74 	bool			allocated;
75 	u8			n_rdma;
76 	u32			flags;
77 	u32			invalidate_rkey;
78 
79 	struct list_head	wait_list;
80 	int			tag;
81 };
82 
83 enum nvmet_rdma_queue_state {
84 	NVMET_RDMA_Q_CONNECTING,
85 	NVMET_RDMA_Q_LIVE,
86 	NVMET_RDMA_Q_DISCONNECTING,
87 };
88 
89 struct nvmet_rdma_queue {
90 	struct rdma_cm_id	*cm_id;
91 	struct ib_qp		*qp;
92 	struct nvmet_port	*port;
93 	struct ib_cq		*cq;
94 	atomic_t		sq_wr_avail;
95 	struct nvmet_rdma_device *dev;
96 	struct nvmet_rdma_srq   *nsrq;
97 	spinlock_t		state_lock;
98 	enum nvmet_rdma_queue_state state;
99 	struct nvmet_cq		nvme_cq;
100 	struct nvmet_sq		nvme_sq;
101 
102 	struct nvmet_rdma_rsp	*rsps;
103 	struct sbitmap		rsp_tags;
104 	struct nvmet_rdma_cmd	*cmds;
105 
106 	struct work_struct	release_work;
107 	struct list_head	rsp_wait_list;
108 	struct list_head	rsp_wr_wait_list;
109 	spinlock_t		rsp_wr_wait_lock;
110 
111 	int			idx;
112 	int			host_qid;
113 	int			comp_vector;
114 	int			recv_queue_size;
115 	int			send_queue_size;
116 
117 	struct list_head	queue_list;
118 };
119 
120 struct nvmet_rdma_port {
121 	struct nvmet_port	*nport;
122 	struct sockaddr_storage addr;
123 	struct rdma_cm_id	*cm_id;
124 	struct delayed_work	repair_work;
125 };
126 
127 struct nvmet_rdma_srq {
128 	struct ib_srq            *srq;
129 	struct nvmet_rdma_cmd    *cmds;
130 	struct nvmet_rdma_device *ndev;
131 };
132 
133 struct nvmet_rdma_device {
134 	struct ib_device	*device;
135 	struct ib_pd		*pd;
136 	struct nvmet_rdma_srq	**srqs;
137 	int			srq_count;
138 	size_t			srq_size;
139 	struct kref		ref;
140 	struct list_head	entry;
141 	int			inline_data_size;
142 	int			inline_page_count;
143 };
144 
145 static bool nvmet_rdma_use_srq;
146 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
147 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
148 
149 static int srq_size_set(const char *val, const struct kernel_param *kp);
150 static const struct kernel_param_ops srq_size_ops = {
151 	.set = srq_size_set,
152 	.get = param_get_int,
153 };
154 
155 static int nvmet_rdma_srq_size = 1024;
156 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
157 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
158 
159 static DEFINE_IDA(nvmet_rdma_queue_ida);
160 static LIST_HEAD(nvmet_rdma_queue_list);
161 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
162 
163 static LIST_HEAD(device_list);
164 static DEFINE_MUTEX(device_list_mutex);
165 
166 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
167 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
170 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
171 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
172 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
173 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
174 				struct nvmet_rdma_rsp *r);
175 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
176 				struct nvmet_rdma_rsp *r,
177 				int tag);
178 
179 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
180 
181 static int srq_size_set(const char *val, const struct kernel_param *kp)
182 {
183 	int n = 0, ret;
184 
185 	ret = kstrtoint(val, 10, &n);
186 	if (ret != 0 || n < 256)
187 		return -EINVAL;
188 
189 	return param_set_int(val, kp);
190 }
191 
192 static int num_pages(int len)
193 {
194 	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
195 }
196 
197 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
198 {
199 	return nvme_is_write(rsp->req.cmd) &&
200 		rsp->req.transfer_len &&
201 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
202 }
203 
204 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
205 {
206 	return !nvme_is_write(rsp->req.cmd) &&
207 		rsp->req.transfer_len &&
208 		!rsp->req.cqe->status &&
209 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
210 }
211 
212 static inline struct nvmet_rdma_rsp *
213 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
214 {
215 	struct nvmet_rdma_rsp *rsp = NULL;
216 	int tag;
217 
218 	tag = sbitmap_get(&queue->rsp_tags);
219 	if (tag >= 0)
220 		rsp = &queue->rsps[tag];
221 
222 	if (unlikely(!rsp)) {
223 		int ret;
224 
225 		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226 		if (unlikely(!rsp))
227 			return NULL;
228 		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp,
229 				NVMET_RDMA_DISCRETE_RSP_TAG);
230 		if (unlikely(ret)) {
231 			kfree(rsp);
232 			return NULL;
233 		}
234 	}
235 
236 	return rsp;
237 }
238 
239 static inline void
240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241 {
242 	if (unlikely(rsp->tag == NVMET_RDMA_DISCRETE_RSP_TAG)) {
243 		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
244 		kfree(rsp);
245 		return;
246 	}
247 
248 	sbitmap_clear_bit(&rsp->queue->rsp_tags, rsp->tag);
249 }
250 
251 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
252 				struct nvmet_rdma_cmd *c)
253 {
254 	struct scatterlist *sg;
255 	struct ib_sge *sge;
256 	int i;
257 
258 	if (!ndev->inline_data_size)
259 		return;
260 
261 	sg = c->inline_sg;
262 	sge = &c->sge[1];
263 
264 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
265 		if (sge->length)
266 			ib_dma_unmap_page(ndev->device, sge->addr,
267 					sge->length, DMA_FROM_DEVICE);
268 		if (sg_page(sg))
269 			__free_page(sg_page(sg));
270 	}
271 }
272 
273 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
274 				struct nvmet_rdma_cmd *c)
275 {
276 	struct scatterlist *sg;
277 	struct ib_sge *sge;
278 	struct page *pg;
279 	int len;
280 	int i;
281 
282 	if (!ndev->inline_data_size)
283 		return 0;
284 
285 	sg = c->inline_sg;
286 	sg_init_table(sg, ndev->inline_page_count);
287 	sge = &c->sge[1];
288 	len = ndev->inline_data_size;
289 
290 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
291 		pg = alloc_page(GFP_KERNEL);
292 		if (!pg)
293 			goto out_err;
294 		sg_assign_page(sg, pg);
295 		sge->addr = ib_dma_map_page(ndev->device,
296 			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
297 		if (ib_dma_mapping_error(ndev->device, sge->addr))
298 			goto out_err;
299 		sge->length = min_t(int, len, PAGE_SIZE);
300 		sge->lkey = ndev->pd->local_dma_lkey;
301 		len -= sge->length;
302 	}
303 
304 	return 0;
305 out_err:
306 	for (; i >= 0; i--, sg--, sge--) {
307 		if (sge->length)
308 			ib_dma_unmap_page(ndev->device, sge->addr,
309 					sge->length, DMA_FROM_DEVICE);
310 		if (sg_page(sg))
311 			__free_page(sg_page(sg));
312 	}
313 	return -ENOMEM;
314 }
315 
316 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
317 			struct nvmet_rdma_cmd *c, bool admin)
318 {
319 	/* NVMe command / RDMA RECV */
320 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
321 	if (!c->nvme_cmd)
322 		goto out;
323 
324 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
325 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
326 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
327 		goto out_free_cmd;
328 
329 	c->sge[0].length = sizeof(*c->nvme_cmd);
330 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
331 
332 	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
333 		goto out_unmap_cmd;
334 
335 	c->cqe.done = nvmet_rdma_recv_done;
336 
337 	c->wr.wr_cqe = &c->cqe;
338 	c->wr.sg_list = c->sge;
339 	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
340 
341 	return 0;
342 
343 out_unmap_cmd:
344 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
345 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
346 out_free_cmd:
347 	kfree(c->nvme_cmd);
348 
349 out:
350 	return -ENOMEM;
351 }
352 
353 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
354 		struct nvmet_rdma_cmd *c, bool admin)
355 {
356 	if (!admin)
357 		nvmet_rdma_free_inline_pages(ndev, c);
358 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
359 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
360 	kfree(c->nvme_cmd);
361 }
362 
363 static struct nvmet_rdma_cmd *
364 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
365 		int nr_cmds, bool admin)
366 {
367 	struct nvmet_rdma_cmd *cmds;
368 	int ret = -EINVAL, i;
369 
370 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
371 	if (!cmds)
372 		goto out;
373 
374 	for (i = 0; i < nr_cmds; i++) {
375 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
376 		if (ret)
377 			goto out_free;
378 	}
379 
380 	return cmds;
381 
382 out_free:
383 	while (--i >= 0)
384 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
385 	kfree(cmds);
386 out:
387 	return ERR_PTR(ret);
388 }
389 
390 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
391 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
392 {
393 	int i;
394 
395 	for (i = 0; i < nr_cmds; i++)
396 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
397 	kfree(cmds);
398 }
399 
400 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
401 		struct nvmet_rdma_rsp *r, int tag)
402 {
403 	/* NVMe CQE / RDMA SEND */
404 	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
405 	if (!r->req.cqe)
406 		goto out;
407 
408 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
409 			sizeof(*r->req.cqe), DMA_TO_DEVICE);
410 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
411 		goto out_free_rsp;
412 
413 	if (ib_dma_pci_p2p_dma_supported(ndev->device))
414 		r->req.p2p_client = &ndev->device->dev;
415 	r->send_sge.length = sizeof(*r->req.cqe);
416 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
417 
418 	r->send_cqe.done = nvmet_rdma_send_done;
419 
420 	r->send_wr.wr_cqe = &r->send_cqe;
421 	r->send_wr.sg_list = &r->send_sge;
422 	r->send_wr.num_sge = 1;
423 	r->send_wr.send_flags = IB_SEND_SIGNALED;
424 
425 	/* Data In / RDMA READ */
426 	r->read_cqe.done = nvmet_rdma_read_data_done;
427 	/* Data Out / RDMA WRITE */
428 	r->write_cqe.done = nvmet_rdma_write_data_done;
429 	r->tag = tag;
430 
431 	return 0;
432 
433 out_free_rsp:
434 	kfree(r->req.cqe);
435 out:
436 	return -ENOMEM;
437 }
438 
439 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
440 		struct nvmet_rdma_rsp *r)
441 {
442 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
443 				sizeof(*r->req.cqe), DMA_TO_DEVICE);
444 	kfree(r->req.cqe);
445 }
446 
447 static int
448 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
449 {
450 	struct nvmet_rdma_device *ndev = queue->dev;
451 	int nr_rsps = queue->recv_queue_size * 2;
452 	int ret = -ENOMEM, i;
453 
454 	if (sbitmap_init_node(&queue->rsp_tags, nr_rsps, -1, GFP_KERNEL,
455 			NUMA_NO_NODE, false, true))
456 		goto out;
457 
458 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459 			GFP_KERNEL);
460 	if (!queue->rsps)
461 		goto out_free_sbitmap;
462 
463 	for (i = 0; i < nr_rsps; i++) {
464 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465 
466 		ret = nvmet_rdma_alloc_rsp(ndev, rsp, i);
467 		if (ret)
468 			goto out_free;
469 	}
470 
471 	return 0;
472 
473 out_free:
474 	while (--i >= 0)
475 		nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
476 	kfree(queue->rsps);
477 out_free_sbitmap:
478 	sbitmap_free(&queue->rsp_tags);
479 out:
480 	return ret;
481 }
482 
483 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
484 {
485 	struct nvmet_rdma_device *ndev = queue->dev;
486 	int i, nr_rsps = queue->recv_queue_size * 2;
487 
488 	for (i = 0; i < nr_rsps; i++)
489 		nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
490 	kfree(queue->rsps);
491 	sbitmap_free(&queue->rsp_tags);
492 }
493 
494 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
495 		struct nvmet_rdma_cmd *cmd)
496 {
497 	int ret;
498 
499 	ib_dma_sync_single_for_device(ndev->device,
500 		cmd->sge[0].addr, cmd->sge[0].length,
501 		DMA_FROM_DEVICE);
502 
503 	if (cmd->nsrq)
504 		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
505 	else
506 		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
507 
508 	if (unlikely(ret))
509 		pr_err("post_recv cmd failed\n");
510 
511 	return ret;
512 }
513 
514 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
515 {
516 	spin_lock(&queue->rsp_wr_wait_lock);
517 	while (!list_empty(&queue->rsp_wr_wait_list)) {
518 		struct nvmet_rdma_rsp *rsp;
519 		bool ret;
520 
521 		rsp = list_entry(queue->rsp_wr_wait_list.next,
522 				struct nvmet_rdma_rsp, wait_list);
523 		list_del(&rsp->wait_list);
524 
525 		spin_unlock(&queue->rsp_wr_wait_lock);
526 		ret = nvmet_rdma_execute_command(rsp);
527 		spin_lock(&queue->rsp_wr_wait_lock);
528 
529 		if (!ret) {
530 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
531 			break;
532 		}
533 	}
534 	spin_unlock(&queue->rsp_wr_wait_lock);
535 }
536 
537 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
538 {
539 	struct ib_mr_status mr_status;
540 	int ret;
541 	u16 status = 0;
542 
543 	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
544 	if (ret) {
545 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
546 		return NVME_SC_INVALID_PI;
547 	}
548 
549 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
550 		switch (mr_status.sig_err.err_type) {
551 		case IB_SIG_BAD_GUARD:
552 			status = NVME_SC_GUARD_CHECK;
553 			break;
554 		case IB_SIG_BAD_REFTAG:
555 			status = NVME_SC_REFTAG_CHECK;
556 			break;
557 		case IB_SIG_BAD_APPTAG:
558 			status = NVME_SC_APPTAG_CHECK;
559 			break;
560 		}
561 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
562 		       mr_status.sig_err.err_type,
563 		       mr_status.sig_err.expected,
564 		       mr_status.sig_err.actual);
565 	}
566 
567 	return status;
568 }
569 
570 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
571 		struct nvme_command *cmd, struct ib_sig_domain *domain,
572 		u16 control, u8 pi_type)
573 {
574 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
575 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
576 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
577 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
578 	if (control & NVME_RW_PRINFO_PRCHK_REF)
579 		domain->sig.dif.ref_remap = true;
580 
581 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
582 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
583 	domain->sig.dif.app_escape = true;
584 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
585 		domain->sig.dif.ref_escape = true;
586 }
587 
588 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
589 				     struct ib_sig_attrs *sig_attrs)
590 {
591 	struct nvme_command *cmd = req->cmd;
592 	u16 control = le16_to_cpu(cmd->rw.control);
593 	u8 pi_type = req->ns->pi_type;
594 	struct blk_integrity *bi;
595 
596 	bi = bdev_get_integrity(req->ns->bdev);
597 
598 	memset(sig_attrs, 0, sizeof(*sig_attrs));
599 
600 	if (control & NVME_RW_PRINFO_PRACT) {
601 		/* for WRITE_INSERT/READ_STRIP no wire domain */
602 		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
603 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
604 					  pi_type);
605 		/* Clear the PRACT bit since HCA will generate/verify the PI */
606 		control &= ~NVME_RW_PRINFO_PRACT;
607 		cmd->rw.control = cpu_to_le16(control);
608 		/* PI is added by the HW */
609 		req->transfer_len += req->metadata_len;
610 	} else {
611 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
612 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
613 					  pi_type);
614 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
615 					  pi_type);
616 	}
617 
618 	if (control & NVME_RW_PRINFO_PRCHK_REF)
619 		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
620 	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
621 		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
622 	if (control & NVME_RW_PRINFO_PRCHK_APP)
623 		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
624 }
625 
626 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
627 				  struct ib_sig_attrs *sig_attrs)
628 {
629 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
630 	struct nvmet_req *req = &rsp->req;
631 	int ret;
632 
633 	if (req->metadata_len)
634 		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
635 			cm_id->port_num, req->sg, req->sg_cnt,
636 			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
637 			addr, key, nvmet_data_dir(req));
638 	else
639 		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
640 				       req->sg, req->sg_cnt, 0, addr, key,
641 				       nvmet_data_dir(req));
642 
643 	return ret;
644 }
645 
646 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
647 {
648 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
649 	struct nvmet_req *req = &rsp->req;
650 
651 	if (req->metadata_len)
652 		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
653 			cm_id->port_num, req->sg, req->sg_cnt,
654 			req->metadata_sg, req->metadata_sg_cnt,
655 			nvmet_data_dir(req));
656 	else
657 		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
658 				    req->sg, req->sg_cnt, nvmet_data_dir(req));
659 }
660 
661 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
662 {
663 	struct nvmet_rdma_queue *queue = rsp->queue;
664 
665 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
666 
667 	if (rsp->n_rdma)
668 		nvmet_rdma_rw_ctx_destroy(rsp);
669 
670 	if (rsp->req.sg != rsp->cmd->inline_sg)
671 		nvmet_req_free_sgls(&rsp->req);
672 
673 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
674 		nvmet_rdma_process_wr_wait_list(queue);
675 
676 	nvmet_rdma_put_rsp(rsp);
677 }
678 
679 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
680 {
681 	if (queue->nvme_sq.ctrl) {
682 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
683 	} else {
684 		/*
685 		 * we didn't setup the controller yet in case
686 		 * of admin connect error, just disconnect and
687 		 * cleanup the queue
688 		 */
689 		nvmet_rdma_queue_disconnect(queue);
690 	}
691 }
692 
693 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
694 {
695 	struct nvmet_rdma_rsp *rsp =
696 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
697 	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
698 
699 	nvmet_rdma_release_rsp(rsp);
700 
701 	if (unlikely(wc->status != IB_WC_SUCCESS &&
702 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
703 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
704 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
705 		nvmet_rdma_error_comp(queue);
706 	}
707 }
708 
709 static void nvmet_rdma_queue_response(struct nvmet_req *req)
710 {
711 	struct nvmet_rdma_rsp *rsp =
712 		container_of(req, struct nvmet_rdma_rsp, req);
713 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
714 	struct ib_send_wr *first_wr;
715 
716 	if (rsp->invalidate_rkey) {
717 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
718 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
719 	} else {
720 		rsp->send_wr.opcode = IB_WR_SEND;
721 	}
722 
723 	if (nvmet_rdma_need_data_out(rsp)) {
724 		if (rsp->req.metadata_len)
725 			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
726 					cm_id->port_num, &rsp->write_cqe, NULL);
727 		else
728 			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
729 					cm_id->port_num, NULL, &rsp->send_wr);
730 	} else {
731 		first_wr = &rsp->send_wr;
732 	}
733 
734 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
735 
736 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
737 		rsp->send_sge.addr, rsp->send_sge.length,
738 		DMA_TO_DEVICE);
739 
740 	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
741 		pr_err("sending cmd response failed\n");
742 		nvmet_rdma_release_rsp(rsp);
743 	}
744 }
745 
746 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
747 {
748 	struct nvmet_rdma_rsp *rsp =
749 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
750 	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
751 	u16 status = 0;
752 
753 	WARN_ON(rsp->n_rdma <= 0);
754 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
755 	rsp->n_rdma = 0;
756 
757 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
758 		nvmet_rdma_rw_ctx_destroy(rsp);
759 		nvmet_req_uninit(&rsp->req);
760 		nvmet_rdma_release_rsp(rsp);
761 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
762 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
763 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
764 			nvmet_rdma_error_comp(queue);
765 		}
766 		return;
767 	}
768 
769 	if (rsp->req.metadata_len)
770 		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
771 	nvmet_rdma_rw_ctx_destroy(rsp);
772 
773 	if (unlikely(status))
774 		nvmet_req_complete(&rsp->req, status);
775 	else
776 		rsp->req.execute(&rsp->req);
777 }
778 
779 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
780 {
781 	struct nvmet_rdma_rsp *rsp =
782 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
783 	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
784 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
785 	u16 status;
786 
787 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
788 		return;
789 
790 	WARN_ON(rsp->n_rdma <= 0);
791 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
792 	rsp->n_rdma = 0;
793 
794 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
795 		nvmet_rdma_rw_ctx_destroy(rsp);
796 		nvmet_req_uninit(&rsp->req);
797 		nvmet_rdma_release_rsp(rsp);
798 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
799 			pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
800 				ib_wc_status_msg(wc->status), wc->status);
801 			nvmet_rdma_error_comp(queue);
802 		}
803 		return;
804 	}
805 
806 	/*
807 	 * Upon RDMA completion check the signature status
808 	 * - if succeeded send good NVMe response
809 	 * - if failed send bad NVMe response with appropriate error
810 	 */
811 	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
812 	if (unlikely(status))
813 		rsp->req.cqe->status = cpu_to_le16(status << 1);
814 	nvmet_rdma_rw_ctx_destroy(rsp);
815 
816 	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
817 		pr_err("sending cmd response failed\n");
818 		nvmet_rdma_release_rsp(rsp);
819 	}
820 }
821 
822 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
823 		u64 off)
824 {
825 	int sg_count = num_pages(len);
826 	struct scatterlist *sg;
827 	int i;
828 
829 	sg = rsp->cmd->inline_sg;
830 	for (i = 0; i < sg_count; i++, sg++) {
831 		if (i < sg_count - 1)
832 			sg_unmark_end(sg);
833 		else
834 			sg_mark_end(sg);
835 		sg->offset = off;
836 		sg->length = min_t(int, len, PAGE_SIZE - off);
837 		len -= sg->length;
838 		if (!i)
839 			off = 0;
840 	}
841 
842 	rsp->req.sg = rsp->cmd->inline_sg;
843 	rsp->req.sg_cnt = sg_count;
844 }
845 
846 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
847 {
848 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
849 	u64 off = le64_to_cpu(sgl->addr);
850 	u32 len = le32_to_cpu(sgl->length);
851 
852 	if (!nvme_is_write(rsp->req.cmd)) {
853 		rsp->req.error_loc =
854 			offsetof(struct nvme_common_command, opcode);
855 		return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
856 	}
857 
858 	if (off + len > rsp->queue->dev->inline_data_size) {
859 		pr_err("invalid inline data offset!\n");
860 		return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
861 	}
862 
863 	/* no data command? */
864 	if (!len)
865 		return 0;
866 
867 	nvmet_rdma_use_inline_sg(rsp, len, off);
868 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
869 	rsp->req.transfer_len += len;
870 	return 0;
871 }
872 
873 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
874 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
875 {
876 	u64 addr = le64_to_cpu(sgl->addr);
877 	u32 key = get_unaligned_le32(sgl->key);
878 	struct ib_sig_attrs sig_attrs;
879 	int ret;
880 
881 	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
882 
883 	/* no data command? */
884 	if (!rsp->req.transfer_len)
885 		return 0;
886 
887 	if (rsp->req.metadata_len)
888 		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
889 
890 	ret = nvmet_req_alloc_sgls(&rsp->req);
891 	if (unlikely(ret < 0))
892 		goto error_out;
893 
894 	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
895 	if (unlikely(ret < 0))
896 		goto error_out;
897 	rsp->n_rdma += ret;
898 
899 	if (invalidate)
900 		rsp->invalidate_rkey = key;
901 
902 	return 0;
903 
904 error_out:
905 	rsp->req.transfer_len = 0;
906 	return NVME_SC_INTERNAL;
907 }
908 
909 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
910 {
911 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
912 
913 	switch (sgl->type >> 4) {
914 	case NVME_SGL_FMT_DATA_DESC:
915 		switch (sgl->type & 0xf) {
916 		case NVME_SGL_FMT_OFFSET:
917 			return nvmet_rdma_map_sgl_inline(rsp);
918 		default:
919 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
920 			rsp->req.error_loc =
921 				offsetof(struct nvme_common_command, dptr);
922 			return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
923 		}
924 	case NVME_KEY_SGL_FMT_DATA_DESC:
925 		switch (sgl->type & 0xf) {
926 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
927 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
928 		case NVME_SGL_FMT_ADDRESS:
929 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
930 		default:
931 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
932 			rsp->req.error_loc =
933 				offsetof(struct nvme_common_command, dptr);
934 			return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
935 		}
936 	default:
937 		pr_err("invalid SGL type: %#x\n", sgl->type);
938 		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
939 		return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR;
940 	}
941 }
942 
943 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
944 {
945 	struct nvmet_rdma_queue *queue = rsp->queue;
946 
947 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
948 			&queue->sq_wr_avail) < 0)) {
949 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
950 				1 + rsp->n_rdma, queue->idx,
951 				queue->nvme_sq.ctrl->cntlid);
952 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
953 		return false;
954 	}
955 
956 	if (nvmet_rdma_need_data_in(rsp)) {
957 		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
958 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
959 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
960 	} else {
961 		rsp->req.execute(&rsp->req);
962 	}
963 
964 	return true;
965 }
966 
967 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
968 		struct nvmet_rdma_rsp *cmd)
969 {
970 	u16 status;
971 
972 	ib_dma_sync_single_for_cpu(queue->dev->device,
973 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
974 		DMA_FROM_DEVICE);
975 	ib_dma_sync_single_for_cpu(queue->dev->device,
976 		cmd->send_sge.addr, cmd->send_sge.length,
977 		DMA_TO_DEVICE);
978 
979 	if (!nvmet_req_init(&cmd->req, &queue->nvme_sq, &nvmet_rdma_ops))
980 		return;
981 
982 	status = nvmet_rdma_map_sgl(cmd);
983 	if (status)
984 		goto out_err;
985 
986 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
987 		spin_lock(&queue->rsp_wr_wait_lock);
988 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
989 		spin_unlock(&queue->rsp_wr_wait_lock);
990 	}
991 
992 	return;
993 
994 out_err:
995 	nvmet_req_complete(&cmd->req, status);
996 }
997 
998 static bool nvmet_rdma_recv_not_live(struct nvmet_rdma_queue *queue,
999 		struct nvmet_rdma_rsp *rsp)
1000 {
1001 	unsigned long flags;
1002 	bool ret = true;
1003 
1004 	spin_lock_irqsave(&queue->state_lock, flags);
1005 	/*
1006 	 * recheck queue state is not live to prevent a race condition
1007 	 * with RDMA_CM_EVENT_ESTABLISHED handler.
1008 	 */
1009 	if (queue->state == NVMET_RDMA_Q_LIVE)
1010 		ret = false;
1011 	else if (queue->state == NVMET_RDMA_Q_CONNECTING)
1012 		list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1013 	else
1014 		nvmet_rdma_put_rsp(rsp);
1015 	spin_unlock_irqrestore(&queue->state_lock, flags);
1016 	return ret;
1017 }
1018 
1019 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1020 {
1021 	struct nvmet_rdma_cmd *cmd =
1022 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1023 	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1024 	struct nvmet_rdma_rsp *rsp;
1025 
1026 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1027 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1028 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1029 				wc->wr_cqe, ib_wc_status_msg(wc->status),
1030 				wc->status);
1031 			nvmet_rdma_error_comp(queue);
1032 		}
1033 		return;
1034 	}
1035 
1036 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1037 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1038 		nvmet_rdma_error_comp(queue);
1039 		return;
1040 	}
1041 
1042 	cmd->queue = queue;
1043 	rsp = nvmet_rdma_get_rsp(queue);
1044 	if (unlikely(!rsp)) {
1045 		/*
1046 		 * we get here only under memory pressure,
1047 		 * silently drop and have the host retry
1048 		 * as we can't even fail it.
1049 		 */
1050 		nvmet_rdma_post_recv(queue->dev, cmd);
1051 		return;
1052 	}
1053 	rsp->queue = queue;
1054 	rsp->cmd = cmd;
1055 	rsp->flags = 0;
1056 	rsp->req.cmd = cmd->nvme_cmd;
1057 	rsp->req.port = queue->port;
1058 	rsp->n_rdma = 0;
1059 	rsp->invalidate_rkey = 0;
1060 
1061 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE) &&
1062 	    nvmet_rdma_recv_not_live(queue, rsp))
1063 		return;
1064 
1065 	nvmet_rdma_handle_command(queue, rsp);
1066 }
1067 
1068 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1069 {
1070 	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1071 			     false);
1072 	ib_destroy_srq(nsrq->srq);
1073 
1074 	kfree(nsrq);
1075 }
1076 
1077 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1078 {
1079 	int i;
1080 
1081 	if (!ndev->srqs)
1082 		return;
1083 
1084 	for (i = 0; i < ndev->srq_count; i++)
1085 		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1086 
1087 	kfree(ndev->srqs);
1088 }
1089 
1090 static struct nvmet_rdma_srq *
1091 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1092 {
1093 	struct ib_srq_init_attr srq_attr = { NULL, };
1094 	size_t srq_size = ndev->srq_size;
1095 	struct nvmet_rdma_srq *nsrq;
1096 	struct ib_srq *srq;
1097 	int ret, i;
1098 
1099 	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1100 	if (!nsrq)
1101 		return ERR_PTR(-ENOMEM);
1102 
1103 	srq_attr.attr.max_wr = srq_size;
1104 	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1105 	srq_attr.attr.srq_limit = 0;
1106 	srq_attr.srq_type = IB_SRQT_BASIC;
1107 	srq = ib_create_srq(ndev->pd, &srq_attr);
1108 	if (IS_ERR(srq)) {
1109 		ret = PTR_ERR(srq);
1110 		goto out_free;
1111 	}
1112 
1113 	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1114 	if (IS_ERR(nsrq->cmds)) {
1115 		ret = PTR_ERR(nsrq->cmds);
1116 		goto out_destroy_srq;
1117 	}
1118 
1119 	nsrq->srq = srq;
1120 	nsrq->ndev = ndev;
1121 
1122 	for (i = 0; i < srq_size; i++) {
1123 		nsrq->cmds[i].nsrq = nsrq;
1124 		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1125 		if (ret)
1126 			goto out_free_cmds;
1127 	}
1128 
1129 	return nsrq;
1130 
1131 out_free_cmds:
1132 	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1133 out_destroy_srq:
1134 	ib_destroy_srq(srq);
1135 out_free:
1136 	kfree(nsrq);
1137 	return ERR_PTR(ret);
1138 }
1139 
1140 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1141 {
1142 	int i, ret;
1143 
1144 	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1145 		/*
1146 		 * If SRQs aren't supported we just go ahead and use normal
1147 		 * non-shared receive queues.
1148 		 */
1149 		pr_info("SRQ requested but not supported.\n");
1150 		return 0;
1151 	}
1152 
1153 	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1154 			     nvmet_rdma_srq_size);
1155 	ndev->srq_count = min(ndev->device->num_comp_vectors,
1156 			      ndev->device->attrs.max_srq);
1157 
1158 	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1159 	if (!ndev->srqs)
1160 		return -ENOMEM;
1161 
1162 	for (i = 0; i < ndev->srq_count; i++) {
1163 		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1164 		if (IS_ERR(ndev->srqs[i])) {
1165 			ret = PTR_ERR(ndev->srqs[i]);
1166 			goto err_srq;
1167 		}
1168 	}
1169 
1170 	return 0;
1171 
1172 err_srq:
1173 	while (--i >= 0)
1174 		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1175 	kfree(ndev->srqs);
1176 	return ret;
1177 }
1178 
1179 static void nvmet_rdma_free_dev(struct kref *ref)
1180 {
1181 	struct nvmet_rdma_device *ndev =
1182 		container_of(ref, struct nvmet_rdma_device, ref);
1183 
1184 	mutex_lock(&device_list_mutex);
1185 	list_del(&ndev->entry);
1186 	mutex_unlock(&device_list_mutex);
1187 
1188 	nvmet_rdma_destroy_srqs(ndev);
1189 	ib_dealloc_pd(ndev->pd);
1190 
1191 	kfree(ndev);
1192 }
1193 
1194 static struct nvmet_rdma_device *
1195 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1196 {
1197 	struct nvmet_rdma_port *port = cm_id->context;
1198 	struct nvmet_port *nport = port->nport;
1199 	struct nvmet_rdma_device *ndev;
1200 	int inline_page_count;
1201 	int inline_sge_count;
1202 	int ret;
1203 
1204 	mutex_lock(&device_list_mutex);
1205 	list_for_each_entry(ndev, &device_list, entry) {
1206 		if (ndev->device->node_guid == cm_id->device->node_guid &&
1207 		    kref_get_unless_zero(&ndev->ref))
1208 			goto out_unlock;
1209 	}
1210 
1211 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1212 	if (!ndev)
1213 		goto out_err;
1214 
1215 	inline_page_count = num_pages(nport->inline_data_size);
1216 	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1217 				cm_id->device->attrs.max_recv_sge) - 1;
1218 	if (inline_page_count > inline_sge_count) {
1219 		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1220 			nport->inline_data_size, cm_id->device->name,
1221 			inline_sge_count * PAGE_SIZE);
1222 		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1223 		inline_page_count = inline_sge_count;
1224 	}
1225 	ndev->inline_data_size = nport->inline_data_size;
1226 	ndev->inline_page_count = inline_page_count;
1227 
1228 	if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1229 				  IBK_INTEGRITY_HANDOVER)) {
1230 		pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1231 			cm_id->device->name);
1232 		nport->pi_enable = false;
1233 	}
1234 
1235 	ndev->device = cm_id->device;
1236 	kref_init(&ndev->ref);
1237 
1238 	ndev->pd = ib_alloc_pd(ndev->device, 0);
1239 	if (IS_ERR(ndev->pd))
1240 		goto out_free_dev;
1241 
1242 	if (nvmet_rdma_use_srq) {
1243 		ret = nvmet_rdma_init_srqs(ndev);
1244 		if (ret)
1245 			goto out_free_pd;
1246 	}
1247 
1248 	list_add(&ndev->entry, &device_list);
1249 out_unlock:
1250 	mutex_unlock(&device_list_mutex);
1251 	pr_debug("added %s.\n", ndev->device->name);
1252 	return ndev;
1253 
1254 out_free_pd:
1255 	ib_dealloc_pd(ndev->pd);
1256 out_free_dev:
1257 	kfree(ndev);
1258 out_err:
1259 	mutex_unlock(&device_list_mutex);
1260 	return NULL;
1261 }
1262 
1263 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1264 {
1265 	struct ib_qp_init_attr qp_attr = { };
1266 	struct nvmet_rdma_device *ndev = queue->dev;
1267 	int nr_cqe, ret, i, factor;
1268 
1269 	/*
1270 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1271 	 */
1272 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1273 
1274 	queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1275 				   queue->comp_vector, IB_POLL_WORKQUEUE);
1276 	if (IS_ERR(queue->cq)) {
1277 		ret = PTR_ERR(queue->cq);
1278 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1279 		       nr_cqe + 1, ret);
1280 		goto out;
1281 	}
1282 
1283 	qp_attr.qp_context = queue;
1284 	qp_attr.event_handler = nvmet_rdma_qp_event;
1285 	qp_attr.send_cq = queue->cq;
1286 	qp_attr.recv_cq = queue->cq;
1287 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1288 	qp_attr.qp_type = IB_QPT_RC;
1289 	/* +1 for drain */
1290 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1291 	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1292 				   1 << NVMET_RDMA_MAX_MDTS);
1293 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1294 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1295 					ndev->device->attrs.max_send_sge);
1296 
1297 	if (queue->nsrq) {
1298 		qp_attr.srq = queue->nsrq->srq;
1299 	} else {
1300 		/* +1 for drain */
1301 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1302 		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1303 	}
1304 
1305 	if (queue->port->pi_enable && queue->host_qid)
1306 		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1307 
1308 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1309 	if (ret) {
1310 		pr_err("failed to create_qp ret= %d\n", ret);
1311 		goto err_destroy_cq;
1312 	}
1313 	queue->qp = queue->cm_id->qp;
1314 
1315 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1316 
1317 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1318 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1319 		 qp_attr.cap.max_send_wr, queue->cm_id);
1320 
1321 	if (!queue->nsrq) {
1322 		for (i = 0; i < queue->recv_queue_size; i++) {
1323 			queue->cmds[i].queue = queue;
1324 			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1325 			if (ret)
1326 				goto err_destroy_qp;
1327 		}
1328 	}
1329 
1330 out:
1331 	return ret;
1332 
1333 err_destroy_qp:
1334 	rdma_destroy_qp(queue->cm_id);
1335 err_destroy_cq:
1336 	ib_cq_pool_put(queue->cq, nr_cqe + 1);
1337 	goto out;
1338 }
1339 
1340 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1341 {
1342 	ib_drain_qp(queue->qp);
1343 	if (queue->cm_id)
1344 		rdma_destroy_id(queue->cm_id);
1345 	ib_destroy_qp(queue->qp);
1346 	ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1347 		       queue->send_queue_size + 1);
1348 }
1349 
1350 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1351 {
1352 	pr_debug("freeing queue %d\n", queue->idx);
1353 
1354 	nvmet_sq_destroy(&queue->nvme_sq);
1355 	nvmet_cq_put(&queue->nvme_cq);
1356 
1357 	nvmet_rdma_destroy_queue_ib(queue);
1358 	if (!queue->nsrq) {
1359 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1360 				queue->recv_queue_size,
1361 				!queue->host_qid);
1362 	}
1363 	nvmet_rdma_free_rsps(queue);
1364 	ida_free(&nvmet_rdma_queue_ida, queue->idx);
1365 	kfree(queue);
1366 }
1367 
1368 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1369 {
1370 	struct nvmet_rdma_queue *queue =
1371 		container_of(w, struct nvmet_rdma_queue, release_work);
1372 	struct nvmet_rdma_device *dev = queue->dev;
1373 
1374 	nvmet_rdma_free_queue(queue);
1375 
1376 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1377 }
1378 
1379 static int
1380 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1381 				struct nvmet_rdma_queue *queue)
1382 {
1383 	struct nvme_rdma_cm_req *req;
1384 
1385 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1386 	if (!req || conn->private_data_len == 0)
1387 		return NVME_RDMA_CM_INVALID_LEN;
1388 
1389 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1390 		return NVME_RDMA_CM_INVALID_RECFMT;
1391 
1392 	queue->host_qid = le16_to_cpu(req->qid);
1393 
1394 	/*
1395 	 * req->hsqsize corresponds to our recv queue size plus 1
1396 	 * req->hrqsize corresponds to our send queue size
1397 	 */
1398 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1399 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1400 
1401 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1402 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1403 
1404 	/* XXX: Should we enforce some kind of max for IO queues? */
1405 
1406 	return 0;
1407 }
1408 
1409 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1410 				enum nvme_rdma_cm_status status)
1411 {
1412 	struct nvme_rdma_cm_rej rej;
1413 
1414 	pr_debug("rejecting connect request: status %d (%s)\n",
1415 		 status, nvme_rdma_cm_msg(status));
1416 
1417 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1418 	rej.sts = cpu_to_le16(status);
1419 
1420 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1421 			   IB_CM_REJ_CONSUMER_DEFINED);
1422 }
1423 
1424 static struct nvmet_rdma_queue *
1425 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1426 		struct rdma_cm_id *cm_id,
1427 		struct rdma_cm_event *event)
1428 {
1429 	struct nvmet_rdma_port *port = cm_id->context;
1430 	struct nvmet_rdma_queue *queue;
1431 	int ret;
1432 
1433 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1434 	if (!queue) {
1435 		ret = NVME_RDMA_CM_NO_RSC;
1436 		goto out_reject;
1437 	}
1438 
1439 	nvmet_cq_init(&queue->nvme_cq);
1440 	ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
1441 	if (ret) {
1442 		ret = NVME_RDMA_CM_NO_RSC;
1443 		goto out_free_queue;
1444 	}
1445 
1446 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1447 	if (ret)
1448 		goto out_destroy_sq;
1449 
1450 	/*
1451 	 * Schedules the actual release because calling rdma_destroy_id from
1452 	 * inside a CM callback would trigger a deadlock. (great API design..)
1453 	 */
1454 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1455 	queue->dev = ndev;
1456 	queue->cm_id = cm_id;
1457 	queue->port = port->nport;
1458 
1459 	spin_lock_init(&queue->state_lock);
1460 	queue->state = NVMET_RDMA_Q_CONNECTING;
1461 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1462 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1463 	spin_lock_init(&queue->rsp_wr_wait_lock);
1464 	INIT_LIST_HEAD(&queue->queue_list);
1465 
1466 	queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1467 	if (queue->idx < 0) {
1468 		ret = NVME_RDMA_CM_NO_RSC;
1469 		goto out_destroy_sq;
1470 	}
1471 
1472 	/*
1473 	 * Spread the io queues across completion vectors,
1474 	 * but still keep all admin queues on vector 0.
1475 	 */
1476 	queue->comp_vector = !queue->host_qid ? 0 :
1477 		queue->idx % ndev->device->num_comp_vectors;
1478 
1479 
1480 	ret = nvmet_rdma_alloc_rsps(queue);
1481 	if (ret) {
1482 		ret = NVME_RDMA_CM_NO_RSC;
1483 		goto out_ida_remove;
1484 	}
1485 
1486 	if (ndev->srqs) {
1487 		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1488 	} else {
1489 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1490 				queue->recv_queue_size,
1491 				!queue->host_qid);
1492 		if (IS_ERR(queue->cmds)) {
1493 			ret = NVME_RDMA_CM_NO_RSC;
1494 			goto out_free_responses;
1495 		}
1496 	}
1497 
1498 	ret = nvmet_rdma_create_queue_ib(queue);
1499 	if (ret) {
1500 		pr_err("%s: creating RDMA queue failed (%d).\n",
1501 			__func__, ret);
1502 		ret = NVME_RDMA_CM_NO_RSC;
1503 		goto out_free_cmds;
1504 	}
1505 
1506 	return queue;
1507 
1508 out_free_cmds:
1509 	if (!queue->nsrq) {
1510 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1511 				queue->recv_queue_size,
1512 				!queue->host_qid);
1513 	}
1514 out_free_responses:
1515 	nvmet_rdma_free_rsps(queue);
1516 out_ida_remove:
1517 	ida_free(&nvmet_rdma_queue_ida, queue->idx);
1518 out_destroy_sq:
1519 	nvmet_sq_destroy(&queue->nvme_sq);
1520 out_free_queue:
1521 	nvmet_cq_put(&queue->nvme_cq);
1522 	kfree(queue);
1523 out_reject:
1524 	nvmet_rdma_cm_reject(cm_id, ret);
1525 	return NULL;
1526 }
1527 
1528 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1529 {
1530 	struct nvmet_rdma_queue *queue = priv;
1531 
1532 	switch (event->event) {
1533 	case IB_EVENT_COMM_EST:
1534 		rdma_notify(queue->cm_id, event->event);
1535 		break;
1536 	case IB_EVENT_QP_LAST_WQE_REACHED:
1537 		pr_debug("received last WQE reached event for queue=0x%p\n",
1538 			 queue);
1539 		break;
1540 	default:
1541 		pr_err("received IB QP event: %s (%d)\n",
1542 		       ib_event_msg(event->event), event->event);
1543 		break;
1544 	}
1545 }
1546 
1547 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1548 		struct nvmet_rdma_queue *queue,
1549 		struct rdma_conn_param *p)
1550 {
1551 	struct rdma_conn_param  param = { };
1552 	struct nvme_rdma_cm_rep priv = { };
1553 	int ret = -ENOMEM;
1554 
1555 	param.rnr_retry_count = 7;
1556 	param.flow_control = 1;
1557 	param.initiator_depth = min_t(u8, p->initiator_depth,
1558 		queue->dev->device->attrs.max_qp_init_rd_atom);
1559 	param.private_data = &priv;
1560 	param.private_data_len = sizeof(priv);
1561 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1562 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1563 
1564 	ret = rdma_accept(cm_id, &param);
1565 	if (ret)
1566 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1567 
1568 	return ret;
1569 }
1570 
1571 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1572 		struct rdma_cm_event *event)
1573 {
1574 	struct nvmet_rdma_device *ndev;
1575 	struct nvmet_rdma_queue *queue;
1576 	int ret = -EINVAL;
1577 
1578 	ndev = nvmet_rdma_find_get_device(cm_id);
1579 	if (!ndev) {
1580 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1581 		return -ECONNREFUSED;
1582 	}
1583 
1584 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1585 	if (!queue) {
1586 		ret = -ENOMEM;
1587 		goto put_device;
1588 	}
1589 
1590 	if (queue->host_qid == 0) {
1591 		struct nvmet_rdma_queue *q;
1592 		int pending = 0;
1593 
1594 		/* Check for pending controller teardown */
1595 		mutex_lock(&nvmet_rdma_queue_mutex);
1596 		list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) {
1597 			if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl &&
1598 			    q->state == NVMET_RDMA_Q_DISCONNECTING)
1599 				pending++;
1600 		}
1601 		mutex_unlock(&nvmet_rdma_queue_mutex);
1602 		if (pending > NVMET_RDMA_BACKLOG)
1603 			return NVME_SC_CONNECT_CTRL_BUSY;
1604 	}
1605 
1606 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1607 	if (ret) {
1608 		/*
1609 		 * Don't destroy the cm_id in free path, as we implicitly
1610 		 * destroy the cm_id here with non-zero ret code.
1611 		 */
1612 		queue->cm_id = NULL;
1613 		goto free_queue;
1614 	}
1615 
1616 	mutex_lock(&nvmet_rdma_queue_mutex);
1617 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1618 	mutex_unlock(&nvmet_rdma_queue_mutex);
1619 
1620 	return 0;
1621 
1622 free_queue:
1623 	nvmet_rdma_free_queue(queue);
1624 put_device:
1625 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1626 
1627 	return ret;
1628 }
1629 
1630 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1631 {
1632 	unsigned long flags;
1633 
1634 	spin_lock_irqsave(&queue->state_lock, flags);
1635 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1636 		pr_warn("trying to establish a connected queue\n");
1637 		goto out_unlock;
1638 	}
1639 	queue->state = NVMET_RDMA_Q_LIVE;
1640 
1641 	while (!list_empty(&queue->rsp_wait_list)) {
1642 		struct nvmet_rdma_rsp *cmd;
1643 
1644 		cmd = list_first_entry(&queue->rsp_wait_list,
1645 					struct nvmet_rdma_rsp, wait_list);
1646 		list_del(&cmd->wait_list);
1647 
1648 		spin_unlock_irqrestore(&queue->state_lock, flags);
1649 		nvmet_rdma_handle_command(queue, cmd);
1650 		spin_lock_irqsave(&queue->state_lock, flags);
1651 	}
1652 
1653 out_unlock:
1654 	spin_unlock_irqrestore(&queue->state_lock, flags);
1655 }
1656 
1657 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1658 {
1659 	bool disconnect = false;
1660 	unsigned long flags;
1661 
1662 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1663 
1664 	spin_lock_irqsave(&queue->state_lock, flags);
1665 	switch (queue->state) {
1666 	case NVMET_RDMA_Q_CONNECTING:
1667 		while (!list_empty(&queue->rsp_wait_list)) {
1668 			struct nvmet_rdma_rsp *rsp;
1669 
1670 			rsp = list_first_entry(&queue->rsp_wait_list,
1671 					       struct nvmet_rdma_rsp,
1672 					       wait_list);
1673 			list_del(&rsp->wait_list);
1674 			nvmet_rdma_put_rsp(rsp);
1675 		}
1676 		fallthrough;
1677 	case NVMET_RDMA_Q_LIVE:
1678 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1679 		disconnect = true;
1680 		break;
1681 	case NVMET_RDMA_Q_DISCONNECTING:
1682 		break;
1683 	}
1684 	spin_unlock_irqrestore(&queue->state_lock, flags);
1685 
1686 	if (disconnect) {
1687 		rdma_disconnect(queue->cm_id);
1688 		queue_work(nvmet_wq, &queue->release_work);
1689 	}
1690 }
1691 
1692 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1693 {
1694 	bool disconnect = false;
1695 
1696 	mutex_lock(&nvmet_rdma_queue_mutex);
1697 	if (!list_empty(&queue->queue_list)) {
1698 		list_del_init(&queue->queue_list);
1699 		disconnect = true;
1700 	}
1701 	mutex_unlock(&nvmet_rdma_queue_mutex);
1702 
1703 	if (disconnect)
1704 		__nvmet_rdma_queue_disconnect(queue);
1705 }
1706 
1707 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1708 		struct nvmet_rdma_queue *queue)
1709 {
1710 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1711 
1712 	mutex_lock(&nvmet_rdma_queue_mutex);
1713 	if (!list_empty(&queue->queue_list))
1714 		list_del_init(&queue->queue_list);
1715 	mutex_unlock(&nvmet_rdma_queue_mutex);
1716 
1717 	pr_err("failed to connect queue %d\n", queue->idx);
1718 	queue_work(nvmet_wq, &queue->release_work);
1719 }
1720 
1721 /**
1722  * nvmet_rdma_device_removal() - Handle RDMA device removal
1723  * @cm_id:	rdma_cm id, used for nvmet port
1724  * @queue:      nvmet rdma queue (cm id qp_context)
1725  *
1726  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1727  * to unplug. Note that this event can be generated on a normal
1728  * queue cm_id and/or a device bound listener cm_id (where in this
1729  * case queue will be null).
1730  *
1731  * We registered an ib_client to handle device removal for queues,
1732  * so we only need to handle the listening port cm_ids. In this case
1733  * we nullify the priv to prevent double cm_id destruction and destroying
1734  * the cm_id implicitly by returning a non-zero rc to the callout.
1735  */
1736 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1737 		struct nvmet_rdma_queue *queue)
1738 {
1739 	struct nvmet_rdma_port *port;
1740 
1741 	if (queue) {
1742 		/*
1743 		 * This is a queue cm_id. we have registered
1744 		 * an ib_client to handle queues removal
1745 		 * so don't interfere and just return.
1746 		 */
1747 		return 0;
1748 	}
1749 
1750 	port = cm_id->context;
1751 
1752 	/*
1753 	 * This is a listener cm_id. Make sure that
1754 	 * future remove_port won't invoke a double
1755 	 * cm_id destroy. use atomic xchg to make sure
1756 	 * we don't compete with remove_port.
1757 	 */
1758 	if (xchg(&port->cm_id, NULL) != cm_id)
1759 		return 0;
1760 
1761 	/*
1762 	 * We need to return 1 so that the core will destroy
1763 	 * its own ID.  What a great API design..
1764 	 */
1765 	return 1;
1766 }
1767 
1768 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1769 		struct rdma_cm_event *event)
1770 {
1771 	struct nvmet_rdma_queue *queue = NULL;
1772 	int ret = 0;
1773 
1774 	if (cm_id->qp)
1775 		queue = cm_id->qp->qp_context;
1776 
1777 	pr_debug("%s (%d): status %d id %p\n",
1778 		rdma_event_msg(event->event), event->event,
1779 		event->status, cm_id);
1780 
1781 	switch (event->event) {
1782 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1783 		ret = nvmet_rdma_queue_connect(cm_id, event);
1784 		break;
1785 	case RDMA_CM_EVENT_ESTABLISHED:
1786 		nvmet_rdma_queue_established(queue);
1787 		break;
1788 	case RDMA_CM_EVENT_ADDR_CHANGE:
1789 		if (!queue) {
1790 			struct nvmet_rdma_port *port = cm_id->context;
1791 
1792 			queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1793 			break;
1794 		}
1795 		fallthrough;
1796 	case RDMA_CM_EVENT_DISCONNECTED:
1797 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1798 		nvmet_rdma_queue_disconnect(queue);
1799 		break;
1800 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1801 		ret = nvmet_rdma_device_removal(cm_id, queue);
1802 		break;
1803 	case RDMA_CM_EVENT_REJECTED:
1804 		pr_debug("Connection rejected: %s\n",
1805 			 rdma_reject_msg(cm_id, event->status));
1806 		fallthrough;
1807 	case RDMA_CM_EVENT_UNREACHABLE:
1808 	case RDMA_CM_EVENT_CONNECT_ERROR:
1809 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1810 		break;
1811 	default:
1812 		pr_err("received unrecognized RDMA CM event %d\n",
1813 			event->event);
1814 		break;
1815 	}
1816 
1817 	return ret;
1818 }
1819 
1820 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1821 {
1822 	struct nvmet_rdma_queue *queue, *n;
1823 
1824 	mutex_lock(&nvmet_rdma_queue_mutex);
1825 	list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) {
1826 		if (queue->nvme_sq.ctrl != ctrl)
1827 			continue;
1828 		list_del_init(&queue->queue_list);
1829 		__nvmet_rdma_queue_disconnect(queue);
1830 	}
1831 	mutex_unlock(&nvmet_rdma_queue_mutex);
1832 }
1833 
1834 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1835 {
1836 	struct nvmet_rdma_queue *queue, *tmp;
1837 	struct nvmet_port *nport = port->nport;
1838 
1839 	mutex_lock(&nvmet_rdma_queue_mutex);
1840 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1841 				 queue_list) {
1842 		if (queue->port != nport)
1843 			continue;
1844 
1845 		list_del_init(&queue->queue_list);
1846 		__nvmet_rdma_queue_disconnect(queue);
1847 	}
1848 	mutex_unlock(&nvmet_rdma_queue_mutex);
1849 }
1850 
1851 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1852 {
1853 	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1854 
1855 	if (cm_id)
1856 		rdma_destroy_id(cm_id);
1857 
1858 	/*
1859 	 * Destroy the remaining queues, which are not belong to any
1860 	 * controller yet. Do it here after the RDMA-CM was destroyed
1861 	 * guarantees that no new queue will be created.
1862 	 */
1863 	nvmet_rdma_destroy_port_queues(port);
1864 }
1865 
1866 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1867 {
1868 	struct sockaddr *addr = (struct sockaddr *)&port->addr;
1869 	struct rdma_cm_id *cm_id;
1870 	int ret;
1871 
1872 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1873 			RDMA_PS_TCP, IB_QPT_RC);
1874 	if (IS_ERR(cm_id)) {
1875 		pr_err("CM ID creation failed\n");
1876 		return PTR_ERR(cm_id);
1877 	}
1878 
1879 	/*
1880 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1881 	 * at the same time.
1882 	 */
1883 	ret = rdma_set_afonly(cm_id, 1);
1884 	if (ret) {
1885 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1886 		goto out_destroy_id;
1887 	}
1888 
1889 	ret = rdma_bind_addr(cm_id, addr);
1890 	if (ret) {
1891 		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1892 		goto out_destroy_id;
1893 	}
1894 
1895 	ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG);
1896 	if (ret) {
1897 		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1898 		goto out_destroy_id;
1899 	}
1900 
1901 	port->cm_id = cm_id;
1902 	return 0;
1903 
1904 out_destroy_id:
1905 	rdma_destroy_id(cm_id);
1906 	return ret;
1907 }
1908 
1909 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1910 {
1911 	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1912 			struct nvmet_rdma_port, repair_work);
1913 	int ret;
1914 
1915 	nvmet_rdma_disable_port(port);
1916 	ret = nvmet_rdma_enable_port(port);
1917 	if (ret)
1918 		queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1919 }
1920 
1921 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1922 {
1923 	struct nvmet_rdma_port *port;
1924 	__kernel_sa_family_t af;
1925 	int ret;
1926 
1927 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1928 	if (!port)
1929 		return -ENOMEM;
1930 
1931 	nport->priv = port;
1932 	port->nport = nport;
1933 	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1934 
1935 	switch (nport->disc_addr.adrfam) {
1936 	case NVMF_ADDR_FAMILY_IP4:
1937 		af = AF_INET;
1938 		break;
1939 	case NVMF_ADDR_FAMILY_IP6:
1940 		af = AF_INET6;
1941 		break;
1942 	default:
1943 		pr_err("address family %d not supported\n",
1944 			nport->disc_addr.adrfam);
1945 		ret = -EINVAL;
1946 		goto out_free_port;
1947 	}
1948 
1949 	if (nport->inline_data_size < 0) {
1950 		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1951 	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1952 		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1953 			nport->inline_data_size,
1954 			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1955 		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1956 	}
1957 
1958 	if (nport->max_queue_size < 0) {
1959 		nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE;
1960 	} else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) {
1961 		pr_warn("max_queue_size %u is too large, reducing to %u\n",
1962 			nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE);
1963 		nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1964 	}
1965 
1966 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1967 			nport->disc_addr.trsvcid, &port->addr);
1968 	if (ret) {
1969 		pr_err("malformed ip/port passed: %s:%s\n",
1970 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1971 		goto out_free_port;
1972 	}
1973 
1974 	ret = nvmet_rdma_enable_port(port);
1975 	if (ret)
1976 		goto out_free_port;
1977 
1978 	pr_info("enabling port %d (%pISpcs)\n",
1979 		le16_to_cpu(nport->disc_addr.portid),
1980 		(struct sockaddr *)&port->addr);
1981 
1982 	return 0;
1983 
1984 out_free_port:
1985 	kfree(port);
1986 	return ret;
1987 }
1988 
1989 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1990 {
1991 	struct nvmet_rdma_port *port = nport->priv;
1992 
1993 	cancel_delayed_work_sync(&port->repair_work);
1994 	nvmet_rdma_disable_port(port);
1995 	kfree(port);
1996 }
1997 
1998 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1999 		struct nvmet_port *nport, char *traddr)
2000 {
2001 	struct nvmet_rdma_port *port = nport->priv;
2002 	struct rdma_cm_id *cm_id = port->cm_id;
2003 
2004 	if (inet_addr_is_any(&cm_id->route.addr.src_addr)) {
2005 		struct nvmet_rdma_rsp *rsp =
2006 			container_of(req, struct nvmet_rdma_rsp, req);
2007 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
2008 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
2009 
2010 		sprintf(traddr, "%pISc", addr);
2011 	} else {
2012 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2013 	}
2014 }
2015 
2016 static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl,
2017 		char *traddr, size_t traddr_len)
2018 {
2019 	struct nvmet_sq *nvme_sq = ctrl->sqs[0];
2020 	struct nvmet_rdma_queue *queue =
2021 		container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq);
2022 
2023 	return snprintf(traddr, traddr_len, "%pISc",
2024 			(struct sockaddr *)&queue->cm_id->route.addr.dst_addr);
2025 }
2026 
2027 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
2028 {
2029 	if (ctrl->pi_support)
2030 		return NVMET_RDMA_MAX_METADATA_MDTS;
2031 	return NVMET_RDMA_MAX_MDTS;
2032 }
2033 
2034 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2035 {
2036 	if (ctrl->pi_support)
2037 		return NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
2038 	return NVME_RDMA_MAX_QUEUE_SIZE;
2039 }
2040 
2041 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2042 	.owner			= THIS_MODULE,
2043 	.type			= NVMF_TRTYPE_RDMA,
2044 	.msdbd			= 1,
2045 	.flags			= NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2046 	.add_port		= nvmet_rdma_add_port,
2047 	.remove_port		= nvmet_rdma_remove_port,
2048 	.queue_response		= nvmet_rdma_queue_response,
2049 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
2050 	.disc_traddr		= nvmet_rdma_disc_port_addr,
2051 	.host_traddr		= nvmet_rdma_host_port_addr,
2052 	.get_mdts		= nvmet_rdma_get_mdts,
2053 	.get_max_queue_size	= nvmet_rdma_get_max_queue_size,
2054 };
2055 
2056 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2057 {
2058 	struct nvmet_rdma_queue *queue, *tmp;
2059 	struct nvmet_rdma_device *ndev;
2060 	bool found = false;
2061 
2062 	mutex_lock(&device_list_mutex);
2063 	list_for_each_entry(ndev, &device_list, entry) {
2064 		if (ndev->device == ib_device) {
2065 			found = true;
2066 			break;
2067 		}
2068 	}
2069 	mutex_unlock(&device_list_mutex);
2070 
2071 	if (!found)
2072 		return;
2073 
2074 	/*
2075 	 * IB Device that is used by nvmet controllers is being removed,
2076 	 * delete all queues using this device.
2077 	 */
2078 	mutex_lock(&nvmet_rdma_queue_mutex);
2079 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2080 				 queue_list) {
2081 		if (queue->dev->device != ib_device)
2082 			continue;
2083 
2084 		pr_info("Removing queue %d\n", queue->idx);
2085 		list_del_init(&queue->queue_list);
2086 		__nvmet_rdma_queue_disconnect(queue);
2087 	}
2088 	mutex_unlock(&nvmet_rdma_queue_mutex);
2089 
2090 	flush_workqueue(nvmet_wq);
2091 }
2092 
2093 static struct ib_client nvmet_rdma_ib_client = {
2094 	.name   = "nvmet_rdma",
2095 	.remove = nvmet_rdma_remove_one
2096 };
2097 
2098 static int __init nvmet_rdma_init(void)
2099 {
2100 	int ret;
2101 
2102 	ret = ib_register_client(&nvmet_rdma_ib_client);
2103 	if (ret)
2104 		return ret;
2105 
2106 	ret = nvmet_register_transport(&nvmet_rdma_ops);
2107 	if (ret)
2108 		goto err_ib_client;
2109 
2110 	return 0;
2111 
2112 err_ib_client:
2113 	ib_unregister_client(&nvmet_rdma_ib_client);
2114 	return ret;
2115 }
2116 
2117 static void __exit nvmet_rdma_exit(void)
2118 {
2119 	nvmet_unregister_transport(&nvmet_rdma_ops);
2120 	ib_unregister_client(&nvmet_rdma_ib_client);
2121 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2122 	ida_destroy(&nvmet_rdma_queue_ida);
2123 }
2124 
2125 module_init(nvmet_rdma_init);
2126 module_exit(nvmet_rdma_exit);
2127 
2128 MODULE_DESCRIPTION("NVMe target RDMA transport driver");
2129 MODULE_LICENSE("GPL v2");
2130 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2131